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Abstract: Asymmetric thermal zones or even non-rectangular structures are common in residential
buildings. These types of structures are not easy to model with specialized programs, and it is
difficult to know the heat flows and the relationships between the different variables. This paper
presents a methodology for modeling structures with multiple thermal zones using the graph theory
arrangement. The methodology allows for generating a mathematical model using all the walls of
each thermal zone. The modeling method uses the lumped parameter technique with a structure
of two resistors and two capacitors for each thermal zone. The walls and internal surfaces of each
zone define the thermal resistances, and the elements for the network structure are created by
reducing resistances. The structure selected as a case study is similar to a residential apartment,
which demonstrates the possibility of modeling complex and non-traditional structures. The accuracy
of the generated mathematical model is verified by comparison with experimental data recorded in a
scaled-down model. The reduced model is constructed using a 1:10 ratio with a real apartment. The
proposed methodology is used to generate a graph arrangement adjusted to the case study, using the
surfaces to build the mathematical model. The experimental data allowed to adjust the simulation
results with errors in the range of 1.88% to 6.63% for different thermal zones. This methodology
can be used to model different apartments, offices, or non-asymmetric structures and to analyze
individual levels in buildings.

Keywords: mathematical model; graph theory; buildings; lumped parameters; thermal zones; scale-
reduced model; contact matrix; experimental test

1. Introduction

The development of the Sustainability Goals (SDGs) formulated by the United Nations
(UN) encourages the reduction of energy consumption in cities and urban regions [1].
To achieve this goal, it is necessary to study different aspects of buildings, such as thermal
comfort and energy uses [2,3].

Building energy is related to the consumption of individual apartments or spaces. It
is estimated that one third of the world’s energy consumption is accounted for by HVAC
systems, and about 20% of the energy is devoted to residential buildings alone. For all these
reasons, building modeling is a booming area of study [4–6], generating new strategies
for multi-zone analysis such as for apartments and individual dwellings, as well as being
related to complex concepts such as thermal comfort, especially its subjective character.

Thermal comfort is the most energy-consuming aspect in homes and offices. This
comfort aspect refers to the mental and physical state in which an individual feels pleasant

Energies 2023, 16, 2693. https://doi.org/10.3390/en16062693 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16062693
https://doi.org/10.3390/en16062693
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2584-902X
https://orcid.org/0000-0003-1021-2050
https://orcid.org/0000-0002-0347-7280
https://doi.org/10.3390/en16062693
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16062693?type=check_update&version=1


Energies 2023, 16, 2693 2 of 20

with the ambient temperature; it is a subject of human physiology and engineering con-
cerned with the recommendation of temperature and humidity levels and other factors
such as air velocity, clothing insulation, and metabolic rate, to achieve thermal comfort.
It is also sometimes referred to as thermal acceptability. Thermal comfort can be quanti-
fied using the PMV (predicted mean vote) or PPD (predicted percentage of dissatisfied)
indices [7]. Different studies have shown that suboptimal temperature conditions can
lead to stress, which has an impact on the individual’s health, behavior, and productivity
in a work environment [8–10]. Considering that, in urban settings, people spend more
than 80% of their time indoors [11], one can imagine the energy expenditure associated
with maintaining thermal comfort conditions for people inside buildings and dwellings,
especially in countries with extreme temperature changes between seasons. In addition,
rising temperatures due to climate change have caused the maintenance of indoor thermal
comfort to be the subject of extensive studies, seeking to maintain a healthy and productive
environment for inhabitants [12,13].

To mitigate the effects of climate change, concepts such as smart cities have been
developed in recent decades [14–16]. These cities seek to reduce the environmental impact
of each inhabitant and their energy consumption. In many cases, excessive energy use is
energy waste, and is related to the overuse of heating, ventilation, and air conditioning
(HVAC) systems, which can consume up to 40% of the energy produced worldwide in
a year [17–19]. Therefore, it is necessary to understand, design, and apply solutions to
maintain thermal comfort conditions and reduce energy consumption.

