
Information and Software Technology 158 (2023) 107172

A
0
n

S
A
a

b

A

K
C
C
S
S

1

b
r
p
c
m
i
t
t
p
p

i
i
r
M
l
a
i

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

cripted and scriptless GUI testing for web applications: An industrial case
xel Bons a, Beatriz Marín b, Pekka Aho a, Tanja E.J. Vos a,b,∗

Open Universiteit, The Netherlands
Universitat Politècnica de València, Spain

R T I C L E I N F O

eywords:
ase study
omplementarity
criptless testing
cripted testing

A B S T R A C T

Context: Automation is required in the software development to reduce the high costs of producing software
and to address the short release cycles of modern development processes. Lot of effort has been performed
to automate testing, which is one of the most resource-consuming development phases. Automation of testing
through the Graphical User Interface (GUI) has been researched to improve the system testing.
Objective: We aim to evaluate the complementarity of automated GUI testing tools in a real industrial context,
which refers to the capability of the tools to work usefully together.
Methods: To address the objective, we conduct an exploratory case study in an IT development company from
The Netherlands. We select two representative tools for automated GUI testing, one for scripted and another
for scriptless testing. We measure the complementarity by measuring the effectiveness, the efficiency, and
subjective satisfaction of the tools.
Results: It can be observed that the scripted tool performs better in detecting process failures, and the scriptless
tool performs better in detecting visible failures and also reaching higher coverage. Both tools perform in a
similar way in terms of efficiency. Additionally, both tools were perceived to be useful in the survey performed
for the subjective satisfaction.
Conclusion: We conclude that scriptless and scripted testing approaches are complementary, and they can
improve the effectiveness compared to manual testing processes performed in an industrial context by detecting
different failures and reducing the effort and time to find these failures and to reproduce them.
. Introduction

The use of software systems is continuously growing due to the
enefits that they bring both in industrial sectors as well as in daily
outine tasks for end users. As a consequence, more software is being
roduced and slowly almost every company is turning into a software
ompany [1]. However, due to the global competition and short time to
arket, software companies are struggling. They need to continuously

mprove their software development processes in order to reduce the
ime and cost of the development, and at the same time, increase
he quality of their software products. More flexible methodologies to
roduce software and more intelligent automation of the development
rocesses are needed.

Testing is the most commonly used technique for quality assurance
n industry [2], but also one of the most resource-consuming phases
n the software development process [3]. In an attempt to reduce
esources, lots of research has been done to improve test automation.
ost of these studies have been mapped and categorized in various

iterature reviews of testing tools [4–10]. In recent years, an increasing
mount of research has focused on the automation of system test-
ng through the Graphical User Interface (GUI), as can be observed

∗ Corresponding author at: Universitat Politècnica de València, Spain.

in [11–15]. Test case generation through the GUI can be performed by
using two different approaches (1) scripted testing, and (2) scriptless
testing [16].

For companies with interest in improving their testing processes
by incorporating automated GUI testing, it is important to know the
benefits and drawbacks of various automated testing approaches. There
are many informal sources (like blogs and other grey literature) that
discuss this topic by comparing scriptless and scripted testing. But
most of them have commercial interests. There are a few empirical
studies evaluating only scriptless [16–18] – and separately – scripted
testing [19–21] in isolation without comparing them with each other.
A recent study compares the effectiveness of a scripted tool as well as
a scriptless tool [22], showing that both approaches perform similarly
with respect to code coverage. However, the study has been done
only with student subjects in a controlled experimental setting; and
it does not provide any information about the failures found by these
approaches. More research is needed that compares the two approaches
in an industrial setting. This paper fills this gap by presenting a case
study that aims to explore the benefits of using scriptless testing as
vailable online 13 February 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.infsof.2023.107172
eceived 16 August 2022; Received in revised form 4 February 2023; Accepted 8 F
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ebruary 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2023.107172
https://doi.org/10.1016/j.infsof.2023.107172
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107172&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information and Software Technology 158 (2023) 107172A. Bons et al.
well as scripted testing in the IT company E-Dynamics that – before
this study – used only manual testing. We use Testar () as the scriptless
testing tool and Selenium () as the scripted testing tool. We select
these tools because they are open source and widely known tools for
automated GUI testing. We evaluate the complementarity of both ap-
proaches measuring the effectiveness, the efficiency, and the subjective
satisfaction on a real industrial software.

The main contribution of this paper is the empirical evidence ob-
tained by means of an industrial case study, showing that scriptless and
scripted techniques are complementary: both improve the effectiveness
of the testing process in different ways. Scripted testing performs
better detecting process failures, and scriptless testing performs better
detecting visible failures. Both approaches found different failures than
manual testing. Regarding the efficiency, the time needed to apply
scripted or scriptless approaches are similar to manual testing. We
advocate that this time should decrease in longer periods of observa-
tion, but more studies are needed to draw strong conclusions about
efficiency. Regarding subjective satisfaction, both approaches are per-
ceived useful but neither of the approaches is perceived as a complete
replacement to manual testing.

This contribution is useful for practitioners, as they could take more
informed decisions using clear measures when searching for approaches
to incorporate in their testing processes. This contribution is also useful
for researchers, as they can extend this study with other tools, and,
by following the methodological evaluation framework, gather more
evidence for complementarity. We also advocate that this contribution
can be useful in educational environments, since teachers can provide
this result as a knowledge base to students, and they can select a tool to
improve the system testing of their projects and learn how to improve
system testing by comparing the results of the selected tool with the
results obtained manually.

The rest of the paper is structured as follows: Section 2 presents
the background, including a brief description of the tools selected
for scripted and scriptless testing, and some related work. Section 3
presents the design for our case study. Section 4 presents the results of
the study, and the interpretation of findings as well as a discussion of
the threats to validity. Finally, Section 5 presents our main conclusions
and future research topics.

2. Background and related work

In GUI testing, the system is tested through the elements of the GUI
and their properties [10]. In other words, GUI testing means that an
application that has a graphical user interface (GUI) is tested solely
by doing sequences of events to be executed on the widgets of the
GUI [23]. GUI testing consists of performing test sequences of actions
corresponding to user interactions (clicks, scrolls, keystrokes, etc.) on
available elements (buttons, input, etc.) found on the GUI in various
states of the System Under Test (SUT).

It is important to clarify that automated GUI testing comprises
tools that allow to automate different steps in the testing process.
Thus, automated GUI testing considers approaches that are related
to (1) automating the creation of test sequences, (2) automating the
execution of test sequences, (3) automating the definition of oracles or
automating the evaluation of oracles, and (4) automating the analysis
of results obtained by the executed test sequences [10]. To automate
the creation of these test sequences, GUI testing tools use mainly two
approaches: scripted and scriptless.

Generally speaking, in scripted testing, the tester manually creates
scripts for each of the desired test sequences, either by using a capture-
replay tool or writing the scripts manually. This means that there is a
creation of the script by the tester before the automated execution of
test cases. Later, these scripts can be used to automate the execution of
tests.

In contrast, in scriptless testing, the creation of test sequences to
stimulate the SUT is performed automatically by the tool, i.e. the tester
2

does not indicate the elements nor the set of actions that must be
executed in the test sequence. This means that the test sequences are
generated on the fly in each test run. There is no creation of a script by
the tester before the automated execution of the test cases. In scriptless
testing, the tester only needs to configure the tool to make sure the SUT
is found and the widgets on the GUI are detected.

The next sections will briefly present the scripted and scriptless GUI
testing tools; and some related work that compares GUI testing tools in
industrial contexts.

2.1. Scripted GUI testing

There are many tools that implement a scripted testing approach.
An extensive list with scripted tools is mentioned in [24]. This list is
comprised by the tools Abbot, Jacareto, JFCUnit, Marathon, Pounder,
Monkey, UI automator, Espresso, Robotism, Appium; Sikuli(X), JAuto-
mate, eggPlant, and EyeAutomate. Moreover, a simple search of tools
for automated scripted testing by Google search returns many more,
such as: Ranorex, Telerik, LeanFT, Kantu, iMacros for Chrome, Kat-
alon recorder/studio, Robot framework, Protractor, Screenster, Ghost
inspector, UFT, QTP, TestComplete, Sahi, Rational function tester, Frog-
logic squish, among others.

Nevertheless, Selenium [25] is the most popular tool for scripted
testing of web applications [26,27], which has been used in academy
and in industry, and many scripted testing tools use the selenium web-
driver for targeting elements in a web-application [28]. For this reason,
we select Selenium as the scripted testing tool in our case study.

Selenium is an open source tool available as extension in Chrome or
Firefox browsers. With this tool it is possible to start a test-session on a
webpage or localhost url, and consecutively, it is possible to manually
perform user-actions that will be recorded into a test sequence that can
be later replayed as a script. GUI elements are detected and saved by
using either screen coordinates or element-selectors. After recording
the test scripts, it is possible to replay them, and if needed, add or
edit commands manually. Element selections can be changed to other
given attributes of the target element or added by recording from a
specific point. Since GUIs change a lot, the scripts need updating and
maintenance to keep them up to date.

An example of an script created with the Selenium IDE tool is shown
in Fig. 1. This figure shows a set of test cases in the left part, in green
is highlighted the create and finish new task test case; in the right part it
shows a sequence of commands with the corresponding target values;
and at the bottom is presented the log of the execution of the test case.

