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Abstract
In this note we study the spectrum and the Waelbroeck spectrum of the derivative operator
composed with isomorphic multiplication operators defined in the space of smooth functions
in [0, 1] which are flat at 0.
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1 Introduction and preliminaries

1.1 Introduction

The spectrum of a continuous linear operator T defined on a locally convex space X is defined
in an analogous way as in the case when X is a Banach space. Given T ∈ L(X), (here L(X)

stands for the continuous linear operators on X ), the resolvent of T , denoted by �(T ), is
defined as the subset of C formed by those λ such that λI − T admits a continuous linear
inverse (λI − T )−1. For λ ∈ �(T ) we denote, as usual, R(λ, T ) = (λI − T )−1 ∈ L(X).
When X is a Fréchet space, λI − T is an isomorphism if and only if λI − T is bijective.
The spectrum of T is defined as σ(T ) := C\�(T ). The point spectrum of T is defined
as {λ ∈ C : T (x) = λx for some x �= 0}. Due to the open mapping theorem, when X
is a Fréchet space, if λ ∈ C\σp(T ), then λ ∈ �(T ) if and only if λI − T is surjective.
Contrary to what happens on the setting of Banach spaces, the spectrum of an operator
defined on a Fréchet space could be empty, or unbounded (see [1–3, 7, 10, 12, 13]). Several
authors consider the Waelbroeck spectrum of the operator, as a natural way in order to
get holomorphy in the resolvent map. The Waelbroeck resolvent �∗(T ) is defined as the set
formed for those λ ∈ �(T ) such that there is a neighbourhood Vλ of λ contained in �(T ) such
that {R(λ, T ) : λ ∈ Vλ} is an equicontinuous subset of L(X). The Waelbroeck spectrum
σ ∗(T ) of T is defined as C\�∗(T ) (see [18]). From the definition it follows immediately
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σ(T ) ⊆ σ ∗(T ). The inclusion can be strict, as it can be checked in [2, Remark 3.5 (vi)]. The
example, stated without proof in [16, Example 2], is the Volterra operator in the space

C∞
0 ([0, 1]) := { f ∈ C∞([0, 1]) : f (k)(0) = 0 for all k ∈ N0}.

This space is endowed with its natural topology, which is generated by the norms ‖ f ‖n :=
sup{| f ( j)(x)| : x ∈ [0, 1], 0 ≤ j ≤ n}. These family of norms makes C∞

0 ([0, 1]) a Fréchet
nuclear space. More explicitly, [2, Remark 3.5 (vi)] can be stated as follows:

Proposition 1 The following operators are surjective isomorphisms in C∞
0 ([0, 1]).

(a) The derivative operator D : C∞
0 [0, 1] → C∞

0 [0, 1], f 
→ f ′, is an isomorphism which
satisfies σ(D) = σ ∗(D) = ∅.

(b) The inverse of D is the Volterra operator V : C∞
0 ([0, 1]) → C∞

0 ([0, 1]), f 
→
V ( f )(x) := ∫ x

0 f (t)dt, x ∈ [0, 1], which satisfies σ(V ) = ∅, σ ∗(V ) = {0}.
The study of the spectrum of operators defined on Fréchet spaces or more general locally

convex spaces has been an object of research in the last years, see e.g. [2, 3, 5, 6, 10, 12, 13,
15, 17].

Several of the aforementioned references are devoted to the study of the Cesàro operator in
spaces of functions. Ourmainmotivation is [3, 4], where Albanese, Bonet and Ricker showed
that the Cesàro operator C defined on C∞(R+) satisfies σ(C) = σp(C) = {1/n : n ∈ N}
and σ ∗(C) = σ(C).We study a class of operators which includes the Cesàro operator defined
in the space C∞

0 ([0, 1]), whose spectrum has been recently characterized by Albanese in [1].

1.2 Spectrum of operators on locally convex spaces

In this note we are concerned with spectra of isomorphisms on Fréchet spaces. In the next
proposition we include first a basic result which compares spectra and Waelbroeck spectra
of T and T−1 defined on a locally convex space X . It is a particular case of [3, Theorem 1.1],
due to Albanese, Bonet and Ricker.

