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A B S T R A C T   

Artificial intelligence (AI) is gaining demanding growth in the field of smart cities, agriculture, food manage-
ment, and weather forecasting due to the lack of computing power on sensing devices. The applications of 
artificial intelligence are integrated with various Internet of Things (IoT) and ubiquitous sensors for the 
improvement of the agriculture sector and to decrease its management cost. Due to the bounded resources of 
wireless technologies, most of the solutions are designed for efficient delivery of agriculture data to cloud sys-
tems, however, still optimizing the resources management and data load for forwarding nodes, especially those 
closest to edge boundaries is a challenging issue. Moreover, due to the collection of incorrect environmental data, 
the decision-making process leads to a decrease in the productivity of the optimization process. To overcome 
such issues, this work proposes a trustworthy and intelligent agricultural model that uses metaheuristic opti-
mization to enhance resource management to address these problems. The proposed model approach employs 
the decision-making function to overcome information loss and inconsistency. Moreover, it builds trust in 
agricultural data collection by using secure IoT devices and facilitating reliable communication. In terms of 
performance metrics, the proposed model is simulated to assess its importance in comparison to state-of-the-art 
solutions. It not only collects updated data from agricultural land but also uses artificial intelligence’s lightweight 
optimization technique to reduce the overheads on IoT devices. The experiment findings demonstrate the 
importance of the proposed model for resource monitoring and overheads on the IoT system.   

1. Introduction 

In recent years, intelligent sensor systems have gained a lot of in-
terest in agriculture, water monitoring, etc. They are utilized in smart 
cities to plan several operations and missions effectively in data 
collection for distributed networks [1–3]. The need for food is rising 
rapidly with the world’s population growth rate, which will double in 
the coming decades. Farmers’ traditional methods are ineffective in 
meeting the rising demands. When nutrients, water, pesticides, and 
fertilizers are used improperly, agricultural growth is disrupted and the 
land remains unproductive [4,5]. Farmers are increasingly turning to 
sophisticated agricultural technology to cultivate plants. Temperature, 
humidity, light intensity, water nutrient level, etc. must all be carefully 
regulated during plant management and growth. Several scientific fields 
have evolved in recent years that employ data-intensive methods to 
increase agricultural productivity while minimizing environmental is-
sues [6–8]. It combines machine data with agricultural, soil, and 

atmospheric information to enable more precise and earlier 
decision-making. Based on the learning signal, machine learning tasks 
are separated into supervised and unsupervised learning [9,10]. The 
goal of supervised learning [11,12] is to develop a general rule that 
connects inputs and outputs. The trained model predicts missing results 
(labels) for the test data in supervised learning. Unsupervised learning, 
on the other hand, does not differentiate between training and test sets. 
Instead, the learner investigates the data to find hidden patterns [13,14]. 
Recently, numerous IoT systems and smart physical devices have 
worked together to produce smart agricultural land and make it easier 
for farmers to monitor and manage their plants, crops, and other agri-
cultural products [15,16]. However, a limited number of methods have 
been offered to improve the learning process in the automated system 
due to the resource limitation of the wireless system [17–19]. To enable 
an automated system employing lightweight computation for the wire-
less network, this study proposes an intelligent and reliable optimization 
model for agricultural land. It achieves trust-oriented transmission from 
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agricultural equipment to cloud systems by using security techniques. 
The proposed model makes extensive use of environmental parameters 
and offers a highly reliable delivery performance with network opti-
mization. In addition, the edge nodes around the sink node efficiently 
manage the delay time when transferring agricultural data to cloud 
systems. Moreover, the proposed model incorporates the security para-
digm to deliver reliable communication with nominal breaches in the 
IoT system. 

Our proposed model provides the following contributions. 

i By employing a metaheuristic algorithm, the proposed model pro-
vides the most reliable and effective selection criteria for forwarding 
nodes.  

ii The ubiquitous network and IoT system combined to achieve a high 
level of direct security. It decreases the chances of unauthorised 
access and leakage of data privacy.  

iii Moreover, unlike most of the traditional approaches, the proposed 
model uses intelligent edges as intermediary devices between agri-
cultural and sink nodes. It smartly manages the resources while 
forwarding the data.  

iv The smart agricultural model is tested and verified its efficacy using 
simulations with varying experiments against other work. 

The remainder of this work is divided into the following sections. The 
related study and the finding of the research problem are presented in 
Section 2. The details of the proposed model are covered in Section 3. 
The simulation environment and experimental findings are given in 
Section 4. Finally, Section 5 provides the conclusion of this work. 

