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Abstract: The electric machines are the elements most used at an industry level, and they represent 
the major power consumption of the productive processes. Particularly speaking, among all electric 
machines, the motors and their drives play a key role since they literally allow the motion inter-
change in the industrial processes; it could be said that they are the medullar column for moving 
the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, 
as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This 
review presents a general overview of the reported works that address the efficiency topic in motors 
and drives and in the power quality of the electric grid. This study speaks about the relationship 
existing between the motors and drives that induces electric disturbances into the grid, affecting its 
power quality, and also how these power disturbances present in the electrical network adversely 
affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, 
classification, and mitigations of power quality disturbances are discussed. Additionally, several 
works are reviewed in order to present the panorama that show the evolution and advances in the 
techniques and tendencies in both senses: motors and drives affecting the power source quality and 
the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends 
in techniques and future work about power quality analysis from the motors and drives efficiency 
viewpoint is provided. Finally, some prompts are made about alternative methods that could help 
in overcome the gaps until now detected in the reported approaches referring to the detection, clas-
sification and mitigation of power disturbances with views toward the improvement of the effi-
ciency of motors and drives. 

Keywords: electrical drives; electrical machines; energy efficiency; energy-saving; induction motor; 
power quality 
 

1. Introduction 
The energy conversion through electrical and electromechanical machines allows for 

performing a wide variety of man activities that were considered complex to be carried 
out by themselves. These devices are installed widespread around the world and, accord-
ing to several authors in the literature, they consume between 60% and 80% of the total 
energy in the industrial sector [1,2]. Most of the machines used in the industrial processes 
are the electric motors, which transform the electrical energy nature, whether continuous 
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or alternating, into a mechanical one, also known as kinetic energy generation, ensuring 
the movement on an output shaft. The electric motors are coupled to a mechanical ensem-
ble for generating motion, rotational or linear, in purposes such as: pushing, heating, 
pumping, transporting, among others. In order to carry out the aforementioned actions, a 
necessary element that has been integrated with the electrical machines, the drive, is re-
quired, which is the system used for controlling the motion of the electric motors. The 
purpose of a drive is to adjust the output parameters of the motor, such as the speed, 
through variations in voltage or frequency [3]. Thus, the electric drive is the linkage be-
tween the mechanical and the electrical engineering. A typical drive system is assembled 
with an electric motor and a sophisticated controller unit that manipulates the rotation of 
the motor shaft. This control can be carried out quickly with the help of hardware and 
software. 

Despite of being the more recurrent equipment for controlling the industrial ma-
chines, both the electric motor and its drive cause adverse effects to the electrical grid by 
inducing power disturbances to it [4]. For instance, a motor startup could generate voltage 
disturbances such as sags, swells, and flickers in weak power systems. In addition to this, 
the drives induce harmonic and inter-harmonic content during the motor feeding when 
the frequency is variated [5,6]. In counterpart, in this regard it must be highlighted that a 
poor power quality, in turn, affects the normal operation of the motors and drives, causing 
equipment malfunctioning, failures, or even worse, irreparable damage [7]. Whenever a 
machine transforms energy from one form to another, and this combined with power 
quality disturbances in the electric grid yields an unavoidable loss in the equipment, it is 
normally manifest as an increase in the temperature and an efficiency reduction [8,9]. 
Therefore, since the electrical machines use a significant part of the total electric power 
generated worldwide and its performance impact directly in the productivity costs, any 
improvement in its operation and control that increases its efficiency will have a mean-
ingful impact [10–13]. 

Due to the abovementioned points, the power quality monitoring represents an es-
sential aspect to consider in today’s electrical environments or power grids. As a matter 
of fact, the critical aspect to be considered is the relationship between electrical motors 
and drives with the power quality. Indeed, several methodologies have been developed 
for detecting faults and identifying, classifying, mitigating, and suppressing power qual-
ity disturbances [14]. The important points related to the employ of such techniques ad-
dress: (i) the analysis of the effects produced by the power quality disturbances (PQDs) 
on electrical devices o machinery, (ii) the parameters involved with the disturbance gen-
eration in the electrical grid, and (iii) the proper action to be taken once the electrical phe-
nomenon has occurred. Therefore, it is important to conduct an exhaustive review of the 
reported works in two main aspects; those studies that focus on techniques developed and 
applied to detect, classify, and mitigate electrical events or power disturbances, and those 
investigations that attend what has been carried out regarding how poor power quality 
affect the electric motors and drives and reduces their efficiency. 

Regarding to the existing electric machine technologies, a generalized classification 
can be made according to [3,15]. This cataloguing concerns to the form of the power sup-
ply and applies for both electrical and electromechanical machines such as motors, drives, 
transformers, etc. Two main branches can be considered being direct current (DC) and 
alternating current (AC) electric machines, and from these other subcategories are de-
rived. In one hand, the case of direct current machines consists on DC generators and DC 
motors. On the other hand, for the case of alternating current machines there exist syn-
chronous and asynchronous electromechanical devices. In a similar way, as in direct cur-
rent, the synchronous machines are divided into AC generators and AC motors. Mean-
while, asynchronous technologies involve only induction machines. Apart from this, 
other categorization is made from the standpoint of performance losses, in this the elec-
trical machines may be divided into two groups: those with rotary parts (motors, genera-
tors), and those with static parts (transformers, reactors). Under this point of view, the 
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electrical and mechanical losses are produced in rotating machines, whereas only electri-
cal losses are produced in stationary machines. Finally, another classification can be made 
by takin into account if the machine uses single-phase or three-phase alternating current 
(AC) supply [16]. In addition to that, it is worth noticing that the motor drives can be 
classified according to the prime mover they handle, such as electric motors, diesel or 
petrol engines, gas or steam turbines, steam engines, and hydraulic motors [17]. 

From the aforementioned classifications, the asynchronous or induction motor to-
gether with its electrical drive are the most widely used in industry, the reason for which 
they are going to be selected for analysis in this review. The main advantage of the induc-
tion motor is that it eliminates all sliding contacts, resulting in an exceedingly simple and 
rugged construction. Moreover, the rapid development of new induction machines and 
the emerging of power drive technologies in the past few decades, ranging from a few 
watts to many megawatts [17], enables them to be used in many fields involving conver-
sion processes [18], whether in the generation, transmission, or electrical energy consump-
tion [19]. Therefore, the electrical motors and drives are used in industrial, commercial, 
and domestic applications such as transportation systems [20,21], rolling mills [22], paper 
machines [23], textile mills [24], machine tools [25], pumps [26], robots [27], fans [28], and 
vehicle propulsion [29], among others [30]. 

In relation to the applications of motors and drives some examples are described 
next. Some of the most recent studies on electrical machines are focused on the new ap-
plications for industries equipment supplying and that can be beneficial for the environ-
mental issues by using more efficiently motors and drives an combining them with emerg-
ing technologies [16,31–33]. For instance, the development of electric vehicles by improv-
ing their motors for driving, transportation, and mobility applications [34]. Regarding the 
electrical drives, many studies have been conducted in areas such as high-speed rotating 
mechanical machinery [35]. Concerning to the power generation topic, the efforts look for 
developing electric machines to be the element that allows a clean and efficient generation 
of energy [36]. Currently, two important aspects are currently being addressed: the best 
usage in the conversion of energy by electrical machines and at the same time heed that 
the use of these devices does not introduce anomalies to the electrical network. These con-
siderations are being sought from regulatory points of view. An example of the above 
mentioned is the power factor regulation by using capacitive or inductive elements de-
pending on the case. This power factor is penalized by electrical regulatory agencies. 

