

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/204476

Giachetti Herrera, GA.; Vara González, JLDL.; Marín, B. (2023). Mastering Agile Practice
Adoption through a Model-Driven Approach for the Combination of Development Methods.
Business & Information Systems Engineering. 65:103-125. https://doi.org/10.1007/s12599-
022-00785-5

https://doi.org/10.1007/s12599-022-00785-5

Springer-Verlag

Mastering Agile Practice Adoption through a Model-Driven
Approach for the Combination of Development Methods

Giovanni Giachetti11,2∗, José Luis de la Vara2, and Beatriz Marín3

1Facultad de Ingenieria, Universidad Andres Bello, Antonio Varas 880, Providencia, Santiago, Chile
2Universidad de Castilla-La Mancha, Av. de España, s/n, 02001 Albacete, Spain

3Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

∗To whom correspondence should be addressed; E-mail: giovanni.giachetti@unab.cl

Many software companies are adapting their traditional development processes to in-

corporate agile practices. In this context, it is necessary to count on expert knowledge

to evaluate different agile practices and configure them according to project needs.

However, this expert knowledge is scarce, difficult to validate, and time-consuming,

since it is applied manually. As a solution, this paper presents a model-driven ap-

proach, called SIAM, which automatically generates guidelines for the adoption of ag-

ile practices through the combination of different development methods. SIAM is sup-

ported by a meta-model architecture to implement a knowledge repository that charac-

terizes method configuration decisions, which can be reused in different development

projects. SIAM has been implemented in a tool suite that facilitates the specification

of models and the identification of issues during the definition of the development pro-

cesses. The approach has been successfully applied to reconfigure an industrial devel-

opment process with agile methods, showing that the effort required for tailoring agile

practices according to organizational standards is considerably reduced.

Keywords - Agile practices, Process configuration, Automatic verification, Model-driven

agile, Knowledge management

Introduction

In recent years, increasing attention has been focused on agile development method (Cockburn (2006),

Fowler (2001)), with a growing number of companies adopting such practices to evolve their develop-

ment processes. This progress is presented in the annual State of Agile report (Digital.ai. (2021)),which

1

also indicates that the main motivations for adopting agile practices are accelerated software delivery,

enhanced ability to manage changing priorities, increasing productivity, and improved business/IT align-

ment (Tripp and Armstrong (2014)). Given these benefits, many companies have started to adapt their tra-

ditional development processes to incorporate agile development practices in order to meet their project

requirements (Mahanti (2006), Rao, Naidu, and Chakka (2011)).

However, the transition of organizations and their development practices from a traditional process

to an agile one is challenging, and requires great effort from organization and teams (Campanelli and

Parreiras (2015)). The reconfiguration of traditional development processes demands specific expert

knowledge to adapt existing methods to agile practices that are aligned with organizational needs (Lycett,

Macredie, Patel, and Paul (2003)). Generally speaking, this configuration activity is performed manu-

ally without systematic guidelines, and is thus susceptible to present inconsistencies due to the lack of

automatic verification mechanisms or assisted support for the process configuration (García-Borgoñon,

Barcelona, García-García, Alba, and Escalona (2014)).

This paper presents a model-driven approach that uses expert knowledge to guide the configuration of

development processes in organizations that are moving from traditional to agile development schemas.

It reduces the effort and errors involved in the manual configuration of processes while preserving the

alignment with organizational development standards and reference methods. The approach has been im-

plemented in a suite of model-based tools called SIAM (Software Improvement Agile Methods), which

facilitates the adoption of agile practices in software development processes that must combine tradi-

tional and agile methods to ensure alignment with organizational standards. SIAM has been validated by

means of industrial projects, which have obtained ISO 9001 and CMMi certifications.

The aim of the SIAM approach is to manage experts’ knowledge of agile development processes and

to promote the use of this knowledge among practitioners. To this end, SIAM formalizes the configura-

tion decisions of development processes so that third parties can validate these decisions, and have access

to evidence about the fulfillment of organizational procedures and protocols that facilitate the external

certification of development projects.

The contribution of this paper is threefold: 1) it introduces the conceptual architecture of SIAM,

which aligns expert knowledge with developing methods for their tailoring in concrete projects; 2) it

presents the implementation of SIAM in a suite of model-driven tools for the adoption of agile practices

in the reconfiguration of traditional software development processes; and 3) its demonstrates how SIAM

2

is used to reduce the effort and errors involved in the reconfiguration of an industrial development process

with agile practices from different methods.

The rest of the paper is organized as follows. Section 2) presents the related work; Section 3) presents

the novelty and main contributions of SIAM beyond the state of the art; Section 4) presents the conceptual

foundation of the SIAM architecture; Section 5) presents the implementation of SIAM in a Suite of

model-driven tools to guide the configuration of development processes with agile practices; Section 6)

presents the analysis of the approach by considering the results obtained from its industrial application;

and Section 7) presents conclusions and future works.

Related Work

The main elements involved in understanding the definition and implementation of SIAM are the model-

driven principles applied to method engineering and the application of knowledge management to adopt

agile practices. The background to these two aspects is detailed below. Subsequently, the main novelties

and contributions of the SIAM approach beyond the state of the art are presented.

Development Method Specification and Application

Several authors, such as (Gonzalez-Perez and Henderson-Sellers (2007)), state that a development method

must specify the parts of a process and products to be generated during the software development. This

approach indicates that it is possible to represent these elements in a metamodel that uses certain ex-

otic conceptual constructs to obtain multi-abstraction-level representations. Most of these concepts are

involved in the definition of the ISO/IEC 24744:2014 standard, which presents a multi-level modeling

approach for situational method engineering (Henderson-Sellers, Ralyté, Ågerfalk, and Rossi (2014)).

Multi-level modeling for process development is also explained by (Atkinson and Kühne (2001)) and

(Henderson-Sellers (2006)). The latter differentiates between the method/process definition level and the

process enactment level, where the process elements are configured according to specific project require-

ments. Furthermore, as indicated in (Frank (2019)), traditional method engineering approaches, such as

that indicated above, are limited with respect to reuse, i.e. new methods would need to be created from

scratch using the rather generic concepts defined in the metamodel. This particular issue is important

for agile methods that are constantly evolving, motivating the definition of novel method engineering

approaches to improve agile practice adoption according to specific organizational needs and changing

3

development environments (Heimicke, Dühr, Krüger, Ng, and Albers (2021)).

Drawing on the referenced works about method engineering, it can be seen that the standards and

concepts involved are supported by different meta-specification. Thus, the use of Domain-Specific Mod-

eling Languages (DSMLs) (Frank (2011)) seems to be the most suitable alternative for the definition of

specific methods and their application to concrete domains. A DSML allows specific development needs

to be captured by means of conceptual constructs, which are specified in metamodels that describe the

abstract syntax of the related modeling language. For the definition of a DSML, there are two well-known

alternatives: defining a metamodel of from scratch or extending/customizing a reference modeling lan-

guage, such as UML for general-purpose modeling or BPMN for process modeling. However, there

are still gaps in the use of DSML implementations to adopt multi-level modeling in practice, such as

appropriate tool support for implementing model editors and bridging semantic gaps (Fonseca, Almeida,

Guizzardi, and Carvalho (2021)).

The work presented in (Sandkuhl and Seigerroth (2019)) states that a method model provides struc-

tured guidance for performing complex modeling tasks including the expert knowledge involved in mod-

eling decisions, tools, and cooperation principles. The management of expert knowledge for method

definition seems to be particularly relevant for agile methods that need to be adapted to project require-

ments and, at the same time, comply with the quality criteria of projects and organizations involved

(Kurapati, Manyam, and Petersen (2012); Qumer and Henderson-Sellers (2008)). However, as stated in

(Dybå and Dingsøyr (2008)), little is known about how agile methods are carried out in practice, while,

due to the massive adoption of agile methods (Digital.ai. (2021)), different approaches have emerged to

formalize and support the particularities of the agile development paradigm (Al-Zewairi, Biltawi, Etaiwi,

Shaout, et al. (2017)).

Knowledge Management and Configuration of Agile Processes

A number of studies have shown that knowledge management is key in developing more efficient busi-

ness processes and quality improvement for software development (Maciel, de Souza, de Almeia Falbo,

Felizardo, and Vijaykumar (2018)). Moreover, modeling approaches focus special attention on represen-

tation and transference of knowledge in smart and digital environments (Manesh, Pellegrini, Marzi, and

Dabic (2020)). Recent studies underline the need for knowledge management in technology development

companies that adopt agile practices (Khalil and Khalil (2020)).

