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Abstract 

This paper deals with the probabilistic analysis of discrete first-order linear control models with 
uncertainties. For the sake of generality in our stochastic analysis, we assume that all model parameters 
(the initial and final states, the matrix containing the free dynamics part, and the control’s coefficient) 
are random variables with an arbitrary joint probability density function. We then combine some results 
from classical Control Theory with Probability Theory to obtain, under very general hypotheses, the first 
probability density function of the control and the solution, which are parametric stochastic processes. 
To illustrate our theoretical findings, we also show two numerical examples and a classical discrete 
macroeconomic model whose parameters are treated as random variables. 
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. Introduction and motivation 

Mathematical control theory deals with the principles underlying the design and analysis
f control systems which, broadly speaking, are defined as systems that involve functions
esigned to influence an object’s behavior to reach a goal [1] . Traditionally such models
ave been formulated using different approaches that mainly include discrete and continuous
inear and nonlinear equations depending on the target problem [2–5] . In both settings, the
odel parameters are often set after measuring or approximating physical quantities, which

nvolve uncertainties coming from measurement errors and/or the lack of knowledge of the
orresponding physical phenomenon. Consequently, it is more realistic to deal with control
odels, including uncertainties in their formulation [6–9] . 
In dealing with discrete and continuous control models with randomness, most of the

ontributions assume specific patterns for describing uncertainties, such as Gaussian noises
10,11] , Poisson processes [12,13] and Lévy dynamics [14,15] . It is worth pointing out that
ombinations of the aforementioned stochastic patterns as, for instance, the Wiener process
ith exponential and compensated Poisson jumps have also been applied [16,17] , respectively.
nder these approaches, the success of the corresponding theoretical development often relies
pon strong hypotheses, such as independence, stationarity, or on assuming specific proba-
ility distributions for the increments and/or jumps of the corresponding driving stochastic
rocesses. This could limit the applicability of the obtained results to real-world problems.
his fact has motivated alternative approaches to deal with discrete and continuous mod-
ls, where uncertainties are treated in a broader sense via random difference and differential
quations [18–20] . In this context, some contributions have focused on the analysis of robust
tability [21,22] . 

The mathematical treatment of random difference and differential equations includes spec-
ral approaches, such as the generalized polynomial chaos, the stochastic Galerkin technique,
he collocation method, and the discrete projection method [19,23] ; simulations, such as Monte
arlo [24] ; perturbation methods [19,25] ; etc. All these methods are mainly oriented to ob-

ain approximations of the first statistics, such as the mean and the variance of the solution.
dditionally, the so-called Random Variable Transformation method (also termed the Prob-

bility Transformation method) and the Liouville–Gibbs equation-based method have been
onsidered to calculate, exactly or approximately, the distribution of the solution [18,26] . To
 large extent, the above-mentioned techniques have been mainly applied in the setting of
ontinuous models formulated via differential equations [27–31] , while contributions dealing
ith discrete models are more scarce [32,33] . 
In the setting of control problems formulated via differential equations, some interest-

ng contributions have been recently published based on the aforementioned methods. In
34,35] authors apply spectral techniques based on polynomial chaos to address a flight control
roblem and to determine the controller of a spring-mass-damper system subject to vibrations,
espectively. In [36,37] authors introduce different Monte Carlo-based techniques for obtaining
ontroller approximations of and stabilizing nonlinear stochastic optimal control and analyz-
ng the solution of optimal control problems with a stochastic parameter, respectively. The
uthors have recently applied the above-mentioned Random Variable Transformation method
o determine the distribution of the process stochastic solution of discrete first [38] , and sec-
nd [39] , order linear control problems where some of the model parameters are random
ariables with arbitrary distributions. Motivated by these recent works and the scarce results
btained so far in the setting of control discrete models, in this paper, we aim to rigorously
4853 
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btain analogous results for discrete first-order matrix linear control problems with general
arametric uncertainties. The interest in dealing with the random discrete case is not only
otivated by the intrinsic mathematical goal of extending the results from the continuous

ase, but also on the basis that the dynamics of many physical systems that operate at spe-
ific (discrete) time steps may be affected by typical inaccuracies in the mechanical devices
hat govern the process itself and/or the control in Engineering. Besides, when operating with
emote systems, it might be more realistic to assume that both the initial and the final/target
tates involve uncertainties. Further motivating examples, based on first-order matrix linear
ontrol problems, can be found in other real-world settings such as Economics, where the
ources of uncertainties assigned to the model parameters are naturally motivated due to the
omplexity of financial markets. Section 5 shows an example from Economics that illustrates
hese motivating comments. Also, when solving nonlinear discrete control models, one often
pplies linearization techniques to approximate the model, making linear models easier to
eal with. This strategy can be applied, for example, when studying epidemiological models.
n this framework, uncertainties can be directly assigned to the entries of the matrix system
since they represent the contagion and recovering parameters, which depend on complex
actors, that rarely are known in a deterministic way but randomly); the coefficient of the
ctuator (since the effectiveness of epidemic control measures, such as vaccination, have cer-
ain errors); the initial state (since it represents the initial subpopulation of infected people,
hich is known after surveys, so involving statistical errors coming from sampling), and the
nal state (since the main goal after applying the control is reaching a target percentage or

he number of susceptible within an acceptable range that is not exactly known because of
he variability in the effectiveness of vaccination). And last but not least, it is important to
oint out that the theoretical results that will be established throughout the paper are also
pplicable in the case that some model parameters are deterministic (see later Remark 4 ). 

As in these two previous contributions to deal with continuous control problems [38,39] ,
e shall rely on the aforementioned Random Variable Transformation technique to conduct
ur analysis method. It must be underlined that applying this stochastic technique in the
iscrete setting involves more difficulties than in the continuous scenario. Indeed, as it shall
e seen later, the multidimensional mapping required to apply the Random Variable Trans-
ormation method successfully is technically more difficult to analyze, particularly regarding
ts invertibility. This makes the mathematical analysis more challenging than its continuous
ounterpart. 

The main novelty of this paper is the treatment of uncertainties in discrete first-order ma-
rix linear control models under very general assumptions with respect to both, first, where
andomness can be considered in the model data, and secondly, the type of probability dis-
ribution that can be considered in the study. This gives great versatility in applying the
heoretical results in practical cases. To the best of our knowledge, the foregoing discrete
inear control problems have not yet been analyzed under our approach. In this paper, we
ackle the random analysis of this fundamental model as a first step. 

The paper is structured as follows. In Section 2 , we adapt some deterministic preliminaries
hat will be used in Section 3 , where we randomize the deterministic model and give expres-
ions of the solution and the control. Additionally, motivated by the deterministic theory, in
his section, we also establish the random Kalman controllability condition. In Section 4 , we
ive semi-explicit expressions (in terms of integrals) for the first probability density functions
1-PDFs) of the solution and the control. In Section 5 , we apply our theoretical findings in
4854 
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wo numerical examples and in the study of the random dynamics of the Samuelson macroe-
onomic model with uncertainties. Finally, the conclusions are drawn in Section 6 . 

. Deterministic preliminaries 

For the sake of convenience, we first introduce some deterministic results that will be
equired to develop our subsequent random analysis. Let the following discrete first-order
inear control system 

  (k + 1) = A � x (k) + 

� b u(k) , k = 0, 1 , 2, . . . , K − 1 , (1)

here � x (k + 1) ∈ R 

n is the response of the system at the step k + 1 , A is a n × n matrix
ontaining the free dynamics part, � b is a n × 1 real vector determining how the control,
(k) ∈ R , affects the response. Given an initial state, 

  (0) = � x 0 ∈ R 

n , (2)

e are interested in exact discrete controllable systems. That is, those systems in which a
iven final state � x 1 ∈ R 

n can be reached from every initial state � x 0 , in a finite number of
teps, K , i.e., given any initial condition � x 0 , one must satisfy that � x (K ) = � x 1 . In Eq. (1) , K 

enotes the final step, i.e., the step by which the system reaches the final state � x 1 ∈ R 

n . 
The following well-known result provides an explicit solution of the discrete first-order

ontrol system Eqs. (1) and (2) . For the sake of completeness, we include its proof in Ap-
endix I. 

heorem 1. The solution of the discrete first-order control system Eqs. (1) and (2) at any
tep k = 1 , 2, . . . , K, is 

  (k) = A 

k � x 0 + 

k ∑ 

j=1 

A 

k− j � b u( j − 1) = A 

k � x 0 + U k � u k , (3)

here each component of the vector � u k is the scalar control evaluated at 0, 1 , 2, . . . , k − 1 ,
.e., � u k = [ u(0) , u(1) , . . . , u(k − 1) ] � , where, as usual, the superscript � denotes the transpose
perator. U k is a n × k matrix defined, by means of columns, as U k = [ A 

k−1 � b | . . . | A 

� b | � b ] . 