Some international organizations such as NEMA, ANSI, or IEEE define the standards 
and fix the tolerances for the operational parameters for electrical machines [37]. These 
standards specify power, speed, voltage, and operating frequency ranges in order to guar-
antee that the power source is as pure as possible, which is known as Power Quality (PQ) 
[38]. Nowadays, the tendency for electrical machines is to be more efficient, to require less 
maintenance, to have high power density, robustness, and applicability in different areas 
[39,40]. Some investigations present the central energy efficiency-related regulations, the 
most applicable efficiency increasing technical solutions, and the possibility of replacing 
the most widely used squirrel cage induction machines with more efficient variants. How-
ever, the industrial power supply is typically contaminated due to all the loads connected 
to the grid, and also their non-linear behavior because of its integrated elements that inject 
power quality disturbances (PQD) such as noise, sags, swells, interruptions, flicker, har-
monics and inter-harmonic content affecting the PQ [41]. In the end, these PQ affectations 
are also reflected back on the electrical machines by decreasing their efficiencies, provok-
ing malfunctioning and damage to their components [42]. Power electronics are an im-
portant part of any power conversion system. Notwithstanding, these devices have a non-
linear behavior and generate PQ issues that must be addressed [43]. All in all, monitoring 
PQ is not an easy task because measurements devices are expensive, and it is financially 
impractical to monitor every segment of a power network [44]. Additionally, another as-
pect to consider is that power signals are seldom stationary and the nonstationary nature 
of waveforms could corrupt the spectrum analysis results [45]. Among the main 
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parameters of an efficient power supply system are its reliability and its quality; moreo-
ver, it is aimed to have the possible shortness time after a failure. The monitoring systems 
of the power grid have areas for improvement [46]. Energy saving is taken into account 
by institutions, companies, and industry, promoting the best use of electrical machines 
[47]. 

In the case of domestic commercial applications in buildings and residential installa-
tions, several works have studied how they impact mainly in the energy consumption, 
energy saving, and energy management. For example, there are studies dedicated to ana-
lyzing and estimate the consumption of energy in constructions, residentials and publics, 
due to the common commercial equipment. The topic of real-time monitoring for energy 
saving is tackled in [48]. In other work, a study of power consumption was carried out 
with the aim to reach costs savings, by developing a community structure based on smart 
homes in electric network systems [49]. By its part in [50], artificial intelligence is used to 
estimate the energy consumption profile in commercial buildings in order to contract ad-
equate energy plans with public services companies considering the load projections. Fi-
nally, in [51] a scheme for the accurate assessment of the electrical energy demand of mod-
ern medical equipment operated in laboratories is presented, and it is found that only a 
few plug load groups mainly contributed to the total energy consumption. Although the 
domestic commercial equipment also impacts the energy efficiency, this work will focus 
only on the industrial equipment, specifically electric motors and their drives. 

This work presents an overview of the advances in the methodologies applied to the 
power quality analysis for detecting, identifying and classifying power disturbances that 
affects the operation of motors and drives, but also how the motors and drives generate 
adverse effects to the grid. This relation between the power grid and the industrial ma-
chines also impacts their own efficiencies and this field is an area of opportunity. A de-
tailed discussion of the methodologies that are the trends in these topics and those ap-
proaches is also provided that, by its own characteristics, must be considered to be ex-
plored since it represents potential solutions capable to provide accurate results with high 
reliability, overcoming the drawbacks of the conventional reported techniques. The re-
mainder of the review is organized as follows. In Section 2, the efficiency concept and how 
it is calculated in both aspects, for the electrical machines and for the electric power, is 
discussed, providing a quick overview of power quality phenomena and its existing rela-
tion with the electrical machines’ efficiency reduction. Section 3 sets out the techniques 
for identifying, detecting, and classifying PQDs following state-of-the-art methodologies 
and provides a general overview of how this type of study is being carried out and which 
techniques are currently in trend. Section 4 affords the techniques applied in electrical 
machines to detect, mitigate, or manage the condition when an electrical phenomenon is 
presented. Section 5 furnishes a discussion of the techniques presented in the review and 
the alternative approaches that could be explored in this same context. Finally, in Section 
6, the conclusions drawn for this review are presented. 

2. Electrical Machines and Energy Efficiency 
In general, the term of efficiency is very important when using electrical machines, 

motors and drives, as well as in the analysis of power quality, since they have a close 
relation between them. In brief, to this framework this review addresses two types of ef-
ficiency: the performance of the electric machine, and that defined by the electrical power 
supply. Generally speaking, the efficiency of an electrical machine is its capacity to convert 
the electrical active power into mechanical power. Therefore, the above sentence can be 
defined, technically speaking, as the ratio of the power output to the power input ex-
pressed in percentage terms [52]. Thus, it is necessary to know the values of the mechani-
cal and the electrical active power for determining the efficiency of an electrical machine 
[53]. On one hand, the relation of parameters for calculating the electrical active power in 
a three-phase motor, √3, is through the voltage, V, the current intensity, I, and the power 
factor, ܿݏ݋ሺ߶ሻ. Where ߶ is the phase angle between V and I. On the other hand, the 
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mechanical power is obtained with the relation of torque, ௦ܶ, and the angular velocity, ߱௠. The Table 1 summarizes these parameters relations to calculate the efficiency, ߟ, in 
an electrical machine, this table was created based on the equations presented in [54]. 

Table 1. Relationships to calculate electrical power, mechanical power, and efficiency for three-
phase motors. 

Parameter Relationship 
Electric Active Power ௘ܲ௟௘௖ = √3 ∙ ܸ ∙ ܫ ∙  ሺ߶ሻݏ݋ܿ

Mechanical Power ௠ܲ௘௖ = ௦ܶ߱௠ 

Efficiency ߟ = ௠ܲ௘௖௘ܲ௟௘௖ ⋅ 100% 

From table it is observed that efficiency states a relation between the electrical pa-
rameters and the design criteria of a machine, hence a bad or inadequately design, or fail-
ures on its construction, could affect to the electrical power grid [55]. As previously men-
tioned, the construction, the electrical components, the operation, and the auxiliary ele-
ments, to keep the operation of an induction motor through its drive, induce to the power 
grid electrical disturbances [38,41]. As examples, some typical causes of induced anoma-
lies in the power grid are the non-linear characteristics of loads, sudden switching of loads 
to the grid, transformers connected in asymmetrical banks, the significant presence of sin-
gle-phase loads [56], motors current peaks demand, frequency variations by the drives, 
the usage of static starters and power converters [57], changes of the impedance caused 
by variations in the capacitive and inductive components feed with AC voltage, equip-
ment failures [58]. In this sense, the type of an electric machine, motor with its drive, pre-
dominantly determines its efficiency characteristics and the affectations caused to the grid 
[59]. Thereby, any improvement on these, or in their configuration topologies, helps to 
keep a low energy consumption and to rise their efficiency [60]. All these aspects need to 
be considered, since according to the Department of Energy (DOE) data from USA the 
industrial motors consume one billion kilowatt-hours of energy each year, approximately 
the 50% of the world’s energy usage [61]. In consequence, regulations in developed coun-
tries are moving towards higher efficiency machine classes tending to reduce greenhouse 
gas emissions and efficient energy usage [62]. For instance, the Table 2 presents the effi-
ciency levels of electric machines according to the standards under NEMA and IEC or-
ganizations. The class IE stands for “International Efficiency”, and the IEC 60034-30 stand-
ard describes it [63]. 

Table 2. Efficiency classes and levels for electrical machines. 

Efficiency Levels 
Classes 

IEC (International) NEMA (USA) 
Standard IE1 - 

High IE2 Energy Efficient EPACT 
Premium IE3 Premium 

Super-Premium IE4 Super-Premium 
Ultra-Premium IE5 Ultra-Premium 

Along the years, the electrical machines are generally mass-produced, meeting spe-
cific design and efficiency requirements. Additionally, one of the current objectives of 
many countries, companies, and industries is to adopt an energy efficiency higher than 
IE4 class to reflect that they are within the framework of the new global regulations con-
cerning better environmental practices. The latest motors models, as minimum, must be 
classified IE3 class as stated in these international regulations. Today, high-efficient elec-
trical machines are a new and mandatory trend in motors manufacturing in Europe and 
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the United States of America. The efforts in upgrading the motors have resulted in excel-
lent solutions to environmental problems [64]. 