Proposition 2 Let X be a locally convex space and T ∈ L(X) be an isomorphism. σ(T−1) =
{λ−1 : λ ∈ σ(T )} and σ ∗(T−1)\{0} = {λ−1 : λ ∈ σ ∗(T )\{0}}.
As a consequence of Proposition 2, if T is an isomorphism and λ �= 0, then λ is an accumu-
lation point in σ ∗(T )\{0} if and only if λ−1 is an accumulation point of σ ∗(T−1)\{0}. For
λ = 0 we see below that nothing can be asserted. When X is a Banach space and T is an
isomorphism on X then 0 is neither in the (Waelbroeck) spectrum of T nor in that of T−1.
In the case of Fréchet spaces we see that 0 can appear in the Waelbroeck spectrum of an
isomorphism and in that of its inverse, and that when it appears it can be both, an isolated
point or an accumulation point. In the next example, we consider the space ω = C

N of
sequences of complex numbers endowed with the product topology. The proof relies on the
fact that, if X , Y are locally convex spaces, T ∈ L(X) and S ∈ L(Y ), and we consider the
direct sum T ⊕ S ∈ L(X ⊕Y ), then σp(T ⊕ S) = σp(T )∪σp(S), σ(T ⊕ S) = σ(T )∪σ(S)

and σ ∗(T ⊕ S) = σ ∗(T ) ∪ σ ∗(S).

Example 3 Let T : ω → ω, (xn) 
→ (nxn). Then T is an isomorphism, T−1 : ω →
ω, (xn) 
→ ( 1n xn), σ(T ) = σp(T ) = σ ∗(T ) = N and σ(T−1) = σp(T−1) = { 1n : n ∈ N}
and σ ∗(T−1) = σ(T−1) = σ(T−1) ∪ {0}.

The operators D and V defined on C∞
0 ([0, 1]) are the same as in Proposition 1.
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(a) S := T ⊕ T−1 ∈ L(ω ⊕ ω) satisfies σ(S) = σ(S−1) = σp(S) = σp(S−1) = N ∪ { 1n :
n ∈ N} and σ ∗(S) = σ ∗(S−1) = σ(S) = σ(S) ∪ {0}.

(b) S := D⊕ V ∈ L(C∞
0 ([0, 1])⊕C∞

0 ([0, 1])) satisfies σ(S) = σ(S−1) = ∅ and σ ∗(S) =
σ ∗(S−1) = {0}.

(c) S := D⊕ T ∈ L(C∞
0 ([0, 1])⊕ω) satisfies σ(S) = σ ∗(S) = N, σ(S−1) = { 1n : n ∈ N}

and σ ∗(S−1) = σ(S−1) = σ(S−1) ∪ {0}.
(d) S := V ⊕ T ∈ L(C∞

0 ([0, 1]) ⊕ ω) satisfies σ(S) = N, σ ∗(S) = N0, σ(S−1) = { 1n :
n ∈ N} and σ ∗(S−1) = σ(S−1) = σ(S−1) ∪ {0}.
The next result is stated for Banach algebras in [11, Exercise 7.3.7]

Proposition 4 Let X be a locally convex space and let A, B ∈ L(X). Then σ(AB) ∪ {0} =
σ(BA) ∪ {0}.
Proof For λ ∈ �(AB)\{0}, set T := λ−1 I + λ−1B(λI − AB)−1A ∈ L(X). A direct
computation shows T = (λI − BA)−1. ��
Proposition 5 Let X be a locally convex space and let A, B ∈ L(X), B being an isomorphism.
Then σp(AB) = σp(BA), σ(AB) = σ(BA) and σ ∗(AB) = σ ∗ (BA).