Currently, there are multiple solutions to guarantee thermal comfort [20–22]. Some
of these solutions are cool roofs, green roofs, and solar roofs. These strategies have been
growing hand-in-hand with technological tools such as artificial intelligence (AI). A re-
view of the literature shows that AI-based thermal comfort models have been developed
using various methods, including rule-based systems, decision trees, artificial neural net-
works, and support vector machines. These models have been applied to a variety of data
sources, including building energy consumption data, indoor temperature, humidity data,
and survey data [17,18,23–26].

In a related study, Gao et al. [27] used reinforcement learning to predict optimal ther-
mal comfort control, minimizing both HVAC energy consumption and occupant thermal
comfort perception, in a two-stage architecture that first predicts occupant thermal comfort,
and then predicts the control policy. In similar research work, Chaudhuri et al. [28] im-
plemented feed-forward neural networks to achieve the optimal operating state in which
thermal comfort is achieved with the minimum energy consumption; such a system had
a potential energy savings of up to 36.5%. Moon et al. [29] constructed two independent
artificial neural networks that predict the optimal start time of the cooling system and the
total energy consumption to recover the set temperature after a sudden change; both pre-
dictions are incorporated into a temperature control loop that reduces energy consumption.
Similarly, Yu et al. [30] used an improved multi-objective genetic algorithm to optimize
a neural network to predict the energy consumption and indoor thermal comfort status
of residential buildings; the results show that this model is an effective tool for building
optimization design.

A different approach has been to build mathematical models that can accurately de-
scribe the heat transfer behavior in closed environments with single or multiple connected
rooms, given the complex nature of the system with multiple heat sources and various
forms of interaction, such as convection or radiation, the construction of these models is
a rather difficult task [31]. Wang et al. [32] studied the total heat transfer coefficients of
floor surfaces with radiant heating systems, aiming to improve the design process of these
systems and accurately adjust the heating capacities in each situation. In a different study,
Hu et al. [33] created a mathematical model for air distribution in large-space buildings,
where, given the distance from floor to ceiling, it is often necessary to implement stratified
air conditioning systems; the model aims to compare different layouts in terms of energy
consumption and cooling capacities. On a similar topic, Aghamolaei et al. [34] analyzed
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outdoor thermal comfort in highly populated urban environments, aiming to determine
the impact of densely built-up areas and their interaction with solar radiation and wind,
versus natural areas.

This work focuses on the development of a methodology for the construction of mathe-
matical models of non-homogeneous thermal zones based on graph theory and the lumped
parameters technique. The proposed algorithm can generate a suitable model for a closed
space given the thermal zones and their interaction. In addition, a program is used to tune
the coefficients of the mathematical model, based on the pattern search algorithm. This
program is developed in MATLAB software and requires the experimental data to provide
the appropriate values for each zone. The difference between the simulated and experi-
mental internal temperature is used as an objective function, searching for the coefficients
that reduce this difference during a single cycle. Finally, the resulting models are fitted
and validated against an apartment-scale construction over multiple charge/discharge
cycles. In this paper we intend to demonstrate that this type of mathematical model can
also be applied to much more complex structures, allowing multi-zone analysis by means
of graph theory settings. In this paper, we focus on the application of the methodology to
structures with complex geometries, similar to real residential apartments. To do so, we
take advantage of the experience and validations performed in previous works [35–39].

2. Material and Methods
2.1. Mathematical Theory

In real applications, uniformity of thermal zones is not common. In many cases, espe-
cially in older buildings, rooms can have a different number of walls in the same apartment.
For this reason, mathematical models must consider the possibility of analyzing heteroge-
neous spaces with different areas and surfaces. Figure 1 illustrates the possibility of finding
m thermal zones with n surfaces for each thermal zone. In many cases, some surfaces
link two zones, and in other cases, the surface delimits the zone and the environmental
conditions [40,41].