On the other hand, it is important to highlight that a chain exists in the process for 
generating, transporting, converting and distributing the electric energy to the final users. 
Such a chain has several links and steps in which the energy efficiency is affected. For each 
link in the chain, the issue of the power quality must be considered, since problems, losses, 
or affectations may occur. In the framework of this research, the last link is the industrial 
machine; hence, the efficiency of the power grid impact in the efficiency of the machine. 
In this sense, the efficiency of the electric power can be considered as the pure sine wave-
form and its maximum exploitation for feeding electrical equipment [65]. To this respect, 
a deficient power supply such as drops in voltage, or leakage current, affects the proper 
operation of a machine, reducing its efficiency, producing malfunctioning, reducing its 
lifespan expectancy, or even causing irreparable damage to the equipment [66,67]. There-
fore, the power quality (PQ), in this context, can be defined as an adequate power supply 
to electrical equipment and devices for their proper operation. According to the interna-
tional standards such as IEEE, IEC [68], the power supply voltage must be following es-
tablished references and limits in terms of amplitude and frequency. Any deviation from 
these parameters is considered an electrical disturbance or power quality disturbance 
(PQD) [69]. The international standards define some of these disturbances as amplitude 
changes referred to as sags, swells, or interruptions. The standards also define frequency 
change disturbances such as harmonic or inter-harmonic content, and other disturbances 
associated with minor changes in voltage such as oscillatory transients, fluctuations, and 
notching. In Table 3 are summarized the different kinds of disturbances, their category, 
and principal causes and effects for each of them, according to [70]. The flicker term is the 
effect produced by the voltage fluctuations as indicated in IEEE 1159 [71]. 

Table 3. PQDs and their causes and effects. 

Type of Disturbance Categories Causes Effects 

Transients [72] 
Impulsive 

Lightning strikes, transformer energiza-
tion, capacitor switching Power system resonance 

Oscillatory Line, capacitor or load switching System resonance 

Short duration voltage varia-
tion [41] 

Sag 
Motor starting, single line to ground 

faults 
Protection malfunction, loss of pro-

duction 

Swell Capacitor switching, large load switching,
faults 

Protection malfunction, stress on 
computers and home appliances 

Interruption Temporary faults 
Loss of production, malfunction of 

fire alarms 

Long duration voltage varia-
tion [41] 

Sustained interruption Faults Loss of production 

Undervoltage 
Switching on loads, capacitor de-energiz-

ation 
Increased losses, heating 

Overvoltage Switching offloads, capacitor energization Damage to household appliances 
Power imbalance [73]  Single-phase load, single phasing Heating of motors 

Waveform distortion [74] 

D.C. offset Geomagnetic disturbance, rectification Saturation in transformers 
Harmonics ASDs, nonlinear loads Increased losses, poor power factor 

Interharmonics ASDs, nonlinear loads Acoustic noise in power equipment 
Notching Power Electronic converters Damage to capacitive components 

Noise Arc furnaces, arc lamps, power convert-
ers 

Capacitor overloading, disturbances 
to appliances 

Voltage fluctuations [75]  Load changes 
Protection malfunction, light inten-

sity changes 
Power frequency variation 

[76]  
Faults, disturbances in isolated customer-
owned systems, and islanding operations 

Damage to generator and turbine 
shafts. 

It is common to find PQ problems in industrial electrical systems, such as voltage 
deviation, unbalance, and harmonics. These issues may adversely affect the operation of 
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induction motors and the electrical drives connected to the grid [77]. In general, the effects 
of an electrical source with a poor power source and contaminated with PQD on the in-
stalled induction motors of industrial processes can be detailed such as: the voltage sag is 
concerned with affectations in torque, power, speed, and stalling; the harmonic and inter-
harmonic content is associated with losses and torque reduction; the voltage unbalance 
cause extra losses of iron and copper, thus leading to increments of the temperature in the 
machines and vibrations; the short interruptions generate mechanical shock and possible 
stall; the impulse surges are related to isolation damage; the overvoltage is related with 
expected lifespan-shortening; and the undervoltage is concerned with overheating and 
low speed [78]. Needless to say, the electrical machines depend entirely on being supplied 
with adequate electrical power to function correctly. Consequently, the electrical network 
must satisfy the minimum requirements considered for a suitable utilization of the energy. 
In order to improve the energy performance indicators at industry, it is essential to know 
the operating status of electrical machines such as motors and drives [79].  

Analyses related to the energy-efficient operation of induction motors show that 
PQDs also affect isolated systems such as marine systems or ships. It is necessary to have 
the motors’ good energy-efficient operation [80]. PQDs can trigger protective devices im-
mediately to trip off motors. However, motors can ride through most of the voltage sags 
because sag durations are commonly short [81]. Some standards do not consider the effect 
of the simultaneous disturbances on the electrical machinery. Since several years ago, 
there has been an increase in protecting the electrical equipment in the industry [82]. 
Sometimes a non-invasive sensor is considered to monitor the condition of electrical ma-
chines [83]. Among the parameters to be monitored in electric motors is the power factor. 
PQ monitoring is often avoided as a measure for enhancing energy efficiency [80]. 

3. Techniques for Power Quality Detection, Identification, and Mitigation 
It is very important to highlight that the industrial processes require to have power 

networks with a Power Quality (PQ) as good as possible, since the equipment connected 
to the grid is very sensible and can easily be affected, as described above, in such a way 
that the final repercussions are reflected as economic losses and environmental problems. 
In this sense, the PQ analysis becomes a fundamental study in order to develop method-
ologies capable of detecting, identifying and mitigating the PQDs present in the power 
grids. As aforementioned, several works exist that have addressed the study of PQDs 
from different viewpoints. For example, the studies for detecting power disturbances 
mainly focus on the development of techniques capable of find out the presence of anom-
alies in electric signals no matter the nature of the disturbance. In another example, recent 
works have tackled the detection and identification of the anomalies in the electric signals 
by classifying them as a particular disturbance from those presented in Table 3. Addition-
ally, there are few studies that really handle the mitigation or minimization of the effects 
of PQDs on the equipment connected to the power grid. Typically, their solution to this 
industrial problem is very general, by applying strategies of loads balancing or capacitors 
banks, but these solutions only work for some disturbances. All the studies are important, 
and in the following paragraphs they are discussed according to the issue that they ad-
dress.  

Regarding to the identification problem of electric disturbances, the detection tech-
niques that have been developed are very important in order to enhance the quality of a 
power system [84]. In the first decades of analysis, traditional approaches have been prob-
abilistic-based over signals in the time domain, assuming that the disturbances do not 
affect the analytical process [85]. Later, for the energy quality monitoring, the process was 
a fault diagnosis where the electrical signal is processed through different techniques, 
usually implicating some transformation. Among the most common are those techniques 
such as Fourier transform and its variants such as fast Fourier transform (FFT), the short 
time Fourier transform (STFT), the discrete Fourier transform (DFT) [86–88], the discrete 
wavelet transform (DWT) [89–92], the Hilbert–Huang transform [93–95], the S-transform 
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[96], among others. After decomposing, or transforming, the analyzed signal, an extrac-
tion of indicators for making the disturbances detection is performed, the most typical is 
to use statistical ones in the time domain, the frequency domain, and the time–frequency 
domain. Recently, due to the difficulty for detecting various and more complex disturb-
ances that may appear in the electrical network, techniques with the ability to handle and 
process large volumes of data and find relations among the types of disturbances have 
been considered. For instance, classical machine learning techniques like support vector 
machines (SVM) [97–99], artificial neural networks (ANN) [85,100–102], deep learning 
(DL) [103,104], and other machine-learning techniques. Notwithstanding, several studies 
identify a combination of power disturbances described in the standards [105]. Such pat-
terns could be considered novelty results, and their study has been proposed as an im-
portant prospective in the field of electric power disturbances detection. 