2.2. Scriptless GUI testing

Scriptless GUI testing tools automatically create and execute test
sequences during the testing process. These tools first identify all the
available widgets in the GUI. After that, the tool derives all the possible
actions that can be performed with those widgets. This information
represents the observed actual state of the SUT. Then, the tool selects
some of these actions to build the test sequences by using an Action
Selection Mechanism (ASM). The most straightforward ASM is random;
this procedure is also known as monkey testing, or random testing [29].
Later, the tool executes the test sequences, checks the oracles and again
observes the state of the SUT by identifying the widgets and deriving
the possible actions to create a new test sequence in an iterative
process. If an error is found, the tester can replay the sequence to
investigate what happened.

There are less scriptless tools than scripted tools in literature, as can
be observed in [24]. We found the following tools that are scriptless:
monkeytest.it [30], webui-test, and Testar [31]. In this paper, we select
Testar since it is an open source tool that has an active community that
is maintaining the tool, and, moreover, it has been successfully used in
academy and industry [16,17].



Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 1. Excerpt of script created with Selenium tool.
In Testar, the default ASM is random, but more advanced ASMs
are available that use Q-learning [32] to learn how to select actions
that have not been executed yet, or unvisited actions that prioritizes
to execute new actions [33]. Faults are found using oracles: either
pre-defined default oracles for (crashes, hangs or suspicious texts) or
user-defined failure detection conditions that are SUT dependent.

Testar [13] must be manually configured with the credentials to
use (settings), elements not to use (filters) and the conditions that are
considered failures (oracles). After that, the test cases are automatically
generated at run-time. These test cases are stored, so that they can be
replayed later with Testar. Failures found by Testar should be evaluated
by the testers on the SUT in order to determinate whether it is a fault
and whether it is reproducible.

Testar has been evaluated in several case studies, some performed
with large companies, such as Softeam and Cap Gemini, and some with
SMEs, such as Prodevelop and Indenova. SUTs used in the evaluations
include both desktop and web applications. An overview is given
in [13], together with aggregated evidence that Testar is an effective
complement to manual testing and it can be used to find undiscovered
failures in the SUT. In this work, we select Testar to evaluate the
complementarity with the scripted tool Selenium.

2.3. Related work

In [34], a comparison of Sikuli and JAutomate is performed. Both
tools use scripted GUI testing. The tools were applied in a Turkish com-
pany to compare the quality of record and replay features, robustness
and repeatability of test execution, and test development effort. Results
shows that JAutomate is slightly better for the Turkish company. This
work is not focused on the complementarity of the tools, as is the case
of our study. Moreover, this paper does not follow any methodological
framework to compare the tools, which later could allow to aggregate
3

the results or make comparisons with other results that can be found
in literature.

Eggplant, QF-test, and TestComplete are compared in [35]. This
work analyzes the development time and maintenance effort of test
suites with these tools. Results indicate that QF-Test is fast for the
creation of test suites and EggPlant has a small advantage in the
maintenance effort. Even though this paper intends to compare a visual
GUI testing tool with two capture and replay tools, all of them are
scripted tools, and the work does not follow well-known methodolog-
ical guidelines to perform the case study. Thus, it is more difficult to
aggregate or compare the results in order to facilitate the selection of
tools by the companies.

Shtakova presents a comparison of UISpec4J, Fest, and Jubula
in [36]. UISpect4J and Fest are scripted tools and Jubula uses scriptless
and record/replay testing. These tools were applied to Scila Surveil-
lance application. The comparison was based on a list of criteria defined
by the company, such as the feasibility to reproduce the test cases or
the ease of configuration of the test cases. However, this study is not
focused on the complementarity of tools.

Kumar performs a comparative study of two open source tools:
Selenium and SoapUI, and with two licensed tools: HP Unified func-
tional testing and Test complete in [37]. The study aims to analyze
the functionality (for instance the ability of the tool to record scripts,
or to record and playback), and the active support of the tools, cost of
licences, cost for training, among others. But, the study does not present
a well-defined design of the case study or clear measures that allows to
understand the complementarity of the tools.

A comparison of Selenium and UFT is presented in [38]. This study
is focused on the identification of the type of SUT that can be tested
with these tools and the execution efficiency. Not enough details are
given, so it is difficult to replicate.



Information and Software Technology 158 (2023) 107172A. Bons et al.

w
c
q
t
d

d
t
A
r
a

t
c
o

t
a
b

d
t
T
m
o
t

A
a
i
s

e
r
r
d

An experiment that compares visual GUI testing (with EyeAuto-
mate) and capture and replay GUI testing (with Espresso) for Android
applications is presented in [39]. The experiment measure the produc-
tivity and the quality of the test suites for both tools with students.
Even though the experiment is correctly designed and executed, authors
recognize that productivity and quality are not the most suitable met-
rics to measure ease of use, which becomes a threat to the construction
validity of the experiment. For this reason, proper measures to evaluate
the ease of use should be followed, such it is stated at [40].

In [41], a comparison of strengths and drawbacks of EyeSel and
Selenium for testing web applications is presented. To do that, an ex-
periment is executed in order to measure the effectiveness by counting
the number of components tested, and efficiency by the execution time
and the development time of one script. Even though the experiment
is properly defined and executed, we advocate that there are too few
measures considered to describe the effectiveness and efficiency of
these tools, which makes it difficult to analyze their complementarity.

A recent study compares the test effectiveness of a capture and
replay tool with three automated input generation tools for Android
applications [22]. This study presents two experiments performed with
master students (as novice engineers) to test four small-size open-
source Android applications by using Robotium Recorder (capture and
replay), and three other tools: AndroidRipper, Sapienz, and Robotool.
This study measures the effectiveness by using the coverage reached by
the different approaches. Results indicate that manual testing generally
outperforms the automated testing tools, and that the input generation
tools have similar coverage than the capture and replay tools. Neverthe-
less, authors recognize the use of students as a limitation of the work,
and that the coverage is not the best metric to compare the effective-
ness. They argue that it is necessary to identify the failures found by the
different approaches to evaluate the effectiveness as a future work, and
also to replicate the experiment in an industrial context. In our work,
we tackle the limitations of this study by performing an industrial case
study and measuring the effectiveness by focusing on the failures found
by the different approaches.

In summary, we found case studies that focus on the comparison
of two or more GUI testing tools, but they lack a well-defined process
or definition of the corresponding measures, which makes it difficult
to replicate or compare them. Moreover, a few studies address the
complementarity of scriptless and scripted tools, but they are using
small or toy applications in controlled experimental settings. To fill this
gap, we perform a case study following a methodological framework
to measure the complementarity of two testing tools corresponding
to scripted and scriptless approaches, measured by effectiveness, ef-
ficiency and subjective satisfaction. The novelty of our work is the
case study performed with a real case (not toy project) in a company
to evaluate the complementarity of using these approaches without
replacing manual testing, which can be useful to smooth the process
in the companies that want to improve their software development
processes by using automated GUI testing tools with scripted or scripted
approaches. We advocate that the results of our case study is one step
towards helping companies to take informed decisions in the selection
of tools to automate their testing processes taking into account the
complementarity of the tools.

3. Case study design

The design of this study follows the guidelines presented in [40],
which is a methodological framework specifically designed to evaluate
testing tools, and that allows to generate evidence that later can be
easily compared and aggregated in secondary studies. This framework
has been used already several times to evaluate the scriptless testing
tool in industrial settings [13]. In this case study, we use this framework
to report a scriptless tool and a scripted tool in an industrial setting,
which allows us to further compare the results of this case study with
existing studies.

The guidelines in [40] have been defined following well-known
evidence-based software engineering guidelines such as [42–45], with
a specific focus in the empirical evaluation of testing tools.
4

o

3.1. Overall goal of the study and its treatments

This case study is an exploratory study about the complementarity
of different approaches (treatments) to perform automated system test-
ing at the GUI level in an industrial context. To this end, this study
aims to measure effectiveness, efficiency, and subjective satisfaction
of two different automated GUI testing approaches: scriptless testing
with the Testar tool and scripted testing using the Selenium tool. With
these measures we advocate that it is feasible to evaluate the capa-
bility of the tools to work usefully together, i.e. the complementarity
of both approaches. It is important to mention that even the tools
use different approaches to create the test sequences, they also have
commonalities, for instance: both tools perform automated GUI testing,
both can be used in web applications, both are applied to system testing
and both have failures as output. The tools are described in Table 1
following [40].

3.2. Context: company E-dynamics

The study was performed in an IT development company called E-
Dynamics (The Netherlands) [51], a small company with 18 employees.
They develop software following agile practices of Scrum [52] and
Kanban [53].

To develop software, the company is using the roles defined in
Scrum, sprints are planned in two weeks, Kanban board is used to
visualize the product backlog items and to assign high priority tickets to
a sprint. The development team performs weekly updates, including the
finished and tested changes (Kanban). They also perform daily stand-
up meetings, and at the end of each sprint, the retrospective meeting
(Scrum).

The company has some quality assurance activities in place before
the current study started. Static code checking and inspection is done

eekly, before release. The code is scanned with a linter-tool that is
onfigured for checking an in-company predefined set of rules. Subse-
uently, new code is inspected manually by two developers following
he 4-eyes principle. This process usually takes 2 h per week per
eveloper.
Regression tests are performed by the developers manually. During

evelopment of new code, some cases need to be retested after updates
o the server, extensions to the code or integration of new packages.
t the time of writing this section, there were 12 regression cases to
etests known issues in previous versions. No code coverage metrics
re measured in the company.