As has been previously pointed out, we will deal with controllable discrete systems, and
esides calculating the solution of the system, it is also necessary to know the conditions of
ontrollability as well as determine an expression for the controller satisfying such conditions.
elow, we state a characterization of controllability for the system Eq. (1) . For further details,

ee references [40,42,41] , and therein. 

heorem 2. The discrete first-order system Eqs. (1) and (2) is exactly controllable for K ∈ N

nite if, and only if, Rank ( U n ) = n and K ≥ n, being U n the Kalman’s controllability matrix.

roof. (�⇒ ) Suppose that discrete first-order system Eqs. (1) and (2) is exactly con-
rollable for some K ∈ N . We shall prove that K ≥ n, and Rank (U n ) = n, being U n =
 A 

n−1 � b | . . . | A 

� b | � b ] . Given an initial state � x 0 , as the system is exactly controllable for a
iven K , there exists some � u K ∈ R 

K such that 

  1 = � x (K ) = A 

K � x 0 + U K � u K = A 

K � x 0 + 

K ∑ 

j=1 

A 

K− j � b u( j − 1) . 
4855 
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e can define an auxiliary n-dimensional vector φ := � x 1 − A 

K � x 0 ∈ R 

n , then 

= 

K ∑ 

j=1 

A 

K− j � b u( j − 1) . 

he right-hand side of this expression is a linear combination of K vectors { A 

K−1 � b , . . . , A 

� b , � b } .
herefore, the last expression can be written as 

= A 

K−1 � b C K + . . . + A 

� b C 2 + 

� b C 1 , (4)

ith C 1 , C 2 , . . . , C K are functions of u(0) , u(1) , . . . , u(K − 1) , which are considered the “con-
tants” of the system. If K < n, the linear system Eq. (4) is, in general, overdetermined, and
ts solution (for an arbitrary φ) does not always exist. Therefore, a necessary condition for the
olvability of Eq. (4) is K ≥ n, and the first part of the theorem is proved. On the other hand,
t is known that, by the Cayley-Hamilton theorem, the i-th power, A 

i , of a matrix A of size n,
ith i ≥ n, can be expressed as a linear combination of matrices I, A , A 

2 , . . . , A 

n−1 , where I
enotes the identity matrix of size n. If K ≥ n, then the linear combination Eq. (4) of vectors
 A 

K−1 � b , . . . , A 

� b , � b } can be reduced to a linear combination of vectors { A 

n−1 � b , . . . , A 

� b , � b } .
hus, for any arbitrary φ, the system Eq. (4) of n linear equations is solvable if and only if
et ( U n ) � = 0, i.e., Rank ( U n ) = n. 

(⇐�) First we shall proof that for any N ≥ n, Rank ( U N ) = Rank ( U n ) . By the definition of
 k , Rank ( U N ) ≥ Rank ( U n ) when N ≥ n; and using the hypothesis Rank ( U n ) = n, the inequal-

ty Rank ( U N ) ≥ n is fulfilled. On the other hand, dim ( U N ) = n × N , therefore Rank ( U N ) ≤ n.
ombining both inequalities yields the desired result, Rank ( U N ) = Rank ( U n ) , N ≥ n. Now,

uppose that Rank ( U n ) = n, then Rank ( U K ) = n. Consider � x ∈ R 

n such that 

  = � x 1 − A 

K � x 0 , � x 0 , � x 1 ∈ R 

n . 

hen, there exists a control � u K ∈ R 

K such that U K � u K = � x . Therefore, 

  = � x 1 − A 

K � x 0 = U K � u K . 

ence, 

  1 = A 

K � x 0 + U K � u K . 

o, we have obtained a solution � x 1 of the system Eq. (1) such that � x (K ) = � x 1 and � x (0) = � x 0 .
hen, the system is exactly controllable. �

An explicit expression of the control � u K = [ u(0) , . . . , u(K − 1) ] � is established in the next
emma. In a general Hilbert space, details of the proof can be found in Leiva and Uzcategui
40] . Note that we have adapted the statement of the lemma to the problem we are dealing
ith. 

emma 3 [40] . The Eq. (1) is exactly controllable for some K ∈ N if, and only if, the discrete
ontrollability Grammian, defined by L = U K U 

� 

K , is invertible. Moreover, in this case S =
 

� 

K L 

−1 is a right inverse of U K and the control � u steering an initial state � x 0 to a final state
  1 is given by 

  = � u K = S 

(
� x 1 − A 

K � x 0 
)
. (5)
4856 
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emark 1. In the particular case where the system is controllable in exactly n steps, that is
 = n, the control � u is 

  = U 

−1 
n ( � x 1 − A 

n � x 0 ) . 

Notice that in Lemma 3 the matrices L and S , with dimension n × n and K × n, respec-
ively, and the control vector � u depends on K ∈ N . To simplify further calculations, we have
emoved this dependency in the notation. 

. The randomization of the discrete first-order control system 

So far, we have introduced the discrete first-order problem based on a deterministic discrete
ontrol system, Eqs. (1) and (2) . For this problem, we have presented the necessary and
ufficient conditions to reach exact controllability. In addition, expressions for the solution
nd the control have been explicitly given. In this section, we take advantage of the previous
esults to study the randomized counterpart of problem Eqs. (1) and (2) . For the sake of
enerality, we will assume that all model data are random quantities whose outcomes are
enoted by ω. The problem Eqs. (1) and (2) then writes 

  (k + 1 , ω) = A ( � α(ω)) � x (k, ω) + 

� b ( � β(ω)) u(k, ω) , k = 0, 1 , 2, . . . , K − 1 , 

� x (0, ω) = � x 0 (ω) . (6)

ere, we will assume that the matrix A and the vector � b depend, respectively, on a fi-
ite number of random variables collected in the random vectors � α(ω) = [ α1 (ω ) , . . . , αs (ω )]
nd 

� β(ω) = [ β1 (ω ) , . . . , βm 

(ω )] . In our subsequent analysis, all the components of the ran-
om vectors � α(ω) , � β(ω) , the initial state � x 0 (ω) = [ x 01 (ω) , . . . , x 0n (ω)] � and the final tar-
et � x 1 (ω) = [ x 11 (ω ) , . . . , x 1 n (ω )] � are assumed to be real-valued absolutely continuous ran-
om variables defined on a common complete probability space (�, F �, P ) , where outcomes
 ∈ �. To keep our analysis as general as possible, instead of assuming that all the fore-
oing random data are independent, hereinafter we will assume that f 0 ( � x 0 , � x 1 , � α, � β) denotes
he joint probability density function (PDF) of the random vector [ � x 0 (ω) , � x 1 (ω) , � α(ω) , � β(ω)]
hat collects all random inputs. At this point, it is interesting to underline that we are im-
licitly assuming that the stochastic control model Eq. (6) has parametric uncertainties, i.e.,
ncertainties are introduced via a finite number (in our case 2n + s + m) of random variables.

According to Theorem 1 , the solution stochastic process of the randomized problem
q. (6) is given by 

  (k, ω) = A ( � α(ω)) k � x 0 (ω) + 

k ∑ 

j=1 

A ( � α(ω)) k− j � b ( � β(ω)) u( j − 1 , ω) 

= A ( � α(ω)) k � x 0 (ω) + U k ( � α(ω) , � β(ω)) � u k (ω) , k = 1 , . . . , K, (7)

eing � u k (ω) a vector containing the first k components of the stochastic controller defined by

  (ω) = S 

(
� α(ω ) , � β(ω ) 

)(
� x 1 (ω) − A ( � α(ω )) K � x 0 (ω ) 

)
, (8)

here S ( � α(ω) , � β(ω)) = U 

� 

K ( � α(ω) , � β(ω)) L 

−1 ( � α(ω) , � β(ω)) , being 

 

(
� α(ω) , � β(ω) 

)
= U K 

(
� α(ω) , � β(ω) 

)
U 

� 

K ( � α(ω) , � β(ω)) 
4857



J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero et al. Journal of the Franklin Institute 360 (2023) 4852–4879 

t  

t  

t  

ω  

(  

A
 

s  

t

T  

b  

d  

a  

K

K

w

R  

r

P

i  

v

P  

d  

E

 

t  

�x  

t  

t  

g  

t  

m  

t  

(  

c

μ  

a  

t∫
he random controllability Grammian. Note that S ( � α(ω) , � β(ω)) and L( � α(ω) , � β(ω)) are ma-
rices of sizes, K × n and n × n, respectively. For the sake of clarity in the presentation of
he randomized control model from its deterministic counterpart, we have explicitly indicated
-dependence with respect to the random vectors � α(ω) and 

� β(ω) in expressions Eqs. (7) and
8) . Henceforth, we will simplify the notation to express this dependency by simply writing
 (ω) := A ( � α(ω)) . 
The following result gives a characterization of the exact controllability of the random

ystem Eq. (6) . It is a direct consequence of Theorem 2 and that we are assuming that all
he inputs are absolutely continuous random variables. 

heorem 4 Random Kalman controllability condition . Let (�, F �, P ) be a complete proba-
ility space. Let A (ω) := A ( � α(ω )) and 

� b (ω ) := 

� b ( � β(ω)) be random matrices whose entries
epend on absolutely continuous random vectors � α(ω) and 

� β(ω) , ω ∈ �. Then, necessary
nd sufficient conditions for the random system Eq. (6) to be controllable in a given step
 ∈ N are 

 ≥ n and P [ { ω ∈ � : Rank (U n (ω)) = n 

} ] = 1 , 

here U n (ω) = [ A 

n−1 (ω ) � b (ω ) | . . . | A (ω ) � b (ω ) | � b (ω )] has dimension n. 

emark 2. Based on its deterministic counterpart, hereinafter, the matrix U n (ω) in Theo-
em 4 will be referred to as the random Kalman’s controllability matrix. 

Observe that condition 

 

[ { 
ω ∈ � : Rank (U n (ω)) = Rank 

([ 
A 

n−1 (ω) � b (ω) | . . . | A (ω) � b (ω) | � b (ω) 
] )

= n 

} ] 
= 1 , 

s guaranteed when all elements of A (ω) and 

� b (ω) , ω ∈ �, are absolutely continuous random
ariables. As a direct consequence of Theorem 4 , one gets the following result: 

roposition 1. Let (�, F �, P ) be a complete probability space. If all elements of the ran-
om matrices A (ω) , � b (ω) , ω ∈ � are absolutely continuous random variables, then problem
q. (6) is controllable for a given K ∈ N if, and only if K ≥ n. 