4

In general terms, agile development processes comprise a set of practices that have been created

from practitioner’s knowledge (ÅGERFALK and Fitzgerald (2006)). Thus, agile methods are not used

straightforwardly by practitioners; they select the practices that better fit project requirements, organiza-

tional standards, and the characteristics of the development team to configure specific development pro-

cesses (Campanelli and Parreiras (2015), Tripp and Armstrong (2014)). An example would be to define

a development process that combines agile practices from Scrum and XP methods. The study presented

by (Kurapati et al. (2012)) shows that the rules that govern design decisions of development processes

are poorly, or not at all, documented, thus making it difficult to validate and replicate the decisions made

for quality verification tasks and future development processes. The verification of development pro-

cesses obtained from the tailoring of agile practices is an important aspect to ensure consistency with the

principles of the methods involved.

The approach presented by (Liu (2010)) shows the application of a formal specification to facilitate

the verification and validation of agile processes. In (Qumer and Henderson-Sellers (2008)),the authors

present a framework that evaluates the degree of agility for development processes based on agile meth-

ods. This approach places special emphasis on the use of expert knowledge for the composition of agile

processes, arguing that most software development knowledge is tacit and resides in people’s heads. The

importance of expert knowledge in agile adoption is also discussed in (Singh, Singh, and Sharma (2012)).

In addition, existing agile tools are mostly oriented towards the management of project teams, and

the results obtained during the execution of the development process focus on specific agile methods.

However, the survey presented in (Azizyan, Magarian, and Kajko-Matsson (2011)) shows that existing

agile tools are insufficiently flexible to accommodate process changes, to introduce new practices, or to

combine different methods. This limits creativity and the reuse of expert knowledge in the context of

adapting agile practices to project needs.

Other approaches (Fontana, Meyer Jr, Reinehr, and Malucelli (2015), Gren, Torkar, and Feldt (2015))

are oriented towards evaluating the maturity of agile development processes. The systematic reviews

presented by Fontana et al. (2018) and by Henriques and Tanner (2017) show that maturity evaluation

can be performed by customization of traditional maturity models, such as the Common Maturity Model

(CMM) (Łukasiewicz and Miler (2012)), by defining new maturity evaluation approaches for agile meth-

ods (Elnagar, Weistroffer, and Thomas (2018), Yin, Figueiredo, and da Silva (2011)), or by means of

combination of agile and traditional approaches (Sreenivasan and Kothandaraman (2019)). These matu-

5

rity evaluation approaches require an appropriate specification of the processes to be evaluated, clearly

identifying the activities and outcomes obtained.

There exist different alternatives for the representation of development processes, including general

modeling language, such as UML (OMG (2017)), notations for business process modeling, such as

BPMN (OMG (2011)), and languages specific to development methods and processes, such as ISO

24744 (Sousa, Vanderdonckt, Henderson-Sellers, and Gonzalez-Perez (2012)) or SPEM (OMG (2008)).

Domain-specific languages have also been developed, e.g., for safety-critical systems (de la Vara, Marín,

Ayora, and Giachetti (2020), Ratiu, Nordmann, Munk, Carlan, and Voelter (2021)). García-Borgoñon et

al. (2014) conducted a systematic literature review on different approaches for process modeling. They

reported that the need for tools to guide appropriate software process definition is an open challenge.

This is precisely one of the challenges for agile development processes that SIAM aims to tackle.

Novelty and Contributions of SIAM beyond the State of the Art

SIAM follow the principles of situational method engineering, where a development process can be tai-

lored or enacted from method components that are selected according to specific project needs (Henderson-

Sellers et al. (2014)). Additionally, methods can evolve according to organizational contexts (Franch et

al. (2018)). Broadly speaking, the analyzed approaches and standards for method engineering are based

on the configuration of development processes from a unique method reference, which limits the use of

different methods for development process configuration (Frank (2019)). Thus, SIAM differs from the

referenced method engineering approaches, since it supports the configuration of development processes

by means of the combination of practices from different methods, which is common practice in the agile

development domain (Campanelli and Parreiras (2015), Tripp and Armstrong (2014), Kiv, Heng, Kolp,

and Wautelet (2018)). This is also a requirement from the companies involved in the project, to provide

tools that allow practitioners to choose the adequate reference method (or methods) according to the

project domain and specific development needs.

Moreover, traditional multi-level approaches for method engineering involve meta-concepts that can

be multi-instantiated (Atkinson and Kühne (2001)) and (Henderson-Sellers (2006)). Currently, appropri-

ate tools for implementing model editors under this paradigm cannot be found (Fonseca et al. (2021)).

Thus, SIAM also contributes by providing a modeling architecture for method and process configuration

that is supported by existing modeling standards and tools, and which has been applied in an industrial

6

context.

Another important requirement from the industrial partners involved in SIAM is how they can adopt

agile practices to improve their development methods and maintain compliance with standards for which

they are already certified, such as ISO 9001 or CMMi. This presents two challenges for SIAM:

1) to provide process configuration guidelines that allow practices from different agile methods to be

used to replace practices from the original methods used in the development companies, while maintain-

ing the same developing standards and quality criteria already defined in the organizations.

2) to maintain a task-centered (or process-centered) approach for representing the development pro-

cesses, since the certification and quality evaluation activities involved in the organizations are based

on the analysis of tasks and artifacts involved. This is clearly observable in CMMi, where quality of

software depends on the quality of the process (Gonzalez-Perez and Henderson-Sellers (2008)).

Thus, it would be difficult to obtain development processes that only involve agile practices to solve

these challenges. This is a well-known issue in companies certified under standards that are not specific

to agile, and, hence, a combination of agile and traditional practices (Sreenivasan and Kothandaraman

(2019)) to meet the different quality criteria is implemented.

Another contribution of SIAM is thus to provide a process-centered approach to support agile practice

adoption when organizations are moving from traditional developments and to maintain consistency

with existing quality assurance and certification processes. This is a particularly complex task, which,

before SIAM, the companies involved only resolved manually, appealing to the knowledge of their most

experienced practitioners.

Furthermore, it is worth noting that the process-centered approach has certain limitations in relation

to alternatives such as those related to product-centered specifications (Gonzalez-Perez and Henderson-

Sellers (2008)). A product-centered approach provides greater flexibility in task definitions for agile

processes configuration, i.e., tasks are not mandatory elements in the method and can be adapted accord-

ing to the products to be obtained. This can be partially solved by SIAM’s capability to move across

different methods and combinations of methods, according to project needs.

It is also important to mention that SIAM is not intended to be a complete method engineering

approach. It is focused on the process side of method specification, adopting some of the existing defini-

tions and providing the necessary adaptations or extensions at conceptual and implementation levels to

fulfill the requirements previously indicated. Moreover, since the SIAM approach centers mainly on task

7

configuration for adapting existing development processes, some concepts have a simpler semantics than

that proposed in traditional method engineering approaches. For instance, the artifact concept in SIAM

provides a minimum core to validate the approach in the application context involved. However, there are

specifications, such as that presented in ISO ISO/IEC 24744 for the WorkProduct concept, that provide

more fine-grained semantics for this conceptual construct, which has also been ontologically analyzed

in (Ruy, de Almeida Falbo, Barcellos, and Guizzardi (2014) and Gonzalez-Perez, Henderson-Sellers,

McBride, Low, and Larrucea (2016)) .

From the knowledge management perspective, the review presented in (Manesh et al. (2020)) sug-

gests that knowledge application has been the subject of the least research. Knowledge application is the

process by which knowledge, either tacit or explicit, is reused within an organization. In this context,

SIAM provides the following two contributions:

1) it characterizes development methods and tacit, or poorly documented, method configuration

knowledge in a model-driven method repository

2) it provides model-driven tools that take advantage of the knowledge repository to facilitate the

specification and verification of agile processes defined for specific projects.

In summary, SIAM provides a conceptual architecture and implementation based on open-source

technologies that can be used as a reference to put existing method engineering concepts and knowledge

management about adopting agile methods into practice.

SIAM Conceptual Architecture

As mentioned, SIAM differs from other method engineering approaches that propose the use of multi-

level metamodeling (Fonseca et al. (2021)), where a unique metamodel is instantiated twice: it is initially

instantiated to obtain a specific method definition that is later instantiated to obtain a process model

aligned to the method defined (Atkinson and Kühne (2001), Henderson-Sellers (2006)).