Figure 1. Multiple heterogeneous thermal zones.

Each surface can be named using the nomenclature Si,j where i corresponds to the
thermal zone number, and the subscript j shows the surface number of the corresponding
zone. For example, the surface S2,3 represents the third surface of the second thermal
zone. This notation allows using a different surface number for each thermal zone, taking
n1, n2, . . . , nm as the surfaces for the zones Z1, Z2, . . . , Zm. The notation for multiple hetero-
geneous thermal zones can work with graph theory. In this application, it is possible to take
the different zones as nodes, and the contact surfaces between zones for edges; Figure 2
illustrates the graph scheme for m thermal zones [42,43].
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Figure 2. Graph scheme for thermal zones.

According to the literature, a graph G consists of two elements. The first element is
a finite set containing V vertices [44,45]. The Set V can be expressed as V = x0, x1, . . . , xk,
taking k as the number of vertices |V|. The second finite set is A, and contains unordered
pairs of vertices, called edges. If α = {x1, x2} is an edge, then α functions as connections of
the vertices x1 and x2.

The concepts of graph theory can be applied to thermal modeling; in this case, the set
V equals the set of individual thermal zones Z. The order of the graph equals the number
of thermal zones m. The set A, which provides information about the connections between
vertices, can be replaced by the contact matrix u. The Equation (1) shows this representation.

G = (V, A) = (Z, u) (1)

The set Z includes all arbitrarily enumerated thermal zones, and each element of
this set is a list of surfaces defining a thermal zone for this model. Equations (2) and (3)
present the structures of the set, using the element Z as the set of surfaces defining a single
thermal zone.

Z = {Z1, Z2, . . . , Zm} (2)

Zi = Si,1, Si,2, . . . , Si,ni i = 1, 2, . . . , m (3)

The contact matrix u is a matrix that illustrates the physical organization of thermal
zones. This matrix allows one to visually identify which zones share a wall or surface and
which do not. Each element of the matrix represents a group of surfaces to allow connection
between two zones across multiple surfaces. This situation is particularly common due
to contact with the environment. This organization allows the creation of equivalent
resistances Rui,j that contribute to the main coefficients in the mathematical model.

The contact matrix is a matrix with m × m—the Equation (4) shows its structure.
Each row corresponds to the relationship between a single zone and all other zones in
the system. The subscripts of each element define the surfaces connecting two different
zones. For example, the element u2,3 is the set of surfaces connecting thermal zones two
and three. In the cases of elements with equal subscripts, such as u1,1 or u2,2, they are the
set of surfaces connecting the studied zone with the surroundings [46–48].

u =


u1,1 u1,2 · · · u1,m
u2,1 u2,2 · · · u2,m

...
...

. . .
...

um,1 um,2 · · · um,m

 (4)

For the proposed model, some sets must be defined by the expression N = m(m + 1).
Each surface of these sets is related to a thermal resistance according to the Equation (5),
using L as the wall thickness, kt for the thermal conductivity, and h as the convection
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coefficient. The convection coefficient is defined as infinite for the contact surfaces between
two zones.

Rj =
Lj

2·ktj ·Sj
+ 1

h·Sj
j = 1, 2, . . . , n (5)

The Equation (6) shows the relation between the surfaces of each thermal zone and
the equivalent resistance defined by the association in the contact matrix, which means that
there is a relation between the surface and the thermal resistance Si,j 7→ Ri,n. The sets Zi
and u can be understood as sets of resistances.

Zi ⇒



Si,1 → Ri,1
Si,2 → Ri,2
Si,3 → Ri,3

⇒ ui,1 → Rui,1

Si,4 → Ri,4
Si,5 → Ri,5

}
⇒ ui,2 → Rui,2

...
Si,ni → R1,ni

}
⇒ ui,m → Rui,m

(6)

Another set of resistances is defined by Rwi and represents the combination of all
internal walls of each thermal zone. This value must be calculated with all elements of the
subset Zi. In this article the notation |Zi| should be understood as referring to all resistances
in the subset Zi. Equation (7) shows the procedure for calculating Rwi.