So-called debug functions are written by developers to easily check
he results of the regression tests. For example, debug functions are
reated to inspect query results, API results, and user-event-logs in
rder to find problems faster when doing the regression tests.
System testing is done manually and in an exploratory way by the

esters. Testing is performed with different configurations, permissions
nd settings, observing results, and evaluating the product and its
ehavior.
Acceptance testing is performed in a similar way, but includes the

esigner and the product owners. The company does not maintain
he acceptance test cases, as commonly occur in agile developments.
herefore, test cases written in the past are mostly outdated due to
any reasons, i.e. abundance of documentation of test cases, change

f developers, reluctance and no strict company policy to maintain the
est cases, etc.
Monitoring through event logs is done by storing all requests by users,

PIs or scheduled tasks in a log database. If a problem occurs these logs
re used to pinpoint the problem or reproduce steps taken. Kibana [54]
s used to show graphs of the event log data that can be useful for
tatistics.

The testers of the company spend on average 10 h a week on
xploratory system and acceptance testing for the parts of the system
ecently changed. And each developer spends on average 1 h per day in
etesting latest changes performed by a colleague on the same or next
ay. The actual time for testing in each sprint varies, but is around 30%

f the time spent on each sprint.



Information and Software Technology 158 (2023) 107172A. Bons et al.
Table 1
Description of the treatments following [40].
Prerequisites Testar [31] (see Section 2.2) Selenium [25] (see Section 2.1)

SUT type Desktop, Web, Android Web
Lifecycle phase GUI testing GUI testing
Environment Web (Chromedriver) Web (Chromedriver)

Desktop (Windows)
Android (Appium)

Input Protocol and settings for configuring
how actions are selected to create test
sequences, abstraction and oracles

Scripts containing predefined steps for
test sequence including test oracles

Knowledge Structure of GUI elements, Java
programming

Structure of GUI elements

Experience Advanced tester Beginner tester

Results

Output Test sequences, state model, failures Failures
Completeness Investigated by [33] [17] [16] Depends on the defined scripts
Effectiveness Investigated by [16–18,33,46–49] Depends on the defined scripts
Defect types Failures, crashes, suspicious titles Depends on the hand crafted oracles
Test suite size Configured number and length of

sequences
Number of predefined test scripts

Operation

Information/help Webpage of the tool, contact the
developers

Webpage of the tool and stackoverflow

Task applicability System testing System testing
Comprehensibility Investigated by [17]. Investigated by [20].
Satisfaction Investigated by [16–18,46–49] Investigated by [50].
Maturity Academic research tool under

development
Widespread use outside of own
organization

Obtaining the tool Open source BSD3, support from
researchers.
3.3. The research questions

In order to study the complementarity of scripted and scriptless test-
ing tools to do the system testing at E-Dynamics, we have formulated
the following research questions (RQs):

– RQ1. How effective is it to extend the testing process with Testar
and Selenium?

– RQ2. How efficient is it to extend the testing process with Testar
and Selenium?

– RQ3. How satisfied are subjects in learning, configuring and
applying Testar and Selenium?

The main idea behind this case study is to compare two approaches
to perform automated system testing – scriptless and scripted – in order
to obtain knowledge about the complementarity and the benefits of
these two approaches, and later, to extend the current manual testing
process of E-Dynamics with them. RQ1 is precisely formulated to obtain
knowledge about the effectiveness of scriptless and scripted testing
through the use of Testar and Selenium tools and the amount of faults
found by these tools. It is important to note that we are not using
coverage to evaluate the effectiveness of the automated testing tools
since in the state of the art was demonstrated that it is not the best
metric to understand effectiveness. Indeed, related works suggest the
use of failures to evaluate effectiveness. RQ2 is related to evaluating
the efficiency of using automated GUI testing, which take into account
the learning curve of Testar and Selenium; and the execution time to
generate/develop and run the test cases. We put special focus in the
learning and configuration time of he tools to evaluate the efficiency
since the execution time depends on the infrastructure of the company;
and since the execution is automated with the tools, it outperforms the
manual execution of test cases. Finally, RQ3 was formulated to know
the perceptions of subjects related to the ease of use of both automated
GUI testing tools. We advocate that if the subjects are satisfied learning,
configuring and applying the tools, then it facilitates the extension of
5

manual testing in the company with one or both tools.
3.4. Object

The object of the study is a software product called Yoobi. Yoobi is
a time tracking web and mobile application with over 32k users, with
supported languages in Dutch, English, German and French. The first
version of Yoobi started in September 2011, and it has been evolving
since that. Yoobi is used for tracking work hours, costs, managing
projects, budgets and customers, leave hours, overtime, tasks, planning,
sales and billing. Fig. 2 shows an excerpt of Yoobi application.

There are four different types of users of Yoobi:

– Employees: they communicate worked hours, apply for leaves and
complete tasks.

– Project managers: they manage budgets, rates, schedule and ap-
prove employee’s hours.

– Sale managers: they manage sales, send quotes and create orders
of customer approved.

– Financial managers: they manage orders and billing of approved
hours, subscriptions or products quotes.

Yoobi users are part of an organization or a company who purchased
a subscription of Yoobi. Each organization has its unique domain where
their users can login. The subscription(s) of an organization contains
a set of modules giving access to different parts of Yoobi or adding
functionality to existing parts. The amount of permissions and settings
for an organization depends on the modules in use. These permissions
contain the possibility to create, read, update and delete access which
can be coupled in a user-, project- or department-role and assigned
to users within the organization. The settings contain object default
values, API connection settings, email, language and system alterations
for organizations, and some settings can be overruled for departments
and users.

Development of Yoobi is performed following an agile approach,
where small feature requests and correction of faults are deployed
weekly, and bigger features are planned in 2 week sprints. The current
version is 2.3.4, the last digit will change weekly with every new hotfix
release, containing small changes. The middle digit usually changes



Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 2. Excerpt of Yoobi application that shows the timesheet.
Table 2
Prior experience of subjects (S1–S6) participating in this study.

Experience S1 S2 S3 S4 S5 S6

Product knowledge x x
Customer Support x
TESTAR x
Selenium x x
Senior Developer x
Developer x x
Novice Developer x
UX designer x
after a sprint period, containing bigger changes. The first digit does
not change that often.

Nowadays, Yoobi is supporting 1828 organizations and 32 959
users. In order to give an insight of the size of Yoobi, the total number of
files of Yoobi is 4344; the total lines of code is 616 336; the number of
tables in the database is 433 and the number of records is 172 211 387.
This information demonstrate that Yoobi is not a small application, as
was observed in the related works.

In summary, Yoobi is a big application that supports critical man-
agement actions for 32k users. It is developed following agile practices
and it is tested with manual exploratory testing. Yoobi is an object
representative for real industrial applications, which nowadays are
commonly developed by several developers using agile practices. Yoobi
contains real faults (not injected by the researchers) and test cases
are not maintained to lighten the testing process (i.e.; there is not a
repository with the test cases and the corresponding results for each
release), provoking that more effort is needed for testing the next
versions of the application. Therefore, the faults that the versions of
Yoobi may have, and the time needed to find them are not biased by
the researchers.

3.5. Selection of subjects

The subjects of this case study corresponds to people with knowl-
edge of Yoobi as well as people with knowledge about the testing
process.
6

Six subjects were involved in this study. Two testers whose daily
work includes manual testing of Yoobi, one UX designer, one support
person and two fullstack developers. These last four subjects do not
have expertise on scriptless nor scripted testing.

There is one subject that has some beginner experience in using the
scriptless testing (Testar) and 2 subjects with experience in scripted
testing (Selenium). Since scriptless and scripted are automated GUI
testing approaches, we advocate that the selection of these subjects are
enough to manage the tools and extract the results.

Table 2 displays a summary of the subjects per initials participating
in this study with their prior experience.

3.6. The design of the study

We execute the study in three different phases: (1) the set-up and
learning phase, (2) the testing phase, and (3) the subjective evaluation
phase.

The set-up and learning phase follows a process to download, install
and learn how to use both testing tools. The learning is hands-on and
iterative to configure the tools with the creation of specific scripts for
Selenium (see Fig. 3) and specific oracles for Testar (see Fig. 4). It is
important to mention that to use Selenium, the subject must configure
the url of the SUT, and then the subject performs user actions on the
elements of the GUI, which are recorded in a script that can be executed
later. In addition, the subject can select a previously recorded script
and modify it by adding more actions or changing the sequence of



Information and Software Technology 158 (2023) 107172

7

A. Bons et al.

Fig. 3. Configuration and learning process for the scripted testing tool Selenium.

Fig. 4. Configuration and learning process for the scriptless testing tool Testar.



Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 5. Daily execution process of the scriptless and scripted testing tools.
actions. Regarding learning how to use Testar, the subject configures
the url of the SUT, and then the subject must select an action selection
mechanism (ASM) that the tool will use to create the test cases and
subsequently execute the test cases. Moreover, the subject can add new
oracles, for instance, domain specific oracles, which is performed using
the facilities of the tool. The learning process ends when the subjects
consider they have learned enough and they want to consolidate the
configurations, oracles, and scripts they have created. Although this
is a subjective criterion, this is how most new tools are deployed in
companies.