The SIAM conceptual architecture considers the use of one instantiation level metamodels; i.e., a

method metamodel is instantiated into method models, and a process metamodel is instantiated into pro-

cess models (see Fig. 1). Thus, the SIAM conceptual architecture has been defined as a multi-model

approach with different instances of method and process models that are interrelated by means of ref-

erence models or model weavings (Jossic, Del Fabro, Lerat, Bézivin, and Jouault (2007)). With the

definition of these model weavings, it is possible to configure development processes from practices

8

from different methods, which is a challenge in the adoption of agile practices. Moreover, SIAM con-

ceptual architecture permits traceability of equivalencies among different method models to be define,

which is then used to interchange method practices when configuring a process model. Furthermore,

when implementing SIAM, existing model-driven technologies for the generation of modeling tools and

graphical editors (such as Eclipse Modeling Tools - EclipseFoundation (2021)) do not provide proper

support for multilevel metamodels.

Figure 1: Multi-Level approach vs SIAM Multi-Model approach

For the definition of the models involved, SIAM has the following two specification levels:

• 1. The Knowledge Repository Level, which has the conceptual information related to method

activities and artifacts; dependencies among activities; and equivalencies among methods.

• 2. The Process Definition Level, to represent the development activities that must be performed

for specific projects. This is the end-user level of the SIAM approach, which uses the knowledge

repository to drive the process configuration.

As its name suggests, the elements at Knowledge Repository Level are defined by considering expert

knowledge for the specification of development methods.

Fig. 2 shows a general vision of the relationships between the conceptual elements of the two specifi-

cation levels. In this figure, the activities of process X are referencing specific activities of the methods in

the Knowledge Repository Level. These references are represented by black arrows. The main concepts

of the SIAM architecture for method definition are explained below.

Method Activities. Method Activities. A method activity indicates a concrete action that is per-

formed in the context of a method. These activities are related by using dependency links, which means

9

Figure 2: Overview of SIAM Conceptual Architecture Relationships

that certain activities are required to perform the action involved in another activity. Fig. 2 shows the

activities AC2 and AC3 related to activity AC1 by green arrows. This indicates that AC2 and AC3 require

AC1 to be previously performed in a development process.

Activity Dependencies. SIAM considers three types of dependency links between method activities:

• Backward Dependency: From an activity A to an activity B, indicating that activity B must be

performed before activity A. For instance, the pre-game phase of the Scrum agile method requires

the Scrum team be defined before the sprint planning in a development process.

• Forward Dependency: From an activity A to an activity B, indicating that activity B must be

executed after activity A. Following the example of the Scrum pre-game phase, the product backlog

is specified once the product objectives are defined.

• Parallel Dependency: From an activity A to an activity B, indicating that activity B must be

executed at the same time as A. For instance, the Scrum Master must be defined together with the

Product Owner in the configuration of the Scrum team.

The dependencies do not indicate in which specific moment of the process the activities must be

performed. For instance, in the example, AC2 and AC3 can be performed at different moments in a

development process, but must be performed at some instant before activity AC1. Thus, activity depen-

dencies are important to guide and validate the configuration of processes, especially when defined as a

composition of practices from different methods.

10

Activity Artifacts. Activity Artifacts. The artifacts represent input resources of an activity, or out-

puts obtained from an activity execution. For instance, the blue arrows in Figure 1 show, at Knowledge

Repository Level, that activity ACN1 uses input Artifact A2 and generates Artifact AN1 as output. In this

case, activity ACN1 is using artifacts that are related to two different methods. As an example, the Back-

log definition related to the Scrum method can use, as input, the product requirements or objectives that

are defined by different requirement elicitation methods, even traditional ones. The Backlog definition

activity generates the Backlog specification as output.

Weaving Metamodels

The SIAM conceptual architecture enables a flexible method configuration, which in turn facilitates

the reuse of concepts. For instance, it would be possible for the same artifact to be used by different

method configurations, i.e., it is unnecessary to duplicate the artifacts for each method that use the same

concept. Furthermore, it would be possible to configure new methods as a composition of different

method activities, an example being to combine activities from Scrum and XP to configure a new agile

method.

A general overview of the links between the different metamodels of the SIAM Knowledge Reposi-

tory Level are presented in Fig. 3. The most important metamodels of the SIAM Knowledge Repository

used to perform the analysis and configuration of processes are the weaving metamodels for activity

equivalencies and method configuration (represented as blue boxes in Fig. 3).

Figure 3: Relationships between the metamodels of SIAM Knowledge Repository Level

Activity Equivalencies Weaving Metamodel. The activity equivalencies indicate replacing alterna-

tives among the different methods defined, i.e., activities from method A that can be replaced by activities

from method B in a process definition. These equivalences are also used to validate the processes con-

figured as a composition of methods to ensure their consistency. For example, in Fig. 2, the process

activity Activity3 is referencing the method activity ACN3 that has dependencies on the activities ACN1

and ACN2. These dependencies indicate that activities equivalent to ACN1 and ACN2 must be performed

before “Activity3” in the process. Note that for “ACN2”, the dependency condition is met, since it

11

is referenced by “Activity2”. Nevertheless, “ACN1” is not referenced by any activities in the process

defined. Nonetheless, the dependency condition is still met because “ACN1” is equivalent to “AC1”

from the “Method Activities Set 1” of the Knowledge Repository Level, and “AC1” is referenced by

“Activity1” in the Process Definition Level. It can also be observed that Activity1 and Activity2 are per-

formed at different moments in the processes; Activity1 is performed first, despite the dependency from

ACN3 pointing to activities ACN1 and ACN2 at the same time. In this case the, dependency condition is

met, since the only requirement is that the corresponding process activities, Activity1 and Activity2, be

performed before Activity3.

The method activity equivalencies are also used to indicate missing activities to obtain a sound pro-

cess configuration or to recommend alternatives in the reconfiguration of an existing development pro-

cess. The Activity Equivalency Weaving Metamodel is presented in Fig. 4, which shows the two types of

equivalencies that can be defined between method activities: alternative activities and mirror activities,

which are represented by the ActivityAlternative and MirrorActivity metaclasses, respectively.

• Alternative Activities: When A source activity A from a Method X can be replaced by one or more

activities B to Bn from a method Y. these kinds of equivalencies are unidirectional, i.e., activities

B to Bn can replace activity A but not vice-versa. All activities indicated by the equivalency must

be included, otherwise, the process will be incomplete in relation to the referenced methods. For

instance, Project Planning from a traditional (waterfall-like) method can be replaced by the Release

Plan Definition and the Configuration of Ceremonies from the Scrum method. This equivalency

can be represented by means of weaving links from the traditional activities model to the Scrum

activities model. Thus, the two Scrum activities must be used to replace the project planning

activity; if only one Scrum activity is included in the process instead of the original (traditional)

activity, the process configuration will be incomplete and will not be consistent with the original

specification. However, this equivalency is not bidirectional, and, in a Scrum-based process, it

would thus not be possible to replace the activities Release Plan Definition and Configuration of

Ceremonies by a traditional Requirement Elicitation, as there could be other aspects of these Scrum

activities that are not covered by the traditional activity. In the case of the bidirectional equivalency

of activities being possible, a new equivalency weaving must be defined from the Scrum activities

model to the traditional (or waterfall) activities model to represent the opposite equivalency.

12

• Mirror Activities: In this case, a source activity A from a Method X can be replaced by only

one activity B from a Method Y that represents the same concept. These kinds of equivalencies

are bidirectional because they refer to the same activity that is specified in different methods,

although the name can differ from one method to another. This type of equivalency reduces the

computational analysis effort when configuring a process, since it is unnecessary to review the

dependencies of the related methods for the equivalent activity. An example of mirror activities

can be a requirement elicitation task defined in different methods.

Figure 4: Activity Equivalency Weaving Metamodel

In the Activity Equivalency Metamodel, it can also be observed that the equivalency models are de-

fined in two methods: one source Method (Metaclass SourceMethodModelRef) and one target method

(Metaclass TargetMethodModelRef). Each equivalency model must be validated by experts to ensure

that the definitions are correct in terms of the methods involved. The property isValidated iis included in

the metaclass Model to indicate the models that have been validated.

Method Configuration Weaving Metamodel. The method practices are configured in terms of ac-

tivities and the different related input/output artifacts. A method activity can have different combinations

of related artifacts, and, hence, the process designer’s experience is fundamental to determine the valid

combinations of activities and artifacts involved to ensure consistency with the reference method. This

13

development process configuration is error-prone and highly time-consuming when performed manually.

The weaving metamodel for method configuration is presented in Fig. 5.

Figure 5: Method Configuration Weaving Metamodel

The metamodel presented in Fig. 5 shows that a method activity and the artifacts related are config-

ured the with metaclass ArtifactLink. Moreover, the artifacts related to a method activity can be input

artifacts, output artifacts, or both (input/output). This artifact directionality is indicated in the enumera-

tion ArtifactOrientation, which evaluates the attribute orientation of the metaclass ArtifactLinkEnd. As

in the Method Equivalences Weaving Metamodel, this metamodel must be validated by using expert

knowledge; the attribute isValidated in the metaclass Model indicates this situation.