Proof If λ ∈ σp(AB) and x ∈ X\{0} satisfies ABx = λx , then BA(Bx) = λBx and
Bx �= 0, and hence λ ∈ σp(BA). Conversely, if λ ∈ σp(BA) and x ∈ X\{0} satisfies
BAx = λx , then there is y ∈ X such that By = x . Then BABy = λBy, and the injectivity
of B yields ABy = λy, and consequently λ ∈ σp(AB).

Let assume now λ ∈ �(AB). We set Tλ := B(λI − AB)−1B−1. It can be checked that
Tλ(λI − BA) = (λI − BA)Tλ = I . Hence σ(BA) ⊆ σ(AB). Conversely, if λ ∈ �(BA),
one can check that Qλ := B−1(λI − BA)−1B is the inverse of (λI − AB). Thus we have
σ(AB) = σ(BA). Moreover, for any compact set K ⊆ �(AB) we have

{(λI − BA)−1 : λ ∈ K } = {B(λI − AB)−1B−1 : λ ∈ K }.
We conclude that {(λI −BA)−1 : λ ∈ K } is equicontinuous if and only if {(λI − AB)−1 :

λ ∈ K } is so, which implies σ ∗(AB) = σ ∗(BA). ��

1.3 Representation of C∞
0 ([0, 1])

It is well known that the space C∞
0 ([0, 1]) is isomorphic to the space s of rapidly decreasing

sequences. Bargetz has obtained in [9] an explicit isomorphism, which is used in [8] to
obtain explicit representations as sequence spaces of important spaces of smooth functions
appearing in functional analysis. We study in this note a wide class of isomorphisms defined
on this space containing the differentiation operator, the Volterra operator and also the Cesàro
operator. To do this, we need a representation ofC∞

0 ([0, 1]), as the one sided Schwartz space
of rapidly decreasing smooth functions S(R+). There is a natural representation for the one
unit translate of this space

S([1,∞)) := { f ∈ C∞([1,∞)) : lim
x→∞ xn f ( j)(x) = 0 for all j, n ∈ N0}.

To get such representation, we need the well known Faà di Bruno formula, which we state
below. Let x ∈ R: if g is C j , i.e f admits continuous derivatives up to order j , at x and f is
C j at f (x) then

( f ◦ g)( j)(x) =
j∑

i=1

f (i)(g(x))Bj,i (g
′(x), g′′(x), . . . , g( j−i+1)(x)),
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where Bj,i are the Bell polynomials

Bj,i (x1, x2, . . . , x j−i+1) =
∑ j !

i1!i2! · · · i j−i+1!
( x1
1!

)i1 · · ·
(

x j−i+1

( j − i + 1)!
)i j−i+1

,(1.1)

i1 + · · · + i j−i+1 = i , i1 + 2i2 + · · · + ( j − i + 1)i j−i+1 = j .

Remark 6 (a) From (1.1), it follows that |Bj,i (x1, x2, . . . , x j−i+1)| ≤ Bj,i (|y1|, |y2|, . . . ,
|y j−i+1|) whenever |xl | ≤ yl , 1 ≤ l ≤ j − i + 1.

(b) Let i ≤ j and let ( fl(x))
j−i+1
l=i functions defined on (0, 1] such that, there exists t(i) ∈ R

such that | fl(x)| ≤ xt(i) for each x ∈ (0, 1] and for each 1 ≤ l ≤ j − i + 1. Then there
exists M > 0, t ∈ R such that |Bj,i ( f1(x), f2(x), . . . , f j−i+1(x))| ≤ Mxt .

Proposition 7 C∞
0 ([0, 1]) = { f ∈ C∞([0, 1]) : f ( j)(x) = o(xn) as x approaches to 0

for all j, n ∈ N0}.
Proof Let f ∈ C∞

0 ([0, 1]). Without loss of generality, we assume f to be real valued. For
any x ∈ (0, 1], the mean value theorem implies | f (x)| = | f ′(t)|x for some t ∈ (0, x). A
reiteration of the argument produces | f (x)| ≤ supt∈[0,1] | f (n)(t)|xn for all n ∈ N0. The
condition f ( j)(x) = o(xn) as x approaches to 0 follows from the fact that f ( j) ∈ C∞

0 ([0, 1])
for all j ∈ N. The other inclusion is trivial. ��

FromProposition 7 andLeibnitz’s formula, it follows immediately the following corollary.