Rwi =
∏
|Zi |
k=1 Rk

∑
|Zi |
h=1

∏
|Zi |
k=1 Rk

Rh

i = 1, 2, . . . , m (7)

The calculated resistances Rwi and Rui,j are used to define the mathematical model.
This model corresponds to the 2R2C structure from the lumped parameters technique.
The method generates two differential equations for each thermal zone, as presented in
Equations (8) and (9).

Cwi ˙Twi =
Ti

Rwi
+

m

∑
z=1

αz,iTwz + βiTex + φiTud (8)

CriṪi = −
Ti

Rwi
+

Twi
Rwi

(9)

The parameters α, β, and φ represent the heat transfer coefficients between the different
thermal zones and the environment. The α coefficients show the contribution of each
thermal zone over a single zone. The β coefficient is the resistance to heat transfer with the
surroundings. Finally, the φ coefficient is dedicated to regulating the heat transfer through
roof and floor. The α and β coefficients must be calculated considering the next two cases:

• Case 1: subscripts i = j⇒ αi,j =
1

Rwi
+ ∑n

k=1
1

Rui,k
∧ βi =

1
Rui,j

+ 1
Rg

• Case 2: subscripts i 6= j⇒ αi,j =
1

Rui,j

The state variables of the model are the internal temperature (T) and the wall tem-
perature (Tw). The constants Cwi and Cri represent the thermal capacity to store energy.
The variable Tex is dependent on the ambient temperature [49]. The ceiling and floor tem-
perature is summarized as Tud = Tf loor = Tceiling; these temperatures are controlled by the
coefficient φ. In cases where the thermal zones are surrounded by air, Tud and Tex are equal
and the coefficient β can be used exclusively to include the environmental temperature.

Finally, the constants Cw and Cr are the heat capacity of the interior air and walls.
They can be calculated with the Equation (10), taking ρ as the density, Ce as the specific
heat, and V as the volume of the material, using the properties of the indoor air or walls
as appropriate.

C = ρ · Ce ·V (10)
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The alpha coefficient can be organized as a vector, in which the individual contri-
butions of the other zones on a single zone are included. The coefficient is a vector
αi =

[
αi,1 αi,2 · · · αi,m

]
. For example, to represent the first thermal zone α1, the element

α1,2 shows the heat transferred from the second thermal zone to the first. αi,j = 0 indicates
that the two zones are not physically connected.

The coefficients α can be arrays between the resistances Rwi and Ri,j. Ri,j is the
equivalent resistance resulting from simplifying all the resistances associated with each
element of the contact matrix. Equation (11) allows to calculate the equivalent resistance
using i and j as values between 1 and m.

Rui,j =
∏
|ui,j|
k=1 Rk

∑
|ui,j|
h=1

∏
|ui,j|
k=1 Rk

Rh

∀{i = 1, 2, . . . , m ∧ j = 1, 2, . . . , m} (11)

Finally, for each thermal zone it is necessary to calculate the roof and floor resistances
(R f loor and Rceiling). In cases with equal materials, the resistance values are equal and must
be calculated using surface arrangements in the studied zone as shown in the following
example expression:

R f loor = Rroo f = Rgi(S) = ∑ Sx × Sy −∑ Sz × Sw ∀{x, y, z, w}∃Zi (12)

2.2. Experimental Case Setup

To demonstrate the mathematical models generated with the methodology of this
article, an experiment with a reduced scale model was developed. The experiment mea-
sured the temperature of a miniature model of a residential apartment. The building under
study consists of three bedrooms, two bathrooms, a living room, and a kitchen, as shown
in Figure 3. The overall dimensions of the building are nine meters long, six meters wide,
and three meters high.

