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Abstract: Induction motors (IMs) are essential components in industrial applications. These motors
have to perform numerous tasks under a wide variety of conditions, which affects performance and
reliability and gradually brings faults and efficiency losses over time. Nowadays, the industrial
sector demands the necessary integration of smart-sensors to effectively diagnose faults in these
kinds of motors before faults can occur. One of the most frequent causes of failure in IMs is
the degradation of turn insulation in windings. If this anomaly is present, an electric motor can
keep working with apparent normality, but factors such as the efficiency of energy consumption
and mechanical reliability may be reduced considerably. Furthermore, if not detected at an early
stage, this degradation could lead to the breakdown of the insulation system, which could in turn
cause catastrophic and irreversible failure to the electrical machine. This paper proposes a novel
methodology and its application in a smart-sensor to detect and estimate the healthiness of the
winding insulation in IMs. This methodology relies on the analysis of the external magnetic field
captured by a coil sensor by applying suitable time-frequency decomposition (TFD) tools. The discrete
wavelet transform (DWT) is used to decompose the signal into different approximation and detail
coefficients as a pre-processing stage to isolate the studied fault. Then, due to the importance of
diagnosing stator winding insulation faults during motor operation at an early stage, this proposal
introduces an indicator based on wavelet entropy (WE), a single parameter capable of performing an
efficient diagnosis. A smart-sensor is able to estimate winding insulation degradation in IMs using
two inexpensive, reliable, and noninvasive primary sensors: a coil sensor and an E-type thermocouple
sensor. The utility of these sensors is demonstrated through the results obtained from analyzing six
similar IMs with differently induced severity faults.
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1. Introduction

In the companies, electric motors have gained great importance, and have been widely used as
electromechanical devices for the conversion of energy, consuming more than 60% of all the energy of
any industrial nation [1]. Current quality requirements consider the use of monitoring systems and the
development of incipient failure detection techniques increasingly necessary in order to enhance the
reliability of these industrial systems so that production is not interrupted. Machines operating under
faulty conditions consume and spend more energy, causing additional economical losses. Furthermore,
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some failures can remain unnoticed in motors that work continuously with apparent normality;
nevertheless, if not detected in time, incipient faults can result in catastrophic and irreversible damage
to the machine, and if the fault progresses it can cause collateral damages to others systems coupled
to the induction motor (IM). Therefore, it is of paramount importance to study the main faults in
induction motors, and there is a clear necessity to develop emergent techniques that can detect faults
in the early stages, and to integrate new technologies. In this regard, some authors have adopted the
concept of a smart-sensor, in which one or more primary sensors are combined with a processing unit in
order to gather certain functionalities like processing, communication and integration. Smart-sensors
have found an application in different research fields, including the monitoring and diagnosis of
faults in distinct industrial applications [2,3], real-time high-resolution frequency measurement [4],
identification of broken bars and unbalance in induction motors [5,6], among others.