Corollary 8 Let f ∈ C∞
0 ([0, 1]) and t ∈ R. Then the function g(x) := xt f , for x ∈ (0, 1],

and g(0) = 0, belongs to C∞
0 ([0, 1]).

Theorem 9 The map T : C∞
0 ([0, 1]) → S([1,∞)), f 
→ T ( f ), defined as T ( f )(x) =

f̃ (x) := f (1/x), x ∈ [1,∞), is an isomorphism.

Proof For n ∈ N and x ≥ 1, by the Faà di Bruno Fórmula we have

xn f̃ ( j)(x) = xn
j∑

i=1

f (i)(1/x)Bj,i (−x−2, 2x−3, . . . , (−1) j−i+1( j − i + 1)!x−( j−i+2)).

(1.2)

We get M > 0, such that, for all 1 ≤ i ≤ j

|xn B j,i (−x−2, . . . , (−1) j−i+1( j − i + 1)!x−( j−i+2))| ≤ Mxn . (1.3)

Let t := 1/x ∈ (0, 1]. From (1.2), (1.3) and Proposition 7 we get

lim
x→∞ xn | f̃ ( j)(x)| ≤ M lim

t→0+

j∑

i=1

| f (i)(t)|t−n = 0. (1.4)

Then T is well defined. Clearly T is injective. Since T is obviously pointwise–pointwise
continuous, its graph is closed and hence T is continuous. We see that T is also surjective.
Given g ∈ S([1,∞)), we make an abuse of notation to define g̃(x) = g(1/x), x ∈ (0, 1],
g̃(0) = 0. For all j, n ∈ N, a completely symmetric argument to that used for getting (1.4),
using Remark 6 (b), gives

lim
x→0+ x−n g̃( j)(x) = 0.

From Proposition 7, it follows g̃ ∈ C∞
0 ([0, 1]). We conclude from T (g̃) = ˜̃g = g. ��
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2 Spectrum of multipliers on C∞
0 ([0, 1])

In view of Theorem 9, the results given in this section are closely related to [7, Proposi-
tion 3.3, Remark 3.5].

Definition 10 The space of multipliers of C∞
0 ([0, 1]) is defined as

M := {ω : (0, 1] → C : ∀ f ∈ C∞
0 ([0, 1])

ω f can be extended to 0 as a function in C∞
0 ([0, 1])}.

For ω ∈ M, we denote by Mω : C∞
0 ([0, 1]) → C∞

0 ([0, 1]), f 
→ ω f , the corresponding
multiplication operator.

Lemma 11 A function ω : (0, 1] → C satisfies ω ∈ M if and only if ω ∈ C∞((0, 1]) and,
for each j ∈ N0, there is n ∈ N such that ω( j)(x) = o(x−n) as x approaches to 0.

Proof By the definition, it is immediate to show that ω ∈ C∞(0, 1] whenever ω ∈ M.
Theorem 9 yields that ω ∈ M if and only if ω̃(x) := ω(1/x) is a multiplier of S([1,∞)).
By the standard proof characterizing the multipliers of S(R) (see [14]), this is equivalent to
ω̃ ∈ C∞([1,∞)) and for all j ∈ N there is n ∈ N such that ω̃( j)(x) = o(xn) as x goes to ∞.
Let k ∈ N such that ω̃′(x) = o(xk) as x goes to ∞. This is equivalent to ω′(x) = o(x−k+2)

as x approaches 0. Using Faà di Bruno formula one gets inductively the statement. ��
Proposition 12 Let ω ∈ M. The multiplication operator Mω : C∞

0 ([0, 1]) → C∞
0 ([0, 1]) is

an isomorphism if and only if ω(x) �= 0 for all x ∈ (0, 1] and 1/ω ∈ M.