2. Related work 

In ubiquitous sensor networks [20,21], the technologies of wireless 
networks and IoT paradigms are gaining rapid development for sensing 
the unpredictable environment and supporting remote clients [22–24]. 
The collected information is processed and transformed towards a cloud 
system by utilizing the processing and storage capabilities of the 
constraint device [25–27]. Most real-time applications such as agricul-
ture, transportation, military, etc. demand an optimized wireless system 
for the efficient management of their resources and productivity cost 
[28,29]. Wireless sensor networks (WSNs) have emerged as a viable 
precision farming technique and increase the performance of agricul-
tural land. Static clustering solutions [30] offer the easiest way to handle 
the coverage-hole problem and balance the constraint resources effec-
tively. During information collection, the sensed data regarding the 
agricultural environment is broadcast to the base station (BS) and 
remote users obtain the needed information by utilizing the IoT system. 
In [31], the authors offer a scalable WSN for monitoring and regulating 
agriculture and farming in remote places. Precision agriculture and 
farming (PAF) need two important management components: water 

resource irrigation and effective water resource consumption. It uses an 
IoT system to optimize the connectivity of a large number of wireless 
sensors to boost farmer productivity. The performance of the deployed 
structure is tested and verified in terms of throughput, latency, SNR, 
lowest mean square error, and expanded coverage area. Agriculture is 
one of the many domains where AI has made gains in terms of moni-
toring and management. Low-power sensing devices with fully func-
tional AI, on the other hand, are still in the early phases of development. 
To increase the lifetime of the network, authors in [32] presented an 
Energy-aware Grid-based Data Aggregation Scheme in Routing 
(EGDAS-RPL) protocol for the IoT system. It is comprised of grid for-
mation, grid head (GH) selection, and grid head parent selection. 
EGDAS-RPL initially creates a grid of the same size on the square 
network. Second, it chooses the GH node inside the grid using proba-
bilistic methods. Finally, it takes into account the expected transmission 
count (ETX) while choosing the optimal GH parent for data transfer. A 
ground-breaking lightweight trust decision-making framework for QoS 
clustering was developed by the authors [33], which guarantees secure 
intercluster and intracluster communication. A variable that the Cluster 
Head (CH) creates for each Cluster Member (CM) inside the cluster is the 
measured anomalous trust value. Between master nodes, member nodes, 
and the BS, the Low Energy Adaptive Clustering Hierarchy (LEACH) 
protocol makes groups and transfers trust values. The proposed work 
decreases the communication costs and the risk of attacks like an 
eavesdropper, sink hole and black hole. The authors [34] proposed the 
Secure Energy-Aware Meta-Heuristic Routing (SEAMHR) protocol for 
WSNs to improve network performance and security. It explores 
Meta-Heuristic analysis based on Mutation Elephant Herding Optimi-
zation (MEHO). The protocol learns the routing decisions using hop 
counts, connection integrity characteristics, and aggregated residual 
energy. Moreover, the Counter Mode Cryptography method is explored 
by the protocol with the support of Auto encoders (AEs) called 
CTR-AEDL, which aims to offer secured data with 
authentication-oriented inter-routing. Furthermore, as part of route 
maintenance methods, traffic explorations prevent link failures. An 
energy-aware Grouping Memetic Algorithm (GMA) is proposed in [35] 
as a solution to the SET K-COVER problem. The proposed GMA differs 
from existing SET K-COVER problem-solving algorithms in four crucial 
ways. The proposed method was thoroughly tested in this work using a 
variety of targets and sensors under a WSN environment. A novel 
bumble bees mating optimization (CBBMO) algorithm was proposed in 
[36] to provide secure transmissions using a trust sensing model, also 
called as CBBMOR-TSM model. The mating behavior of a swarm of 
bumble bees stimulates the BBMO. To increase the convergence of the 
conventional BBMO technique, the chaotic idea is incorporated into the 
BBMO technique CBBMO model is formed. The summary of the dis-
cussed work is shown in Table 1. 

Table 1 
Summary of existing related studies.  