Roughly speaking, solving the deterministic control problem Eq. (1) consists in obtaining
he solution, � x (k) , and the control, u(k) , so that the solution is driven from a given initial state,
  0 to a final state � x 1 , which is also prefixed. In dealing with its random counterpart Eq. (6) ,
he solution and the control are both stochastic processes, namely � x (k, ω) and u(k, ω) , respec-
ively. So, determining relevant statistical properties of these random functions is also a major
oal. In the case of the n-dimensional stochastic process � x (k, ω) (analogously for u(k, ω) )
he most important moments are the mean, μ� x (k) := E [ � x (k, ω)] and the variance-covariance

atrix, �� x (k) := E [ � x (k, ω) � x (k, ω) � ] , where E [ ·] denotes the expectation operator. However,
he computation of the so-called first probability density function (1-PDF) of � x (k, ω) , f 1 ( � x , k)

 f 1 (u, k) for u(k, ω) ), is a more desirable goal since from this deterministic function one can
alculate the foregoing moments 

� x (k) = 

∫ 
R n 

� x f 1 ( � x , k ) d � x , �� x (k ) = 

∫ 
R n 

( � x − μ� x (k))( � x − μ� x (k )) 
� f 1 ( � x , k ) d � x , (9)

s well as to construct confidence regions for k and α ∈ (0, 1) fixed ( 1 − α is referred to as
he confidence level) by determining y ∈ R , such that 
 

R n 
( f 1 ( � x , k) − y ) d � x = 1 − α, f 1 ( � x , k) ≥ y. 
4858 
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urthermore, the 1-PDF permits computing the probability that the solution lies within any
orel set, say A , of R 

n , 

 

[{ ω ∈ � : � x (k, ω) ∈ A 

} ] = 

∫ 
A 

f 1 ( � x , k) d � x , 

or k ∈ N fixed. 
In the next section, we will focus on the computation of the 1-PDF of the solution � x (k, ω)

nd of the control u(k, ω) , for each k = 1 , 2, . . . , K . To attack this problem, we will take
dvantage of the so-called Random Variable Transformation (RVT) method that is stated in
he following theorem. 

heorem 5 RVT method [18, page 25] . Let us consider � u (ω) = (u 1 (ω ) , . . . , u D 

(ω )) and
  (ω) = (v 1 (ω ) , . . . , v D 

(ω )) two D-dimensional continuous random vectors defined on a com-
lete probability space (�, F �, P ) . Let � r : R 

D → R 

D be a one-to-one deterministic transfor-
ation of � u into � v , i.e., � v = � r ( � u ) . Assume that � r is continuous in � u and has continuous partial
erivatives w.r.t. each u i , 1 ≤ i ≤ D. Then, if f � u ( � u ) denotes the joint PDF of random vector
  (ω) , and � s = � r −1 = (s 1 (v 1 , . . . , v D 

) , . . . , s n (v 1 , . . . , v D 

)) represents the inverse mapping of
  = (r 1 (u 1 , . . . , u D 

) , . . . , r n (u 1 , . . . , u D 

)) , the joint PDF of random vector � v (ω) is given by 

f � v ( � v ) = f � u ( � s ( � v ) ) | J | , 
here | J | , which is assumed to be different from zero, is the absolute value of the Jacobian,
hich is defined by the determinant 

 = det 

[
∂ � s 

∂ � v 

]
= det 

⎡ 
⎢ ⎣ 

∂s 1 (v 1 , ... ,v D ) 
∂v 1 

. . . ∂s n (v 1 , ... ,v D ) 
∂v 1 

. . . 
. . . 

. . . 
∂s 1 (v 1 , ... ,v D ) 

∂v D 
. . . ∂s D (v 1 , ... ,v D ) 

∂v D 

⎤ 
⎥ ⎦ . 

. Computing the 1-PDF of the solution and the control stochastic processes 

Suppose that the system is controllable for a given K ∈ N , which should be greater or equal
han n, K ≥ n. The main objective of this section is to obtain an expression for the 1-PDF of
he solution � x (k, ω) and of each component, u( j, ω) , j = 0, . . . , k − 1 , k = 1 , 2, . . . K , of the
ontrol � u K (ω) . For this aim, as previously indicated, given a fixed step k = 1 , 2, . . . , K, the
VT method will conveniently be applied. To this end, we first rewrite the solution � x (k, ω)

n Eq. (7) , taking into account the expression of the control Eq. (8) , as 

  (k, ω) = A ( � α(ω)) k � x 0 (ω) + U k ( � α(ω) , � β(ω)) 
[
I k O k,K−k 

]
S ( � α(ω) , � β(ω)) 

(
� x 1 (ω) − A ( � α(ω)) K � x 0 (ω) 

)
= A ( � α(ω)) k � x 0 (ω) + H( � α(ω) , � β(ω)) 

(
� x 1 (ω) − A ( � α(ω)) K � x 0 (ω) 

)
, k = 1 , 2, . . . , K, (10)

eing 

( � α(ω) , � β(ω)) = U k ( � α(ω) , � β(ω)) 
[
I k O k,K−k 

]
S ( � α(ω) , � β(ω)) , (11)

 square random matrix of size n that depends on the random vectors � α(ω) and 

� β(ω) , the
xed step k and the final step K . In Eq. (10) , I k is the identity matrix of dimension k and
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 k,K−k is a null matrix of size k × (K − k) . Now, for convenience when applying the RVT
ethod, we rewrite the solution as a linear combination of the initial and final states 

  (k, ω) = G( � α(ω ) , � β(ω )) � x 0 (ω ) + H( � α(ω ) , � β(ω )) � x 1 (ω ) , k = 1 , 2, . . . , K, (12)

here 

( � α(ω) , � β(ω)) = A ( � α(ω)) k − H( � α(ω) , � β(ω)) A ( � α(ω)) K , (13)

s a square matrix of dimension n. 
For the value of k = 1 , 2, . . . , K, previously fixed, we apply the RVT method to obtain the

DF of the random vector � x (k, ω) in terms of the joint PDF f 0 ( � x 0 , � x 1 , � α, � β) . As we have less
quations ( n) than random variables ( D := 2n + s + m), we define the deterministic mapping
  : R 

D → R 

D , whose components are defined by mappings � r 1 : R 

D → R 

n , � r 2 : R 

D → R 

n , � r 3 :
 

D → R 

s , and � r 4 : R 

D → R 

m , defined, respectively, as follows: 

  1 = � r 1 ( � x 0 , � x 1 , � α, � β) = G( � α, � β) � x 0 + H( � α, � β) � x 1 , 

  2 = � r 2 ( � x 0 , � x 1 , � α, � β) = � x 1 , 

  3 = � r 3 ( � x 0 , � x 1 , � α, � β) = � α, 

  4 = � r 4 ( � x 0 , � x 1 , � α, � β) = 

� β. 

f the inverse of the deterministic matrix G( � α, � β) exists, we will be able to formally compute
he inverse mapping of � r , � s : R 

D → R 

D , as 

  0 = � s 1 ( � z 1 , � z 2 , � z 3 , � z 4 ) = G 

−1 ( � z 3 , � z 4 ) ( � z 1 − H( � z 3 , � z 4 ) � z 2 ) , 

  1 = � s 2 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 2 , 

� α = � s 3 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 3 , 
� β = � s 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 4 , 

eing its Jacobian J = det (G 

−1 ( � z 3 , � z 4 )) � = 0. Then, according to the RVT technique, the joint
DF of the random vector ( � x (k, ω) , � x 1 (ω) , � α(ω) , � β(ω)) is given by 

f � x (k) , � x 1 , � α, � β( � z 1 , � z 2 , � z 3 , � z 4 ) = f 0 
(
G 

−1 ( � z 3 , � z 4 ) ( � z 1 − H( � z 3 , � z 4 ) � z 2 ) , � z 2 , � z 3 , � z 4 
)| det 
(
G 

−1 ( � z 3 , � z 4 ) 
)| , 

here, f 0 := f 0 ( � x 0 , � x 1 , � α, � β) is the joint PDF of the input data. Finally, marginalizing the last
xpression with respect to the random vectors � z 2 (ω) = � x 1 (ω ) , � z 3 (ω ) = � α(ω) and � z 4 (ω) =

� (ω) , one obtains the 1-PDF of the response for each k = 1 , . . . , K , 

f 1 ( � x ; k) = 

∫ 
R n+ s+ m 

f 0 
(

G 

−1 ( � α, � β) 
(
� x − H( � α, � β) � x 1 

)
, � x 1 , � α, � β

)
| det (G 

−1 ( � α, � β)) | d � x 1 d � α d 

� β. (14)

If the matrix G is not invertible, but the matrix H is invertible, the same above
ransformation � r can be considered when applying the RVT method, but taking � z 1 = � x 0
nd � z 2 = G( � α, � β) � x 0 + H( � α, � β) � x 1 and then isolating � x 1 from the latter expression, � x 1 =
 

−1 ( � z 3 , � z 4 ) ( � z 2 − G( � z 3 , � z 4 ) � z 1 ) . In this case, the 1-PDF of the response is given by 

f 1 ( � x ; k) = 

∫ 
R n+ s+ m 

f 0 
(
� x 0 , H 

−1 ( � α, � β) 
(
� x − G( � α, � β) � x 0 

)
, � α, � β
)
| det (H 

−1 ( � α, � β)) | d � x 0 d � α d 

� β. (15)

t this point, recall that both matrices G and H, that have size n, depend on k. Therefore, it
ay happen that there exists a step k for which neither of the two matrices is invertible. For

xample, if we observe the definition of matrix H in Eq. (11) , if k < n ≤ K , then rank (H) < n,
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nd the matrix H is not invertible. In the case that both matrices are singular, next, we shall
ee that the RVT method can still be applied to obtain the 1-PDF of the solution. Next, we
xplain how to proceed with. Given any initial and final states, � x 0 and � x 1 , we calculate the
ollowing vector 