The testing phase consists of a process that runs the consolidated
configurations of the first phase and analyze the results obtained by
the tools (see Figs. 5 and 6). Both tools are used during the automation
of a daily execution routine.

The last phase, i.e. the subjective evaluation phase, consists of a
process to measure the subjective satisfaction of the subjects.

As Figs. 3 and 4 show, the configuration process start with down-
loading and installing the scripted and the scriptless automated GUI
testing tools, Selenium and Testar, respectively. After that, hands-on
learning starts to learn how to use these tools. Testar provides a hands-
on course available at its website.1 In this study we used the version
of February 2020. In contrast, Selenium does not provide a getting
starting guide or a course, it just provides some guidelines and bad
practices. Both automated GUI testing tools must be configured to be
used with Yoobi. Both tools need to be configured such that they are
able to login to the SUT with specific user credentials. Moreover, for
Testar it is important to configure Settings (i.e. which protocol to use,
chromedriver location and url of the website); and to define a Protocol
(allowed domains, clickable/ignored elements, login, cookie consent,
etc.). For the configuration of Selenium, it is important to assign the
url of Yoobi; and create a set of scripts that can be used as basis for the
generation of other scripts for Yoobi.

After that, subjects should access the ready to use tools. Subjects
start testing with the scripted tool, and after that, they use the scriptless
tool. For scripted testing (Selenium), subjects select one of the repre-
sentative manual test cases (test cases that validate the reachability and
responsiveness of important parts of the SUT), and record the script to
automate the execution of the test case. These activities are performed

1 https://testar.org/download/
8

iteratively while the subject wants to create another test case. For
scriptless testing (Testar), the protocol is refined and specific oracles
for advanced fault detection are defined.

For the testing phase, the execution of the tools is automated in the
Windows task planner and the test routines are executed, resulting on
an execution log and an event storage, as it is shown in Fig. 5.

After both tools have been executed, an analysis of the failures is
performed by the subjects. The analysis consist of: understanding the
failure, determining if it has been analyzed previously in order to leave
it as a duplicate. If the failure is not a duplicate, it is important to look
for the root cause of the failure, assign a priority, and create a Jira
ticket for the fault (see Fig. 6). Later, developers will modify the code
of Yoobi to correct the issues reported in Jira.

Regarding the subjective evaluation, the process consists of the
preparation of the material to perform the interviews with the possible
questions and the reaction cards, and then, iteratively, the selection of
a subject to interview and the video recording of the interview.

The configuration and learning process should be performed at the
beginning of the study. The subjective evaluation process should be
performed at the end of the study. These two processes are performed
outside the sprints. Nevertheless, the execution process and the analysis
of failures should be performed during each sprint of the development
of Yoobi.

3.7. Data collected to measure effectiveness

The following dependent variables are collected during the test
execution and used to answer the RQs.

– Num_F: The number of failures found during the daily test cycle.
– Type_F: Type of failures, for instance, the following failures are

commonly found at E-Dynamics during system and acceptance
testing process of Yoobi:

∙ missing labels, which mainly occur since developers tend to
write the Dutch texts first and forget to add the label for
English, French or German.

∙ lost changes, which occur by merge conflicts (overlapping
code in version management).

∙ wrongly used permissions or settings.

https://testar.org/download/


Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 6. Analysis of failures process for scriptless and scripted testing.
– Sev_F: Severity of failures
– Ev_Cov: Event coverage, calculated with the use of the existing

event logging. The coverage is measured as the percentage of all
executed events from all existing events (this includes deprecated
or non-reachable events that exists because of the software’s age)
for new users which are only used by Selenium or Testar (or to
replay a fault).

3.8. Data collected to measure efficiency

To measure efficiency of the studied methods, we measure the
manual effort required to learn, configure and apply both automated
testing method. For this aspect, we consider the following variables:

– MEf_Learn_T: Manual effort to learn how to use Testar, measured
in hours.

– MEf_Conf_T: Manual effort to set-up and configure Testar (web-
driver, url, login) measured in hours.

– MEf_Ora_T: Manual effort to add custom oracles on Testar based
on website elements and text (SUT specific) measured on hours.

– MEf_Learn_S: Manual effort to learn how to use Selenium, mea-
sured in hours.

– MEf_Conf_S: Manual effort to set-up and configure Selenium
(browser plugin, url, login) measured in hours.

– MEf_Rec_S: Manual effort to record (or write) and replay test
scripts in Selenium measured in hours.

– MEf_Ana_F: Manual effort for analyzing the failure
– MEf_Conf_Sche: Manual effort to set-up a fully automated daily

test cycle using windows scheduler for Testar and Selenium mea-
sured in hours.

3.9. Data collected to measure subjective satisfaction

To measure the subjective satisfaction we use interviews related
to the perception of subjects about the learnability, maintainability,
usefulness and intention of use of the automated testing tools. We use
semi-structured interviews, where a set of questions is previously de-
fined, and one interviewer ask the questions to at least one respondents
and has the possibility to clarify the meaning of each question [55]. The
questions were answer with a 5-point Likert scale. We use the following
questions to guide the interviews:
9

1. Would you recommend Selenium to new colleagues. Explain.
2. Would you recommend Testar to new colleagues. Explain.
3. Could you persuade management to invest in Selenium? Explain.
4. Could you persuade management to invest in Testar? Explain.
5. Do you consider easy to configure Selenium at Yoobi?
6. Do you consider easy to configure Testar at Yoobi?
7. Do you consider easy to create and manage testcases/oracles in

Selenium?
8. Do you consider easy to create and manage testcases/oracles in

Testar?
9. Do you consider easy to understand test reports in Selenium?

10. Do you consider easy to understand test reports in Testar?
11. Do you consider the bug quality of Selenium is better than

manual testing?
12. Do you consider the bug quality of Testar is better than manual

testing?

Moreover, we use reaction cards to gain knowledge of subjective
satisfaction as shown in [56]. The subjects needs to select a maximum
of 3 reaction cards from the listed 55 cards proposed in [56] to describe
their perceptions about Testar and Selenium.

3.10. Data collection procedures

When an empirical study is performed it is important to obtain
reliable information about the phenomenon studied. To do that, it is
often best to use multiple data collection procedures to learn about
different aspects of the phenomenon [57]. After that, to analyze the
data, it is important to triangulate the data to increase the precision
of empirical research [58,59]. Data triangulation, which refers to use
of more than one data source to collect the same data in different
occasions, is used since we have different versions of Yoobi that are
measured. Moreover, we use two different techniques for automated
GUI testing: scriptless testing performed by using Testar, and scripted
testing performed by using Selenium.

The time measurements for efficiency during the learning and the
testing phase (the independent variables in Section 3.8), were collected
manually in a time tracking excel sheet describing when and how long
each activity took. The use of Yoobi time tracking is mandatory within
the company, so time is manually added in Yoobi on activities. Testar



Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 7. Monitorization of events with Kibana.
and Selenium now both have corresponding activities added to the time
tracking system. Manual testing already had an activity called ‘‘testing’’.
The time tracked is also copied to an excel sheet with a description and
link to the action.

The measurements for effectiveness during the testing phase (the
independent variables in Section 3.7) are maintained in Jira like is
common practice at the company. To extract failure information from
Testar, the Testar logs were used together with an automated script to
obtain unique failures and not too many duplicates.

Event coverage (Ev_Cov) is measured by logging all executed events
(i.e. events in the code reached from the interactions in Yoobi) in an
AWS database such that they can be monitored in Kibana as shown
on Fig. 7. We collect the id of the automated user by using the event
usage logging. Both Selenium and Testar tools have their own unique
login setting in the AWS database, so that all the events logged could
be filtered using the login credentials (id of the user). The filtered logs
also contain the name of the event, which will be matched with each
available event of the system to find the coverage for each day and the
total coverage after a month.

To measure the subjective satisfaction we performed informal taped
interviews with the subjects. Each subject was interviewed separately
by one of the authors of this paper. After that, all the interviews
were reviewed to obtain the answers to the questions and to gather
the information of the reaction cards. We used a table to register the
answers to the questions and the selected reaction cards. For each
question, the explanations of the subjects regarding the grade assigned
were analyzed to obtain deeper knowledge of the perceptions of the
subjects.

4. Results

This section presents the details of the execution of the study, the
answers to the research questions, the analysis and interpretation of the
findings, and an analysis of the threats to the validity of our study.

4.1. Execution of the set-up and learning phase of the study

Selenium
The first 4 activities of Fig. 3 took 14 h and included a demo to

the whole team of 6 subjects showing initial scripts for Yoobi. After
download and install, the subjects studied the starting guide2 that

2 https://www.selenium.dev/selenium-ide/docs/en/introduction/getting-
started
10
is rather basic and not sufficient to create reusable scripts for the
test cases, e.g., the API documents describe the available commands
but without examples. Therefore, the only way left is to start using
Selenium and learn by trial and error. Most questions that arise while
using Selenium can be answered by FAQs, for example, Stackoverflow
has over 80k selenium and 2k selenium-ide questions, but looking for
a similar question and the corresponding answer is time consuming.