In reference to the problem for classifying PQDs are presented the following works. 
The nature of a PQD present in the electric network generates profiles (or patterns) with 
high complexity on the loads, also connected to the grid, characterized during the 
operation by non-periodicities and disparities in the combinations of the disturbances 
observed by the meassuring system [106]. Therefore, power disturbances detection and 
classification with such profiles are still topics of interest because reported approaches are 
not robust enough for treating them, having drawbacks and limitations, since they only 
tackle the disturbaces by separate, or simple combinations [91]. To overcome these draw-
backs, the artificial intelligence techniques, the heuristic techniques, and deep learning are 
being used every time more frequently. The reason is very simple, these techniques are 
more suitable for treating problems where the prior knowledge of the system is not re-
quired, a big amount of data need to be processed, high accuracy is required, data with 
non-linear behavior, between other advantages [107–109]. Several works in the state of the 
art that address the tasks of detecting and clasifying power disturbances mention that 
methodologies based on data-driven could be considered to provide excellent results for 
the PQ analysis [110]. As a whole, the data-driven procedure consists of three steps: fea-
ture extraction, feature reduction, and classification (Figure 1).  

 
Figure 1. The typical process for Power Quality failure detection methodology [110]. 

Some examples of the works reported for detecting and classifying electric power 
disturbances are described in next. The work developed in [98] describes a scheme in 
which the input signal is first decomposed through the variational mode decomposition 
(VMD), then the recurrence quantification analysis (RQA) for defining the frequency and 
duration of the disturbances is performed. This method achieves, by means of data-
driven, an adequate parameterization of the present disturbances. Otherwise, in [90] a 
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modified method based on symmetrical components in the time domain for detecting and 
classifying various PQDs is presented. That implies that a single-phase PQ disturbance 
and other two ideal phases generated by means of a phase-locked loop (PLL) processed 
to determine the symmetrical components. Consequently, by triggering points it is possi-
ble to detect PQDs in the disturbance phase through the negative sequence component. 
The detected PQDs have been straightforwardly categorized from the profiles of the 
waveforms by means of the addition of the sequence components, positive and negative. 
Then, simulated and real-time results are presented for a wide variety of PQDs to show 
the effectiveness for detecting and classifying of the proposed method. Other studies such 
as [111] investigates the efficiency of a methodology for classifying electric disturbances 
when the manner to extrac the signal features is varied through different classical 
processing approaches on several data subsets. Although the results obtained are good, a 
limitation in this strategy is the high amount of resources required to compute the optimal 
features, since, precisely, several techniques are implemented. On another topic, the work 
presented in [112] describes a methodology for de PQDs classification; this study uses a 
higher order of cumulants as feature parameters and the classification approach is based 
in a quadratic approximation. Here, the signal processing tools are mandatory for obtain-
ing feature vectors from the voltage or current waveform data. Novel, or non-typical, ap-
proaches are also performed such as in [113] whose method is out of the typical ap-
proaches found in the literature about the processing through sparse signal decomposi-
tion on an overcomplete hybrid dictionary, and then the classification stage is performed 
by a decision tree algorithm. In another example, the work of [114] develops a new 
method for automatically detecting and classifying electric disturbances by means of Kal-
man filter (KF). Here, the KF is applied as series of equations for computing the state of a 
signal measured. The disadvantage is that it is necessary to make a selection of the param-
eters and verify that the state space model is not incorrect. For microgrids in the photo-
voltaic (PV) generation there are also a worry about detection of power disturbances gen-
erated by the grid inconsistencies. Thus, the work present in [115] presents a variational 
mode decomposition and empirical wavelet transform used as solution for monitoring 
and identifying electric disturbances in a distributed generation microgrid. With the ad-
vent of Industry 4.0, the aspects involving the condition monitoring of electrical machines 
have evolved. In consequence, new trends and techniques for signal processing such as 
artificial intelligence, handling of large volumes of data, and performance improvements 
are becoming more common, and they have been adapted by more and more users [116]. 
Recent reviews demonstrate the current literature and tendencies in development and re-
search to aim for the proper detection, identification, and classification of the PQDs [117]. 
These reviews specifically remark on the works related to digital signal processing (DSP) 
and machine learning [116]. The recent approaches show their capability to process large 
data amounts and several signal patterns on the PQ monitoring area that are the current 
trends. The firsts works that related the use of neural networks with PQDs detection and 
classification is that presented in [85], where a radial basis function neural network is im-
plemented for the classification of the 20 kinds of disturbances. This scheme is compared 
with others approaches involving the use of feed forward multilayer network, probabilis-
tic neural network and the generalized regressive neural network. Other works such as in 
[118] spend their effort in improving the feature extraction, feature calculation and feature 
selection stages in a common framework of identification and classification of PQDs. This 
work presents an optimization framework for the optimal selection of features from the 
different signal domains based on ant-colony optimization. In other case, it is presented 
in [119] a new approximation for classifying PQDs, firstly, a transformation of the signal 
from a representation of 1 dimension is carried out into a representation of 2 dimensions 
for extracting useful indicators. Finally, several approaches for classifyign the 
disturbances are executed to see wich perform better, between them the machine learning 
(ML) like k-nearest neighbour (kNN), multilayer perceptrons, and the SVM. In order to 
validate the aproximation, the PQDs employed are combined defining up to 2 or 3 
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disturbances at the same time. However, other approaches that address the combination 
of PQDs conclude that the best way to treat this situation is by data fusion [13]. The 
reduction of the numerical indicators is very important in the approaches based on data-
driven in order to avoid redundancy of information [16]. That means, not useful 
information must be discarded, or ignored, in order to improve the characterization task 
of patterns in the analyzed data, for example, the methodologies described in [111,120,121] 
consider for the reduction task the following techniques: the kNN, the principal 
component analyzis (PCA), and the sequential forward selection (SFS). Nonetheless, 
when handling with a large quantity of patterns, as usually recent methodologies for PQ 
monitoring do, their efficiency is quite restricted [18]. For that reason, the DL approaches 
were taken into account with more frequency in industry for handling with data sets of 
high dimensionality and complex pattern behavior [122]. The use of DL provides 
robustness and efficiency in the classification, recognition, and processing of, images, 
speech, and video, respectively, but also, recently, in managing of energy [33]. Some good 
examples of approaches that process data with a high level of complexity are the 
convolutional neural network (CNN), the recurrent neural network (ReNN), and the 
autoencoder (AE) technique. Although some of these approaches have been used to test 
their capabilities for monitoring signals in the power grid, the classification task of PQDs 
still needs exploration [123]. Even though the achieved performances are good enough, 
the absence of an standard and simple process to adjust and tune such techniques still 
represents a drawback that does not allow considering applications in real industrial 
environments [124]. Meanwhile, the investigation developed in [125] explores the 
potential of deep learning schemes for classifying PQDs by calculating statistical 
indicators from four main components through a variant of the PCA and making the 
disturbances categorization by menas of a CNN. The approach classifies multiple power 
disturbances in two main classes, reaching accurate results for simulated data. In [104], a 
novel method based on deep learning is proposed for identifying and classifying PQDs in 
three main stages: feature extraction from the power system, adaptive pattern recognition 
by means of AE, and, finally, disturbances classification by NN. Continuing with data-
driven strategies, the SVM are becoming important approaches for characterizing 
multiple patterns that would help to give support to the classification taks. The approach 
reported in [126] uses a variation of wavelet transform called tunable-Q to efficiently ex-
tract features from the signal tuning the Q-factor, and then the disturbances are classified 
by dual multiclass support vector machines. On the other hand, in [127] a cross wavelet is 
used, aided by Fischer linear discriminant analysis (LDA), and for the classification of 
disturbances it uses a Linear SVM. The study referenced in [120] presents a method to 
classify PQD based on wavelet energy change and the Support Vector Machine. Another 
scheme that uses a modified version of SVM and variation of wavelet transform is the 
work presented in [128], which uses empirical wavelet transform arguing is suitability for 
nonstationary kind of signals such as those presented in electrical disturbances. The 
method extracts six features that are input to the SVM method for the classification stage. 
In relation to the space-transform techniques, in [129] several statistical indicators are 
taken into account to be computed by means of the S-Transform, then the power 
dirturbances are characterized by appliying an analysis of multi-resolution over such 
indicators.. The method presented in [88] proposes PQDs recognition by applying the 
modified S-transform (MST) combined with the parallel stacked sparse autoencoder 
(PSSAE). Here, the MST uses a Kaiser window in order to concentrate the energy in the 
matrix of time-frequency and, together with the Fourier transform spectrum, the extrac-
tion of features is automatically carried out in order to input them to two sub-models in 
PSSAE. Moreover, there are performed the reduction of dimensionality and the visual 
analysis of the features, thus, the classification of the PQDs is finally made with the soft-
max. Discussing another technique, the approach of [130] uses the S-transform to extract 
the significant features of the electrical signals, which are the inputs to different machine 
learning models. This work considers the combination of single disturbances. In the end 
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proposes a hybrid scheme for the classification supported by the single models evaluated 
at first. A variation of S-transform called double-resolution S-transform is used in [97] to 
extract denominated effective features from the signals. Then, the disturbances classifica-
tion of the signals is made by directed acyclic graph support vector machines (DAG-
SVMs). The variations of the typical methods used in this article are supported in the ro-
bustness of the techniques and the fact to reduce the computational burden to implement 
in real-time applications. Involving aspects as the complexity of the signal processing in 
[86] an optimal multi-resolution fast S-transform is adopted to compress the information 
obtained from the features extracted and then with a rotation forest made the evaluation 
of 17 types of PQDs. As can be seen, a base transform is adopted. Depending on the ap-
plication of the hypothesis to test, it means evaluation in line, monitoring offline, applica-
tion in embedding systems, different techniques o adaptations of the techniques are con-
sidered. Moreover, Mahela in [129] proposed the detection and classification through the 
S-transform and Fuzzy C-Means. This approach tests their results through simulation sig-
nals by software. In other approaches, Sahani in [93] performs a novel signal segmentation 
method and a new scheme to carry out the classification stage of PQDs based specifically 
on the use of reduced sample Hilbert–Huang transform combined with class-specific 
weighted random vector functional link network. These authors based this approach on 
the implementation in a field programmable gate array (FPGA) environment to then test 
and validate at online monitoring and see the advantages of their proposal. 