 � x 0 + H � x 1 = 

[
� g 1 . . . � g n 

]
⎡ 
⎢ ⎢ ⎢ ⎣ 

x 01 

x 02 
. . . 

x 0n 

⎤ 
⎥ ⎥ ⎥ ⎦ + 

[ 
� h 1 . . . � h n 

] 
⎡ 
⎢ ⎢ ⎢ ⎣ 

x 11 

x 12 
. . . 

x 1 n 

⎤ 
⎥ ⎥ ⎥ ⎦ = 

n ∑ 

i=1 

(
x 0i � g i + x 1 i � h i 

)
:= � w ∈ R 

n , 

here � g i and 

� h i denote, respectively, the columns of matrices G and H, and x 0,i , x 1 ,i , i =
 , . . . , n are the components of � x 0 and � x 1 , respectively. Therefore, given a vector � w , it can be
btained from a linear combination of elements of G = { � g 1 , . . . , � g n , � h 1 , . . . , � h n } ⊂ R 

n . So, G
s a generator set, and we can find a basis, thus 

ank (G) ≤ n, rank (H) ≤ n, rank (G + H) = n. 

uppose that rank (G) = p, then rank (H) ≥ n − p, in order to fulfil the above equality.
or the sake of simplicity in the notation when applying later the RVT method, we as-
ume that the first columns of matrices G and H are linearly independent, i.e., the n
ectors { � g 1 , . . . , � g p , � h 1 , . . . , � h n−p } define a basis in R 

n . Therefore, the square matrix 

ˆ M =
 � g 1 , . . . , � g p , � h 1 , . . . , � h n−p ] of size n has rank n and is also invertible. Now, let � ˆ x 0 and 

� ˆ x 1 be two
ectors containing the first p components and n − p components of � x 0 and � x 1 , respectively, that
s, � ˆ x 0 = [ x 01 , . . . , x 0p ] � and 

� ˆ x 1 = [ x 11 , . . . , x 1(n−p) ] � . The vectors with the rest of the compo-
ents of � x 0 and � x 1 will be denoted by 

� ˜ x 0 = [ x 0(p+1) , . . . , x 0n ] � and 

� ˜ x 1 = [ x 1(n−p+1) , . . . , x 1 n ] � ,
espectively. 

With this notation, we can define the mapping � r : R 

D → R 

D as 

  1 = � r 1 ( � x 0 , � x 1 , � α, � β) = 

ˆ M ( � α, � β) 

[ 
� ˆ x 0 
� ˆ x 1 

] 
+ 

˜ M ( � α, � β) 

[ 
� ˜ x 0 
� ˜ x 1 

] 
, 

  2 = � r 2 ( � x 0 , � x 1 , � α, � β) = 

[ 
� ˜ x 0 
� ˜ x 1 

] 
, 

  3 = � r 3 ( � x 0 , � x 1 , � α, � β) = � α, 

  4 = � r 4 ( � x 0 , � x 1 , � α, � β) = 

� β, 

here ˜ M = [ � g p+1 , . . . , � g n , � h n−p+1 , . . . , � h n ] . The inverse mapping � s : R 

D → R 

D and the Jaco-
ian are 
 

� ˆ x 0 
� ˆ x 1 

] 
= � s 1 ( � z 1 , � z 2 , � z 3 , � z 4 ) = 

ˆ M 

−1 ( � z 3 , � z 4 ) 
(
� z 1 − ˜ M ( � z 3 , � z 4 ) � z 2 

)
, 

 

� ˜ x 0 
� ˜ x 1 

] 
= � s 2 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 2 , 

� α = � s 3 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 3 , 
� β = � s 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 4 , 

nd J = det ( ˆ M 

−1 ( � z 3 , � z 4 )) , respectively. Note that the Jacobian is well defined and non-zero
ince, by construction, matrix 

ˆ M ( � z 3 , � z 4 ) is invertible. 
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Now, we define the following square permutation matrix of dimension 2n: 

 = 

⎡ 
⎢ ⎢ ⎣ 

I p O p,n−p O p,n−p O p 

O n−p,p O n−p I n−p O n−p,p 

O n−p,p I n−p O n−p O n−p,p 

O p,p O p,n−p O p,n−p I p 

⎤ 
⎥ ⎥ ⎦ , 

here I k is the identity matrix, and O k and O k,n−k denote the null matrices of dimensions k
nd k × (n − k) , respectively. Then, we can rewrite the inverse transformation � s as 

� x 0 
� x 1 

]
= 

⎡ 
⎢ ⎢ ⎢ ⎣ 
� ˆ x 0 
� ˜ x 0 
� ˆ x 1 
� ˜ x 1 

⎤ 
⎥ ⎥ ⎥ ⎦ = P 

⎡ 
⎢ ⎢ ⎢ ⎣ 
� ˆ x 0 
� ˆ x 1 
� ˜ x 0 
� ˜ x 1 

⎤ 
⎥ ⎥ ⎥ ⎦ = P 

[
� s 1 ( � z 1 , � z 2 , � z 3 , � z 4 ) 
� s 2 ( � z 1 , � z 2 , � z 3 , � z 4 ) 

]
= P 

[ 
ˆ M 

−1 ( � z 3 , � z 4 ) 
(
� z 1 − ˜ M ( � z 3 , � z 4 ) � z 2 

)
� z 2 

] 
, 

� α = � s 3 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 3 , 
� β = � s 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 4 . 

pplying the RVT method, the joint PDF of the random vector ( � z 1 (ω) , � z 2 (ω) , � z 3 (ω) , � z 4 (ω))

s 

f � z 1 , � z 2 , � z 3 , � z 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = f 0 

( 
P 

[ 
ˆ M 

−1 ( � z 3 , � z 4 ) 
(
� z 1 − ˜ M ( � z 3 , � z 4 ) � z 2 

)
� z 2 

] 
, � z 3 , � z 4 

) 
| det ( ˆ M 

−1 ( � z 3 , � z 4 )) | . 

s � z 1 (ω) = � x (t, ω) , marginalizing the joint PDF with respect to the random vector
( � z 2 (ω) , � z 3 (ω) , � z 4 (ω)) = ( � ˜ x 0 (ω) , � ˜ x 1 (ω) , � α(ω) , � β(ω)) , the PDF of the response is obtained for
ach k = 1 , . . . , K , 

f 1 ( � x ; k) = 

∫ 
R n+ s+ p 

f 0 

⎛ 

⎜ ⎜ ⎜ ⎝ 

P 

⎡ 
⎢ ⎢ ⎢ ⎣ 

ˆ M 

−1 ( � α, � β) 

( 
� x − ˜ M ( � α, � β) 

[ 
� ˜ x 0 
� ˜ x 1 

] ) 
� ˜ x 0 
� ˜ x 1 

⎤ 
⎥ ⎥ ⎥ ⎦ , � α, � β

⎞ 

⎟ ⎟ ⎟ ⎠ 

| det ( ˆ M 

−1 ( � α, � β)) | d 

� ˜ x 0 d 

� ˜ x 1 d � α d 

� β, (16)

here 

 ˜  0 d 

� ˜ x 1 d � α d 

� β = 

⎛ 

⎝ 

∏ 

p+1 ≤i≤n 

dx 0i 

⎞ 

⎠ 

⎛ 

⎝ 

∏ 

n−p+1 ≤i≤n 

dx 1 i 

⎞ 

⎠ 

( ∏ 

1 ≤i≤s 

dαi 

) ( ∏ 

1 ≤i≤m 

dβi 

) 
. 

ow, we compute the PDF of each component of the random control � u (ω) given in Eq. (8) ,
.e., the PDF of u(k, ω) , k = 0, 1 , . . . , K − 1 . For a fixed component k, let u(k, ω) be the
-th component of the control 

(k, ω) = � e � 

k+1 � u (ω) = � e � 

k+1 S ( � α(ω) , � β(ω)) 
(
� x 1 (ω) − A ( � α(ω)) K � x 0 (ω) 

)
= ν(ω) −

n ∑ 

i=1 

γi (ω ) x 0i (ω ) , k = 0, 1 , . . . , K − 1 , 

here � e i denotes the i-th column of identity matrix I K and the random variables ν(ω)

nd γi (ω) , i = 1 , . . . , n, are ν(ω) = ν(k; � x 1 (ω) , � α(ω) , � β(ω)) = � e � 

k+1 S ( � α(ω) , � β(ω)) � x 1 (ω) and
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i (ω) = γi (k; � α(ω) , � β(ω)) = � e � 

k+1 S ( � α(ω) , � β(ω)) A ( � α(ω)) K � e i . Therefore, we define the deter-
inistic mapping � r : R 

D → R 

D as 

 11 = r 11 ( � x 0 , � x 1 , � α, � β) = ν(k; � x 1 , � α, � β) −
n ∑ 

i=1 

γi (k; � α, � β) x 0i , 

z 1 i = r 1 i ( � x 0 , � x 1 , � α, � β) = x 0i , i = 2, . . . , n, 

� z 2 = � r 2 ( � x 0 , � x 1 , � α, � β) = � x 1 , 

� z 3 = � r 3 ( � x 0 , � x 1 , � α, � β) = � α, 

� z 4 = � r 4 ( � x 0 , � x 1 , � α, � β) = 

� β. 

he inverse mapping � s = � r −1 , � s : R 

D → R 

D , 

 01 = s 11 ( � z 1 , � z 2 , � z 3 , � z 4 ) = 

1 

γ1 (k;� z 3 , � z 4 ) 