The next section exemplifies how the models and weavings from the Knowledge Repository Level

are used to generate guidelines for the configuration of development processes and automate their verifi-

cation.

Using the Knowledge Repository for Process Configuration

The metamodels of the SIAM conceptual architecture are instantiated in different models according to

the methods configured at the Knowledge Repository Level. The information on these models is used to

generate guidelines for practitioners to configure development process models at the Process Definition

Level, and to verify the consistency of the resultant processes in relation to the reference methods.

The core idea behind the use of expert knowledge is quite simple. A process designer defines an

initial process, which is automatically analyzed with the information from the knowledge repository by

14

using references from the process activities to the method activities. This analysis indicates the missing

elements or dependency conflicts, accompanied by the alternatives to solve them. The designer chooses

one of the alternatives indicated to refine the process. Thus, SIAM reduces the definition effort for the

process designer through the automatic generation of guidelines that indicate the appropriate combination

of tasks and related artifacts that must be defined according to the methods involved.

Each time the process is modified, the verification is automatically performed by the SIAM process

editor to identify any pending issue with regard to the methods involved. This verification considers the

soundness and consistency of the process with regards to method activities, artifacts, and dependencies

defined by experts at the Knowledge Repository Level.

The refinement process ends once no conflicts or missing elements remain. Finally, a report is gen-

erated to indicate the ratio of agile activities defined, the methods referenced, dependencies, method

activities referenced with their alternative activities, and method artifacts involved from the process de-

fined.

Fig. 6 shows the steps for process configuration within the SIAM approach.

Figure 6: SIAM Process configuration

The SIAM process editor was implemented by using a subset of the BPMN abstract syntax (OMG

(2011)) to reduce the modeling complexity and learning curve by means of a well-known modeling

approach at academic and industrial levels. The main BPMN conceptual constructs considered in the

SIAM editor are Activities, Artifacts, Transitions, and Subprocesses.

Activities. The activities are the basic concept in a process definition and represent a specific task

to be executed. The process activities can refer to activities from the different methods defined in the

knowledge repository. In this way, a process can be defined as a composition of different methods.

Transitions. The transitions describe different paths the activities of a process can follow. These are

15

intermediate elements connected to the activities by means of links. Input links go from one or more

activities to the transition, whereas output links from the transition to other activities might be executed

depending on the type of transition represented.

• AND transition, which indicates that the next step of the process involves the execution in parallel

of two or more paths of activities.

• OR transition, which indicates that, in the next step of the process, one or more paths of activities

are executed depending on a specific condition.

• XOR transition, which refines the OR transitions by allowing the execution of only one path of

activities after evaluating the condition.

Subprocesses. A subprocess is used to group a set of activities (small processes) inside the main

process. They typically represent the workflow related to specific development stages that comprise the

main development process.

Artifacts. The artifacts describe the input or output resources of the activities defined. Although,

at the Knowledge Repository Level, a method activity can have different configurations of input/output

artifacts, an activity can only have one configuration of input/output artifacts in a process definition;

i.e., a process activity references one configuration of artifacts from the Knowledge Repository Level

according to the requirements of the development project.

Waterfall and Scrum Methods Configuration

The core of method definition considers a set of method activities and dependencies between them. When

certain method practices are used in a concrete process, the dependencies indicate there are activities that

must be executed in a previous stage of the process (backward dependency), in a later stage of the process

(forward dependency), or activities that must be executed together (parallel dependency).

The example presented in Fig. 7 shows an initial development process that has been defined with

the SIAM method editor tool, following a traditional (waterfall-like) development method. This initial

process will be analyzed to automatically identify agile practices that can be used to reconfigure the

original process. Thus, an equivalent agile (or more-agile) process will be obtained as result.

Following the example, an agile method is defined to provide a set of agile practices that can be used

to re-configure the initial development process. For this purpose, a reduced Scrum method was defined,

16

Figure 7: Example of method definition for the Waterfall method

which considers elements related to project planning and project configuration from the pre-game phase

(Schwaber and Beedle (2002)).

Real development methods are typically defined as a composition of agile and non-agile activities. In

the method model, the agile activities can be indicated by means of a specific property. This information

is particularly valuable to identify the agile practices involved in the configuration of a development

process. Fig. 8 shows the Scrum method defined and the properties related to the activity DefineBacklog,

where it is possible to observe the isAgile boolean property set as YES.

Figure 8: Example model related to the pre-game phase of the Scrum method

To simplify the example and facilitate its explanation, all the method activities from the waterfall

method are defined as non-agile, and all the method activities for the Scrum method are defined as

agile. The mapping of equivalencies is always defined between the activities of two methods, a source

method, and a target method. The methods referenced are instances of the method configuration weaving

metamodel with their corresponding activities and artifacts. Thus, in the repository there are as many

equivalency models as pairs of methods to be analyzed. Moreover, the equivalencies are analyzed in

a unidirectional manner, from the source method to the target method. For a bidirectional equivalency

analysis, two pairs of equivalency models are required. In the example, the waterfall method is used as

17

source and the Scrum method as target. Fig. 9 shows the equivalency model defined.

Figure 9: Activities equivalency model defined between the Waterfall and Scrum methods.

With the equivalency models information, it is possible to provide configuration alternatives for the

specification of a development process. For instance, Fig. 10 shows the equivalencies information for

the activity RequierementSpecification of the process model (see Fig. 10 - number 1). The activity

RequierementSpecification is referencing the waterfall activity RequierementElicitation (see Fig. 10 -

number 2). In this case, and according to the equivalency model defined, RequierementElicitation can be

replaced by DefineProductObjectives and DefineBacklog from the Scrum Method.

Figure 10: Equivalency identification for the example process.

In Fig. 10, it can also be observed that the equivalency model Waterfall Scrum Equivalencies has

been referenced by the process model (represented as a yellow box) to indicate that this model will be

used to analyze the configuration alternatives. With the SIAM approach, it is possible to reference as

many equivalency models as methods wanted to be analyzed to configure the development process.

Furthermore, the SIAM tool calculates the ratio of agile activities from the total activities defined in

the process by analyzing the agile and non-agile (considered traditional) activities defined. The example

18

process is initially referencing activities of the waterfall method, which are all defined as non-agile (or

traditional) activities. For this reason, the process has an agility ratio of 0% and 100% of traditional

activities defined.

Considering the equivalencies between the different activities defined in the Knowledge Repository,

Scrum practices can be used to guide the reconfiguration of the process and increase the percentage of

agility. This reconfiguration involves replacing some original (traditional) activities with agile ones, and

defining new activities to be consistent with the different methods referenced. At this point, the analysis

of dependency models and method configuration models is particularly key to verify the completeness

and correctness of the process defined.

Fig. 10 shows the equivalencies for the process activity RequirementSpecification (see Fig. 10 - num-

ber 1), which indicates that the referenced waterfall activity RequierementsElicitation can be replaced

by the Scrum activities DefineProductObjectives and DefineBacklog. To perform the process reconfigu-

ration, the original reference to the waterfall activity RequirementsElicitation is replaced by the Scrum

activity DefineProductObjectives. This change indicates the process activity will now be performed as

indicated in the Scrum method, thus becoming an agile activity. Moreover, since DefineBacklog is also

necessary according to the equivalency information (see Fig. 10 - number 1), a new activity named De-

fineBacklog will be defined in the process, which references to the Scrum activity with the same name.

Similar action is performed for the activity GanttChartDefinition (see Fig. 10 - number 3), which ref-

erences the waterfall task ProjectPlanification. According to the equivalency model defined (see Fig.

9), ProjectPlanning can be replaced by DefineReleasePlanning and CeremoniesConfiguration. The rest

of the activities have no Scrum equivalencies, and so the tool is unable to provide more replacement

alternatives.

Fig. 11 shows the result of modifying the process model with the suggested alternatives. Based on

these changes, the SIAM tool indicates other Scrum activities that are required according to the method

dependencies. In this case, five dependency issues were derived from the Scrum method:

• One (1) equivalency issue was found for the process activity RequirementSpecification, which

references the Scrum method activity DefineProductObjectives. The activity DefineProductVision

must be defined earlier in the process.

• Four (4) equivalency issues were found for the process activity CeremoniesConfiguration, which

19

references the Scrum activity with the same name (CeremoniesConfiguration). In this case, the

activities SprintPlanning (issue 1), DailyMeetingPlanning (issue 2), and RetrospectiveMeeting-

Planning (issue 3) must be defined after the activity CeremoniesConfiguration in the process, and

the activity DefineScrumTeam (issue 4) must be defined earlier in the process.