Regarding to the mitigation of the effects generated by the PQDs, this field requires 
more researching, since the reported works are few and they are focused on strategies 
based on capacitors banks or loads balancing. The effective identification and classifica-
tion of PQDs is significant for controlling the pollution in the power grid previously to 
any corrective action. In this matter, the power filtering is an effective way to reduce the 
effects generated by the PQDs in the electric grids, for example, by using inductive active 
filters [131]. In [95], the improvement of the microgrid technology is presented, whose 
applications have increased and gained attention. Nevertheless, distributed generations 
with intermittency, loads with nonlinearity, and various electrical and electronic devices 
cause PQ problems in the microgrid, particularly in islanding configurations. A precise 
and fast method for detecting power disturbances is essential because it is the premise for 
the PQ control. The proposed approach presented in [58] develops a methodology capable 
of estimating the expected magnitude for voltage sags in order to provide information of 
the motor starters applied for ship electrical power. In reference to power imbalance, in 
[132], a shedding for managing time-optimal loads is presented. In general, this is allowed 
by using a post event overload mitigation tool that enhances the efficiency of the system 
by prioritizing the mitigations and ensures the time-dependent network security. Addi-
tionally, periodic disturbance mitigation techniques exist based on controllers [133], such 
works consider as periodic disturbance the harmonic content and by measuring the dis-
turbance and by applying a resonant scheme in the feed forward control or model predic-
tive control the disturbance is mitigated. The power quality is also analyzed in the mi-
crogrid systems and here the supra-harmonic (SH) content is also the interest topic. The 
mitigation strategies for SH are based in the use of dynamic voltage restorers (DVR) for 
handling voltage sags and swells, but with the limitation of keeping the harmonic content. 
However, some strategies combine the static synchronous compensator (STATCOM) with 
static VAR compensator (SVC) for reducing the harmonic effects [134]. Finally, Table 4 
summarizes the reported works in the literature and the issue addressed in the PQD anal-
ysis.  
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Table 4. Comparison of PQDs studies in the literature. 

Ref. PQD Issue Addressed Detection Tech-
nique 

Classification 
Technique 

Mitigation Tech-
nique 

Number of 
PQD Han-

dled 

Accuracy Re-
ported 

[90] Detection SC-PLL - - 8 - 
[114] Detection KF - - 14 98.8–100% 
[88] Detection and classification MST PSSAE - 12 99.46% 
[98] Detection and classification VMD-RQA SVM -- 7 99.03% 

[111] Detection and classification 
FT, STFT, HHT, 

ST, DWT 
ANN, SVM, DT, 

KNN 
- 16 99.31–100% 

[112] Detection and classification HOC QC - 2 98–100% 
[113] Detection and classification EMD SVM - 4 98% 
[115] Detection and classification VMD-EWT RKRR - 12 99% 
[85] Detection and classification DWT RBFNN - 20 96.3% 

[118] Detection and classification 1DST DT -- 14 99.93% 
[119] Detection and classification 2DRT-MOGWO KNN - 18 99.26% 
[122] Detection and classification DL CNN - 16 98.13–99.96% 
[123] Detection and classification PSR CNN - 10 99.8% 
[128] Detection and classification EWT SVM -- 15 95.56% 
[86] Detection and classification ST DT -- 16 99.47% 

[125] Detection and classification PCA CNN -- 11 99.92% 
[104] Detection and classification FFT, EMD, SAE SMNN - 17 98.06% 
[119] Detection and classification 2DRT KNN -- 17 99.26% 
[126] Detection and classification TQWT MSVM - 14 96.42–98.78% 
[135] Detection and classification HOS NT - 19 97.8% 
[131] Mitigation HPF - IAF 2 - 
[95] Mitigation HHT ANN SVG 4 - 

[132] Mitigation - - PEOM 2 - 
[133] Mitigation KF - RSC, MPC 4 - 

[134] Mitigation BPF-FFT - 
DVR, STAT-
COM+SVC 

6 - 

4. Techniques for Power Quality Related to Electrical Machines and Electrical Drives 
As described in previous sections, the PQ is an important topic to be analyzed for 

industrial equipment connected to the grid because they could be adversely affected 
yielding important economic losses. Therefore, this section describes and analyses, 
through the discussion of several works, how a poor power quality affects the main equip-
ment used at industry level, particularly speaking about motors and drives. It is worth 
mentioning that typically the electric grid is polluted with anomalies such as those de-
scribed above as PQDs, which not only cause malfunctioning, failures, or damage to the 
motors and drives, but also reduces its efficiency.  