Proof First we observe that if ω(x0) = 0 for some x0 ∈ (0, 1], then Mω f (x0) = 0 for
all f ∈ C∞

0 ([0, 1]). Hence Mω is not surjective (observe, for instance f (x) = e−1/x ∈
C∞
0 ([0, 1])). If Mω is an isomorphism, then the inverse T satisfies MωT ( f ) = ωT f = f ,

hence T ( f )(x) = (1/ω(x)) f (x) for all x ∈ (0, 1]. This means 1/ω ∈ M and T = M1/ω.
The converse is trivial. ��
Corollary 13 Let ω ∈ M. The multiplication operator Mω : C∞

0 ([0, 1]) → C∞
0 ([0, 1])

is an isomorphism if and only if ω(x) �= 0 for all x ∈ (0, 1] and there is m ∈ N such
that (1/ω(x)) = o(x−m) as x approaches 0. In particular, for every p ∈ R, if we define
ωp(x) := x p, then Mωp is an isomorphism.

Proof By Lemma 11 and Proposition 12, we only need to show the sufficiency of the con-
dition. Assume that ω(x) �= 0 and there is m ∈ N such that ((1/ω(x)) = o(x−m) as x
approaches 0. We need to show that 1/ω ∈ M. Let j ∈ N. By applying Faà di Bruno
formula we get

((ω(x))−1)( j) =
j∑

i=1

(−1)i i !(ω(x))−i−1Bj,i (ω
′(x), . . . , ω( j−i+1)(x)).

Therefore we apply the hypothesis to get k ∈ N such that (ω(x)−1)( j) = o(x−k) as x
approaches 0. The conclusion follows from Lemma 11 and Remark 6. ��
Corollary 14 If ω ∈ M then the spectrum of Mω is

σ(Mω) = ω((0, 1]) ∪ {λ /∈ ω((0, 1]) : xn/(λ − ω) unbounded in (0, 1] ∀n ∈ N}.
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Proof It follows from Corollary 13 applied to the multiplier λ−ω, for any λ ∈ C\ω((0, 1]).
��

Lemma 15 Let (ωi )i∈I ⊆ M. Assume that for each j ∈ N there are M j > 0 and t( j) ∈ R

such that |ω( j)
i (x)| ≤ Mj xt( j) for every x ∈ (0, 1], i ∈ I . Then the set of multiplication

operators (Mωi )i∈I ⊆ L(C∞
0 ([0, 1])) is equicontinuous.

Proof By the Banach Steinhauss theorem, we only need to show that, for every f ∈
C∞
0 ([0, 1]), the set {Mωi ( f ) : i ∈ I } is bounded in C∞

0 ([0, 1]). This happens when,
for every k ∈ N0, {(Mωi f )

(k)(x) : x ∈ [0, 1], i ∈ I } is bounded in C. Let fix k ∈ N0. Let
M = max{Mj : 0 ≤ j ≤ k}, t = min{t( j) : 0 ≤ j ≤ k}. Then

max
x∈[0,1] |(ωi f )

(k(x)| = sup
x∈(0,1]

∣
∣
∣
∣
∣
∣

k∑

j=0

(
k
j

)

ω
( j)
i (x) f (k− j)(x)

∣
∣
∣
∣
∣
∣
≤ M sup

x∈(0,1]

k∑

j=0

xt | f (k− j)(x)|.

We conclude since xt ∈ M by Corollary 12. ��
The following proposition is a direct consequence of Lemma 15.

Proposition 16 Let K ⊆ C be compact. The multiplication operators {Mhλ : λ ∈ K } form
an equicontinuous subset of L(C∞

0 ([0, 1])) in the following cases:

(a) hλ(x) := f (λ)xλ, f ∈ C(K ).
(b) hλ(x) := f (λ)eg(λ)xt , if t ≥ 0 and f , g ∈ C(K ).