4
.8
8
m

4.17m

1.11m

2.70m

3.60m

1.80m 1.80m

3.28m

2.80m

2.50m

2.10m

1.11m

0.90m

Figure 3. Structure of the studied building.

The construction contains six zones of interest or thermal zones, since the living room
and the kitchen can be considered a single zone, as there are no relevant separations
between them. In the same way, to adjust the developed models, a 1:10 scale model is built.
The design is carried out in AutoCAD [50], where small irregular structures, such as the
separation wall of the bathrooms, are eliminated in order to keep the structure as uniform
as possible.

Figure 4 shows the model constructed for this experiment. Each wall is a 3 mm
thick medium density fiberboard (MDF); the choice of this material is due to its favorable
physical and mechanical properties, availability, and low commercial cost. In addition, this
material is laser cut to obtain a stable, resistant, and accurate structure for greater precision
and reliability in the measurements taken. It is necessary to state that this experimental test
is only a tool to demonstrate that the mathematical models produced with the proposed
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methodology are physically feasible. In future cases where it is applied to real buildings,
the model coefficients will change, but the structure of the mathematical model will be
very similar.

(a) Model from a close-up view (b) Model from a zenithal view

(c) Sensors ubication

Figure 4. Reduced-scale model.

The physical characteristics that define the thermal capacity and thermal conduction
for the medium-density fiberboard are specific heat (Ce = 1700 J

kgK ), thermal conductivity

(kt = 0.3 w
m ), and density (ρ = 0.75 g

cm3 ). Similarly, the thermal characteristics for the

contained air used are Ce = 1000 J
kg m3, kt = 1.4 w

m3 , and ρ = 1.2 kg
m3 .

To evaluate the thermal behavior of each zone and of the entire reduced scale model,
an internal heat source, namely a 100 w incandescent lamp, is introduced in zone 1.
The lamp is active for 120 min and inactive for the next 180 min. The heat source is
controlled by a relay device, which is activated or deactivated by an Arduino board ac-
cording to the predefined charge and discharge cycles. This Arduino board functions as a
central control unit, regulating the operation of the load, receiving the information from the
sensors, and storing it on an SD card. To measure the temperature, seven ds18B20 sensors
are connected, one for each thermal zone and one for the ambient temperature. The sensors
can provide measurements over a range of −55 ◦C to +125 ◦C, maintaining an accuracy
of 0.5 ◦C from −10 ◦C to +85 ◦C. In the range from −30 ◦C to 100 ◦C the accuracy is 1 ◦C.
The maximum accuracy is 2 ◦C in the maximum measurement range. The sensor is sealed
in a metal cap that allows it to be immersed in liquid or protected from the weather. Table 1
contains the electronic elements used during the experiment.
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Table 1. Electronic components.

Quantity Element Reference

1 Control card Arduino Uno

7 Temperature sensor Ds18b20

1 Relay JQC-3FF-S-Z

1 Heat source 100 w incandescent bulb

1 Memory device MicroSD card adapter and 256 Mb MicroSD

2.3. Methodology Implementation on Case

The selected case study has six thermal zones. This system was analyzed using the
methodology derived from the graph theory and the clustered parameters previously
described. The first step in this methodology is to define the two elements of the graph
G = (Z, u), taking Z as the set of thermal zones and u as the u contact information. For this
specific case the set Z can be defined as follows:

Z = {Z1, Z2, Z3, Z4, Z5, Z6} (13)

Figure 5 shows the numbering of the surfaces in each zone. The numbering presented
in Figure 3 is retained to assign the name of each thermal zone. That is, room n is equivalent
to Zn.

Figure 5. Thermal zones with surfaces numbering.

Equations (14)–(19) show the sets of surfaces for each individual thermal zone. Using
Equation (7) the Rw term can be calculated for all sets.