Surveys on motor reliability have determined that the distribution of failures in IMs can essentially
be classified into four classes: bearing faults, stator related faults, rotor related faults, and other
faults (cooling, connection, terminal boxes) [7]. Some investigations have shown that most failures
of electric motors can be attributed to bearings and windings [8]. Depending on the type and size of
the machine, problems related to stator windings correspond to a range between 16%–36% of total
reported faults [9,10], which is the second largest type of fault for IMs, just after bearings defects.
Stator winding insulation failures have recently received special attention. This is mainly because
the worst stator faults start from undetectable insulation degradation problems between drastically
adjacent turns [11–14] that lead to the appearance of an inter-turn fault, where two or more turns
become short circuited. If undetected at early stages or after its appearance, this type of fault can
develop into more severe problems very quickly. Many techniques found in the literature have been
proposed to detect winding faults, and focus on two main approaches: offline methods and online
methods [15]. Common offline methods that are typically used in industry include insulation resistance
measurement, polarization index/dielectric absorption measurement, offline partial discharge tests,
and evaluation of the dissipation factor [16–18]. A disadvantage of offline tests is the necessity to
remove the machine from service, a drawback that can lead to false indications caused by unrealistic
operations [19]. On the other hand, online monitoring methods are desirable due to their capability
to diagnose faults when a motor is in service. To this end, several techniques have been proposed to
perform online diagnosis, and many physical magnitudes have been highlighted as potential sources
of information, with each one having its own advantages and disadvantages, as discussed below.
Vibration [20], thermographic [21,22], and partial discharge [23] are some of the online methods used to
detect insulation inter-turn faults; however, most of these techniques are not yet proven to detect faults
during early stages, before reaching a severe phase, and in the case of the thermographic approach,
diagnosis is difficult to perform under real working environmental conditions, since optimal conditions
must be met to get confident results. Other classical approaches are focused on the use of current and
voltage signals: spectral analysis of the steady-state current using the Fourier transform (motor current
signature analysis, MCSA) [24], analysis of the zero and negative sequence currents [25], and analysis
of the zero-sequence voltage [26]. The main disadvantage of analyzing the zero-sequence voltage is
that the final diagnosis can be affected by the influence of other parameters, such as voltage unbalances,
measurement errors, and inherent asymmetries during the manufacturing process, which can cause
false diagnoses. Although analysis of the negative sequence current overcomes these problems [27],
it is required to measure three-line currents, a condition that is not always available.

Due to the need for a system that is able to automatically diagnose in an online mode and monitor
the health of winding insulation in induction motors (before an irreversible fault occurs), this work
introduces a smart-sensor composed of two primary sensors (a coil sensor and an E-type thermocouple
sensor) and a hardware signal processing unit (HSP unit) in order to accomplish this task. The wavelet
entropy (WE) of the coil sensor was used as an auxiliary parameter in the final diagnosis, since it is able
to characterize the dynamism and the order/disorder of a signal using a single value [28–31]. The coil
sensor was used to capture the stray flux signal, and the E-type thermocouple sensor acquired the
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temperature of the motor, since both of them have a non-invasive nature. In order to constantly monitor
and diagnose winding insulation degradation, the smart-sensor applied a signal processing stage
composed of the computation of the discrete wavelet transform (DWT) followed by the calculation of
the WE. Furthermore, with the purpose of automating the full process, a trained artificial neural network
(ANN) performed a regression estimation by using the wavelet entropy and the induction motor
temperature as input signals. All computations were performed by a field-programmable gate array
(FPGA) HSP digital unit by developing proprietary hardware cores focused on the above-mentioned
tools, as described below.

2. Materials and Methods

In this section, we detail the mathematical tools and methodologies that constitute the main
core of the smart-sensor. The DWT is used to obtain a representation of the frequency content for
the different bands that make up the input electromotive force (emf ) signal. Wavelet entropy is used
as the main parameter that will serve to subtract relevant information about the healthiness of the
winding insulation, since it is a tool capable of describing the dynamic behavior of a signal, in addition
to indicating the amount of order/disorder of that signal. Furthermore, wavelet entropy shows a clear
relation to the healthiness of the winding insulation, as will be shown below. Finally, a final diagnosis
through an artificial neural network, whose inputs are indeed wavelet entropy and IM temperature,
will indicate the healthiness of the winding insulation using an automatic process.

2.1. Discrete Wavelet Transform (DWT)

As is well known, DWT is a time-frequency analysis transform that provides significant features
for the analysis of a time-variant signal, since this technique is very suitable for decomposing a signal
into well-defined “wavelet signals” that cover specific frequency ranges that are known to be directly
dependent on the sampling frequency used to capture the analyzed signals [32]. The DWT of a signal
can be defined as

W(i, k) =
∑

x(k)ψi,k(t) (1)

where i is the decomposition level, k is the number of the sample, and ψi,k(t) is the discrete wavelet
mother function.