( 
ν(k;� z 2 , � z 3 , � z 4 ) − z 11 −

n ∑ 

i=2 

γi (k;� z 3 , � z 4 ) z 1 i 

) 
, 

x 0i = s 1 i ( � z 1 , � z 2 , � z 3 , � z 4 ) = z 1 i , i = 2, . . . , n, 

� x 1 = � s 2 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 2 , 

� α = � s 3 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 3 , 
� β = � s 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = � z 4 . 

he absolute value of the Jacobian of � s is | J | = 

∣∣∣ 1 
γ1 (k;� z 3 , � z 4 ) 

∣∣∣ � = 0 w.p. 1 (observe that, by its

wn definition, γ1 (k;� z 3 , � z 4 ) is an absolutely random variable since it is defined via a Borel
easurable mapping that transforms absolutely random variables). Then, applying the RVT

echnique we can obtain the PDF of the random vector ( � z 1 , � z 2 , � z 3 , � z 4 ) in terms of the joint
DF of the random vector of input parameters ( � x 0 , � x 1 , � α, � β) , 

f � z 1 , � z 2 , � z 3 , � z 4 ( � z 1 , � z 2 , � z 3 , � z 4 ) = f 0 

(
1 

γ1 (k;� z 3 , � z 4 ) 

(
ν(k;� z 2 , � z 3 , � z 4 ) − z 11 −

n ∑ 

i=2 

γi (k;� z 3 , � z 4 ) z 1 i 

)
, 

z 12 , . . . , z 1 n , � z 2 , � z 3 , � z 4 

) ∣∣∣∣ 1 

γ1 (k;� z 3 , � z 4 ) 

∣∣∣∣. (17)

s u(k) = z 11 , marginalizing Eq. (17) with respect to the random vectors � z 2 (ω) = � x 1 (ω) ,
  3 (ω) = � α(ω) and � z 4 (ω) = 

� β(ω) and the random variables z 1 i (ω) = x 0i (ω) , i = 2, . . . , n, we
btain the 1-PDF of the k-th component of the controller 

f 1 (u, k) = 

∫ 
R 2n−1+ s+ m 

f 0 

(
1 

γ1 (k; � α, � β) 

(
ν(k; � x 1 , � α, � β) − u −

n ∑ 

i=2 

γi (k; � α, � β) x 0i 

)
, 

x 02 , . . . , x 0n , � x 1 , � α, � β

) ∣∣∣∣ 1 

γ1 (k; � α, � β) 

∣∣∣∣ d � x 0 ∗ d � x 1 d � α d 

� β, (18)

here 

 � x 0 ∗ d � x 1 d � α d 

� β = 

( ∏ 

2≤i≤n 

dx 0i 

) ( ∏ 

1 ≤i≤n 

dx 1 i 

) ( ∏ 

1 ≤i≤s 

dαi 

) ( ∏ 

1 ≤i≤m 

dβi 

) 
. (19)

emark 3. In practical cases, the semi-explicit representations of the 1-PDF, f 1 ( � x ; k) , given
n Eqs. (14) –(16) , of the solution stochastic process of problem Eq. (6) may become com-
utationally unaffordable for high-dimensional integration domains. In such situations, it is
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onvenient to have alternative representations of the f 1 ( � x ; k) . With this aim, we here note
hat in the particular case that the random vector � x 0 (ω) is independent of the random vectors
  1 (ω) , � α(ω) and � β(ω) , then f 1 ( � x ; k) , given in Eq. (14) , can be represented via the following
xpectation 

f 1 ( � x ; k) = E � x 1 , � α, � β

[ 
f 0 
(

G 

−1 ( � α(ω) , � β(ω)) 
(
� x − H( � α(ω) , � β(ω)) � x 1 (ω) 

)
, � x 1 (ω) , � α(ω) , � β(ω) 

)
| det (G 

−1 ( � α(ω) , � β(ω))) | 
] 
, (20)

here E � x 1 , � α, � β[ ·] stands for the computation of the expectation with respect to the

andom vectors � x 1 (ω) , � α(ω) and � β(ω) . Then, the 1-PDF f 1 ( � x ; k) can be ap-
roximated by applying Monte Carlo simulations. For fixed k, we first obtain a
umber of samples, say M, of the random vectors � x 1 (ω) , � α(ω) and 

� β(ω) , ac-
ording to their respective assumed distributions. Secondly, we evaluate the term

f 0 
(

G 

−1 ( � α(ω) , � β(ω)) 
(
� x − H( � α(ω) , � β(ω)) � x 1 (ω) 

)
, � x 1 (ω) , � α(ω) , � β(ω) 

)
| det (G 

−1 ( � α(ω) , � β(ω))

or the M samples obtained in the first step. In the third, and final step, we average the M
alues obtained in the second step. Similar expressions to the one given in Eq. (20) can
e easily given for the expressions Eqs. (15) and (16) , as well as for the expression of the
-PDF of the control, u(k, ω) , given in Eqs. (18) and (19) . Indeed, in this case, by assuming
hat x 01 (ω) is independent of the rest of random variables, i.e., x 02 (ω ) , . . . , x 0n (ω ) , � x 1 (ω ) ,
 (ω) and 

� β(ω) (notice that for the case of the control, this assumption is weaker than the
ne assumed for the case of the solution), the resulting expression for the 1-PDF of the
ontrol writes 

f 1 (u, k) = E � x 0 ∗ , � x 1 , � α, � β

[
f 0 

(
1 

γ1 (k; � α, � β) 

(
ν(k; � x 1 , � α, � β) − u −

n ∑ 

i=2 

γi (k; � α, � β) x 0i 

)
, 

x 02 , . . . , x 0n , � x 1 , � α, � β

) ∣∣∣∣ 1 

γ1 (k; � α, � β) 

∣∣∣∣
]
, (21)

here E � x 0 ∗ , � x 1 , � α, � β[ ·] denotes the expectation operator with respect to random vectors � x 0 ∗ (ω) ,

  1 (ω) , � α(ω) and � β(ω) . Notice that, according to Eq. (19) , � x 0 ∗ (ω) = (x 02 (ω ) , . . . , x 0n (ω )) .
he practical computation of expression Eq. (21) can be done using Monte Carlo simulations
imilarly as it has been indicated for Eq. (20) . The error of Monte Carlo approximations
ecreases with the number of simulations according to O(M 

−1 / 2 ) [24] . 

emark 4. We have studied the general problem in which all the inputs are considered
andom variables. If some of them are not random variables, but deterministic constants, then
ollowing an analogous process to the one described above, the corresponding 1-PDF can be
btained. Alternatively, one can directly exploit the explicit expressions for the 1-PDF of the
olution and control obtained in this section by considering the non-random inputs (constants)
s Dirac delta that, as it is well known, can be interpreted as the PDF of degenerate random
ariables, i.e., deterministic constants. For instance, if the control coefficient is deterministic,
ay 

� b (ω) = 

� b 0 ∈ R 

n , and G is invertible (so, expression Eq. (14) applies), the 1-PDF of the
olution stochastic process of problem Eq. (6) can be calculated as follows 

f 1 ( � x ; k) = 

∫ 
R n+ s+ m 

f � x 0 , � x 1 , � α

(
G 

−1 ( � α, � β) ( � x − H( � α) � x 1 ) , � x 1 , � α
)
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| det (G 

−1 ( � α, � β)) δ( � β − � β0 ) | d � x 1 d � α d 

� β, (22)

here f � x 0 , � x 1 , � α denotes the joint PDF of the random vector ( � x 0 , � x 1 , � α) . Analogous expressions
an be written when expressions Eqs. (15) and (16) apply. 

. Numerical examples and applications 

In this section, we show three examples where the previous theoretical findings are applied.
o better illustrate the applicability of our results, we will consider different scenarios with
egard to the model parameters where randomness appears. In the Examples 1 and 2 , we will
ssume that the initial and final vector states are, respectively, random. In Example 3 , we
ill consider the randomization of an important macroeconomic model where all its param-

ters are assumed to be random variables. It is important to point out that a wide range of
robability distributions have been considered to carry out computations in the three exam-
les. This is a distinctive feature of the proposed approach since the results are established
n many contributions by assuming specific probabilistic patterns, mainly of Gaussian type.
n the subsequent examples, we shall see that our results apply to the case that uncertainties
re not only of Gaussian (see Example 1 ) but also when model parameters may have other
istributions like Beta, Triangular, etc. (see Examples 2 and 3 ). It aims at showing the gen-
rality of the results established in Section 4 . Additionally, we will compare the numerical
esults obtained utilizing the new method proposed in Section 4 with the corresponding ones
alculated via Monte Carlo simulations. 

xample 1. Let us consider problem Eq. (6) , where the following data are deterministic 

 = 

[
1 / 2 1 

−1 1 / 4 

]
, � b = 

[
1 / 2 

1 

]
, � x 1 = 

[
1 

1 

]
, K = 10, (23)

hile the initial state, � x 0 (ω) , is assumed to be a random vector with a multivariate Normal
istribution with mean, � μ, and variance-covariance matrix, �, given by 

� = [3 , 2] � , � = 

[
0. 08 0. 03 

0. 03 0. 03 

]
, i.e. � x 0 (ω) = [ x 01 (ω ) , x 02 (ω )] � ∼ N( � μ, �) . (24)

otice that 

ank (U 2 ) = rank 

(
A 

� b | � b 

)
= rank 

([
5 / 4 1 / 2 

−1 / 4 1 

])
= 2, 

o Kalman’s controllability condition is fulfilled and problem Eq. (6) is exactly controllable
or K ≥ 2. 