Proposition 17 Let ω ∈ M. The Waelbroeck spectrum of Mω is σ ∗(Mω) = σ(Mω) =
ω((0, 1]).
Proof We first observe {λ /∈ ω((0, 1]) : xn/(λ − ω) unbounded in (0, 1] ∀n ∈ N} ⊆
ω((0, 1]). Actually, for any such λ there must exist a sequence (xn) ⊆ (0, 1] convergent to
0 such that limω(xn) = λ. Hence, by Corollary 14, we have σ(Mω) = ω((0, 1]). We only
need to show σ ∗(Mω) ⊆ ω((0, 1]). Let λ0 ∈ C\ω((0, 1]). We choose r > 0 such that there
exists c > 0 satisfying

|λ − ω(x)| > c ∀λ ∈ B(λ0, r), x ∈ (0, 1].
From Lemma 11, given j ∈ N0 there are k ∈ N and C > 0 such that |ω(i)(x)| ≤ Cx−k for
1 ≤ i ≤ j . From this, Faà di Bruno formula and Remark 6 we get M > 0, t ∈ R such that,
for every λ ∈ B(λ0, r), x ∈ (0, 1] we have

|((λ − ω(x))−1)( j)| =
∣
∣
∣
∣
∣
∣

j∑

i=1

i !(λ − ω(x))−i−1Bj,i (ω
′(x) · · · ω( j−i+1)(x))

∣
∣
∣
∣
∣
∣
≤ Mxt .

Lemma 15 gives the equicontinuity of {M(λ−ω(x))−1 : λ ∈ B(λ0, r)}. Hence λ0 ∈ �∗(Mω).
��

From Corollary 14 and Proposition 17 we get the following:

Example 18 For p ∈ R, let ωp(x) = x p ∈ M.

(i) If p > 0 then σ(Mωp ) = (0, 1] and σ ∗(Mωp ) = [0, 1]
(ii) If p < 0 then σ(Mωp ) = σ ∗(Mωp ) = [1,∞).
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3 Spectrum of Cesàro type operators on C∞
0 ([0, 1])

In this section we study the spectrum of operators of type V Mωp and also of type Mωp V ,
where ωp = x p , p ∈ R, Mωp is the multiplication operator and V is the Volterra operator.
These operators are isomorphisms in view of Proposition 1 and Corollary 13. The relevant
case Mω−1V gives the Cesàro operator. By Proposition 2, the results will determine the
spectrum of DMωp and Mωp D.

Lemma 19 Let g ∈ C∞
0 ([0, 1]) and q < 0. For c ∈ C with Re(c) > 0 let hc(x) :=∫ x

0 ec(x
q−tq )g(t)dt, for x ∈ [0, 1]. Then hc ∈ C∞

0 ([0, 1]) for every c ∈ C with Re(c) > 0.
Moreover {hc : c ∈ K } is a bounded subset of C∞

0 ([0, 1]) for any compact set K ⊆ {z ∈
C : Re(z) > 0}.
Proof Since g ∈ C∞

0 ([0, 1]), from the hypothesis combined with Proposition 7 it follows
that, for each n ∈ N there is Mn

0 > 0 such that, for each c ∈ C and x ∈ [0, 1], we have

|hc(x)| ≤
∫ x

0
|g(t)|dt ≤ Mn

0 x
n .

The derivative satisfies h′
c(x) = g(x) + cqxq−1hc(x). Inductively we get, for each j ≥ 2,

0 ≤ i ≤ j − 1, polynomials P j
i of three variables, with 0 ≤ i ≤ j , such that

h( j)
c (x) = g( j−1)(x) +

j−2∑

i=0

P j
i (x−1, xq , c)g(i)(x) + P j

j−1(x
−1, xq , c)hc(x).

Hence we conclude hc(x) ∈ C∞
0 ([0, 1]) from Proposition 7. The continuity of each

Pi (x−1, xq , c)with respect to c yields that, for each j, n ∈ N0, there exist constants Mn
j > 0

such that, for each c ∈ K , x ∈ [0, 1]
|h( j)

c (x)| ≤ Mn
j x

n ≤ Mn
j .