After the demo, 3 iterations were done before it was decided that the
artefacts (i.e. the test scripts) could be consolidated for the next phase.
The first iteration resulted in an initial set of test cases with Selenium,
one of the subjects created 16 scripts in 2 h by recording them with
Selenium IDE. In this phase, some failures found with Selenium were
not SUT related and required changes in the scripts of the test cases. The
second iteration fixed some problems that were encountered when trying
to replay these scripts. This iteration took 4 h by another subject to
fix the element selection and reset actions. The third iteration that took
6,5 h, included a demo session with the team of 6 subjects. Here it was
decided that five of the test scripts were abandoned because they were
too data-dependent and difficult to make replayable for daily usage at
E-Dynamics.

The consolidated 11 test scripts were related to the following
features of Yoobi: login, relation, contact, employee, expense, leave,
project, activity, sale and task. In total, 6 h of manual effort was spent
to properly create the initial set of 11 replayable Selenium scripts. It
took less than 2 min to execute the scripts, while executing manually
the same tests would take about 30 min.

Testar
The first 4 activities of Fig. 4 took 13,5 h that included a demo to

the whole team showing initial workings of Testar on the Yoobi SUT.
After download and install, the getting started manual was studied. This
manual is very detailed with examples and exercises. In comparison to
the FAQs of Selenium, there is no Stackoverflow discussion for Testar,
but there are over 200 questions available in Github and questions can
be asked to the open source team.

After completion of the first 4 activities from Fig. 4, 4 iterations
were done before it was decided to consolidate the artefacts and
continue to the next phase.

The first iteration, that took 5 h, started with configuring Testar.
WebDriver generic Testar protocol was selected as a template to be
adapted for the SUT. First, the ChromeDriver location and the URL
of the SUT had to be set. Other SUT specific configuration included
dealing with the SUT’s allowed domains, the cookie consent, the login

https://www.selenium.dev/selenium-ide/docs/en/introduction/getting-started
https://www.selenium.dev/selenium-ide/docs/en/introduction/getting-started


Information and Software Technology 158 (2023) 107172A. Bons et al.

a
f
t
m
t

a
w
e

t
h

m
o
t

and the elements that can be ignored. Finally, Testar’s configuration
was set to generate 160 sequences per day with maximum of 20
actions per sequence. During the first runs many failures were found. It
required quite some analysis to figure out if the failure was SUT related
or not. The logical approach is to replay the faulty sequence, but the
replay sometimes failed (actions executed outside of the browser) in the
Testar version used for this study.3 Because the replay was not always
working, it was decided to use the generated HTML report file to see
the last action(s) resulting in the error state in an attempt to replay
them manually. However, during the first runs many duplicated failures
were found, and manual failure evaluation using the HTMLs was very
time-consuming. It was decided that for the next iteration the number
of sequences per day should be reduced to 80 and automate part of the
failure evaluation.

During the second iteration, that took 3 h, the manual effort for
investigating the many (duplicate) failures problem was reduced by
writing a script that could create a custom error-log for Yoobi by
automatically filtering the Testar result logs.

During the third iteration, that took 6,25 h, new Testar test oracles
were defined to find failures from the SUT states specific for Yoobi. The
default oracles in Testar include checking predefined attributes of all
the GUI elements for suspicious text defined as a regular expression,
e.g., HTTP error codes to detect when the links are not working
or detecting other error messages. The default test oracles were not
enough to detect some of the failures that the developers were aware
of and should detectable when they happen in Yoobi. The following
oracles were added to Testar for Yoobi before consolidation:

– Oracle 1. Console oracle: Stop on error log from the browser
console.

– Oracle 2. Class oracle: Stop on a specific class selector, e.g., a
debug element which should not be visible.

– Oracle 3. Text oracle: Stop on a specific text, e.g., a fallback text
for a missing translation.

During the fourth iteration, that took 1,75 h, in order to test the
new Testar oracles, we injected 3 failures into Yoobi (one for each
oracle), which were detected by both oracle 1 and 3. These oracles
were coded into the getVerdict() function of the webdriver protocol,
which is automatically executed at the end of each action. By using the
webdriver library it is possible to find browser elements, search in the
html-text and read console messages. If this data contains unwanted
values a new verdict can be raised by using a different oracle, resulting
in new failure conditions for the test execution.

Consolidated artefacts
At the end of the learning phase, all subjects were shown a demon-

stration of both tools where the consolidated set-up and configurations
of the tools were presented as follows:

– Testar was configured as follows:

∙ one test run consists of 80 sequences per day with maximum
of 20 actions per sequence.

∙ oracles: default oracles + the 3 new oracles explained above
∙ action selection was random

– Selenium was set on daily execution to test with the above-
mentioned 11 test cases reaching the most important components
of the SUT.

3 Note: this is fixed in the latest Testar version
11

l

Including in the daily routine (MEf_Conf_Sche)
To allow automatically executing the testing approaches and in-

clude them in the daily test routine as depicted in Fig. 5 for Selenium
this costs 3,25 h and for Testar 4,25 h.

To run the scripts with Selenium IDE, we used selenium-side-runner
which provides a command line approach that can be used in Windows
taskplanner. Most of the time spent was dedicated to solving an issue
with the execution speed of the selenium-side-runner. The main prob-
lem was that the execution speed to run the test cases from the IDE
is faster than the time required for the execution of actions, and the
wait-for-element actions did not work. During this case study, we had
to do a workaround to make it usable, which corresponds to adding
pause actions whenever an element is not instantly available because
of an animation or a long loading time.

Testar was executed from the command line scheduled with Win-
dows taskplanner. In addition to the settings files, Testar allows defin-
ing any number of the configuration settings also as command line
parameters during the start up.

Regarding the execution of the tools (cf. Fig. 5), Selenium was
used for specific components of Yoobi targeted by the created scripts.
In contrast, Testar generated test scripts for the entire SUT, although
the sequence length was at maximum 20 actions. The subjects run
the Selenium test scripts every night and check the results the next
morning. Subjects also run multiple Testar sequences every night, and
check the results at the end of the sprint.

The testing phase consisted of running the routine overnight from
11-03-2021 till 15-04-2021. Regarding the failures found by Selenium,
their analysis was performed at the beginning of every day in the daily
meeting. For the failures found by Testar, the analysis was performed
at the end of every sprint. Every week the results were evaluated as
depicted in Fig. 6. This resulted in 5 evaluation sessions that took
approximately 1 h for Testar and 0,2 h for Selenium.

4.2. Effectiveness of Testar and Selenium

As outlined in Section 3.7 effectiveness (RQ1) was determined
during the testing phase and by the amount (Num_F), type (Type_F)
and severity (Sev_F) of failures found by each automated testing tool,
plus the event coverage (Ev_Cov).

The findings regarding the failures found are shown in Table 3. If
the failure was found manually before the tool execution, the ‘‘Known’’
column is marked with x. Selenium and Testar can find GUI failures
caused by the latest changes or already existing failures.

As we can see from Table 3, only failure 2 is found by both tools
nd that failure was one of the injected ones. The remaining 11 unique
ailures are only found by either Selenium or Testar. This demonstrates
hat the approaches cannot replace each other, instead they are comple-
entary to each other. Using both can improve a testing process since

hey are finding different types of failures:

– Selenium testing scripts are needed to test whether the common
use scenarios are implemented well

– Testar tests are needed to find faults in the less probable paths of
the application.

We also analyzed the severity of the failures found. Severity was
ssigned based on usability and visibility. High severity was assigned
hen the system was not responding. Low severity was assigned if
nd-users would not see or are not able to reach the failure.

Selenium found 4 failures of high severity, 2 unknown to manual
esters. The failures found with Selenium are all process failures that
ad to be fixed.

Testar found 9 failures, 2 of high severity, and 6 were unknown to
anual testers. The failures found with Testar are state failures, some

f them did not have to be fixed immediately, as the processes from
hat state often still worked as intended, so that they were classified as

ow severity.



Information and Software Technology 158 (2023) 107172A. Bons et al.

t
t
h

Table 3
Failures detected at E-Dynamics (Yoobi product) by using scriptless and scripted testing.
id Selenium Testar Known Severity Description

1 Console x none Injected javascripterror to test custom
verdict.

2 Task Class x none Injected cfdump output in code to test
custom verdict class detection.

3 Text x none Injected new label to test custom verdict,
missing translation text detection.

4 Project x high Project edit/create does not work after
API changes.

5 Console high Javascript error when switching list
detail view to only detail

6 Text low Missing label in supervisor menu.

7 Title low Two suspicious titles for flexmonter (js
report plugin).

8 Expense high Expense add error because of debug
data in data-call.

9 Task high Failure when editing and creating a task
due to last release change.

10 Text low Missing translation in optional filter for
activity in bulkmutation.

11 Console high Javascript error when opening the tour.

12 Text low Never used missing translation in source
code.
Event coverage was measured with existing event logs. Events are
he functions accessed from the interface, also called the controller in
he model-view-controller pattern. The Selenium test cases combined
ad an event coverage of 3.06%. Testar reached 8.37% coverage in

the same period.

4.3. Efficiency of Testar and Selenium

Efficiency was measured by the manual effort required for apply-
ing scriptless and scripted testing method. In addition to the manual
effort spent in learning and set-up phase (MEf_Learn_T, MEf_Conf_T,
MEf_Ora_T, MEf_Learn_S, MEf_Conf_S, MEf_Rec_S), we measured the
manual effort required for analyzing each failure to reproduce it (if
possible) and to find the root cause of the failure (MEf_Ana_F), and
the maintenance effort for the test scripts (although, the time period
was too short and test set too small for analyzing maintenance effort
properly).