In Fig. 1 , we show the 1-PDF of the solution stochastic process, which is bidimensional,
t the beginning ( k = 0) and at the step k = 8 . In both time instants, we have highlighted two
onfidence regions at different confidence levels 1 − α = 0. 5 (blue) and 1 − α = 0. 9 (red). By
bserving the vertical scale and the support of the 1-PDF in both plots, we can observe as the
-PDFs become leptokurtic (uncertainty decreases). In Fig. 2 , we have graphically represented
he portrait phase of the solution at the steps k = 0, 1 , . . . , 10. At each one of these values,
e have also plotted confidence regions at the same confidence levels as in Fig. 1 . We can

ee, in full agreement with Fig. 1 , that uncertainty reduces as k increases until the system
eaches the deterministic final state � x 1 = (1 , 1) � , so its variability is zero. In particular, it is
nstructive to compare the confidence regions plotted in Fig. 2 for the steps k = 0 and k = 8
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Fig. 1. 1-PDF of the solution stochastic process to the random control problem Eq. (6) at the steps k = 0 (left) and 
k = 8 (right). On the PDF’s surface, we have highlighted confidence regions at different confidence levels 1 − α = 0. 5 
(blue) and 1 − α = 0. 9 (red). Example 1 . (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 2. Portrait phase for the random control problem Eq. (6) . The dashed spiral line represents the expectation of the 
solution. We have also plotted two confidence regions at the confidence levels 1 − α = 0. 5 (blue) and 1 − α = 0. 9 
(red) and at the steps k = 0, 1 , . . . , 10. Example 1 . (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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t
 

t  

n  

s  

t  
ith the graphical representation shown in Fig. 1 . Finally, in Fig. 3 , we have plotted the
volution of the PDF of the scalar control u(k, ω) as the step k changes from 0 to 9 (notice
hat, according to the model Eq. (6) , � x (k + 1 , ω) depends on u(k, ω) ). 

It is interesting to observe, from Fig. 2 , that the random system is correctly guided from
he random initial state � x 0 (ω) , given in Eq. (24) , until it reaches the deterministic (with
o variance) final state � x 1 = [1 , 1] � in exactly K = 10 steps. Since the control u(t )(ω) is
tochastic, it is worth noticing that Fig. 3 provides a stochastic description of the dynamics of
he control (via its PDF) at each step k to drive the random system accurately. Remarkably, the
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Fig. 3. PDF of the control stochastic process to the random control problem Eq. (6) at the steps k = 0, 1 , . . . , 9 . 
Example 1 . 

Table 1 
Comparison of the expectation of the control, E [ u(k)(ω)] , for the random control problem Eq. (6) with data Eqs. 
(23) and (24) , and the corresponding associate control, u(k) , for the deterministic control problem Eq. (2) with the 
data Eq. (23) and initial condition E [ � x 0 (ω)] = [3 , 2] � . Example 1 . 

k = 0 k = 1 k = 2 k = 3 k = 4

u(k) −0. 0255777 0.818269 0.568248 −0. 348518 −0. 737455 
E [ u(k)(ω)] −0. 025577 0.818269 0.568248 −0. 348518 −0. 737455 
| u(k) − E [ u(k)(ω)] | 5 . 2 × 10 −17 2. 3 × 10 −8 1 . 6 × 10 −14 7 . 8 × 10 −16 1 . 8 × 10 −11 

k = 5 k = 6 k = 7 k = 8 k = 9 
u(k) −0. 181843 0.534287 0.517829 −0. 129702 −0. 546761 
E [ u(k)(ω)] −0. 181843 0.534287 0.517829 −0. 129702 −0. 546761 
| u(k) − E [ u(k)(ω)] | 4. 4 × 10 −16 8 . 9 × 10 −16 1 . 0 × 10 −15 3 . 1 × 10 −16 1 . 2 × 10 −15 
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c  

k  
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b  
ontrol in the final step is random despite the final state is not. It is key information provided
y our approach that is consistent with the own random nature of the control system. 

To deeper interpret the results shown in Fig. 3 , we have compared the expectation of
he stochastic control (that can be easily calculated thanks to expression Eq. (18) ) with the
alue of the corresponding associate deterministic control problem (consisting of taking as
nitial state E [ � x 0 (ω)] = [ E [ x 01 (ω )] , E [ x 02 (ω )]] � = [3 , 2] � ). This comparison has been made
t each step k = 0, 1 , . . . , 9 . The results are collected in Table 1 . These figures show that
oth approaches fully agree in the average (expectation) sense. It is worth pointing out that
ur random approach enables us to also compute the main probability characteristics of the
tochastic control, such as the variance, asymmetry, kurtosis, etc., at each k = 0, 1 , . . . , 9 ,
ince these statistics can be straightforwardly calculated from its 1-PDF represented in Fig. 3 .

We conclude this example by comparing the results obtained for both the solution and the
ontrol, utilizing the method proposed in this paper and via Monte Carlo simulations. As it
an be observed from Fig. 2 , the variability of the systems reduces as the steps increase from
 = 0 to k = 10. Therefore, to perform this comparison fairly, we have chosen the intermediate
tep k = 3 where the system still has variability (see Fig. 2 ), so it is expected that differences
etween both approaches can be better highlighted. Fig. 4 shows the 1-PDF of the solution
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Fig. 4. 1-PDF of the solution stochastic process to the random control problem Eq. (6) at the step k = 3 using 
the newly proposed method (left), Monte Carlo with M = 10 6 simulations (center) and comparison between both 
methods (right). Example 1 . 

Table 2 
Mean absolute error between the approximations of the 1-PDF of the solution stochastic process to the random 

control problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point 
located at every cell of a mesh built on the rectangular domain D k divided into 50 × 50 cells for the steps k = 3 , 4, 5 . 
Example 1 . 

Error (solution) M = 10 4 M = 10 5 M = 10 6 M = 10 7 D k 

k = 3 0.183239 0.0581982 0.0189896 0.00594794 [ −4. 1 , −2. 3] × [ −0. 2, 0. 5] 
k = 4 0.0959597 0.0321949 0.0108326 0.00574444 [ −2. 1 , −1 . 0] × [2. 0, 3 . 6] 
k = 5 0.235663 0.0846163 0.0257995 0.00902539 [1 . 2, 2. 1] × [1 . 2, 2. 1] 

Fig. 5. PDF of the control stochastic process to the random control problem Eq. (6) at the steps k = 2 (left) and 
k = 3 (right) using the newly proposed method (solid curve) and Monte Carlo with M = 10 6 simulations (points). 
Example 1 . 

t  

i  

o  

c  

o  

i
 

i  

t  

t  
o the random control problem Eq. (6) at k = 3 using the corresponding expression given
n Remark 4 for � x 0 deterministic (left), Monte Carlo with M = 10 

6 simulations (center) and
verlapping these two plots. To better compare these two approaches, in Table 2 , we have
alculated the mean absolute error between the approximations given by these two methods
n the central point located at every cell of a mesh built on a rectangular domain D k divided
nto 50 × 50 cells for the steps k = 3 , 4, 5 . 

For the sake of completeness and consistency, what has been done before at step k = 3 ,
n Fig. 5 and Table 3 we have performed an analogous comparison for the random control at
he steps k = 2 and k = 3 to observe better its dynamics. Specifically, in Fig. 5 we compare
he results obtained using the newly proposed method against Monte Carlo with M = 10 

6
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Table 3 
Mean absolute error between the approximations of the PDF of the control stochastic process to the random control 
problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point located 
at every cell of a mesh built on the interval I k divided into 100 pieces for the steps k = 2, 3 , 4. Example 1 . 

Error (control) M = 10 4 M = 10 5 M = 10 6 M = 10 7 I k 
k = 2 0.107295 0.0402103 0.0101554 0.00404169 [0.32,0.82] 
k = 3 0.100178 0.0422447 0.0119579 0.00353224 [ −0. 6 , −0. 1] 
k = 4 0.111362 0.0301374 0.0104998 0.00334515 [ −1 . 04, −0. 44] 
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imulations. In Table 3 , we collect the mean absolute error between both approximations. We
an observe that both approximations agree at the expense of using many simulations via
onte Carlo. 

xample 2. Let us consider problem Eq. (6) , where the following data are deterministic 

 = 

[
0 1 

−1 0 

]
, � b = 

[
0 

1 

]
, � x 0 = 

[
0 

0 

]
, K = 10, (25)

hile the final state is assumed to be a random vector, � x 1 (ω) = [ x 11 (ω ) , x 12 (ω )] � , whose
omponents are independent random variables with shifted Beta distribution and a Triangular
istribution according to: 

 11 (ω) = v 11 (ω) − 4 

3 

where v 11 (ω) ∼ Be (4; 2) (26)

nd 

 12 (ω) ∼ T([14/ 9 , 23 / 9] ; 17 / 9) . (27)

otice that 

ank (U 2 ) = rank 

(
A 

� b | � b 

)
= rank 

([
1 0 

0 1 

])
= 2, 

o Kalman’s controllability condition is fulfilled, and problem Eq. (6) is exactly controllable
or K ≥ 2. 

Fig. 6 it is shown the 1-PDF of the solution to the random control problem Eq. (6) at the
teps k = 3 (left) and k = 10 (right). On the surface with have highlighted the confidence
egions at the confidence levels 0.5 (blue) and 0.9 (red). Looking at the vertical and domain
cales, we can observe that the 1-PDF becomes platykurtic (uncertainty increases) as expected
ince the initial state � x 0 is deterministic while the final state � x 1 (ω) is a random vector, so
aving variability. This behavior is in agreement with the results obtained in the portrait
hase shown in Fig. 7 . To complete the probabilistic analysis, in Fig. 8 , we have graphically
epresented the evolution of the PDF of the control u(k, ω) for k = 0, 1 , . . . , 9 . 