Overview with shortcomings 

Existing 
approaches 

The related research has shown that integrating wireless networks with IoT systems allows for the rapid development of smart systems. Smart devices are 
equipped with standardized communication methods in addition to the ability to data sensing. Moreover, many researchers have explored machine learning 
approaches to reduce the computational burden on smart systems, although the majority of these solutions are still insufficient to support the optimization 
process. Due to security and trust concerns caused by the integration of numerous smart devices for collecting agricultural data, most of the communication 
systems are comprised due to the existence of malicious attacks. As a result, we require a smart agricultural system based on the IoT paradigm to support a 
remote sensing system with a high level of optimization and data reliability. 

Proposed work This work presents an intelligent model with the combination of a robust forwarding scheme to maintain the balance load among agricultural devices and 
optimizes the performance. Using a multi-level heuristic approach reduces the additional cost of the communication devices and reduces the delay factor. 
Moreover, it also offers security for protecting agricultural data against network and communication threats.  

A. Rehman et al.                                                                                                                                                                                                                                



Computer Standards & Interfaces 87 (2024) 103768

3

3. Proposed authentic and optimizing smart IoT agriculture 
system 

The proposed model is thoroughly described in this section. It con-
sists of the following sub-sections. 

3.1. Methodology 

An intelligent and trusted smart agricultural model is proposed using 
optimization techniques. Unlike traditional approaches, the proposed 
model decreases the management load of the sensors and optimally 
delivers the agricultural data toward cloud processing. It decreases the 
computing power of constraint nodes and supports the reliable decision- 
making process. Our proposed model is comprised of agricultural sen-
sors to collect and forward the land information with balancing the 
energy consumption and efficiently splitting the data traffic over the 
alternate routes. In addition, the data is sent to the sink node using a 

multi-hop and with the help of smart edges. The data from the sink node 
is further transmitted to a cloud system and after processing it offers 
precise statistics to farmers on their smart devices. To cope with 
consistent and authentic communication, the proposed model utilizes 
the threshold of direct trust among agricultural devices and maintains 
the secured environments with various cryptography functions. The 
value of trust is determined using two factors i.e. nodes’ statistics and 
link behavior. The higher the trust indicates a more optimal choice for 
transmitting agricultural data thus imposing secured methods for ma-
licious threats. Also, nonauthentic smart devices are treated as foreign 
nodes that cannot be allowed to access the information directly. 

3.2. Discussion 

In the proposed model, the ubiquitous network is comprised of 
sensors and organized in the form of graph G with the composition of 
nodes N and edges E. To accomplish the delivery of agricultural data, the 

Table 2 
Format of routing parameters.  

ID (1-byte) Neighbor status (1-byte) Sink distance SD (1-byte) Energy e (1-byte) Delay time dy (1-byte) Successive state f(s′) (2-byte)  

Fig. 1. Flowchart of the reliable IoT agricultural model.  
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neighboring nodes are extracted for the G and formulate a set N = n1, n2, 
…., nk. The data is transmitted using a multi-hop model until it is 
received by the sink node. During information forwarding, the optimi-
zation process is initiated by exploring a random route from the search 
space. Firstly, each node lookups at its routing table to identify the 
location of the sink node, if it is found in its routing table, then the route 
is marked as optimal and sensors data is forwarded directly. In case, if 
entry is not found in the routing table then the source node executes the 
metaheuristic optimizing scheme for finding the reliable set of nodes 
using multi-hopping. Table 2 shows the format of routing parameters. It 
comprised of identity ID, neighbor status, distance to sink SD, energy e, 
delay time dy and successive rate f(s′). The routing parameters are 
updated when a condition or circumstance changes closer to the source 
node. 

The proposed model executes artificial intelligence techniques in an 
incremental approach to find the next optimal state from the search 
space [37,38]. Due to memory and processing time limits in gathering 
and processing real-time data, the hill-climbing algorithm has been 
explored. It uses the multi inputs from the environment and computes 
the value for successive state f(s′) such that f(s) ε N. Eq. (1) states the 
parameters value of energy e, sink distance SD, and delay dy to compute f 
(s′). 

maxf (s′

) = e +
1

SD
+ 1

/
dy (1) 

The value of the current state f(s) is compared with f(s′) and based on 
Eq. (2), the optimization process is initiated. 

if f (s) < f (s′

) then next − hop = s′

[i] (2)  

otherwise stopped at s. where s′[i] is the list of extracted neighboring 
nodes. The proposed model also incorporates the value of direct trust 
value tr in optimization function and increases its trustworthiness for 
newly selected state Snew as defined in Eq. (3). 