��
Theorem 20 For p ∈ R, consider the operator Tp := V Mωp : C∞

0 ([0, 1]) → C∞
0 ([0, 1]),

f 
→ ∫ x
0 t p f (t)dt, (or Tp := Mωp V : C∞

0 ([0, 1]) → C∞
0 ([0, 1]), f 
→ x p

∫ x
0 f (t)dt ).

(i) If p ≥ −1 then σ(Tp) = ∅ and σ ∗(Tp) = {0}.
(ii) If p < −1 then σ(Tp) = σp(Tp) = {λ ∈ C : Re(λ) > 0} and σ ∗(Tp) = σ(Tp).

Proof We study first the point spectrum in all cases. By Proposition 5, we only have to
prove the statement for Tp = V Mωp . Since Tp is an isomorphism (as a composition of
isomorphisms), then 0 ∈ �(Tp) for each p ∈ R. For λ �= 0, Tp( f ) = λ f for some f �= 0 if
and only if

∫ x

0
t p f dt = λ f (x). (3.1)

For p �= −1, since x p f = λ f ′ for every is equivalent to (3.1) for every f ∈ C∞
0 ([0, 1]),

a solution of (3.1) is of the form f (x) = hλ,p(x) := e
x p+1

λ(p+1) , and for p = −1 we get

hλ,−1(x) := ω 1
λ
(x) = x

1
λ . Therefore λ ∈ σp(Tp) if and only if hλ,p ∈ C∞

0 ([0, 1]). Hencewe
have σp(Tp) = ∅ for p ≥ −1 and σp(Tp) = {λ : Re((λ(1+ p))−1) < 0} = {λ : Re(λ) > 0}
for p < −1.
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103 Page 8 of 10 E. Jordá

For any p ∈ R, λ ∈ C\σp(Tp), λ �= 0, and g ∈ C∞
0 ([0, 1]), any solution f ∈ C∞([0, 1])

of the equation Tp( f ) − λ f = g is a solution of the differential equation

y′ − x p

λ
y = −1

λ
g′.

If we assume also f (0) = 0 then f has the form

f (x) := 1

λ
hλ,p(x)

∫ x

0
(−g′(t))h−λ,p(t)dt, (3.2)

In case hλ,p ∈ M, then λ ∈ �(Tp) and (3.2) gives the resolvent formula

R(λ, Tp)(g) := 1

λ
Mhλ,p V Mh−λ,p (−D)(g), g ∈ C∞

0 ([0, 1]). (3.3)

(a) Case p ≥ −1. In this case hλ,p ∈ M for p ≥ −1 and λ �= 0, due to Lemma 11. Hence
in this case, σ(T ) = σ(Tp) = ∅. We show now σ ∗(Tp) = {0}. Let K ⊂ C\{0} compact
and f ∈ C∞

0 ([0, 1]). The resolvent formula (3.3) applies here. We define

Bp(K , f ) := {R(λ,C) f : λ ∈ K } =
{
1

λ
Mhλ,p V Mh−λ,p (−D)( f ) : λ ∈ K

}

Proposition 16 together with the fact that equicontinuous sets are equibounded, yields the
boundedness of B(K , f ) for each p ≥ −1. Hence C\{0} ⊆ �∗(Tp), and consequently

σ ∗(Tp) ⊆ {0}. Let f ∈ C∞
0 ([0, 1]), such that f ′ ≤ 0 and

∫ 1
0 f ′(t)dt = −1. For every

λ ∈ C\{0} we have

R(λ, Tp)( f )(x) = 1

λ
Mhλ,p V Mh−λ,p (−D( f ))(x) = 1

λ

∫ x

0
hλ,p(x)h−λ,p(t)(− f ′(t))dt .

Now we observe that, for every 0 ≤ t ≤ x ≤ 1, 0 < λ < 1, hλ,p(x)h−λ,p(t) =
e

x p+1−t p+1
λ(p+1) ≥ 1 for any p > −1, and hλ,−1(x)h−λ,−1(t) = ( x

t

) 1
λ ≥ 1. Altogether leads

to

〈
δ1, R(λ, Tp)( f )

〉 = 1

λ

∫ 1

0
hλ,p(1)h−λ,p(t)(− f ′(t))dt ≥ 1

λ
.