To compute the DWT of a signal, a Mallat’s algorithm facilitates its application and improves its
performance, processing time, and the computational burden that its application entails. The DWT of
a signal x[n] of length N is calculated by applying a mathematical convolution defined by Equation (2)
with a bank of high-pass filters (HPF) with impulse response g[n] to analyze the high frequencies,
and simultaneously with a bank of low-pass filters (LPF) with impulse response h[n] to analyze the
low frequencies.

y[n] = (x ∗ h)[n] =
N∑

k=0

x[k]h[n− k] (2)

The DWT decomposes the time-domain signal in several levels, which are limited by the sample
size N. The frequency content of every decomposition level for both aCi and dCi is estimated by

aCi →

[
0,

fs
2i+1

]
, dCi →

[
fs

2i+1
,

fs
21

]
(3)

where fs is the sampling frequency and i is the desired decomposition level.
The coefficients of the HPF and LPF are determined by the selection of a mother wavelet according

to the application.
In this regard, some investigations have been developed to evaluate the performance of DWT in

extracting features from the current signals of induction motors. This serves the purpose of detecting
eccentricities [33], rotor-asymmetries [34], broken rotor bars [35], and other factors using the Daubechies
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(db), Symlet (sym), Morlet, and Meyer wavelet families, and varying the orders. These works have
shown that a Daubechies family of higher order is well suited to extracting the information required
for the detection of motor failures. Furthermore, studies have shown that higher order filters behave
as more-ideal filters, allowing less overlap between adjacent frequency bands.

2.2. Wavelet Entropy

Due to the inherent constraints of some time-frequency transforms, there can be problems when a
specific window is applied to a series of data. Such is the case of the uncertainty problem given in
the DWT—if the window is too narrow, the resolution of the frequency will be poor, whereas if the
window is too wide, the location during the time of the signal will be less precise. This limitation is of
great importance when it comes to the analysis of signals with transient components located in time,
which is the case for the great majority of signals with real physical magnitudes.

To minimize the effects of this limitation, a parameter based on the entropy of a signal has been
defined from a time-frequency representation of the signal provided by the wavelet transform [36].
In this regard, the entropy based on the wavelet transform (wavelet entropy) reflects the degree of
order/disorder in the signal, so it can provide additional information about the underlying dynamic
processes associated with the signal [29]. This is achieved by combining the information of all the
wavelet bands, since data between adjacent wavelet signals is taken and combined into one index in
order to avoid focusing on just one wavelet band having its own time-frequency resolution.

The total wavelet entropy (SWT) is defined according to [37].

SWT ≡ SWT(p) = −
n∑

i=m

pi ln pi (4)

where m and n are the first- and last-considered decomposition levels for analysis, respectively, and pi
represent the relative wavelet energy normalized values, which can be computed as

pi =
Ei

Etot
(5)

where Ei (Equation (6)) and Etot (Equation (7)) represent the energy of wavelet level decomposition i
and the total energy of all wavelet level decompositions, respectively.

Ei =
∑

k

∣∣∣Ci(k)
∣∣∣2 (6)

Etot =
∑

i

Ei (7)

2.3. Stray Flux Analysis

Effective analysis of the stray flux by applying suitable signal processing techniques to detect
several failures in induction motors, such as broken rotor bars, static and dynamic rotor eccentricity,
bearing faults, and shorted turns in stator winding, have been proven and validated in a number of
works [38–41].

The external magnetic field can be analyzed by its axial and radial components [42]. The axial
radial field is generated by currents in the stator end windings or rotor cage end ring. The radial field
is related to air gap flux density, which is attenuated by the stator magnetic circuit and by the external
machine frame.
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The coil sensor can be installed in the vicinity of the motor frame in convenient positions in
order to measure the electromotive forces that are indicative of the axial and radial flux components,
depending on its placement. Thus, Figure 1 shows the positions A, B, and C in which the sensor can be
installed to measure both fields.
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In position A, the sensor’s placement enables measurement of the axial flux; on the other hand,
if the sensor is placed in position B, the result of the measurements will correspond to components
of the axial flux and part of the radial flux simultaneously. In position C, the coil sensor is parallel
to the longitudinal cross-section of the machine, which makes the axial field null and the radial flux
essentially present.