Snew = P(f (s′

), tr) (3) 

To compute the tr, the proposed model utilizes the transmitted 
packets and the number of loss packets as given in Eq. (4). 

tr = psnd/ploss (4)  

where psnd is the number of sent packets and ploss is the number of lost 
packets. It indicates that highest the value of lost packets decreases 
communication trust. 

Afterward, edges and sensor nodes perform dual authentication by 
utilizing random numbers. This process is comprised of two phases. 
Initially, the node generates a random number αi and shared it with the 
edge device ei by integrating its identity idsi as given in Eq. (5). 

si→ei : αi + idsi (5) 

Subsequently, upon receiving the information, the edge node verifies 
the idi in its routing table and recovers the random number αi. Later, it 
generates a random number βi and resend the computed information to 
the node si along with its identity idei. The entire communication is 
encrypted E using a secret key k as given in Eq. (6). 

ei→si : Ek(αi, βi, idei) (6) 

The same process is applied by the node si for matching the identity 
of the edge node in its routing table and recovers the random number αi 
that is the previous one sent. 

Accordingly, now both the sensors and edges are mutually authen-
ticated and can proceed to data transmission. To attain data privacy, the 
proposed model uses the xor function to encrypt the data blocks mk 
based on security keys ki where i = 1, 2, …, n, as given in Eq. (7). 

C = (Ek1(m1), Ek2(m2), …, Ekn(mk)) (7) 

Figs. 1(a) and (b) describe the flowchart of the proposed model for 

the smart agricultural system using a ubiquitous sensors network. 
Firstly, the nodes are extracted from the graph and construct the 
neighbor tables. Afterward, the optimization algorithm is applied to 
determine the appropriate successor state and selected as a data 
forwarder with the support of an artificial intelligence algorithm. The 
optimization function not only evaluates the node’s parameters but also 
incorporates trust values using computed packet information. Secondly, 
the secure methodology is proposed to construct mutual authentication 
using random numbers, and after successful verification, both the sensor 
nodes and edge devices employ encryption methods to protect data from 
malicious threats. With the use of the sink and edge nodes, agricultural 
data may be processed more rapidly on both ends, resulting in reduced 
data delay. Also, smart devices can obtain agricultural data with the 
high processing capabilities of cloud servers. Algorithm 1 illustrates the 
pseudocode for the various phases. 

4. Simulation 

We discuss the simulation parameters and experimental results of the 
proposed model with existing approaches in this section. The simula-
tions are carried out using an NS-3 simulator [39] with a varying 
number of nodes. The dimensional area for the evaluation of the per-
formance is set as 350 m x 350 m. The simulation is executed for 4000 s 
and evaluates the performance results of the proposed model with 

Algorithm 1 
Reliable route discovery with trusted metaheuristics.  

Input: 
N: Sensors 
NE: Network edges 
Ki: Security key 
αi, βi: Random numbers 
f(s’): successive state 
f(s): current state 
Output: route discovery with authenticity and confidentiality 
1. Procedure metaheurisitics_Opt 
2. Determine neighbors 
3. Create a list of neighbors with IDs 
4. Initiate Route request 
5. Compute successive state f(s′) 
6. Compare f(s′) with current f(s) 
7. if f(s) < f(s′) then next hop = s′[i] 
otherwise stopped at s. 
end if 
8. Determine the trust tr and incorporate it in the selected state 
9. end procedure 
10. Procedure Dual_authen() 
11. Perform dual authentication for sensors and edges 
12. si ⟶ ei: αi + idsi 

13. ei ⟶ si: Ek(αi, βi, idei) 
14. end procedure 
15. Procedure Secured_data() 
16. data blocks mk security with keys ki 

17. C = (Ek1(m1), Ek2(m2), …, Ekn(mk)) 
18. end procedure  

Table 3 
Simulation parameters.  

Parameter Value 

Simulation area 350 m X 350m 
Malicious nodes 5, 10, 15 
Initial energy 5j 
Edge devices 1–5 
Sensor nodes 200 
Transmission range 5m 
MAC layer IEEE 802.11b 
Sink 1 
Simulation time 4000 s 
Simulations 20 
Data traffic CBR 
Performance metrics packet drop ratio, waiting time, energy consumption  
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SEAMHR and EGDAS-RPL. The number of edge devices is varying from 1 
to 5. The initial energy of the nodes is fixed to 5j. The number of mali-
cious nodes is fixed to 5, 10, and 15, and the transmission range is set to 
5 m. 20 simulations were run and each simulation was executed for 
4000 s. Table 3 illustrates the list of network parameters used for the 
conduction of the extensive simulations. The experiments are conducted 
for two scenarios. i.e. varying number of edges and varying data gen-
eration rate. 