In total, including set-up and learning phase, Selenium took 27,5
hours. We have to point out that the test set included 11 test cases,
and creating more test cases will be required in the future to increase
the coverage.

In total, including set-up and learning phase, Testar took 34,5 hours,
a big part spent in learning and configuring and creating new test
oracles for the SUT.

At the same time period, the manual testing took 32,5 hours written
on the activity testing in the Yoobi time tracking system during the same
period.

Efficiency was determined by the work log, rounded to the half hour
per session. Automated time per test session was tracked manually and
completed with the log details for single test sequences from the tool.
The total hours of manual effort spent by the subjects can be seen in
Table 4.

Results indicate that the time spent on manual testing is similar
(just a few hours of difference) with both tools. Even though the
time measured does not allow us to draw strong conclusions regarding
efficiency, we advocate that the time spent with the scriptless and the
scripted tools can be considered as learning time, which we predict
will be reduced in the future, improving the efficiency of the testing
process of the company over time. In any case, with the invested effort,
12
both tools found unique faults that were not discovered by the manual
testing.

From this case study, we gain some lessons learned about how to
measure the efficiency of testing when we are using automated tools.
First of all, we should focus on the measurement of the learning, set-up
and analysis of results time instead of the time needed for the execution
of the test sequences. From this study we have preliminary evidence
that these measures can be more meaningful than the execution time.
Moreover, a broader period to perform the study could be beneficial
to measure the knowledge gain of using the tools over time, and to
have that broader period it is necessary that the company has enough
resources to facilitate the inclusion of new technologies without harm-
ing its business. Another lesson related to the efficiency measurement
is that the adoption of new tools and their inclusion on the company’s
routines should be performed with a research team and later propagate
the results known to the entire company.

4.4. Subjective satisfaction while learning, configuring and applying Testar
and Selenium?

We interviewed the subjects participating in the study in order to
gain knowledge about their perceptions at using a scripted tool and a
scriptless tool in the testing process at E-Dynamics regarding the Yoobi
product. It is important to mention that six subjects participated in
the study, but one of the interviews could not be recorded, so that
we analyze the interviews of five subjects. The answers of subjects are
presented in Fig. 8.

It is interesting to note that none of the subjects disagree or strongly
disagree to recommend the tools to their colleagues. In contrast, they
answer neutral, agree or strongly agree to recommend the tools to their
colleagues. For instance, subject 𝑆4 states ’’I would recommend the tools
because it provides extra certainty before releasing new versions’’.

Moreover, the majority of subjects could persuade managers to
invest in the tools. However, one subject stated that he disagrees
or strongly disagrees to persuade to invest in the tools Testar and
Selenium, respectively. Subject 𝑆3 states: ’’it is still uncertain if I could
persuade management to invest ’’. From this answer we can observe that
the subject focused the answer in the capability to persuade instead of
interest in investing in the tools. Moreover, the subject strongly dis-

agrees to persuade to invest in Selenium and just disagrees to persuade



Information and Software Technology 158 (2023) 107172A. Bons et al.
Table 4
Total hours spent by the subjects.
Fig. 8. Perceptions of using scriptless and scripted testing tools at E-Dynamics.
to invest in Testar, so we can observe a positive tendency to have more
interest in Testar than Selenium.

Regarding the question whether they considered it easy to configure
the tools at Yoobi, the majority of subjects agreed that Selenium is easy
to configure. Subjects 𝑆5 states: ’’You can get a lot of testing done with
minimal configuration and it is very easy to use, it might need some extra
time to configure it for specific cases, though’’.

We observe that one subject (𝑆3) answered neutral to this question
regarding Selenium and states that: ’’I like how Selenium is accessible as
browser plugin, but I don’t like the required alterations to make it work from
CLI ’’.

Moreover, subject 𝑆6 states that: ’’I find the configuration time-
consuming, because it does not pick the best selector in our situation.’’
although the subject agreed it was easy to configure Selenium.

Regarding the ease to configure Testar at Yoobi, 2 subjects strongly
disagreed. One of the subjects (𝑆6) stated that ’’I’m convinced of the
usefulness of Testar, but it requires a lot of time to configure it ’’.
13
The other subject (𝑆5) that strongly disagrees says: ’’Testar is nice to
use as a testing tool, but I wouldn’t use it as my only testing tool. It takes a
bit more time to configure correctly, but once you do it you probably won’t
have to touch it anymore. ’’

This comment brought us to understand that the initial configura-
tion could require more time, but later it is not necessary to configure
it again.

Regarding the managing of test cases and oracles, the majority of
subjects agreed or strongly agreed that it is easy to do it with both
tools. For instance, 𝑆4 states ’’it is easy/intuitive to add new test cases
in Selenium’’, and ’’Testar oracles are useful and preferable with random
testing, ’’because of the extra maintenance it would be for scripted test
cases’’. Another subject (𝑆3) states The Testar oracle to detect JavaScript’’
errors is useful. The oracles are preferable scriptless, because not all is
covered with scripts’’.

The majority of subjects agreed or strongly agreed that the reports of
Selenium are easy to understand. Regarding Testar, one of the subjects



Information and Software Technology 158 (2023) 107172A. Bons et al.
Fig. 9. Reaction cards selected by subjects for the testing tools.
(𝑆5) stated that ’’it works fast and gets results, but the reporting could be a
bit better ’’. Other subject (𝑆4) stated ’’Testar results were time-consuming
to handle due to many duplicates’’.

Regarding the quality of bugs found by the tools, the majority
of subjects disagreed or strongly disagreed that Selenium or Testar
are better than manual testing. For instance, one subject (𝑆4) stated
’’Selenium can be high maintenance after visual changes, which are no
problem for Testar ’’.

At the end of each interview, the interviewer tells the subjects
that they must select 3 reaction cards based on their observation and
experience to define their perception of each tool from a total of 55
physical cards presented to the respondents.

The reaction cards that subjects selected are presented in Fig. 9
in the order that they select them. We can observe positive cards
like useful selected for both tools, and negative cards such as time-
consuming also selected for both tools. Nevertheless, we cannot make
a strong conclusion about the perceptions for scripted and scriptless
testing tools by using the cards, so that we plan to replicate this study
to obtain more knowledge by assigning a weight to the cards selected
and diminishing the possible bias in this part of the study.

4.5. Threats to validity

Even though we followed well-known guidelines to conduct this
case study, there are some threats to the validity of our results that
are worth to mention.

Regarding construct validity, we decided to perform semi-structured
interviews to the subjects in order to have the possibility to clarify the
questions. Nevertheless, during the interviews we did not perceive that
one of the questions was not fully understood by one of the subjects,
which is a threat to our results regarding subjective satisfaction.

Regarding internal validity, we identify that low priority faults
found by Testar tool were not immediately fixed, which provokes
many duplicates. We observe that one of the subjects point this in his
perception of the report. With enough resources these problems could
have been fixed earlier resulting in less duplicates. Nevertheless, E-
Dynamics is a small company, and it was not possible to assign more
resources during the evaluation period. In contrast, these duplicates did
not appear in Selenium because the scripts were created with only high
priority assertions, so that the found bugs were fixed immediately. For
this reason, we advocate that the perception of easy to understand the
reports could be threatened for Testar tool.

During the testing period, only small changes were made to the
components for which the scripted test cases were made. Thus, the
time for maintenance of Selenium scripts could not be measured, even
though subjects recognize that it could be complicated later.

Regarding external validity, we are conscious that only a few sub-
jects participated in the study. However, considering that the company
is small (only 18 employees) and the impact in the daily work of the
company for using the subjects, we could not use more subjects in the
study.

The configuration and usage of Selenium and Testar for the case
study took place within the same weeks, so the resulting failures from
both tools are based on the same time frames and on the same version
of the SUT.

Moreover, the subjects had zero experience with automated GUI
testing tools but are experienced programmers with a bachelor’s degree
14
in Information Technology. The most useful experience they had for
using these test tools was CSS and jQuery, because of the similarity in
element selectors used. This demonstrated the feasibility of using these
tools by inexperienced people.

Regarding the SUT, we selected a SUT that has been developed for
12 years with continuous improvements and extensions with modern
technologies. This provokes that some parts of the system are server-
side-rendered of pure HTML pages with little JavaScript and some parts
are client-side-rendered using JavaScript framework VueJS. Consider-
ing that the SUT is a web application, only web-based testing is used for
the comparison of the automated tools in order to extends the manual
testing. Nevertheless, the testing tools can also be used in other domains
such as mobile or desktop applications.

Moreover, we are aware that the period of using the tools is too
short for long-term benefits. Thus, the configuration and learning time
required after years of using the tools could be very different. We
think the manual time needed for Testar would decrease as it is not
dependent on current state of the SUT, while Selenium needs to be
extended and altered after every change of the GUI.

4.6. Interpretation of findings, answering the RQs

The goal of this paper was to explore the complementary benefits of
using scriptless testing with the Testar tool as well as scripted testing
with the Selenium tool in the IT company e-Dynamics, which performed
only manual testing in their software products before this study.

Results show that after 62 hours in learning, preparation and evalu-
ation, 9 unique failures were found, not counting the injected failures.

Moreover, regarding the Effectiveness of tools (RQ1), Selenium
demonstrated to be good in detecting process failures. Testar demon-
strated to be good in detecting visible failures per state and also it
can reach higher event coverage. Selenium requires more scripts to
reach higher event coverage and detecting visible failures per state.
It is difficult to detect process failures with Testar, as defining state
based test oracles for detecting them is difficult. Thus, the tools work
well together, complementing each other.