Next, a discussion has begun based on those works that handle the affectations on 
motors and drives caused by PQDs related with changes in the amplitude of the power 
source such as voltage sags, swells, interruptions, and unbalance. For instance, regarding 
discussing or studying the effects of sag disturbances in induction motors, the work pre-
sented in [36] calculates the motor performance by analyzing the electromagnetic proper-
ties under symmetrical voltage sag conditions. Then, by using an adjustable speed drive 
(ASD), the energy consumption of the motor is reduced. These elements could be config-
urated in so many forms and can be used for motors of medium voltage applications; 
however, this solution does not present a good performance regarding Power Quality. 
Additionally, regarding voltage sag propagation, the work presented in [66] develops an 
analytical tool able to describe the influence of the sag disturbances over a group of in-
duction motors, but also describe the influence of the motors on the voltage sags charac-
teristics. That means, it is explained how a motor and its drive affects the power grid, but 
also is explained how the contaminated signal from the grid impacts in the motor 
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operation. In [81] the sag disturbance is analyzed in induction motors by presenting a 
method that determines the maximum allowed time for the motor connection, whereas a 
sag occurs in the power line. Due to sag events, a reduction in the electromagnetic torque 
is produced in the induction motors, tending to a deceleration effect. On the other hand, 
the work described in [136] presents a control scheme for minimizing the impact of the 
starting of an induction motor, on the network, by using a voltage feedback-based reactive 
power support from the existing distributed generator units. It is well known that the 
electronic equipment, the process control systems, among others, are susceptible to this 
kind of disturbance. A specific case has been observed when induction motors decelerate 
due to a short circuit occurrence in the power supply, naturally, the motor will accelerate 
after source conditions restoring demanding a high current value from the supply causing 
a postfault voltage sag [137]. On the other hand, the work presented in [138] develops a 
methodology for mitigating voltage sags during starting of three-phase induction motors. 
In that study, a neighboring voltage supporting distributed generation (VSDG) reduces 
the starting peak current and quickly restores the power source to typical values. The 
study presented in [93] analyses the transient characteristics of induction motors under 
the influence of sag disturbances using a multi-slice field-circuit-motion integrating time-
stepping finite element method. Additionally, in [98], the propagation produced by the 
induction motors in sags disturbances is analyzed. In [97], the first part of a study is pre-
sented where the interaction of induction motors against voltage sags disturbances is pre-
sented. Additionally, in [98] the effects produced due to short interruptions and voltage 
sags are investigated. Here, an analysis of protection devices indicates how to maintain 
the proper operation of the electrical machines. 

By the other side, some examples of works are next described regarding to the volt-
age unbalance issue. In this line, works such as in [139] present a strategy that is developed 
to mitigate the voltage unbalance that occurs when energizing induction motors to sup-
port the restoration of the grid after this event. To do this, a VSDG injects reactive power 
into the grid once it is calculated through optimal feedback control of distributed genera-
tors. The authors argue that distributed generators are capable of improving the power 
quality by providing ancillary services as reactive power injection, voltage unbalance 
compensation, and harmonic filtering. In other works, the wavelet transform is used, such 
as in [140], to deal with nonstationary signals and where a model is proposed to handle 
overvoltages caused by pulse-width modulation in voltage source inverters. These dis-
turbances are often presented due to the response from the motor to the inverter pulse 
voltages. On other topic, a method to estimate the shaft power of an induction motor op-
erating under voltage unbalance and with harmonic content is presented in [56]. Addi-
tionally, an algorithm of search in conjunction with an equivalent circuit are developed as 
the corresponding solution. Another example is the study described in [141] that analyzes 
induction motors connected to unbalanced three-phase voltages in the steady-state 
through an index called “the complex voltage unbalance factor”. The study carried out in 
[100] presents a methodology based on thermal effects to monitor an induction motor un-
der unbalanced disturbance conditions. By having thermal profiles, it can be determined 
when a motor is under the effects of this electrical disturbance. Additionally, the research 
reported in [67] proposes a new power quality index to determine two kinds of PQDs, 
voltage unbalance and harmonic content, typically presented in the power supply. The 
introduction of this new index aims to show the thermal effects of the disturbances into 
the induction motors simultaneously. In [79], the authors asset the specific effect of the 
positive sequence of voltage on derating three-phase induction motors under voltage un-
balance. This power disturbance could present in motors an overheating, decreasing in 
efficiency, and reduction in the output torque. In order to mitigate these adverse effects, 
the motor must be kept in an optimal operational state. 

There are works that address the harmonic content issue, such as the work presented 
in [61], where a new configuration is presented for induction motors. Here, the typical 
operation of the electrical motor drives is held as the configuration named vector control 
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mode, because this configuration offers a similar performance as in the case of dc motors. 
However, the use of these drives results in the harmonic injection to the current line af-
fecting the power quality. Different active or passive wave shaping techniques are used 
to mitigate the harmonic content effects [30]. In this sense, the IEEE 141-1993, the IEC 
60034-26, and the NEMA MGI-2003 establish derating factors for induction motors under 
unbalanced conditions of voltage and harmonic content. Additionally, the work presented 
in [142] investigates the harmful effects of the harmonic content as a power disturbance, 
which means changes in frequency above and under the fundamental frequency wave-
form, e.g., subharmonic and interharmonic content. It is known that these disturbances 
cause power losses, rotational speed changes, electromagnetic torque variations and 
windings temperature risings. Additionally, in that study it is reported that vibrations are also 
generated in induction motors due to the harmonic content caused by the nonlinear loads. 

Regarding the works focused on affectations by the PQDs in the motor efficiency, 
some works have addressed this analysis such as in [9], where it is shown how the derat-
ing factor established by the standards for motors with higher efficiency is insufficient for 
being applied in medium efficiency motors. This work compares the derating factor from 
different motor classes to maintain the losses at the rated values according to the stand-
ards. Similarly, in [8] a comparison was carried out between the motor classes IE2, IE3 and 
IE4 under two different PQDs, unbalanced voltage and harmonic content, where the re-
search focus was mainly on showing the life expectancy of the motors. The study presents 
several factors to be considered, in a very comprehensive manner, to properly select the 
motors for a better operation and reliability, nevertheless, the study is mainly dedicated 
to three-phase squirrel-cage induction motors (SCIMs). Several former works are reported 
in [143], where the studied effects in electrical machines by PQDs are the harmonic content 
and the voltage unbalance. This study presents the arrival of the adjustable speed drives 
(ASD), as a new enthusiasm for this topic back to the beginning of the 2000s. Additionally, 
it is performed the economic analysis and provide recommendations for mitigating the 
harmonic content affectations. Also, in this research is proposed an adequate instrument 
for assessing and monitoring the motors based on a coefficient related to the energy per-
formance, since this coefficient can indicate the equipment efficiency, or if there exist ex-
cessive losses. Last, but not least, another power disturbance that adversely affect the 
proper operation of induction motors and drives is the flicker. In relation to these phe-
nomenon effects in the induction motors, a research is described in [144] where it is as-
serted that the studies involving induction motors in the transfer and attenuation of fluc-
tuations need to be modeled in a better way. It has been reported that loads of induction 
motors contribute to the attenuation of this phenomenon. Table 5 summarizes the works 
that address the PQD issue in motors and drives and the different approaches proposed. 

Table 5. Literature dealing with PQDs in electrical machines and drives. 

Reference Electrical Machine PQD Method Year 
[36] Induction motors Voltage sags System modelling 2008 
[66] Induction motors Voltage sags Analytical tool for sag description 2008 

[81] Induction motors Voltage sags 
Analysis of critical clearance time of symmetrical 

voltage sags 
2014 

[136] Induction motors Voltage sags Voltage supporting distributed generation 2019 
[137] Induction motors Voltage sags Voltage supporting distributed generation 1995 
[138] Induction motors Voltage sags Coordinated control for distribution feeders 2018 

[139] Induction motors Voltage sags 
Coordinated optimal feedback control for distrib-

uted generators 
2020 

[140] Induction drives Voltage sags Wavelet modelling of motor drives 2004 
[93] Induction motors Voltage sags Reduced-Sample Hilbert–Huang transform 2019 
[97] Induction motors Voltage sags S-Transform with double resolution and SVM 2016 
[98] Induction motors Voltage sags Qualitative-quantitative hybrid approach 2020 
[56] Induction motors Voltage unbalance Estimation of shaft power 2016 
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[141] Induction motors Voltage unbalance 
Analysis on the angles of complex voltage unbal-

ance, Index CVUF 
2001 

[100] Induction motors Voltage unbalance 
Discrete wavelet transform, mathematical morphol-

ogy and speed variation drive 
2018 

[67] Induction motors Harmonic content New power quality index 2010 

[61] Induction motors Harmonic content 
Adjustable speed drive with a multiphase stagger-

ing modular transformer 
2019 

[30] Induction motors Harmonic content Pulse Multiplication in AC–DC Converters 2006 

[79] Induction motors Harmonic content 
Analysis of positive sequence voltage on derating 3-

phase induction motors 
2013 

[142] Induction motors 
Harmonics, subharmonics and 

interharmonics 
Vibration Analysis 2019 

[8] Induction motors 
Voltage unbalance and har-

monic content 
Comparison between classes efficiency with driver 

metrics 
2015 

5. Analysis of Techniques Trends 
This section addresses two main topics: the first one identifies and summarizes the 

present problematics and the tendencies towards solutions that have been applied regard-
ing electric rotating machines and drives and their relationship with power quality; the 
second one includes possible approaches as solutions to the niches of opportunity de-
tected in the related analysis to the detection, classification, and mitigation of the effects 
of the power disturbances. 