2.4. Artificial Neural Network

Artificial neural networks (ANNs) are computational models that simulate the neurological
structure of the human brain and its capability to learn and solve problems through pattern
recognition [43]. As is well known, this method has exceptional characteristics enabling it to process and
extract relevant information from large amounts of data. Among the most popular ANN architectures,
feed-forward neural networks (FFNNs) are widely used, since they are simple, practical, and very good
at approximating real-valued functions and at classifying data. Furthermore, the operation of this kind
of ANN demands a very low computational burden, which makes it appropriate for implementation in
digital systems. FFNNs are composed of a layered architecture possessing essentially one input layer,
one or more hidden layers, and one output layer, as shown in Figure 2a. Each layer has one or more
elementary processing units called neurons (see Figure 2b), whose processing capability is stored in the
connections of synaptic weights, and whose adaptation depends on learning [44]. The mathematical
model describing the functionality of each neuron is given by

y = f

 n∑
i=1

wixi + b

 (8)

where y, wi, xi, b, f (·), and n are the output, synaptic weights, inputs, bias, activation function, and the
total number of inputs, respectively. To define the network weights, a training process is carried
out where pairs of input–output data are presented, then a training rule is defined for adjusting
these weights.
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Figure 2. Artificial neural network (ANN): (a) feed-forward neural network (FFNN) architecture,
(b) functional structure of a neuron.

2.5. Smart-Sensor

The smart-sensor proposed here is based on a low-cost system on a chip (SoC) field-programmable
gate array (FPGA) to estimate the insulation health of an induction motor. Figure 3 shows the scheme
of the structure of the proposed smart-sensor. The system uses a coil sensor and a thermocouple sensor
as primary sensors that can be installed on the frame of the analyzed IM to capture the stray flux and
temperature of the IM, respectively. The information coming from the primary sensors is acquired in
the data acquisition system (DAS) module, then the signal processing is performed in the FPGA-based
HSP unit by applying suitable time-frequency decomposition (TFD) tools and by extracting an efficient
indicator based on the wavelet entropy. Finally, the estimated health of the insulation is supplied to
the final user using an liquid crystal display (LCD).
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2.5.1. Primary Sensors

Two sensors are used as primary sensors—one flux sensor, and one thermocouple sensor. The flux
sensor is generated by 1000 turns of a coil. Its dimensions are specified in Figure 4b. The main purpose
of the coil is to detect the largest amount of stray flux possible through the induced electromotive force
(emf ) in that coil. The coil is protected with a material that is able to isolate the greater amount of
electromagnetic noise coming from the outside using a special meshed cable for the transmission of
the induced voltage towards the DAS. On the other hand, to capture the temperature of the analyzed
IM, an E-type thermocouple sensor (Figure 4a) is used, since it is a non-magnetic sensor and has a
wide temperature ranging from −50 ◦C to 740 ◦C.
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2.5.2. DAS and LCD

As secondary elements, the DAS and LCD modules enable the interaction between the final user
and the primary sensors. On the one hand, the DAS module is constituted by a signal-conditioning
submodule and an ADS7841 analog-to-digital converter. The signal-conditioning module is composed
of one operational amplifier with two processing stages, the first of which is configured to sum a
constant voltage to the input flux signal, while the second amplifies it by a factor of 10 in order
to standardize the input-voltage range to the analog-to-digital converter used. On the other hand,
the LCD is used to display the estimated winding insulation degradation to the final user.