Finally, as it has also been done in Example 1 , in Table 4 , we compare the expectation of
he stochastic control against the corresponding values of its deterministic counterpart con-
isting of taking as final state E [ � x 1 (ω)] = [ E [ x 11 (ω )] , E [ x 12 (ω )]] � = [ −2/ 3 , 2] � ). From the
alues collected in Table 4 we can clearly observe that both approaches show full agreement
n the average or expectation sense. It is worth pointing out that our random approach also
rovides a full statistical description of the dynamics of the random control via the PDF
epresented in Fig. 8 . 
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Fig. 6. 1-PDF of the solution stochastic process to the random control problem Eq. (6) at the steps k = 3 (left) and 
k = 10 (right). On the PDF’s surface, we have highlighted confidence regions at different confidence levels 1 − α = 

0. 5 (blue) and 1 − α = 0. 9 (red). Example 2 . (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 7. Portrait phase for the random control problem Eq. (6) . The dashed spiral line represents the expectation of the 
solution. We have also plotted two confidence regions at the confidence levels 1 − α = 0. 5 (blue) and 1 − α = 0. 9 
(red) and at the steps k = 0, 1 , . . . , 10. Example 2 . (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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Analogously, as it has been done in Example 1 , we have performed a comparative analysis
f the results obtained utilizing the proposed method against Monte Carlo with M = 10 

6

imulations. The corresponding results are presented in Figs. 9 and 10 , and Tables 5 and 6 .
e can observe that both approaches agree. 

xample 3. In this last example, we illustrate the theoretical results previously established
ithin the setting of Macroeconomics utilizing the celebrated multiplier-accelerator model
roposed by Samuelson, [43] , and that has been extensively considered in Economics. Let
 (k) , C(k) , I (k) , and g(k) be the national income, the consumption expenditure, the private
nvestment, and the government expenditure at period k, respectively. Then, according to
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Fig. 8. PDF of the control stochastic process to the random control problem Eq. (6) at the steps k = 0, 1 , . . . , 9 . 
Example 2 . 

Table 4 
Comparison of the expectation of the control, E [ u(k)(ω)] , for the random control problem Eq. (6) with data Eqs. 
(25) –(27) , and the corresponding associate control, u(k) , for the deterministic control problem Eq. (2) with the data 
Eq. (25) and final state E [ � x 1 (ω)] = [ −2/ 3 , 2] � . Example 2 . 

k = 0 k = 1 k = 2 k = 3 k = 4

u(k) 2/ 5 2/ 5 −2/ 5 −2/ 5 2/ 5 
E [ u(k)(ω)] 0.40 0.40 −0. 40 −0. 40 0.40 
| u(k) − E [ u(k)(ω)] | 1 . 5 × 10 −8 1 . 3 × 10 −8 1 . 5 × 10 −8 1 . 3 × 10 −8 1 . 5 × 10 −8 

k = 5 k = 6 k = 7 k = 8 k = 9 
u(k) 2/ 5 −2/ 5 −2/ 5 2/ 5 2/ 5 
E [ u(k)(ω)] 0.40 −0. 40 −0. 40 0.40 0.4 
| u(k) − E [ u(k)(ω)] | 1 . 3 × 10 −8 1 . 5 × 10 −8 1 . 3 × 10 −8 1 . 5 × 10 −8 1 . 3 × 10 −8 

Fig. 9. 1-PDF of the solution stochastic process to the random control problem Eq. (6) at the step k = 9 using 
the newly proposed method (left), Monte Carlo with M = 10 6 simulations (center) and comparison between both 
methods (right). Example 2 . 

Table 5 
Mean absolute error between the approximations of the 1-PDF of the solution stochastic process to the random 

control problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point 
located at every cell of a mesh built on the rectangular domain D k divided into 50 × 50 cells for the steps k = 7 , 8 , 9 . 
Example 2 . 

Error (solution) M = 10 4 M = 10 5 M = 10 6 M = 10 7 D k 

k = 7 0.54694 0.168004 0.0551315 0.0178488 [0. 9 , 1 . 6] × [ −1 . 9 , −1 . 1] 
k = 8 0.347771 0.117053 0.0365718 0.0117636 [ −1 . 9 , −1 . 0] × [ −2. 1 , −1 . 2] 
k = 9 0.244787 0.0804762 0.0255711 0.00874402 [ −2. 1 , −1 . 1] × [1 . 3 , 2. 4] 
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Fig. 10. PDF of the control stochastic process to the random control problem Eq. (6) at the steps k = 8 (left) and 
k = 9 (right) using the newly proposed method (solid curve) and Monte Carlo with M = 10 6 simulations (points). 
Example 2 . 

Table 6 
Mean absolute error between the approximations of the PDF of the control stochastic process to the random control 
problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point located 
at every cell of a mesh built on the interval I k divided into 100 pieces for the steps k = 6 , 7 , 8 . Example 2 . 

Error (control) M = 10 4 M = 10 5 M = 10 6 M = 10 7 I k 
k = 6 0.120381 0.0458477 0.0138592 0.00515293 [ −0. 6 , −0. 2] 
k = 7 0.1405 0.0340833 0.0111517 0.00530117 [ −0. 6 , −0. 2] 
k = 8 0.135596 0.0406236 0.0123871 0.00464571 [0.2,0.6] 
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amuelson’s model 

 (k) = C(k) + I (k) + g(k) , (28)

here 

(k) = αY (k − 1) , 

I (k) = β( C(k) − C(k − 1) ) = αβY (k − 1) − αβY (k − 2) , 

g(k) = 1 , (29)

eing 0 < α < 1 the marginal propensity to consume and β > 0 stands for the accelerator co-
fficient, that is, the investment acceleration factor in terms of observed consumption change
etween consecutive periods, Kevin [44] . In this contribution, we assume that government ex-
enditure is a control variable to make economic policy. Specifically, we will assume that it is
odeled via a control variable, say u, which is introduced at period k with regard to its pre-

ious period k − 1 , i.e., g(k) = u(k − 1) . Substituting the Hansen assumptions Eq. (29) with
(k) = u(k − 1) , the Samuelson’s model Eq. (28) can be written as a second-order difference
quation, namely, 

 (k + 1) − α(1 + β) Y (k) + αβY (k − 1) = u(k) , k = 1 , 2, . . . , K. (30)

s this model is based on a second-order recurrence, two values for both the initial and the
nal states are required to formulate it as a discrete control model. As a consequence, it will be
 controllable problem if a given national income final state { Y (K ) , Y (K + 1) } can be reached
rom every initial state of the national income { Y (0) , Y (1) } in a finite number of steps, K . To
ake advantage of the theoretical results obtained in Section 4 , in our subsequent analysis, we
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rst perform the following change of variable: � x (k) = ( x 1 (k ) , x 2 (k ) ) 
� := (Y (k − 1) , Y (k)) � ,

hen the above equivalent shifted model can be written in the form Eq. (1) 

  (k + 1) = A � x (k) + 

� b u(k) = 

[
0 1 

−αβ α(1 + β) 

]
� x (k) + 

[
0 

1 

]
u(k) , k = 1 , 2, . . . , K. (31)

ote that, according to the above change of variable, the solution of Samuelson’s model
q. (30) is given by x 2 (k) = Y (k) , To formulate the controllable problem according to
q. (31) , we fix K and assume that both, the initial state � x (1) = (x 1 (1) , x 2 (1)) = (Y (0) , Y (1))

that corresponds to k = 1 ) and the final target � x (K + 1) = (x 1 (K + 1) , x 2 (K + 1)) =
(Y (K ) , Y (K + 1)) (that corresponds to k = K when iterating the recurrence Eq. (31) ), are
nown. 

To carry out stochastic simulations on the randomized Samuelson’s model, we will take
 = 10, so, it shall be assumed that the probability distributions of the final national incomes
 (10) = Y (10, ω) and Y (11) = Y (11 , ω) are known, as well as of the initial national incomes
 (0) = Y (0, ω) and Y (1) = Y (1 , ω) . Specifically, hereinafter we will assume the following
istributions for the model parameters: 

• � x (1 , ω) = (Y (0, ω) , Y (1 , ω)) is distributed according to a multivariate Uniform
on the rectangle [0. 995 , 1 . 005] × [1 . 005 , 1 . 015] , i.e., � x (1 , ω) ∼ U([0. 995 , 1 . 005] ×
[1 . 005 , 1 . 015]) . 
• � x (11 , ω) = (Y (10, ω) , Y (11 , ω)) is distributed according to a multivariate Uniform on

the rectangle [1 . 85 , 1 . 95] × [1 . 95 , 2. 05] , i.e., � x (11 , ω) ∼ U([1 . 85 , 1 . 95] × [1 . 95 , 2. 05]) .
• α(ω) is distributed according to a Uniform random variable on the interval [0.93,0.97],

i.e., α(ω) ∼ U([0. 93 , 0. 97]) . 
• β(ω) is distributed according to a Gaussian random variable with mean 1.6 and standard

deviation 0.1 truncated on the interval [1.3,1.9], i.e., β(ω) ∼ N [1 . 3 , 1 . 9] (1 . 6 ; 0. 1) . 