Z1 = {S1,1, S1,2, S1,3, S1,4, S1,5, S1,6, S1,7, S1,8, S1,9, S1,10} (14)

Z2 = {S2,1, S2,2, S2,3, S2,4, S2,5} (15)

Z3 = {S3,1, S3,2, S3,3, S3,4, S3,5} (16)
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Z4 = {S4,1, S4,2, S4,3, S4,4, S4,5, S4,6, S4,7} (17)

Z5 = {S5,1, S5,2, S5,3, S5,4} (18)

Z6 = {S6,1, S6,2, S6,3, S6,4} (19)

The second element of the graphical modeling is the contact matrix presented in
Equation (20). This matrix shows the physical disconnection between some thermal zones.
For example, the terms in the second, third, fourth, and fifth rows are equal to zero because
Zone 2 does not share a surface area with Zones 4, 5, and 6.

u =



u1,1 u1,2 u1,3 u1,4 u1,5 u1,6
u2,1 u2,2 u2,3 0 0 0
u3,1 u3,2 u3,3 u3,4 0 0
u4,1 0 u4,3 u4,4 u4,5 u4,6
u5,1 0 0 u5,4 0 u5,6
u6,1 0 0 u6,4 u6,5 u6,6

 (20)

Each element of the contact matrix corresponds to a thermal resistance according
to Equation (7). The surface subsets for each element of the matrix are presented in (21).
Maintaining the rule that the impact of one thermal zone on another is bidirectional,
therefore, ui,j = uj,i.

u1,1 = {S1,1, S1,2, S1,10} u1,2 = u2,1 = {S1,8, S1,9} = {S2,1, S2,2}
u1,3 = u3,1 = {S1,7} = {S3,5} u1,4 = u4,1 = {S1,6} = {S4,3}
u1,5 = u5,1 = {S1,5} = {S5,2} u1,6 = u6,1 = {S1,3} = {S6,1}

u2,2 = {S2,4, S2,5} u2,3 = u3,2 = {S2,3} = {S3,1}
u3,3 = {S3,2, S3,3} u3,4 = u4,3 = {S3,4} = {S4,4}

u4,4 = {S4,5, S4,6, S4,7} u4,5 = u5,4 = {S4,2} = {S5,3}
u5,5 = {0} u5,6 = u6,5 = {S5,4} = {S6,2}

u6,6 = {S6,4}

(21)

Following the methodology shown in section two, Equations (7) and (11) allow to
calculate the resistances Rwi and Rui,j. For example, the first element of the groups Z and
u are calculated in Equations (22) and (23). Earlier, it was mentioned that the notations |Z1|
and |u1,1| are used to call all resistances calculated with the surfaces of that subset.

Z1 ⇒ Rw1 =
∏
|Z1|
k=1 R1,k

∑
|Z1|
h=1

∏
|Z1|
k=1 R1,k
R1,h

(22)

u1,1 ⇒ Ru1,1 =
∏
|u1,1|
k=1 R1,k

∑
|u1,1|
h=1

∏
|u1,1|
k=1 R1,k

R1,h

(23)

To calculate all the mathematical model coefficients the process must be repeated
with all the subsets in u and Z. For example, in this specific case the coefficients α1,1, α1,2,
and β1 are calculated as α1,1 = 1

Rw1
+ 1

R1,1
+ 1

R1,2
+ 1

R1,3
+ 1

R1,4
+ 1

R1,5
+ 1

R1,6
, α1,2 = 1

R1,2
and

β1 = 1
R1,1

+ 1
Rg1

.
The visual representation for this study case is presented in Figure 6. In this case, it

can be classified as an extraverted edge.
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Figure 6. Graph for the study case.

The mathematical model is presented in Equations (24)–(35). In this case, the model
is surrounded by air, including the roof and floor surfaces, which increases the impact of
environmental temperature and simplifies the model by eliminating the φ terms. When
there are different temperatures or other thermal zones in contact with the roof or floor
surfaces, this simplification is not possible.