2.6. HSP Unit

The FPGA-based HSP unit is created by processing the DWT, feature-extraction wavelet entropy,
and regression FFNN, and by mapping the min–max function to normalize inputs and outputs of the
FFNN, as shown in Figure 5. First, the input emf signal (φ) is decomposed by the DWT in multiple
“wavelet signals” in order to obtain the time-frequency representation of the input signal in well-known
frequency bands. Then, the feature extraction is performed by applying Equation (3). Note that the
SWT value of a signal is a normalized parameter ranging from zero to 1, where a minimum value
indicates a light disorder in the analyzed signal (that is, the signal is mainly represented by one wavelet
signal having the highest amplitude). On the other hand, if the value is near 1, the analyzed signal
is considered to have a high disorder, since it penetrates several wavelet signals, each one having
high relative amplitudes. Next, the min–max function map normalizes the IM temperature signal (T)
and the SWT, in order to perform the mathematical operations inside the FFNN in a defined closed
range. Finally, the FFNN unit performs the regression diagnosis by using the normalized values of the
extracted SWT and the temperature of the induction motor as inputs.
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Figure 6 shows the emf and induction motor temperature signals processing the flow to the FFNN
evaluation for the purpose of obtaining a health estimation of the winding insulation. The processing
flow starts with the emf signal acquisition; then, it is computed by the DWT to a level defined by
the final user. The next step is to obtain the SWT parameter from the detail decomposition signals
after performing the DWT by applying Equation (4). Finally, wavelet entropy and induction machine
temperature are used as inputs to the FFNN, so that the information of both parameters can be
combined to offer an automated estimation of the health of the winding insulation. Note that the
FFNN is composed of one input layer with two input neurons (the wavelet entropy and the induction
machine temperature); two hidden layers with four and two neurons, respectively; and one output
neuron (the estimated health of the winding insulation, a parameter shown to the final user via the
LCD). To specify the health of the winding insulation, results are shown in a continuous scale ranging
from 10% (indicating a severe degradation) up to 95% (implying a healthy winding insulation system).
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Figure 6. Proposed methodology flow.

2.6.1. DWT–IDWT Digital Structure

In Figure 7, the counters n and rwdir indicate the index of the sample x[n] to read and the read/write
direction of the approximation and detail coefficients, respectively. Note that it is necessary to fill the
RAMemf [n] with the number of samples from the coil sensor specified by the user prior to testing.
When asserting strDWT, the module starts to compute the convolution operation defined by Equation (2),
which is essentially composed of a multiply–accumulate (MAC) process. The MAC operation requires
the coefficients of a filter obtained from four Read-only Memory (ROM)previously filled with the
corresponding coefficients (ROM Lo-D and ROM Hi-D for low-pass and high-pass decomposition
filters, respectively; and ROM Lo-R and ROM Hi-R for low-pass and high-pass reconstruction filters,
respectively), as well as the emf [n-k] signal, which is obtained by passing emf [n] through a k-level
pipeline register. Finally, when the computation process is finished, signal rdyDWT is set to high.
The approximation and detail coefficients will be given by the output signals aCik and dCik, respectively.
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2.6.2. Wavelet Entropy Digital Structure

Figure 8 shows a block diagram of the proposed digital architecture used to obtain the wavelet
entropy of a signal by applying Equation (3) where the MAC process is the main operation. Note that
it is essential to fill the RAM and RAM-pi with the corresponding relative wavelet energies pi of the
corresponding “wavelet signals” prior to testing. To start the SWT computation, the signal StrWE is
asserted. After that, the counter Rddir selects the signal pi to be processed, and the log2(pi

2) is computed
by applying the algorithm proposed in [45], since it offers an easy implementation in hardware.
Next, to obtain the required loge(pi

2) value, a simple multiplication factor defined by Equation (9) is
applied to log2(pi

2).

loge(x) =
log2(x)
log2(e)

≈ 0, 693147 ∗ log2(x) (9)
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2.6.3. FFNN Digital Structure