5.1. Overview on the Proposed Solutions Regarding Power Quality Issues on Motors and Its 
Drives 

The quality of an electric network, at the industrial facilities, is reduced by the influ-
ence of disturbances that normally appear by different factors, internal and external. For 
example, the induced disturbances to the power signals are due to the loads represented 
by electrical equipment switched to the network, their electric and electronic components, 
and their non-linear behavior. As a counterpart, the industrial equipment is affected, in 
turn, by a poor power quality provoking malfunctioning, reducing its lifespan expectancy, 
causing irreparable damage, and reducing it efficiency. From the analyzed works, an evo-
lution is observed in the manner that every problem is tackled; for instance, the first study-
developed methodologies focused on the detection of power disturbances without con-
sidering the anomaly nature. Such approaches mainly used space transformations (FFT, 
DWT) in the time domain, or the frequency domain, or the time–frequency domain in 
order to posteriorly make a manual analysis.  

Later, further works evolving not only for detection of power disturbances tasks, but 
also for identifying and classifying them. To this respect, several techniques were used to 
extract what is known as features from the measured signals, which are values computed 
from statistical, electrical, mechanical parameters, etc. An interesting topic is the manner 
in which the classification task was carried out, e.g., by integrating the artificial intelli-
gence (AI) techniques such as the artificial neural networks. Later other AI approaches 
were employed to identify and classify PQDs, such as the fuzzy logic, many variants of 
the NN, SVM, DT, among others. Some important drawbacks are presented in the PQ 
diagnosis, in recent years, such as the big amount of data generated by the high sampling 
frequency of the data acquisition systems, the high complexity in the hardware of new 
devises, the appearance of several PQDs combined. To overcome these limitations the 
heuristic techniques and the machine learning were integrated, which are capable of han-
dling high amount of data, treating with non-linearities, providing results with high ac-
curacy, working without previous knowledge of the problem, etc. Recently, for raising the 
accuracy and the reliability of the results, the techniques for features extraction aim for 
the generation of high-dimensional indicators matrices, with the aim to have as many data 
as possible to obtain valuable information of several combined disturbances. Posteriorly, 
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the redundant information is eliminated (only the useful information is kept) by applying 
techniques such as LDA or PCA. The advantages of the reduction techniques are the sim-
plified representations of the data which become useful outputs for conventional classifi-
cation techniques. The mitigation of PQDs is a problem that has been addresses by few 
works, since they focus their efforts on strategies based on capacitors banks or loads bal-
ancing, for that reason, it is observed that mitigation of PQDs is an area of opportunity. 

Finally, from the works that address the PQDs analysis to the particular application 
in motors and drives, it can be mentioned that recent approaches consider only the effects 
of voltage sags, generated by motor starters. Additionally, the use of electric drives also 
induces to the power system harmonic content (harmonics, interharmonic, and subha-
monics). The voltage unbalance is other typical problem affecting the induction motors 
operation and its drives, since they are switched to the grid generating asymmetric loads 
in the lines. The methodologies that tackle these problems, as observed in Table 5, are 
based on controlled systems by distribution generators, systems modelling, development 
of tools for describing the disturbances characteristics, and adjustable speed drives, 
among others. 

5.2. Techniques That Could Be Possible Potential Solutions to the Existing Problems 
As described in previous subsection, the effects of the PQDs and its combinations on 

the efficiency of motors and its drives are not full studied yet. Additionally, there is a niche 
of opportunity related to the study about the effects of electric motors and its drives over 
the electrical grid. The electric drives and the motors, especially the first ones, could affect 
the power quality and to produce undesirable effects that may not be considered, yet by 
these standards, some recent methodologies call this analysis a novelty detection. The PQ 
analysis could be still with views toward solutions about the identification, classification 
and mitigation issues but considering the use of alternative methodologies capable to 
overcome the drawbacks that reported methodologies cannot, not only considering some 
isolated disturbances such as voltage sags, voltage unbalance or harmonic content, but by 
considering other varieties of PQDs, their combinations and their mitigations. Therefore, 
a well-structured approach that combines the best of such alternative approaches, with a 
general procedure capable of treating a large amount of data and to provide high accurate 
and reliable results could be helpful in this area. With any technique used, an important 
aspect to be considered is that the information obtained by the approach must be used in 
the development of strategies for the mitigation of power disturbances. 

Regarding the alternative methodologies that still are not considered, in the next lines 
the novelty detection approaches are discussed as possible potential solutions to the field 
of PQ and motors and its drives. The detection of problems, such as electric disturbances 
in the grid and faults conditions into the induction motors, can be tackled through novelty 
detection (ND) [82]. The purpose of ND is to observe a system behavior and to decide 
whether an observation belongs to the same distribution of the existing observations, or 
if it must be considered different. In the framework of the PQ, the observations during the 
normal operation of the power grid, or of the motor and its drive, could be considered the 
reference (typical distribution), and any deviation from this behavior is susceptible to be 
considered as atypical. Between the different schemes to apply ND, (i) probabilistic tech-
niques, (ii) distance-based techniques, (iii) reconstruction techniques, and (iv) domain-
based techniques exist. 

The probabilistic techniques include the Gaussian Mixture Models [145], the Extreme 
Value Theory [146], the State-Space Models [147], the Kernel Density Estimators [148], and 
the Negative Selection [149]. These techniques estimate the value of density from the nor-
mal class, and assume that areas of low density in the training set indicate a low probabil-
ity to contain normal objects. A drawback of these methods is the limited performance 
when the training set is too small. Thus, when the dimensionality of data space growths, 
all data points extend to a bigger volume. Therefore, the signals measured in the electric 
grid and the physical magnitudes captured from the motor and its drive such as current, 



Energies 2022, 15, 1909 17 of 26 
 

 

voltage, vibrations, temperature, etc., could be employed to perform the probabilistic 
analysis. This way, the applicability of these techniques could be explored in the identifi-
cation and classification of power disturbances in the grid, as well as the faults conditions 
in motors and its drives. The analysis from the probabilistic viewpoint would be helpful 
to define classes with densities variations according to the anomalies detected (power dis-
turbance or fault condition). Additionally, the probabilistic approach could provide a new 
indicator index associated with the efficiency reduction caused by the power disturbances 
in the grid, or the fault conditions into a motor. 

On the other hand, the distance-based techniques include the k-Nearest Neighbor 
[150] and the Clustering k-Means [151]. These methods assume tightly grouping, as clus-
ters, for normal data, but different data are located far respect to their nearest neighbors. 
Additionally, adequate distance metrics are defined to establish the similitude between 
two points, even within spaces with high dimensionality. There are some drawbacks 
when using these techniques, for example, they just identify global points, and their flex-
ibility is not enough for detecting local novelty when the data sets present arbitrary shapes 
and diverse densities. Additionally, the computing of distance between data points rep-
resents high cost of the computational resources, mainly in data sets of high dimensional-
ity; as a consequence, these techniques lack scalability. Finally, the approaches based in 
grouping of data suffer because they must select an appropriate cluster width and they 
are sensible to the dimensionality variation. Similar to the probabilistic methods, several 
physical magnitudes from the motors, or from the power network, can be used to extract 
features that define such clusters. Therefore, these approaches are also sensible to be used 
for detecting and classifying electric disturbances, since each disturbance contains differ-
ent characteristic that allow them to be grouped by a distance among them, the same 
scheme could be defined to the faut conditions detection in motors and its drives. 