In Equation (25), Q term is included to add the internal heat source.

Cw1 ˙Tw1 =
T1

Rw1
− α1,1Tw1 + α1,2Tw2 + α1,3Tw3 + α1,4Tw4 + α1,5Tw5 + α1,6Tw6 + β1Tex (24)

Cr1Ṫ1 = − T1

Rw1
+

Tw1

Rw1
+ Q (25)

Cw2 ˙Tw2 =
T2

Rw2
+ α2,1Tw1 − α2,2Tw2 + α2,3Tw3 + β2Tex (26)

Cr2Ṫ2 = − T2

Rw2
+

Tw2

Rw2
(27)

Cw3 ˙Tw3 =
T3

Rw3
+ α3,1Tw1 + α3,2Tw2 − α3,3Tw3 + α3,4Tw4 + β3Tex (28)

Cr3Ṫ3 = − T3

Rw3
+

Tw3

Rw3
(29)

Cw4 ˙Tw4 =
T4

Rw4
+ α4,1Tw1 + α4,3Tw3 − α4,4Tw4 + α4,5Tw5 + α4,6Tw6 + β4Tex (30)

Cr4Ṫ4 = − T4

Rw4
+

Tw4

Rw4
(31)

Cw5 ˙Tw5 =
T5

Rw5
+ α5,1Tw1 + α5,4Tw4 − α5,5Tw5 + α5,6Tw6 + β5Tex (32)

Cr5Ṫ5 = − T5

Rw5
+

Tw5

Rw5
(33)

Cw6 ˙Tw6 =
T6

Rw6
+ α6,1Tw1 + α6,4Tw4 + α6,5Tw5 − α6,6Tw6 + β6Tex (34)
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Cr6Ṫ6 = − T6

Rw6
+

Tw6

Rw6
(35)

The coefficients α, β, and Rw can be estimated from their physical properties, but the
convection coefficients at each wall must be precisely matched to the conditions of this
experiment. In addition, considering the methodology employed in this experiment,
the loading and unloading phases produced different sets of coefficients.

3. Results

Algorithm 1 is presented to illustrate the mathematical model tuning process. This
algorithm was implemented in Matlab software and was based on the predefined Pattern
Search function. To use this algorithm it is necessary to provide initial values for the coeffi-
cients and a search range. Additionally the program must have experimental measurements
to adjust the coefficients in the defined range. Specifically, the function has 28 parameters
to tune, distributed in 22 alpha coefficients and 6 beta coefficients.The adjustment algo-
rithm starts from the initial values and executes the mathematical model provided, once
it calculates the values in simulation it compares them with the experimental results to
determine the error of each thermal zone. Finally, the objective function is the sum of the
errors between simulation and experimental of each thermal zone, i.e., Fobj = ∑6

i=1 ei.

Algorithm 1 Tuning algorithm
Inputs: Initial parameters, search range, environment temperature, measured temperatures
[α1, α2, . . . , αm, β1, β2 . . . βm, φ1, φ2, . . . , φm] = PatternSearch

[e1, e2, e3, e4, e5, e6] = MathModel(α1, α2, . . . , αm, β1, β2 . . . βm, φ1, φ2, . . . , φm)

˙Tw1 = α1,1Tw1 + α1,2Tw2 + · · ·+ α1,mTwm + β1Tex + φ1Tud
˙Tw2 = α2,1Tw1 + α2,2Tw2 + · · ·+ α2,mTwm + β2Tex + φ2Tud

...
˙Twm = αm,1Tw1 + αm,2Tw2 + · · ·+ αm,mTwm + βmTex + φmTud

e1 = T1measured − T1simulation
e2 = T2measured − T2simulation

...
e6 = T6measured − T6simulation

Fobjetive = min
{

∑6
i1 ei

}
The process of adjusting the system to the loading and unloading phase must be done

individually. Only one phase is considered to calculate the coefficients and they are reused
to compare with the following cycles. The results of the adjustment process are presented
in Tables 2 and 3.