Figure 9 shows the block diagram of the proposed digital architecture to compute a regression
FFNN. When the signal strANN is asserted, the input signals SWT and T are stored in in the first two
memory elements of the Ni submodule. Note that the submodule Ni works as a storage memory for the
total number of neurons that constitute the FFNN architecture used here (that is, neurons on the input
layer, neurons on the hidden layers and neurons on the output layer). Memory ROMs ROMidx-rd,
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ROMwi, ROM-layer, and ROMb[i] store the indices of each neuron to read/write, depending on the
actual layer (layer), synaptic weights, and biases. This design is based on a MAC operation in order
to save element resources and use only one multiplier. The inputs for the MAC operation are the
synaptic weights (wi) and the corresponding neuron outputs (xi). Finally, when the MAC process
is finished, its output is summed by the corresponding bias (bi) in order to compute the activation
function tansig(x) using the piece-wise linear function defined in [46].
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To train the FFNN, the information of the wavelet entropy and motor frame temperature are used.
In addition, to establish a frame of reference between a motor with healthy winding insulation and a
motor with a degraded insulation system, the index of dielectric absorption of the motor is extracted
by means of a megger device during the degradation tests. These data (wavelet entropy, motor frame
temperature, and dielectric absorption index) are obtained during the process of induced degradation
to the winding insulation system on a three-phase induction motor whose characteristics are specified
in the results section. The wavelet entropy and the temperature of the motor frame are used as the
input data set for the training of the neural network and as the desired output, then the interpolation
between the dielectric absorption rates obtained for each test are carried out and limits are established
for the purposes of this work (that is, 95% for a healthy motor, and 10% for motor with serious winding
insulation degradation).

3. Results

The diagnostic procedure and functionality of the smart-sensor proposed in this paper was
validated in the laboratory on six IMs with the following same characteristics: 1.1 kW, 400 V,
Y-connected, 50 Hz, 4 poles, where several experiments were carried out for healthy IMs and IMs with
induced winding insulation degradation, as explained below.

Experimental Set-Up

An experimental test bench was designed to develop and implement the diagnostic technique
proposed here and simulate a load using a three-phase squirrel-cage induction motor connected to
a Direct Current (DC) generator, as shown in Figure 10b,c, respectively. The coil sensor and the
thermocouple sensor (see Figure 10a), which was connected to the encased proprietary FPGA-based
HSP unit, were attached to the frame of the motor. The laboratory room where the experiments were
carried out was a closed space where the ambient temperature was maintained at an approximate
value of 26 ◦C. Other elements that could potentially interfere with the experiments were removed
(inverters, other test benches, etc.) to ensure that no other factor might influence the results.
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Figure 10. Laboratory test bench: (a) coil sensor and thermocouple sensor, (b) induction motor, (c) DC
generator acting as the load, (d) proprietary FPGA-based HSP unit.

Two different experiments were carried out in order to probe the functionality and effectiveness of
the proposed smart-sensor. In the first experiment, five IMs with the same characteristics but different
health statuses where diagnosed. The smart-sensor was placed on the frame of a healthy motor, then on
an IM with one or two broken bars (one of the most common failures in this type of motor), but with a
healthy winding insulation. Finally, smart-sensors were added to one IM with light winding insulation
degradation, and one with severe winding insulation degradation. All experiments in this first stage
were developed maintaining the same operating temperature in order to keep the winding insulation
temperature in a controlled range of approximately 26 ◦C.

In the second experiment, a winding insulation degradation was progressively induced to one IM,
in order to fully diagnose several levels of deterioration. With the purpose of establishing a reference
between a healthy motor and a faulty motor in the insulation system, the first IM used was in a healthy
condition at the beginning of the tests. Afterwards, an overheating of the winding insulation was
artificially created by connecting and disconnecting one of the motor supply phases in successive
cycles. In that way, while one phase was disconnected, the other two were overloaded, leading to
abrupt thermal increments that produced higher temperatures than those defined by the thermal class
of the insulation (class F). The connection–disconnection cycles of one supply phase were repeated a
large number of times, a fact that led to an accelerated degradation of the insulation due to thermal
effects. It is worth noting that this experimental setup tries, for the first time, to study the thermal
degradation that the insulation system of an induction motor suffers when it is in service (that is,
before a short circuit occurs between turns). A total of 100 tests were carried out on the same induction
motor, thus generating a premature and irreversible wear to the insulation of the winding, since the
temperatures reached in the machine frame exceeded 150 ◦C. This level implies that much higher
temperatures were present inside the motor that clearly exceeded the limit for class insulation (155 ◦C
at the hottest point).