With respect to the Efficiency (RQ2), Selenium requires a good
understanding of web-element selectors for script creation. The time
needed for script creation depends on the script-size and previous
experience. Evaluating failures is easy and takes less than a minute,
as the browser will wait in the failed state. Testar benefits from SUT
specific oracles that were added. To add oracles for a web application,
knowledge of Java is required, as the default oracles were not enough
to detect all detectable failures of Yoobi. Besides adding oracles, Testar
does not require much time in configuration, as there is no need for
script creation. In contrast, failure evaluation took more time for Testar.
The main challenge with the efficiency of scriptless test generation that
became apparent in this case study are the duplicate reports of the
same failure. Analyzing the results at the end of sprint, compared to
daily analysis of Selenium script results, made it worse since there were
so many failures to analyze. Therefore, one of the main topics to deal
with in the near future will be automated detection and handling of
duplicate failures.

Even though the human effort required to incorporate the scripted
tool or the scriptless tool in the company is similar, this effort is
referring to different activities that concerns to the specific workflows



Information and Software Technology 158 (2023) 107172A. Bons et al.

n
W
S

of the tools, e.g. Selenium needs more time for creating test cases and
Testar needs more time in evaluating test reports. The reported results
show the complementarity of the tools because both tools improve the
effectiveness of the testing process in different ways due to the type of
failures found are different: Selenium is better for detecting if a given
process is still working as intended, and Testar is better for detecting
unwanted elements, because it can reach many states automatically
without first creating test cases manually and adding assertions in each
state.

Finally, with respect to Subjective satisfaction, both tools were per-
ceived to be useful in the interviews to the subjects (see Fig. 8). Testar
is useful in finding failures easy to miss, because of the focus in manual
testing on the certain parts of the system that were added or changed.
Selenium provides extra certainty of important processes, captured in
a test script, to remain working at all time.

5. Conclusions

Automated GUI testing has been the focus of many researchers
during the last years. Companies interested in including automated
testing to their processes need to know the benefits and drawbacks of
existing proposals. There are studies that evaluate scriptless tools in
real contexts, scripted tools in real contexts, and scarce gray literature
exists about the evaluation of scriptless and scripted testing in real
contexts. In this paper, we fill this gap by presenting evidence about
the complementarity of scriptless testing with scripted testing in an IT
company that before the study only performed manual testing in their
products.

In the case study, we evaluated the effectiveness, efficiency and
subjective satisfaction using two tools, Selenium for scripted testing
and Testar for scriptless testing, respectively. Results show that the
Selenium is better in detecting process failures and the Testar is better
in detecting visible failures and also reached higher event coverage.
Both tools performed similarly in terms of efficiency, both requiring
similar amount of effort for finding 2 unique high severity faults that
were not discovered by manual testing. Moreover, both Testar and
Selenium were perceived to be useful for the E-Dynamics company.
Therefore, we can conclude that the scriptless and scripted approaches
are complementary, and they can improve the manual testing processes
performed in industrial contexts.

In order to continue using the scriptless tool in Yoobi, an immediate
future work is related to the improvement of duplicate failures recog-
nized by the scriptless tool in order to reduce the manual time required
for analyzing them. This can be done by adding an automated filter
in the Testar results. We also want to develop a scheduled task that
reads the filtered log results and sends an email to developers if new
failure records are found. We advocate that these tiny improvements
can provoke a big enhancement in the testing process at E-Dynamics.

In order to continue using the scripted tool in Yoobi, a future work
is related to including an activity to write test scripts as part of the
development process. We plan to assign all the subjects of the study to
write test cases for the new mobile web app of Yoobi that is currently
being developed. We advocate that this could benefit the testability of
the SUT, because the developers will have to include testable attributes,
and also it could increase the event-coverage at the same rate with the
SUT’s growth.

In this case study, we used a web application as the object. In
order to generalize our results, we want to replicate this case with
different widely used types of SUTs, such as desktop, mobile and XR
applications. Moreover, we want to compare the usability of automated
GUI testing tools in agile development processes (by executing the
tools in CI/CD pipeline after code changes instead of once a day) as
well as traditional development processes, and also taking into account
distributed environments for the execution of the GUI testing tools.
15
CRediT authorship contribution statement

Axel Bons: Software, Investigation, Validation, Writing – origi-
al draft. Beatriz Marín: Conceptualization, Methodology, Validation,
riting – original draft, Writing – review & editing. Pekka Aho:

oftware, Resources, Writing – original draft. Tanja E.J. Vos: Con-
ceptualization, Methodology, Investigation, Writing – original draft,
Writing – review & editing, Supervision.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer
to https://doi.org/10.1016/j.infsof.2023.107172. Pekka Aho reports fi-
nancial support was provided by Information Technology for European
Advancement. Beatriz Marin reports financial support was provided by
European Commission.

Data availability

The data that has been used is confidential.

Acknowledgments

This research has been funded by iv4XR, H2020, grant number
856716 (https://iv4xr-project.eu), and IVVES, ITEA, contract number
18022 (https://ivves.eu/) projects.

References

[1] M. Andreessen, Why software is eating the world, Wall Street J. 20 (2011) (2011)
C2.

[2] M. Tuteja, G. Dubey, et al., A research study on importance of testing and quality
assurance in software development life cycle (SDLC) models, Int. J. Soft Comput.
Eng. (IJSCE) 2 (3) (2012) 251–257.

[3] S.A. Slaughter, D.E. Harter, M.S. Krishnan, Evaluating the cost of software
quality, Commun. ACM 41 (8) (1998) 67–73.

[4] H.V. Gamido, M.V. Gamido, Comparative review of the features of automated
software testing tools, Int. J. Electr. Comput. Eng. 9 (5) (2019) 4473.

[5] I. Rana, P. Goswami, H. Maheshwari, A review of tools and techniques used in
software testing, Int. J. Emerg. Technol. Innov. Res. 6 (4) (2019) 262–266.

[6] F. Ferreira, J.P. Diniz, C. Silva, E. Figueiredo, Testing tools for configurable
software systems: A review-based empirical study, in: Proceedings of the 13th
International Workshop on Variability Modelling of Software-Intensive Systems,
2019, pp. 1–10.

[7] A. Arora, M. Sinha, Web application testing: A review on techniques, tools and
state of art, Int. J. Sci. Eng. Res. 3 (2) (2012) 1.

[8] P.K. Singh, O. Sangwan, A. Sharma, A systematic review on fault based
mutation testing techniques and tools for Aspect-J programs, in: 2013 3rd IEEE
International Advance Computing Conference, IACC, IEEE, 2013, pp. 1455–1461.

[9] M. Shafique, Y. Labiche, A systematic review of state-based test tools, Int. J.
Softw. Tools Technol. Transfer 17 (1) (2015) 59–76.

[10] O. Rodríguez-Valdés, T.E.J. Vos, P. Aho, B. Marín, 30 Years of automated GUI
testing: a bibliometric analysis, in: International Conference on the Quality of
Information and Communications Technology, Springer, 2021, pp. 473–488.

[11] R.M. Moreira, A.C. Paiva, M. Nabuco, A. Memon, Pattern-based GUI testing:
Bridging the gap between design and quality assurance, Softw. Test. Verif. Reliab.
27 (3) (2017) e1629.

[12] D. Amalfitano, A.R. Fasolino, P. Tramontana, B.D. Ta, A.M. Memon, MobiGUI-
TAR: Automated model-based testing of mobile apps, IEEE Softw. 32 (5) (2014)
53–59.

[13] T.E.J. Vos, P. Aho, F. Pastor, O. Rodriguez-Valdes, A. Mulders, Testar – Scriptless
testing through graphical user interface, J. Softw. Testing Verif. Reliab. 31 (3)
(2021).

[14] P. Aho, T. Kanstrén, T. Räty, J. Röning, Automated extraction of GUI models for
testing, in: Advances in Computers, vol. 95, Elsevier, 2014, pp. 49–112.

[15] E. Alégroth, R. Feldt, P. Kolström, Maintenance of automated test suites in
industry: An empirical study on visual GUI testing, Inf. Softw. Technol. 73 (2016)

66–80.

https://doi.org/10.1016/j.infsof.2023.107172
https://iv4xr-project.eu
https://ivves.eu/
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb5
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb5
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb5
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb6
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb15


Information and Software Technology 158 (2023) 107172A. Bons et al.
[16] H. Chahim, M. Duran, T.E.J. Vos, P. Aho, N.C. Fernandez, Scriptless testing at
the GUI level in an industrial setting, in: International Conference on Research
Challenges in Information Science, Springer, 2020, pp. 267–284.

[17] S. Bauersfeld, T.E.J. Vos, N. Condori-Fernández, A. Bagnato, E. Brosse, Evaluating
the TESTAR tool in an industrial case study, in: Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
2014, pp. 1–9.

[18] M. Martinez, A.I. Esparcia, U. Rueda, T.E.J. Vos, C. Ortega, Automated localisa-
tion testing in industry with test*, in: IFIP International Conference on Testing
Software and Systems, Springer, 2016, pp. 241–248.

[19] M. Leotta, D. Clerissi, F. Ricca, C. Spadaro, Repairing selenium test cases: An
industrial case study about web page element localization, in: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation, IEEE,
2013, pp. 487–488.