For the case of the reconstruction techniques, they include variants of the NN, Auto 
Associative Networks, Radial Basis Function, Self-Organizing Maps, Sparse Autoencoder, 
and Subspace Methods [152,153]. These methods imply to use a normal data set for train-
ing a regression model. As result, when the trained model process atypical data the dif-
ference (reconstruction error) between the regression objective and the real value ob-
served yields to a novelty detection. However, the main drawbacks are, for instance, the 
requirement of an optimized quantity of parameters for defining the structure of the 
model, and the direct relation of the performance to these model parameters. Addition-
ally, the networks that use reconstructive models with variable size on its structure suffer 
because it is necessary to select an effective training method that allows to incorporate 
new units to the existing model structure. In this same line, the approaches based on the 
subspace must select correctly the values of the parameters that control the mapping to a 
subspace of lower dimension. In this particular case, for instance, variants of the neural 
networks could be very helpful to train regression models that describe power disturb-
ances in the grid, or fault conditions into a motor. Thus, the reconstruction techniques 
could be applied for the quantification and classification tasks of abnormalities in the grid, 
or faults in the motor. A novel application of these approaches could be explored for mit-
igating the effects of power disturbances, for example, by defining a model that generates 
the opposite behavior to the disturbance to counteract their effects. 

By its part, the domain-based techniques include the Support Vector Data Descrip-
tion [154] and the One Class Support Vector Machine [155]. These methods describe a 
domain that have normal data, also define the limits that round the normal class and that 
follows the distribution of the data, but they do not provide an explicit distribution of the 
regions with high density. The usefulness of these techniques is observed mainly in the 
classification task of abnormal conditions in the power network and motors and its drives, 
since such conditions are represented by classes according to specific distributions of data. 
Additionally, a complement can be made through feature extraction and dimensionality 
reduction through LDA and PCA for all the novelty detection techniques. 
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In relation to the heuristic approaches, techniques such as the Genetic Algorithms 
(GA) [156], the Evolutionary Programming (EP) [157], the Particle Swarm Optimization 
(PSO) [158], and the Expert Systems (ES) [159]. These techniques can handle problems in 
which the previous knowledge is not necessary, they are good for looking values in 
searching spaces with non-linearities, non-convexities, and with high dimensionality. Ad-
ditionally, they are of simple concept and have easiness of implementation. As they were 
originally designed for optimization problems, they can be adjusted for a wide variety of 
situations where critical values need to be found. Therefore, the heuristic schemes could 
be considered as opportune in solving the drawbacks present in the novelty detection 
techniques. For example, in selecting the parameters needed by the novelty approaches to 
work with high performance, or in founding the adequate dimension of the clusters. Ad-
ditionally, the application of heuristic approaches is not limited to provide support for a 
medullar algorithm, they can also be used in parallel, or as the medullar algorithm, such 
as in a reconstruction model. A perfect example of this is the GA, which have characteris-
tics that enable it to accurately estimate several parameters (multi-optimization search) of 
a parameterized model [160]. In this same line the heuristic approaches could have ap-
plicability in the quantification of fault conditions in motors, as long as a generalized 
model of the conditions can be defined. Additionally, these techniques could be explored 
in the mitigation task of power disturbances by optimizing a model that generates the 
opposite behavior to the disturbance to counteract its effects. 

6. Conclusions 
This review presents the discussion of several works in the state of the art referring 

to the following aspects: the efficiency of electric machines (motors and drives); the power 
quality; the relationship between the power quality and electric machines affecting the 
efficiency; the techniques for power quality disturbances detection, classification, and mit-
igation; and the techniques for PQD analysis in motors and drives. The discussion of the 
works related to electrical machines and energy efficiency allows to conclude that there 
exists a mutual relation between motors and drives with the power quality. For example, 
the efficacy of the PQ of a power source is reduced by the disturbances induced by elec-
trical equipment connected to the grid, but also, once the grid is contaminated with elec-
tric disturbances, they reduce the performance of motors and drives. Is worth to highlight 
that in the literature, several works have been developed with the purpose to detect, clas-
sify, and mitigate the affectations generated by the PQDs. There are several methodolo-
gies; the firsts of them were designed only for the detection task, and they were based 
mainly in space-transform techniques. Later, the integration of artificial intelligence tech-
niques arrived; this brings out the opportunity for performing the classification of the 
PQDs. The most recent strategies combine the aforementioned techniques to define well-
structured approaches for feature extraction, dimensionality reduction and classification. 
Alternative methodologies such as novelty detection and heuristic techniques have also 
been addressed, making a discussion about their characteristics which make them poten-
tial solutions to give accurate and reliable results to problems where the reported meth-
odologies cannot. For example, by performing the detection, identification and classifica-
tion of power disturbances not considered yet by the standards, or other types of disturb-
ances different from those tackled by the reported works. Additionally, in the fault con-
ditions monitoring, in motors and its drives, these approaches can be explored for detect-
ing and classifying several faults or their combinations. By the other side, the heuristic 
schemes can be adopted to give support to the novelty detection methodologies, by se-
lecting the parameters that play a key role in the performance of such methodologies. 
Additionally, the heuristic approaches could be used for estimating the values of param-
eterized models that describe the power disturbances and the fault conditions, or their 
combinations, respectively. Mitigation of PQDs is still an area of opportunity, since few 
works have handled this issue but only for limited power disturbances. The alternative 
methodologies proposed in this review could be opportune options for proposing 
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strategies to meet this goal. For instance, novelty detection can provide accurate infor-
mation about the anomalies in the grid, or in a motor, in order to develop mitigation strat-
egies. One example about mitigation of power disturbances could be developed through 
the use of heuristic techniques, by defining a parameterized model capable of generating 
the opposite signal that mitigates (attenuating or minimizing) the effects of the disturb-
ances (or their combinations). Finally, the studies of PQD affecting the efficiency of motors 
and drives the analysis considered until now limits to some disturbances such as voltage 
sags, voltage unbalance, and harmonic content. Here, the well-structured approaches 
could be useful to this matter. Regulatory agencies are introducing energy efficiency re-
quirements and the electric machine must meet these restrictions. Therefore, it is im-
portant that the new lines of investigation look towards solutions to mitigate the PQDs in 
order to rise the electric machines efficiency that in consequence will increase the power 
grid efficiency. 
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Glossary 
FT Fourier transform 
ST S-Transform 
SVM Support vector machines 
QC Quadratic classifier 
RQA Recurrence quantification analysis 
KNN K-nearest neighbor 
RBFNN Radial basis function neural network 
DL Deep learning 
PSR Phase space reconstruction 
KF Kalman filter 
FFT Fast Fourier transform 
TQWT Tunable-Q wavelet transform 
IAF Inductive active filtering 
PEOM Post event overload mitigation 
BPF Band-pass filter 
STFT Short time Fourier transform 
DWT Discrete wavelet transform 
DT Decision trees 
SC Symetric components 
EMD Empirical mode decomposition 
EWT Empirical wavelet transform 
1DST 1-dinemsional S-transform 
MOGWO Multi-objective grey wolf optimizer 
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PCA Principal component analysis 
PSSAE Parallel stacked sparse autoencoder 
SMNN SoftMax neural network 
MSVM Multiclass support vector machine 
SVG Static VAR generator 
RSC Resonant controller 
STATCOM Static synchronous compensator 
HHT Hilbert–Huang transform 
ANN Artificial neural networks 
HOC Higher-Order cumulants 
PLL Phase locked loop 
VMD Variable mode decomposition 
RKRR Reduced kernel ridge regression 
2DRT 2-dimensional Riesz transform 
CNN Convolutional neural network 
NT Nutro tree 
MST Modified S-transform 
SAE Sparse autoencoder 
HPF High-pass filter 
SVC Static VAR compensator 
MPC Model predictive controller 
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