4. Discussion

In this section, the results obtained from testing the smart-sensor by installing it on six similar
induction motors with different induced failures are shown.

Firstly, to probe the effectiveness of the smart-sensor and diagnose the winding insulation
degradation over different faults, the smart-sensor was installed on five IMs at an ambient temperature
(26 ◦C), all with the same constructive characteristics, but with each one possessing a special failure case,
namely: minimal insulation degradation, light insulation degradation, severe insulation degradation,
and an IM with one and two broken bars, but with a healthy winding insulation.
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It can be clearly seen in Figure 11 how the SWT parameter amplitudes were highly related to the
winding insulation degradation, and it is also evident that the combined failures negligibly affected
negligibly the results (that is, other failures like broken bars—one of the most frequent failures in
IMs—did not affect the proposed methodology).
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Figure 12 shows the results obtained when using the smart-sensor to compute the wavelet entropy
for different prematurely induced degradation stages on the winding insulation of an IM. At the top of
the same figure, the temperatures reached on the IM frame for different test points are shown, in order to
contrast the results of when the temperature changes drastically. Similarly, five results displayed by the
LCD of the smart-sensor proposed here are included, and shown at the top of Figure 12. These results
correspond to tests labeled as A, B, C, and D for different winding insulation health states. For this
purpose, over 100 tests were run. In each test, the winding insulation was degraded continuously.
Evidently, the more severe the winding insulation degradation, the higher the amplitude of the wavelet
entropy. Furthermore, note how the SWT parameter is also dependent on the temperature of the motor,
since numerous tests showed an increase of SWT amplitudes with higher temperatures (especially
in frame temperatures above 130 ◦C). Additionally at the top of Figure 12, the diagnosis offered by
the smart-sensor proposed here is shown. The final results ranged from 10% to 95%, indicating the
healthiness of the winding insulation (where 10% indicates a severe degradation, and 95% indicates
very low or null degradation).

Considering a wavelet entropy value over 0.18 at ambient temperature (26 ◦C), a threshold value
of 35% or below could be set as the criterion for discriminating between healthy and severe winding
insulation system (requiring immediate maintenance) conditions (see Figure 12).
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5. Conclusions

This work has introduced a new approach to performing an online estimation of the status of
winding insulation degradation in IMs (a very common failure in this type of motors). The methodology
is implemented in an FPGA in order to generate a smart-sensor, which is achieved by developing
the digital cores needed to compute the DWT, the SWT index, and the regression FFNN. These tools
provide the smart-sensor with the capability to automatically diagnose the health of the winding
insulation, specifically before incipient faults progress into irreversible damage to the motor, making the
smart-sensor an excellent device for the online diagnosis of winding insulation degradation.

What makes the smart-sensor proposed here even more attractive, is that the signal processing
tools rely on a stray-flux analysis combined with the temperature of the analyzed IM, where the
signals are obtained from a coil sensor and an E-type thermocouple sensor, both of which are installed
externally on the motor frame. The coil sensor complies with several characteristics that make it
an excellent alternative as a source of information, including its simple design, small size, low cost,
installation flexibility, and non-invasive nature.

Furthermore, the proposed methodology relies on the study of the WE parameter obtained from
the stray flux captured by a coil sensor. The wavelet entropy provides a very useful and practical
index to gather information related to the analyzed signal, since it can characterize and combine the
dynamism and order/disorder of this signal in a single value.

In addition, it can be deduced from the results obtained here that the SWT was sensitive to
temperature variations in the analyzed IM, so it is very important to take this fact into account when
diagnosing the severity degradation of the winding insulation, which was situation-controlled by the
FFNN in this proposal.

For future work, the authors propose to further research in this open field, and suggest testing
different IMs in order to deepen knowledge of the relationship discovered between the IM temperature
and winding insulation degradation.
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