As α(ω) and β(ω) are absolutely continuous random variables, according to Proposition 1 ,
he randomized Samuelson’s model is controllable. Then, by applying the results derived in
ection 4 , we can calculate the 1-PDF, f 1 (x 1 , x 2 , k) , of extended random control system
q. (31) . As x 2 (k, ω) := Y (k, ω) , the 1-PDF, f 1 (y, k) , of the Samuelson model Eq. (30) is
btained by marginalizing f 1 (x 1 , x 2 , k) with respect to x 1 . In Fig. 11 , we show the 1-
DF, f 1 (y, k) , of the solution of the randomized Samuelson’s model Eq. (30) at the steps
 = 0, 1 , . . . , 10, 11 . It is interesting to observe in Fig. 11 how to change the shape of
he PDFs from k = 0 and k = 1 (that correspond to Uniform distributions on the inter-
als [0.995,1.005] and [1.005,1.015], respectively) to k = 10 and k = 11 (that correspond
o Uniform distributions on the intervals [1.85,1.95] and [1.95,2.05], respectively). In Fig. 12 ,
e show, with further detail, the PDF of the solution at step k = 9 , f 1 (y, 9) , previous

t the two final given steps k = 10, 11 . We have included the approximation of f 1 (y, 9)

ia Monte Carlo simulations in this graphical representation. To carry out these simula-
ions, we have considered the following range for y: 1 . 644 < y < 1 . 887 , and this interval
as been divided into 100 sub-intervals. Then we generate an approximation in the mid-
le point within each sub-interval averaging 10 

6 simulations via Monte Carlo. We can see
hat both representations agree. In Fig. 13 , we show the PDF, f 1 (u, k) , of the stochastic
ontrol at the steps k = 1 , . . . , 10. For consistency with Examples 1 and 2 , in Table 7 , we
ompare the expectation of the stochastic control with the values corresponding to the deter-
inistic formulation of the control problem whose parameters are obtained as the expecta-
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Fig. 11. 1-PDF of the solution stochastic process to the random control problem Eq. (30) at the steps k = 0, 1 , . . . , 11 . 
Example 3 . 

Fig. 12. 1-PDF of the solution stochastic process to the random control problem Eq. (30) at step k = 9 (solid line) 
and using 10 6 Monte Carlo simulations (dots). Example 3 . 

t  

E  

1  

t
 

o  

(  

a  

a

ion of each random model parameters: E [ � x (1 , ω)] = [ E [ Y (0, ω)] , E [ Y (1 , ω)]] � = [1 , 1 . 01] � ,
 [ � x (11 , ω)] = [ E [ Y (10, ω)] , E [ Y (11 , ω)]] � = [1 . 90, 2] � , E [ α(ω)] = 0. 95 and E [ β(ω)] =
 . 6 . As in Examples 1 and 2 , from the values collected in Table 7 , we can observe that
he results completely agree. 

We finish this example showing a comparative analysis of our results for the approximations
f the solution and the control against Monte Carlo. The results are shown both graphically
see Fig. 14 ) and numerically with the mean absolute errors at different steps (see Tables 8
nd 9 ). We can observe from the plots and the error values that the results obtained via both
pproaches are consistent. 
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Fig. 13. 1-PDF of the control stochastic process to the random control problem Eq. (30) at the steps k = 1 , . . . , 10. 
Example 3 . 

Table 7 
Comparison of the expectation of the control, E [ u(k)(ω)] , for the random control problem Eq. (6) with data 
� x (1 , ω) ∼ U([0. 995 , 1 . 005] × [1 . 005 , 1 . 015]) , � x (11 , ω) ∼ U([1 . 85 , 1 . 95] × [1 . 95 , 2. 05]) , β(ω) ∼ N [1 . 3 , 1 . 9] (1 . 6 ; 0. 1) 

and β(ω) ∼ N [1 . 3 , 1 . 9] (1 . 6 ; 0. 1) , and the corresponding associate control, u(k) , for the deterministic con- 
trol problem Eq. (2) with the data E [ � x (1 , ω)] = [ E [ Y (0, ω)] , E [ Y (1 , ω)]] � = [1 , 1 . 01] � , E [ � x (11 , ω)] = 

[ E [ Y (10, ω)] , E [ Y (11 , ω)]] � = [1 . 90, 2] � , E [ α(ω)] = 0. 95 and E [ β(ω)] = 1 . 6 . Example 3 . 

k = 1 k = 2 k = 3 k = 4 k = 5 

u(k) 0.0713475 0.0565039 0.0448796 0.0357558 0.0285771 
E [ u(k)(ω)] 0.0701855 0.0558641 0.044837 0.0361572 0.0291058 
| u(k) − E [ u(k)(ω)] | 1 . 1 × 10 −3 6 . 4 × 10 −4 4. 3 × 10 −5 4. 0 × 10 −4 5 . 3 × 10 −4 

k = 6 k = 7 k = 8 k = 9 k = 10
u(k) 0.0229142 0.0184349 0.0148815 0.0120543 0.00979774 
E [ u(k)(ω)] 0.0233346 0.018517 0.0145216 0.0111647 0.00836374 
| u(k) − E [ u(k)(ω)] | 4. 2 × 10 −4 8 . 2 × 10 −5 3 . 6 × 10 −4 8 . 9 × 10 −4 1 . 5 × 10 −3 

Fig. 14. PDF of the control stochastic process to the random control problem Eq. (6) at the steps k = 8 (left) and 
k = 9 (right) using the newly proposed method (solid curve) and Monte Carlo with M = 10 6 simulations (points). 
Example 3 . 
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Table 8 
Mean absolute error between the approximations of the 1-PDF of the solution stochastic process to the random 

control problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point 
located at every cell of a mesh built on the interval I k divided into 100 pieces for steps k = 6 , 7 , 8 . Example 3 . 

Error (solution) M = 10 4 M = 10 5 M = 10 6 M = 10 7 I k 
k = 6 0.227135 0.0654861 0.0249257 0.0152618 [1 . 190, 1 . 535] 
k = 7 0.17502 0.0519701 0.0229236 0.00699532 [1.30,1.67] 
k = 8 0.239276 0.0566746 0.0205628 0.00682887 [1.46,1.79] 

Table 9 
Mean absolute error between the approximations of the PDF of the control stochastic process to the random control 
problem Eq. (6) using the newly proposed method and Monte Carlo with M simulations on the central point located 
at every cell of a mesh built on the interval I k divided into 100 pieces for the steps k = 5 , 6 , 7 . Example 3 . 

Error (control) M = 10 4 M = 10 5 M = 10 6 M = 10 7 I k 
k = 5 0.399155 0.115524 0.0345608 0.0168062 [ −0. 06 , 0. 12] 
k = 6 0.239157 0.0809467 0.0286726 0.00980201 [ −0. 08 , 0. 12] 
k = 7 0.304388 0.0976728 0.0345355 0.0144451 [ −0. 08 , 0. 11] 
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. Conclusions 

In this paper, we have solved, from a probabilistic standpoint, full randomized first-order
inear control models under very general assumptions. The term solving here means computing
he first probability density function of the solution and of the control of the problem. We
ave seen that this is more advantageous than computing the first statistics, such as mean,
ariance, etc., as it is usually done. It has been shown that the so-called Random Variable
ransformation method is an effective approach to obtaining semi-explicit representations (in

erms of multidimensional integrals) of the aforementioned densities. Moreover, under mild
onditions on the model parameters, these integral representations allow us to express the
ensities of the solution and control as expectations, which are very useful for computations
sing Monte Carlo simulations. A main advantage of the proposed approach is its wide range
f applications with regard to the family of probability distributions that model parameters
ay have, including the general case where they might be statistically dependent. Although

ur study has focused on the linear case, we think that the ideas exhibited throughout our
tudy can be useful to deal with more complex cases in forthcoming contributions as well
s to open new avenues in the real-world applications of Control Theory with Uncertainties
eyond the usual case where the stochasticity (noise) is of Gaussian type. Particularly, in
ur next step, we plan to extend the study performed in the paper to the case of discrete
rst-order control systems with delay. We will consider two different cases depending on the

erm of the equation where the control appears, first, when it acts on the unknown itself and,
econdly, when the delay affects the control. In both scenarios, we will focus on computing
xplicit (or semi-explicit) formulas for the 1-PDF of the solution and of the control, which
re stochastic processes. This analysis will be conducted under the general assumption that
ll model parameters and initial and final states are dependent random variables with a joint
robability density. 
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ppendix A. Proof of Theorem 1 

It is done using induction. 

• If k = 1 , then by Eq. (1) 

� x (1) = A � x (0) + 

� b u(0) 
Eq. (2) = A � x 0 + 

� b u(0) = A 

1 � x 0 + U 1 � u 1 . 

• If k = 2, then by Eq. (1) 

� x (2) = A � x (1) + 

� b u(1) 
Step k=1 = A 

(
A � x 0 + 

� b u(0) 
)

+ 

� b u(1) 

= A 

2 � x 0 + A 

� b u(0) + 

� b u(1) = A 

2 � x 0 + 

[ 
A 

� b | � b 

] [u(0) 

u(1) 

]
= A 

2 � x 0 + U 2 � u 2 . 

• Let us assume, by the induction hypothesis, that this is true for k. Let us prove it for
k + 1 

� x (k + 1) = A � x (k) + 

� b u(k) 

Eq. (3) = A 

(
A 

k � x 0 + U k � u k 
)+ 

� b u(k) 

= A 

⎛ 

⎜ ⎜ ⎜ ⎝ 

A 

k � x 0 + 

[ 
A 

k−1 � b | . . . | A 

� b | � b 

] 
⎡ 
⎢ ⎢ ⎢ ⎣ 

u(0) 

u(1) 
. . . 

u(k − 1) 

⎤ 
⎥ ⎥ ⎥ ⎦ 
⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

� b u(k) 

= A 

k+1 � x 0 + 

[ 
A 

k � b | . . . | A 

2 � b | A 

� b 

] 
⎡ 
⎢ ⎢ ⎢ ⎣ 

u(0) 

u(1) 
. . . 

u(k − 1) 

⎤ 
⎥ ⎥ ⎥ ⎦ + 

� b u(k) 

= A 

k+1 � x 0 + 

[ 
A 

k � b | . . . | A 

2 � b | A 

� b | � b 

] 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

u(0) 

u(1) 
. . . 

u(k − 1) 

u(k) 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = A 

k+1 � x 0 + U k+1 � u k+1 . 
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