Figure 11: Dependencies evaluation for the example process.

It is interesting to observe that the dependencies for the waterfall method are still met with the

changes performed in the process. For instance, the activity SoftwareDesign references the waterfall ac-

tivity SystemDesign, which has a backward dependency on the waterfall activity RequirementsElicitation.

This last activity (RequirementsElicitation) is not referenced in the process model due to the changes

in the process activity RequirementSpecification. Despite this missing reference, the process model is

still correct, since the dependency is met because RequirementElicitation is equivalent to DefineProduc-

tObjectives and DefineBacklog, which are defined before SoftwareDesign in the process model. The

equivalencies between the methods involved are also considered by SIAM to verify the process model

defined. In this simple case, manual analysis of all the dependencies and equivalencies involved can

clearly be a complex and error-prone task, with these problems being considerably increased in larger

process models that involve multiple development methods. Another aspect to consider is that each time

a new method activity is referenced in the process model, new dependency issues may appear. Thus, the

process configuration requires all the dependency issues be solved to obtain the final process (see Fig.

20

12).

Figure 12: Development process obtained after solving dependency issues.

The SIAM tool also analyzes the soundness of the process model in relation to the method configu-

ration models to determine missing activities or artifacts. If an issue is identified, specific guidelines are

presented to solve that issue. The method configuration models are represented by yellow boxes in the

process model. In this case, the Scrum Method Configuration model has been included, the specification

of which is presented in Fig. 13.

Figure 13: Scrum method configuration model.

The method configuration indicates the set of artifacts that can be involved when a method activity is

executed in a concrete process. Each set of artifacts for a certain activity is specified with the construct

21

ArtifactLink (see the metamodel in Fig. 5). The configuration model defined for the example Scrum

method (Fig. 13, shows the construct ArtifactLinkrepresented by means of a light blue box that contains

the set of artifacts used as input, output, or input/output by an activity. For instance, the artifact link

Blacklog indicates the activity DefineBacklog of the Scrum method uses ProductRequirements as input

artifact and generates ProductBacklog as output artifact.

The results obtained from the process analysis performed by considering the method configuration

models is presented in an automatically generated report. This report provides relevant information on

the process to facilitate its validation from third parties, and to determine the design decisions made,

as well as other configuration alternatives that can be considered for future refinements. The report

generated includes a table with the analysis obtained for each activity of the process defined. Fig. 14

shows the analysis automatically obtained from the example process model with the following structure:

• Referenced Activity indicates the activity name in the process and the method activity referenced

with the following format: ProcessActivityName – MethodActivityName (MethodName).

• Process Artifacts indicate the artifacts used by the process activity and its input/output properties

with the following format: ArtifactsName (input/output property)

• Method Artifacts indicates the Artifacts recommended by the method for the referenced activ-

ity with their input/output property. It also indicates the different set of artifacts for the activity

involved in case that be more than one. Finally, Method Artifacts indicates whether an artifact

recommended by the method is related (or not) to the process activity analyzed with the follow-

ing format: MethodArtifactName (SetMethodArtifactName) (Input/Output property/Included or

Not Included).

Finally, the process presented in Fig. 15 is obtained. The analysis report is especially important in

generating a correct process model. Otherwise, it would be difficult to find the appropriate configuration

for the different activities in the process from the knowledge repository information, which may contain

many different sets of artifacts and configuration alternatives for each method activity.

It is worth noting that the process obtained fulfills the different validation criteria in terms of depen-

dencies, equivalencies and artifacts defined in the knowledge repository to combine Scrum and Waterfall

methods. This brief example is useful to understand how the SIAM approach works. To validate the ap-

22

Figure 14: Analysis report generated for the example process.

Figure 15: Process obtained after the Analysis of method configurations.

plicability of the approach in larger development processes, the next section shows the results obtained

from using SIAM in an industrial context.

23

Analysis of SIAM Applied to an Industrial Development Process

The SIAM approach and its implementation were supported by industrial partners. This section summa-

rizes the results obtained from the reconfiguration of an industrial development process to analyze the

contributions and open issues of SIAM. The process involved is called Ki Process, which was mainly

defined by using traditional development practices. We applied SIAM to obtain a new version of Ki Pro-

cess that integrates more agile practices while continuing to be consistent with the original definitions

and quality criteria of the company. To do this, we followed well-known guidelines for case studies, such

as those proposed by Runeson, Host, Rainer, and Regnell (2012) and Wohlin et al. (2012).

The original Ki Process is based on the Tutelkan Reference Process (TRP) (Valdés, Visconti, and

Astudillo (2011)), which complies with two widely-know quality standards: CMMi-DEV (v1.2) (SEI

(2006)) and ISO 9001 (International Organization for Standardization (ISO) (2000)) (Mutafelija and

Stromberg (2003)).

The Ki Process was certified against CMMi-DEV and ISO 9001 in 2015. Its specification corre-

sponds to a large document (169 pages) that describes the activities, artifacts, and practices that must be

configured according to different development needs. Fig. 16 shows the four stages of the application of

SIAM to the Ki Process to obtain a new Agile Ki Process.

Figure 16: Stages of the SIAM Application for the Reconfiguration of Ki Process.

24

Stage 1: Capturing Existing Data from Organizational Knowledge.

As its starting point, the SIAM approach requires the Knowledge Repository being filled with the infor-

mation of the three methods involved in the process definition and process reconfiguration.

The first method corresponds to the Ki Method, which has all the activities, artifacts, and config-

urations related to the original specification off Ki Process. The other two methods are those used to

incorporate agile practices into the Ki process: Ki SCRUM, and Ki XP. These methods are interpretations

of the agile methods SCRUM (Cervone (2011)) and Extreme Programming (XP) (Paulk (2001)), respec-

tively. The interpretations were defined in line with the knowledge of a group of nine industry experts

with more than 5 years of experience in project management and application of development methods

to industry projects. Moreover, they also have experience in consultancy related to guiding companies

in the adoption of agile practices. The industry domains in which they have worked include banking,

retail, telco, and civil aviation. Tab. 1 indicates the specific knowledge related to development method

application and quality certification that each expert provides. For confidentiality, we call the experts

Expert1, Expert2, etc.

Table 1: Knowledge of the group of experts

Expert Ki Method SCRUM XP ISO 9001 CMMi-Dev
Expert 1 x
Expert 2 x
Expert 3 x
Expert 4 x
Expert 5 x x x
Expert 6 x x x
Expert 7 x x
Expert 8 x x
Expert 9 x x

Tab. 1 shows there are at least two experts for each method or quality model. The Ki Method has the

highest number of experts, which is logical considering that most of the experts come from the enterprise

that defined Ki Process.

The definition of the different SIAM models for the 3 methods took 6 months, involving defining

activity models, artifact models, method configuration models, and activity equivalency models. This

definition was based on an iterative and incremental process. Weekly one-hour meetings were held to

analyze the method elements and achieve consensus with the different experts, and a method engineer

then used the meeting information to define the different models. The models defined were refined with

25

the information from the following weekly meetings until the group of experts agreed with the results

obtained. Tab. 2 summarizes the number of elements that comprise the different methods defined.

Table 2: Number of elements defined for the different methods involved

Method model Activities Dependencies Artifacts
Ki Method 168 333 116
Ki SCRUM 24 58 21

Ki XP 30 57 26

Contribution 1: At this point, it is important to underline the first contribution of SIAM: the provi-

sion of a reference model-based support for the different method definitions and agile practices. Previ-

ously, they were in plain text only for the Ki Method or in the heads of experts for the Agile Methods.

Open Issue 1: An open issue related to the definition of the different models of the knowledge repos-

itory is that the experts reported they understood the models defined, but were insufficiently confident

to use the modeling tools alone. A process analyst supported the experts in using the SIAM modeling

tools. Additional effort to provide more usable and intuitive modeling tools for the knowledge repository

specification might be necessary.

Tab. 3 shows the number of equivalencies defined. This table indicates the source and target methods

for each equivalency model specified. The equivalencies also considered the quality criteria necessary to

maintain the certifications already held by Ki Process already has. At this point, the knowledge provided

by the ISO and CMMi experts was of paramount importance.

Table 3: Equivalencies Between Methods

Target↓/Source→ Ki Method Ki SCRUM Ki XP
Ki Method 18 3
Ki SCRUM 51 15

Ki XP 47 12

Contribution 2: The activity equivalency models provide common reference artifacts to configure

development processes from the combination of the methods defined. Before SIAM, it had not been

possible to define these common reference artifacts with the expert knowledge that can be automatically

analyzed to configure appropriate development processes. In this way, any change in the process can

be automatically analyzed to determine its alignment with the organizational standards and development

practices, providing the necessary information to fix the possible gaps identified.