From this we conclude{R(λ, Tp)( f ) : 0 < λ < 1} is not bounded. Hence 0 /∈ �∗(Tp),
i.e. σ ∗(Tp) = {0}.

(b) Case p < −1. For p < −1 and Re(λ) ≤ 0, λ �= 0, it follows form Lemma 11 that both
hλ,p and h−λ,p belong to M, and the resolvent formula (3.3) applies. Therefore, when
p < −1, {λ : Re(λ) ≤ 0} ⊆ �(Tp). Hence we conclude σ(Tp) = σp(Tp) = {λ ∈ C :
Re(λ) > 0}. Since σ(Tp) ⊆ σ ∗(Tp), we only lack to show {λ ∈ C : Re(λ) < 0} ⊆
�∗(Tp). When Re(λ) < 0 then from (3.2) and (3.3) we get

R(λ, Tp)(g)(x) := − 1

λ

∫ x

0
e

x p+1−t p+1
λ(p+1) g′(t)dt, g ∈ C∞

0 ([0, 1])

Now, since D is an isomorphism, Lemma 19 yields

{λ ∈ C : Re(λ) < 0} = {λ ∈ C : Re(1/(λ(p + 1))) > 0} ⊆ �∗(Tp).

��
Theorem 21 For p ∈ R, let Tp := Mωp D : C∞

0 ([0, 1]) → C∞
0 ([0, 1]), f (x) 
→

x p f ′(x)dt, (or Tp := DMωp : C∞
0 ([0, 1]) → C∞

0 ([0, 1]), f (x) 
→ (x p f (x))′dt).
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(i) If p ≤ 1 then σ(Tp) = σ ∗(Tp) = ∅.
(ii) If p > 1 then σ(Tp) = σp(Tp) = {λ ∈ C : Re(λ) > 0} and σ ∗(Tp) = σ(Tp).

Proof Combining Proposition 2 and Theorem 20 we obtain all the statements except 0 ∈
�∗(Tp) when p ≤ 1. For p < 1, the resolvent R(λ, Tp) can be directly computed:

R(λ, Tp)( f )(x) = −
∫ x

0
t−pe

λ(x−p+1−t−p+1)
−p+1 f (t)dt = −Mhλ,−p V Mω−p Mh−λ,−p ( f ),

for hλ,−p(x) := e
λx−p+1
−p+1 , ωp(x) := x p . The equicontinuity of {R(λ, Tp)( f ) : λ ∈ K } for

each f ∈ C∞
0 ([0, 1]) and K ⊆ C compact follows from Proposition 16 (b) and the fact that

equicontinuous sets are equibounded.
For p = 1, we have

R(λ, T1)( f )(x) = −xλ

∫ x

0

f (t)

tλ+1 dt = −MωλV Mω−λ−1( f ),

and we conclude in an analogous way using Proposition 16 (a). ��
Wefinish with a description of the spectrum of the differentiation operator in the one sided

Schwartz class, and we observe that the composition of these operators with multiplication
by monomials (or other powers of x) can be described with the same arguments.

Theorem 22 Let consider the differentiaton operator D : S([1,∞)) → S([1,∞)), f 
→ f ′
and its inverse I : S([1,∞)) → S([1,∞)), f 
→ − ∫ ∞

x f (t)dt.

(i) σ(D) = σp(D) = {λ ∈ C : Re(λ) < 0} and σ ∗(D) = σ(D).
(ii) σ(I ) = σp(I ) = {λ ∈ C : Re(λ) < 0} and σ ∗(I ) = σ(I ).

Proof Observe that, by means of the isomorphism defined in Proposition 7, D is equivalent
(making an abuse of notation) to −Mω2D : C∞

0 ([0, 1]) → C∞
0 ([0, 1]), f 
→ −x2 f ′(x).

Now (i) follows from Theorem 21 (ii). Statement (ii) is a consequence of Proposition 2 and
(i). ��
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