4.1. Results analysis 

The proposed model is compared with EGDAS-RPL and SEAMHE 
approaches under various simulation tests. The tests are performed in 

terms of packet drop ratio, waiting time, and energy consumption under 
varying numbers of edged devices and data generation rates, as depicted 
in Table 4. All the results are recorded in a simulated trace file and later, 
using needed information is extracted to show the performance results. 

In terms of packet drop ratio, Fig. 2(a) and (b) depict the perfor-
mance results of the proposed model and existing work. It is seen that 
with increasing network load in terms of dynamic attributes, the number 
of packets lost also increases. However, according to experimental 
findings, the proposed model significantly decreases the ratio of packets 
lost. This improvement is the result of computing direct trust using 
packet receiving and packet loss rate. As a result, in the process of 
optimizing, the paths with a higher degree of re-transmission are avoi-
ded. Furthermore, multi-hop paradigms improve delivery performance 
by reducing the load on the communication links. Lookup tables for 
smart agricultural sensors help them estimate the more trusted peer 
nodes that keep the most up-to-date data across neighbors. The perfor-
mance analysis of the proposed model in comparison to prior work for 
waiting time is shown in Fig. 3(a) and (b). With an increase in the data 
generation rate and the number of malicious nodes, it is demonstrated 
that the waiting time for receiving sensor data toward the sink node 
increases. It results from overloading the transmission channels and 
delivering excessive amounts of route requests to adjacent nodes. 
However, the waiting time for forwarding agricultural data from smart 
devices was remarkably improved by the proposed model as compared 
to existing work. It enables less congestion on forwarders that are close 
to the sink border and shortens the time it takes for data forwarding from 

Table 4 
Performance comparison under varying edges and data generation rate.  

Proposed Model with 
existing approaches 

Packet drop 
ratio(%) 

Waiting time 
(sec) 

Energy 
consumption (j) 

Varying number of edges    
Proposed model 9.3 1.44 1.23 
EGDAS-RPL 13.6 1.51 1.38 
SEAMHE 15.6 1.57 1.51 
Varying Data generation 

rates    
Proposed model 7.8 2.02 1.2 
EGDAS-RPL 10 2.1 1.38 
SEAMHE 14.6 2.12 1.49  

Fig. 2. Packet drop ratio for the varying number of edges and data generation rate.  

Fig. 3. Waiting time for the varying number of edges and data generation rate.  
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the data originating node to the destination. Fig. 4(a) and (b) compare 
the performance of the proposed model with alternative approaches in 
terms of energy consumption. According to the experimental findings, 
the proposed model has increased energy consumption efficiency under 
varying numbers of edges and data generation rates. Unlike other work, 
this is due to consideration of the metaheuristics-based optimal route 
discovery process. Moreover, all of the neighbors are assessed based on 
specific criteria, and the selection of the next hop is made appropriately. 
The acknowledgement of packet data is additionally used by optimiza-
tion functions to get effective consequences for energy consumption. 
The proposed model utilizes the extracted list from the graph, which 
reduces the number of hops in the transmission network rather than 
flooding route requests on unnecessary paths. To limit energy depletion 
with fewer control messages, only highly secure nodes are chosen for 
data transfer. 

4.2. Performance results 

Figs. 2, 3 and 4. 

5. Conclusions 

Recently, the ubiquitous network has been extensively used to sup-
port automated systems and the development of smart systems. To 
effectively monitor the plants, crops, etc., physical objects and sensors 
work together, and the gathered information is sent to the sink node. 
Although there have been many solutions to use artificial intelligence for 
reducing the communication cost of managing agricultural data, the 
research community still needs a trustworthy optimization process. 
Also, a lot of solutions fail to protect the data gathered by deployed 
sensors, which makes it easier for malicious attackers. Such systems 
increase the overhead on the tiny devices in data forwarding and 
overlooked the constrained resources of the network infrastructure. To 
increase the level of optimal criteria and productivity control, this study 
proposes a smart and reliable metaheuristics optimization model based 
on a ubiquitous IoT system. The incorporation of trust value with the 
optimal function provides a significant role in the reliability of data 
forwarding. Moreover, the dual authentication among smart sensors and 
edge devices negotiates the security level in a controlled manner and 
makes it harder for malicious attacks. 
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