Open Issue 2: Further support for the identification of equivalencies could be provided. The defi-

nition of equivalencies is a complex task that demands great effort from experts. We observed that it is

26

possible to infer equivalency candidates from the equivalency models defined, thus reducing the effort

required in defining activity equivalency models at the Knowledge Repository Level.

Stage 2: Specification of Ki Process Model.

The second stage is aimed at obtaining a model representation of Ki Process that is complete in relation

to the original textual definition. This task was performed by a process analyst that did not participate

in the Knowledge Repository Definition. This decision was intended to determine whether the informa-

tion provided in the Knowledge repository was sufficiently complete to guide the proper definition of a

development process based on the Ki Method.

Since the Ki Process is a large process, only a subset of its activities is normally used in a develop-

ment project. The time required to manually configure the subset of activities involved into a specific

development project by using the textual definition is typically around 2-3 weeks. This configuration

requires the validation of an expert, in addition to the person responsible for the corresponding process

configuration solving any issues in the configuration. With the application of the SIAM approach, the

complete Ki Process (not a subset) was configured by the process analyst in five days only. Thus, ob-

taining a process that was fully aligned with the Ki Method specification, without the need for an expert

to solve configuration issues. This was possible because all the configuration issues are identified by the

SIAM tools, using the activity dependency models and method configuration models from the Knowl-

edge Repository. A summary of the process obtained1 is presented in Tab. 4, which is automatically

generated by the SIAM tools. The initial Ki Process model has an agility ratio of 19%, which comes

from 33 of the 167 activities defined, which the experts consider to be agile practices.

Contribution 3: Reduced effort in the Process Configuration. The initial evidence shows that using

SIAM requires much less time than the traditional process configuration, reducing this from 2-3 weeks

for configuring a subset of the process to only five days for the complete process configuration. This is

a promising preliminary result that requires further evaluation to exactly estimate the effort necessary to

configure a development process using the SIAM approach.

Analyzing the information in Tab. 4, it can be seen that the row Nº Activities shows that 167 of

168 the process activities are referencing the Ki Method. Hence, there is an activity used in development

projects that had not been specified in the reference Ki Process document, which is an issue in the original

1[Blind Review Warning. It contains information about authors] The complete report generated by the SIAM Tool can be
downloaded from https://doi.org/10.5281/zenodo.5718107. The original report is in Spanish.

27

Table 4: Summary of Ki Process Model

Name Number
Nº Activities: 168 Activities (167 Activities referenced to “Ki Method”)
Nº Artifacts: 369 Artifacts (356 Artifacts referenced to

“Ki Method Artifacts”)
Nº Subprocesses: 62 Subprocesses
Nº Transitions: 62 Transitions (21 AND, 41 OR, and 0 XOR)
Nº Method Models: 1 Method Model (1 Referenced Method Model) (Ki Method)
Nº Artifact Models: 1 Artifact Model (Ki Method Artifacts)
Nº Method Configuration Models: 1 Method Configuration Model (Ki Method Configuration)
Nº Equivalency Models: 2 Equivalency Models (KiMethod to KiScrum Equivalency,

KiMethod to KiXP Equivalency)
% Agility: 19% of Agility (33 of 167 Referenced Activities are agile)

process specification. Something similar happened for a set of artifacts that are necessary to obtain a

sound process definition, but these artifacts are not part of the original specification. These issues were

not identified during the 7 years of application of the Ki Process and its different updates during this time;

arguably, because it is unusual to find these methodological bugs in a large textual specification. Despite

these issues, the original Ki Process obtained the CCMi-DEV (Level 2) and ISO 9001 certification, which

means that external auditors also found no inconsistencies in the textual specification.

Contribution 4: Automatic Verification of the Process Definition and its Consistency with the Ref-

erence Methods. The results obtained from the Ki Process specification demonstrate the value of SIAM

tools to automate the verification of process definition and to check their consistency with the reference

methods. In this case, the SIAM tools identified issues that were even imperceptible for method and

quality model experts, as well as for process auditors.

Stage 3: Specification of Agile Ki Process from Knowledge Repository Guidelines.

The automatic analysis of the Ki Process model also provides a set of guidelines to increase the ratio

of agile practices defined in the process. In the application of the SIAM approach, 56 reconfiguration

guidelines were automatically generated for the original Ki Process, i.e., 56 non-agile practices can be

replaced by one or more agile practices from the Ki SCRUM Method or the Ki XP Method.

Each time an activity is replaced following the reconfiguration guidelines, the SIAM process modeler

tool automatically performs the verification of the dependencies according to the methods involved. This

validation implies that it might be necessary to include additional activities to those suggested by the

reconfiguration guidelines. Finally, the Agile Ki Process is obtained once all the reconfigurations are

performed and there are no pending verification issues. The complete reconfiguration of the original Ki

28

process to obtain the Agile Ki Process took three weeks.

Contribution 5: Knowledge Repository continuous improvement. It should be noted that the issues

identified in the original Ki Process will not be present for future process configurations, since the so-

lutions to these issues update the Knowledge Repository. In other words, the Knowledge Repository is

continuously improved based on the experience obtained from the configuration of processes.

Open Issue 3: The selection of the reconfiguration alternatives is dependent on the process analyst’s

experience. For the reconfiguration guidelines that provide two or more alternatives, it is the process

analyst who decides which alternative to choose according to the project needs. Although the possibilities

of process reconfiguration are considerably reduced with the information provided by the guidelines

generated, it would be helpful to have additional recommendation mechanisms to evaluate the project

requirements and indicate the most suitable alternative among the different possibilities.

Stage 4: Generation of Analysis Report and Expert Verification.

The final stage consisted of automatically generating a complete analysis report (comprising 48 pages)

of the KI process2. The process summary provided in the report is presented in Tab. 5. This report is

valuable for validating the quality of the process, since it provides information about the methods and

design decisions involved, the agile practices used, and the inputs and outcomes of the process activities.

The Agile Ki Process configured by using the SIAM approach obtained the ISO 9001 certification in

20203. Thus, The SIAM approach and tools developed are currently at technology readiness level 7

(TRL-7).

Finally, Tab. 5 shows the ratio of agile activities for the Agile Ki Process was doubled, from 19% to

39%, by using the Ki XP and Ki SCRUM methods. The agility ratio can increase further if new agile

methods are referenced in the process reconfiguration or by improving the already defined methods with

new agile practices.

Contribution 6: Automatic Analysis of Development Processes. This contribution is related to the

enormous amount of information that can be automatically analyzed by the SIAM approach. In the

case of the Agile Ki Process, the verification was performed automatically, and the validation by the

group of experts took three weeks using the process model and the generated analysis report as inputs.

2[Blind Review Warning. It contains information about authors] The complete report generated by the SIAM report tool
can be downloaded from https://doi.org/10.5281/zenodo.5718107. The original report is in Spanish.

3[Blind Review Warning. It contains information about authors] The complete model for the Agile Ki Process can be
downloaded from https://doi.org/10.5281/zenodo.5267178. The original model is in Spanish

29

Table 5: Summary of Agile Ki Process Model

Name Number
Nº Activities: 171 Activities (171 Activities referenced)

(135 Referenced to “Ki Method”) (14 Referenced to
“Ki XP Method”) (22 Referenced to “Ki Scrum Method”)

Nº Artifacts: 357 Artifacts (336 referenced)
(277 Referenced to “Ki Method Artifacts”) (24 Referenced
to “Ki XP Artifacts”) (38 Referenced to “Ki Scrum Artifacts”)

Nº Subprocesses: 62 Subprocesses
Nº Transitions: 57 Transitions (18 AND, 39 OR and 0 XOR)
Nº Method Models: 3 Method Models Referenced

(Ki Method, Ki XP Method, Ki Scrum Method)
Nº Artifact Models: 3 Artifact Models Referenced

(Ki Method Artifacts, Ki XP Artifacts, Ki Scrum Artifacts)
Nº Method Configuration Models: 3 Method Configuration Models (Ki Method Configuraiton,

Ki XP Configuration, Ki Scrum Configuration)
Nº Equivalency Models: 6 Equivalency Models Referenced (Ki Process to Ki Scrum

Equivalency, Ki Method to Ki XP Equivalency, Ki XP to Ki
Method Equivalency, Ki XP to Ki Scrum Equivalency, Ki Scrum
to Ki Method Equivalency, Ki Scrum to Ki XP Equivalency)

% Agility: 39% of Agility (68 of 171 Referenced Activities are agile)

Considering that the initial definition of the original Ki Process took two years and that seven years

later it still presented a number issues (not identified before SIAM), the effort required is considerably

reduced. Even more importantly, the completeness and alignment of the resultant process in relation to

the referenced methods and quality criteria of the organization are guaranteed.