[20] I. Singh, B. Tarika, Comparative analysis of open source automated software
testing tools: Selenium, sikuli and watir, Int. J. Inform. Comput. Technol. 4 (15)
(2014) 1507–1518.

[21] V. Jain, K. Rajnish, Comparative study of software automation testing tools:
OpenScript and selenium, Int. J. Eng. Res. Appl. 8 (2) (2018) 29–33.

[22] S. Di Martino, A.R. Fasolino, L.L.L. Starace, P. Tramontana, Comparing the
effectiveness of capture and replay against automatic input generation for
android graphical user interface testing, Softw. Test. Verif. Reliab. 31 (3) (2021)
e1754.

[23] I. Banerjee, B. Nguyen, V. Garousi, A. Memon, Graphical user interface (GUI)
testing: Systematic mapping and repository, Inf. Softw. Technol. 55 (10) (2013)
1679–1694.

[24] Y. Min, S. Cai, Comparing different approaches of GUI testing for mobile
applications on android platform, 2018.

[25] Selenium homepage, 2021, https://www.selenium.dev, (Accessed 21 April 2021).
[26] B. García, M. Gallego, F. Gortázar, M. Munoz-Organero, A survey of the selenium

ecosystem, Electronics 9 (7) (2020) 1067.
[27] M. Cerioli, M. Leotta, F. Ricca, What 5 million job advertisements tell us about

testing: a preliminary empirical investigation, in: Proceedings of the 35th Annual
ACM Symposium on Applied Computing, 2020, pp. 1586–1594.

[28] M. Niranjanamurthy, R. Arun Kumar, M.R. Sahana Srinivas, Research study on
web application testing using selenium testing framework, Int. J. Comput. Sci.
Mob. Comput. 3 (10) (2014) 121–126.

[29] P. Aho, Automated State Model Extraction, Testing and Change Detection
Through Graphical User Interface (Ph.D. thesis), UNIVERSITATIS OULUENSIS,
2019.

[30] Monkey test it homepage, 2022, https://monkeytest.it/readme, (Accessed 31 May
2022).

[31] Testar homepage, 2022, https://testar.org. (Accessed 31 May 2022).
[32] A. Esparcia-Alcazar, F. Almenar, M. Martınez, U. Rueda, T.E.J. Vos, Q-learning

strategies for action selection in the TESTAR automated testing tool, in: Pro-
ceedings of the 6TH International Conference on Metaheuristics and Nature
Inspired Computing, ISBN: 978-3-319-47443-4, 2016, pp. 174–180, URL https:
//meta2016.sciencesconf.org/ 6th International Conference on Metaheuristic and
Nature inspired Computing, META 2016 ; Conference date: 27-10-2016 Through
31-10-2016.

[33] A. van der Brugge, F. Pastor-Ricós, P. Aho, B. Marín, T.E.J. Vos, Evaluating
testar’s effectiveness through code coverage, Actas Las XXV J. IngenieríA Del
Softw. Y Bases de Datos (JISBD 2021) (2021) 1–14.

[34] V. Garousi, W. Afzal, A. Çağlar, İ.B. Işık, B. Baydan, S. Çaylak, A.Z. Boyraz,
B. Yolaçan, K. Herkiloğlu, Comparing automated visual GUI testing tools: an
industrial case study, in: Proceedings of the 8th ACM SIGSOFT International
Workshop on Automated Software Testing, 2017, pp. 21–28.

[35] A. Kresse, P.M. Kruse, Development and maintenance efforts testing graphical
user interfaces: a comparison, in: Proceedings of the 7th International Workshop
on Automating Test Case Design, Selection, and Evaluation, 2016, pp. 52–58.

[36] M. Shtakova, Evaluation of methods for automated testing in large-scale financial
systems, Uppsala Universitet, 2012.
16
[37] Y. Kumar, Comparative study of automated testing tools: selenium, soapui, hp
unified functional testing and test complete, J. Emerging Tech-Nologies Innov.
Res. 2 (9) (2015) 42–48.

[38] P. Kunte, D. Mane, Automation testing of web based application with selenium
and HP UFT (QTP), Int. Res. J. Eng. Technol. (IRJET) 6 (2017) 2579–2583.

[39] L. Ardito, R. Coppola, M. Morisio, M. Torchiano, Espresso vs. eyeautomate: An
experiment for the comparison of two generations of android gui testing, in:
Proceedings of the Evaluation and Assessment on Software Engineering, 2019,
pp. 13–22.

[40] T.E.J. Vos, B. Marín, M.J. Escalona, A. Marchetto, A methodological framework
for evaluating software testing techniques and tools, in: 2012 12th International
Conference on Quality Software, IEEE, 2012, pp. 230–239, http://dx.doi.org/10.
1109/QSIC.2012.16.

[41] H. Jiang, Y. Chen, Comparison of different techniques of web GUI-based testing
with the representative tools selenium and EyeSel, 2017.

[42] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact, Empir. Softw. Eng.
10 (4) (2005) 405–435.

[43] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in software engineering, Springer Science & Business Media,
2012.

[44] B. Kitchenham, S. Linkman, D. Law, DESMET: a methodology for evaluating
software engineering methods and tools, Comput. Control Eng. J. 8 (3) (1997)
120–126.

[45] B. Kitchenham, L. Pickard, S.L. Pfleeger, Case studies for method and tool
evaluation, IEEE Softw. 12 (4) (1995) 52–62.

[46] F.P. Ricós, P. Aho, T.E.J. Vos, I.T. Boigues, E.C. Blasco, H.M. Martínez, Deploying
TESTAR to enable remote testing in an industrial CI pipeline: a case-based
evaluation, in: International Symposium on Leveraging Applications of Formal
Methods, Springer, 2020, pp. 543–557.

[47] S. Bauersfeld, A. de Rojas, T.E. Vos, Evaluating rogue user testing in industry:
an experience report, in: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science, RCIS, IEEE, 2014, pp. 1–10.

[48] P. Aho, T.E. Vos, S. Ahonen, T. Piirainen, P. Moilanen, F.P. Ricos, Continuous
piloting of an open source test automation tool in an industrial environment, J.
IngenieríA Softw. Y Bases Datos (JISBD) (2019) 1–4.

[49] T.E.J. Vos, P.M. Kruse, N. Condori-Fernández, S. Bauersfeld, J. Wegener, Testar:
Tool support for test automation at the user interface level, Int. J. Inform. Syst.
Model. Des. (IJISMD) 6 (3) (2015) 46–83.

[50] S.A. Sualim, N.M. Yassin, R. Mohamad, Comparative evaluation of automated
user acceptance testing tool for web based application, Int. J. Softw. Eng.
Technol. 2 (2) (2017).

[51] E-dynamics homepage, 2021, https://www.yoobi.eu/, (Accessed 21 April 2021).
[52] K. Schwaber, Agile Project Management with Scrum, Microsoft Press, 2004.
[53] D. Anderson, et al., The Principles of the Kanban Method, David J. Anderson &

Associates, 2010.
[54] Kibana homepage, 2021, https://www.elastic.co/es/kibana/, (Accessed 13 sept

2021).
[55] F. Shull, J. Singer, D.I. Sjø berg, Guide to Advanced Empirical Software

Engineering, Springer, 2007.
[56] J. Benedek, T. Miner, Measuring desirability: New methods for evaluating

desirability in a usability lab setting, Proc. Usability Professionals Assoc. 2003
(8–12) (2002) 57.

[57] T.C. Lethbridge, S.E. Sim, J. Singer, Studying software engineers: Data collection
techniques for software field studies, Empir. Softw. Eng. 10 (3) (2005) 311–341.

[58] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164.

[59] L. Bratthall, M. Jørgensen, Can you trust a single data source exploratory
software engineering case study?, Empirical Softw. Eng. 7 (1) (2002) 9–26.

http://refhub.elsevier.com/S0950-5849(23)00026-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb24
https://www.selenium.dev
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb29
https://monkeytest.it/readme
https://testar.org
https://meta2016.sciencesconf.org/
https://meta2016.sciencesconf.org/
https://meta2016.sciencesconf.org/
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb34
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb36
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb36
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb36
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb39
http://dx.doi.org/10.1109/QSIC.2012.16
http://dx.doi.org/10.1109/QSIC.2012.16
http://dx.doi.org/10.1109/QSIC.2012.16
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb46
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb50
https://www.yoobi.eu/
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb52
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb53
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb53
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb53
https://www.elastic.co/es/kibana/
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00026-5/sb59

	Scripted and scriptless GUI testing for web applications: An industrial case
	Introduction
	Background and Related work
	Scripted GUI testing
	Scriptless GUI testing
	Related work

	Case study design
	Overall goal of the study and its treatments
	Context: company E-Dynamics
	The research questions
	Object
	Selection of Subjects
	The design of the study
	Data collected to measure effectiveness
	Data collected to measure efficiency
	Data collected to measure subjective satisfaction
	Data collection procedures

	Results
	Execution of the set-up and learning phase of the study
	Selenium
	Testar
	Consolidated artefacts
	Including in the daily routine (MEf_Conf_Sche)

	Effectiveness of Testar and Selenium
	Efficiency of Testar and Selenium
	Subjective satisfaction while learning, configuring and applying Testar and Selenium?
	Threats to validity
	Interpretation of findings, answering the RQs

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