Quality Insights

From the industrial application presented, interesting quality indicators were obtained:

1) Reduction of effort in configuring development processes for specific projects. The average time

for the manual process configuration was 96 man-hours per project. This involves the project manager

responsible for process configuration and two experts that validate the development method application

and compliance with standards and quality criteria. Using the SIAM configuration, tool this time has

been reduced to less than 24 man-hours per project. Together with the reduction in the time required

for the configuring development process, the time required by experts is also greatly reduced. The

average time required by experts involved in manually defining and verifying the processes was 40 hours.

Using SIAM, this time was reduced to only 8 hours. Since SIAM already validates the consistency with

reference methods and development practices, the effort made by the experts is mainly centered on

validating the alignment of the process with the project’s requirements and expected results.

30

2) Improvement of the quality assurance of the development process configuration. SIAM is able

to automatically identify process issues and indicate fixing guidelines according to the development

practices configured in the knowledge repository. The issues identified and fixing guidelines proposed

were validated by the 9 industry experts involved in the industrial evaluation of SIAM. Moreover, the

tools was able to identify issues that were detected neither by the different experts nor by external process

consultants in the previous certification process. Not only does this indicate that the expert knowledge

is properly represented in the SIAM repository and guidelines provided, but also that automating the

knowledge application to prevent human-errors, especially in the evaluation of large specifications, is of

considerable importance.

3) Facilitating the reconfiguration of traditional development process for the adoption of agile prac-

tices. The application to a large industrial development standard shows that the ratio of agile practices

involved in the process was doubled, while maintaining compliance with organizational development

standards. The Agile Ki Process obtained using the SIAM tools was internally validated by 9 indus-

try experts and externally validated to obtain the ISO re-certification in 2020, thus demonstrating the

applicability of the SIAM approach in an industrial context.

4) The configuration guidelines provided by SIAM facilitates the selection and configuration of agile

practices for a specific project, which, considering the amount of possible method configurations, can

be difficult to remember and evaluate by the project manager manually. Moreover, practitioners declare

that guidelines provided are valuable to identify new agile practices and learn and how they must be

tailored in a process configuration. Thus, SIAM contributes to the transference and application of expert

knowledge for mastering agile practices, specially for novel practitioners.

5) In terms of usability, the project managers reported that, being based on the BPMN standard, the

process definition tool is extremely simple to use. Moreover, this facilitated the communication with

methodological experts and quality assurance teams in verifying not only the process definition, but also

in validating the achievement of the different project results with the development team. However, there

are certain usability issues to be considered, for example, the mapping from the development process

to the practices defined in the repository is a functionality that could be improved. Recommendations

proposed include suggesting mapping alternatives for the process tasks defined or being able to use a

pre-defined process as a starting point. Improvements in the usability of SIAM’s tools are part of the

future work discussed in the next section.

31

6) Additional studies are necessary to properly measure the improvement in the degree of agility. De-

spite SIAM not being focused on improving the degree of agility of the process, practitioners perceived

that the development process obtained from the SIAM configuration guidelines is more agile. There was

consensus on the notion that increasing the ratio of agile practices in a development process involves a

higher level of agility, which corresponds to the ratio of agile practices provided by SIAM. However, it

was also indicated that this ratio is not sufficiently precise to properly evaluate and compare the agility

gained from the process reconfiguration. Thus, further research is necessary to obtain adequate measures

for evaluating the degree of agility.

Conclusions

As we have seen throughout this paper, the amount of work involved in the tailoring of development

processes to properly apply agile practices is significant, and more so if we consider the organizations

must comply with specific methods and quality standards. Using the SIAM approach, it is possible to

overcome the complexity involved, thus reducing the effort and time involved in the configuration of

development processes for introducing agile practices. In summary, the main contributions obtained

from SIAM are:

• Model-driven support to properly characterize development methods and the tacit or poorly doc-

umented knowledge related to the application of these methods to specific projects with a special

focus on the application of agile practices.

• The implementation of a knowledge repository to store and reuse the agile expert knowledge in

different projects, thus helping novel practitioners master agile practices.

• A modeling approach that supports the tailoring of the development process by combining different

methods at the same time as their agility level is improved.

• A set of modeling tools to guide the specification of the development process and automate their

verification to ensure the alignment with method definitions and organizational quality criteria.

The SIAM approach aims to preserve the expert knowledge related to agile practice application by

means of model-driven support. This permits the implementation of specific tools oriented towards prac-

titioners being able to tap this expert knowledge. Thus, the examples presented and the results obtained

32

from the industrial application of SIAM provide initial evidence of the main goal behind this approach

being achieved, namely, to facilitate the adoption of agile practices in organizations. Furthermore, al-

though the SIAM approach has an agile vocation, the main concepts involved can be generalized to both

the adoption of traditional and agile development methods.

The industrial application of SIAM also suggests different contributions and potential improvements;

of these, facilitating the definition of equivalencies between method activities at the Knowledge Repos-

itory Level is particularly important. We are working on adding more intelligence to this task, taking

advantage of the models already defined to specify new interrelated methods, and thus improving the

scalability of the Knowledge Repository. Additionally, we are working on intelligent wizards that sug-

gest relevant practices according to specific project requirements, as well as having pre-defined processes

according to specific application domains. Thus, the usability of the tools for configuring suitable devel-

opment processes will be improved.

Moreover, we are working on specific agility measures with the companies involved to determine

the degree of agility achieved when transitioning from traditional processes. These measures can also be

used to generate better recommendations for the set of guidelines that improve the overall agility of the

processes tailored.

The end-user modeling tool for SIAM is based on the BPMN standard. However, further research is

necessary to improve the notation related to the knowledge repository models. In this context, extensions

to existing notations for method engineering process are considered as future work for supporting the

SIAM modeling needs, such as the notation proposed for the ISO/IEC 24744:2014 standard.

We are preparing different case studies to provide more details of the features of SIAM, the lessons

learned, and limitations that may appear in the industrial application of the approach. As a future con-

tribution, we plan to present the application of SIAM to the alignment of agile methods with quality

models such as ISO 9001 or CMMi. In particular, our intention is to provide automated evaluation

of processes and the generation of recommendations to solve the gaps for the achievement of specific

quality standards.

Moreover, since SIAM allows for the alignment of development processes to specific models that

represent methods and agile practices, we are working on new application domains for this model-driven

approach. In this regard, we are currently working on adapting the SIAM concepts and tools to the

configuration of processes aligned with models of standards for the safety certification of critical systems.

33

Acknowledgements: The work leading to this paper has received funding from the VALU3S (H2020-ECSEL ref. 876852;

MCIN/AEI/10.13039/501100011033 ref. PCI2020-112001; European Union NextGenerationEU/PRTR), iRel40 (H2020-ECSEL

ref. 876659; MCIN/AEI/ 10.13039/501100011033 ref. PCI2020-112240; European Union NextGenerationEU/PRTR), SIAM

(Chile’s CORFO-INNOVA ref. 16COTE-60218), and Treasure (JCCM ref. SBPLY/19/180501/000270; ERDF A way of mak-

ing Europe) projects, from the Ramon y Cajal Program (MCIN/AEI/10.13039/501100011033 ref. RYC-2017-22836; ESF

Investing in your future), and from NISUM Technologies Chile.

References

ÅGERFALK, P., & Fitzgerald, B. (2006). Old petunias in new bowls? Communications of the ACM,

49(10), 27.

Al-Zewairi, M., Biltawi, M., Etaiwi, W., Shaout, A., et al. (2017). Agile software development method-

ologies: survey of surveys. Journal of Computer and Communications, 5(05), 74.

Atkinson, C., & Kühne, T. (2001). Processes and products in a multi-level metamodeling architecture.

International Journal of Software Engineering and Knowledge Engineering, 11(06), 761–783.

Azizyan, G., Magarian, M. K., & Kajko-Matsson, M. (2011). Survey of agile tool usage and needs. In

2011 agile conference (pp. 29–38).

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring–a systematic literature review.

Journal of Systems and Software, 110, 85–100.

Cervone, H. F. (2011). Understanding agile project management methods using scrum. OCLC Systems

& Services: International digital library perspectives.

Cockburn, A. (2006). Agile software development: the cooperative game. Pearson Education.

de la Vara, J. L., Marín, B., Ayora, C., & Giachetti, G. (2020). An empirical evaluation of the use

of models to improve the understanding of safety compliance needs. Information and Software

Technology, 126, 106351.

Digital.ai. (2021). 15th annual state of agile report. https://stateofagile.com/. (Online; accessed

23 Dec 2021)

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review.

34

Information and software technology, 50(9-10), 833–859.

EclipseFoundation. (2021). Eclipse modeling tools. https://www.eclipse.org/downloads/packages/release/2021-06/r/eclipse-modeling-toolsl.

(Online; accessed 23 Dec 2021)

Elnagar, S., Weistroffer, H., & Thomas, M. (2018). Agile requirement engineering maturity framework

for industry 4.0. In European, mediterranean, and middle eastern conference on information

systems (pp. 405–418).

Fonseca, C. M., Almeida, J. P. A., Guizzardi, G., & Carvalho, V. A. (2021). Multi-level conceptual

modeling: Theory, language and application. Data & Knowledge Engineering, 134, 101894.

Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A., & Reinehr, S. (2018). Maturity

models for agile software development: what are they? In European conference on software

process improvement (pp. 3–14).

Fontana, R. M., Meyer Jr, V., Reinehr, S., & Malucelli, A. (2015). Progressive outcomes: A framework

for maturing in agile software development. Journal of Systems and Software, 102, 88–108.

Fowler, M. (2001). The new methodology. Wuhan University Journal of Natural Sciences, 6(1), 12–24.

Franch, X., Ralyté, J., Perini, A., Abelló, A., Ameller, D., Gorroñogoitia, J., . . . others (2018). A

situational approach for the definition and tailoring of a data-driven software evolution method. In

International conference on advanced information systems engineering (pp. 603–618).

Frank, U. (2011). Some guidelines for the conception of domain-specific modelling languages. Enter-

prise modelling and information systems architectures (EMISA 2011).

Frank, U. (2019). Specification and management of methods-a case for multi-level modelling. In

Enterprise, business-process and information systems modeling (pp. 311–325). Springer.

García-Borgoñon, L., Barcelona, M. A., García-García, J. A., Alba, M., & Escalona, M. J. (2014).

Software process modeling languages: A systematic literature review. Information and Software

Technology, 56(2), 103–116.

Gonzalez-Perez, C., & Henderson-Sellers, B. (2007). Modelling software development methodologies:

A conceptual foundation. Journal of Systems and Software, 80(11), 1778–1796.

35

Gonzalez-Perez, C., & Henderson-Sellers, B. (2008). A work product pool approach to methodol-

ogy specification and enactment. Journal of Systems and Software, 81(8), 1288-1305. Retrieved

from https://www.sciencedirect.com/science/article/pii/S0164121207002439 doi:

https://doi.org/10.1016/j.jss.2007.10.001

Gonzalez-Perez, C., Henderson-Sellers, B., McBride, T., Low, G. C., & Larrucea, X. (2016). An

ontology for iso software engineering standards: 2) proof of concept and application. Computer

Standards & Interfaces, 48, 112–123.

Gren, L., Torkar, R., & Feldt, R. (2015). The prospects of a quantitative measurement of agility: A

validation study on an agile maturity model. Journal of Systems and Software, 107, 38–49.

Heimicke, J., Dühr, K., Krüger, M., Ng, G.-L., & Albers, A. (2021). A framework for generating agile

methods for product development. Procedia CIRP, 100, 786–791.

Henderson-Sellers, B. (2006). Method engineering: Theory and practice. In Information systems tech-

nology and its applications, 5th international conference ista 2006.

Henderson-Sellers, B., Ralyté, J., Ågerfalk, P. J., & Rossi, M. (2014). Situational method engineering.

Springer.

Henriques, V., & Tanner, M. (2017). A systematic literature review of agile and maturity model research.

Interdisciplinary Journal of Information, Knowledge, and Management, 12, 53–73.

International Organization for Standardization (ISO). (2000). Iso 9001:2000 quality management

systems-requirements.

Jossic, A., Del Fabro, M. D., Lerat, J.-P., Bézivin, J., & Jouault, F. (2007). Model integration with

model weaving: a case study in system architecture. In 2007 international conference on systems

engineering and modeling (pp. 79–84).

Khalil, C., & Khalil, S. (2020). Exploring knowledge management in agile software development

organizations. International Entrepreneurship and Management Journal, 16(2), 555–569.

Kiv, S., Heng, S., Kolp, M., & Wautelet, Y. (2018). Agile manifesto and practices selection for tailoring

software development: A systematic literature review. In International conference on product-

36

focused software process improvement (pp. 12–30).

Kurapati, N., Manyam, V. S. C., & Petersen, K. (2012). Agile software development practice adoption

survey. In International conference on agile software development (pp. 16–30).

Liu, S. (2010). An approach to applying sofl for agile process and its application in developing a test

support tool. Innovations in Systems and Software Engineering, 6(1), 137–143.

Łukasiewicz, K., & Miler, J. (2012). Improving agility and discipline of software development with the

scrum and cmmi. IET software, 6(5), 416–422.

Lycett, M., Macredie, R. D., Patel, C., & Paul, R. J. (2003). Migrating agile methods to standardized

development practice. Computer, 36(6), 79–85.

Maciel, C. P., de Souza, É. F., de Almeia Falbo, R., Felizardo, K. R., & Vijaykumar, N. L. (2018).

Knowledge management diagnostics in software development organizations: a systematic litera-

ture review. In Proceedings of the 17th brazilian symposium on software quality (pp. 141–150).

Mahanti, A. (2006). Challenges in enterprise adoption of agile methods-a survey. Journal of Computing

and Information technology, 14(3), 197–206.

Manesh, M. F., Pellegrini, M. M., Marzi, G., & Dabic, M. (2020). Knowledge management in the fourth

industrial revolution: Mapping the literature and scoping future avenues. IEEE Transactions on

Engineering Management, 68(1), 289–300.

Mutafelija, B., & Stromberg, H. (2003). Systematic process improvement using iso 9001: 2000 and

cmmi. Artech House.

OMG. (2008). Software & systems process engineering meta-model (spem) specification. (Version 2.0.)

OMG. (2011). Business process model and notation (bpmn) specification. (Version 2.0.)

OMG. (2017). Unified modeling language (uml) specification. (Version 2.5.1)

Paulk, M. C. (2001). Extreme programming from a cmm perspective. IEEE software, 18(6), 19–26.

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption and

improvement of agile methods in practice. Journal of systems and software, 81(11), 1899–1919.

Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A study of the agile software development methods,

37

applicability and implications in industry. International Journal of Software Engineering and its

applications, 5(2), 35–45.

Ratiu, D., Nordmann, A., Munk, P., Carlan, C., & Voelter, M. (2021). Fasten: An extensible platform

to experiment with rigorous modeling of safety-critical systems. In Domain-specific languages in

practice (pp. 131–164). Springer.

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research in software engineering:

Guidelines and examples. John Wiley & Sons.

Ruy, F. B., de Almeida Falbo, R., Barcellos, M. P., & Guizzardi, G. (2014). An ontological analysis of

the iso/iec 24744 metamodel. In Fois (pp. 330–343).

Sandkuhl, K., & Seigerroth, U. (2019). Method engineering in information systems analysis and design:

a balanced scorecard approach for method improvement. Software & Systems Modeling, 18(3),

1833–1857.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum (Vol. 1). Prentice Hall

Upper Saddle River.

SEI. (2006). Cmmi for development (cmmi-dev). (version 1.2)

Singh, A., Singh, K., & Sharma, N. (2012). Managing knowledge in agile software development.

International Journal of Advanced Computer Science and Applications (IJACSA), 2(4).

Sousa, K., Vanderdonckt, J., Henderson-Sellers, B., & Gonzalez-Perez, C. (2012). Evaluating a graphical

notation for modelling software development methodologies. Journal of Visual Languages &

Computing, 23(4), 195–212.

Sreenivasan, S., & Kothandaraman, K. (2019). Improving processes by aligning capability maturity

model integration and the scaled agile framework®. Global Business and Organizational Excel-

lence, 38(6), 42–51.

Tripp, J. F., & Armstrong, D. J. (2014). Exploring the relationship between organizational adoption

motives and the tailoring of agile methods. In 2014 47th hawaii international conference on

system sciences (pp. 4799–4806).

38

Valdés, G., Visconti, M., & Astudillo, H. (2011). The tutelkan reference process: A reusable process

model for enabling spi in small settings. In European conference on software process improvement

(pp. 179–190).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation

in software engineering. Springer Science & Business Media.

Yin, A., Figueiredo, S., & da Silva, M. M. (2011). Scrum maturity model. Proceedings of the ICSEA,

20–29.

39