Table 2. α coefficients in charge phase.

i\j 1 2 3 4 5 6

1 0.5 0.12 0.012 0.01 0.01 0.135

2 0.12 0.6 0.51 0 0 0

3 0.012 0.51 2.5742 0.51 0 0

4 0.01 0 0.51 2.1406 0.01 0.012

5 0.01 0 0 0.01 1 0

6 0.135 0 0 0.012 0 2.666
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Table 3. α coefficients in discharge phase.

i\j 1 2 3 4 5 6

1 0.8 0.0001 0.0002 0.0002 0.0001 0.00013

2 0.0001 0.85 0.0003 0 0 0

3 0.0002 0.0003 0.3005 0.0005 0 0

4 0.0002 0 0.0005 0.7625 0.0001 0.00012

5 0.0001 0 0 0.0001 0.8217 0.0001

6 0.00013 0 0 0.00012 0.0001 1.35

Table 4 show the β and Rw coefficients for the charge and discharge phases. Tables 1–3
contain all the necessary elements to simulate the mathematical model.

Table 4. Coefficients in charge and discharge phase.

i

1 2 3 4 5 6

Charge phase
1

Rwi
0.0074 0.0226 0.9073 0.9790 0.9064 0.9983

βi 0.5544 0.1312 0.5997 0.6267 0.0922 0.4594

Discharge phase
1

Rwi
0.634 0.8024 0.231 0.71 0.8 0.03022

βi 0.1743 0.0475 0.0675 0.0515 0.0222 0.5105

The simulation time was more than 1500 min for this mathematical model, exactly 25 h.
The system can be classified as MIMO (multiple inputs and multiple outputs), according to
the control theory [51]. We are using the ambient temperature and internal heat source as
input. The outputs are six internal temperatures, one for each zone. Figures 7–12 show the
simulated internal temperature for the thermal zones with the blue line. The red and green
lines represent the experimentally recorded internal and ambient temperature.
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Figure 7. Experimental and simulated temperature for Zone 1.

Figure 7 shows the internal temperature of Zone 1 in simulation and experimentally
recorded. The experimental temperature varies in the range of 47.2 to 49.4 ◦C, the simu-
lation between 46.2 to 49.8 ◦C, and the ambient temperature varies in the range of 19 to
22.5 ◦C. The highest temperature levels recorded in the internal temperature coincide with
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the peaks of the environmental temperature. During these moments of high environmental
temperature, heat transfer to the environment is reduced, which allows the system to accu-
mulate additional thermal energy and reach higher internal temperature peaks. The point
of maximum internal temperature is reached around the 400th minute, the second point of
maximum internal temperature is around the 700th minute, directly coinciding with the
points of maximum ambient temperature.

During the process of adjusting the mathematical model, the high impact of environ-
mental conditions was evident. Due to the fact that the walls in all cases were of the same
thickness and material, it can be seen that the weight of the beta coefficient is much higher
in the zones with greater surface area exposed to the environment. For example, in the
loading phase, the beta coefficient of Zone 1 is the highest, because it is the thermal zone
with the largest surface area in contact with the environment, while Zone 5 has the smallest
exposed surface area and consequently has the lowest beta coefficient.

Figures 8–12 show the internal and experimental temperatures for Zones 2, 3, 4, 5, and
6, respectively. In all these cases, the temperature levels are lower because they do not have
an internal heat source, but they are influenced by the charging and discharging cycle of
the heat source in Zone 1. Additionally, they present variations in their maximum values
during the charging phase according to the variation of the environmental conditions
previously described.
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Figure 8. Experimental and simulated temperature for Zone 2.
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Figure 9. Experimental and simulated temperature for Zone 3.
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Figure 10. Experimental and simulated temperature for Zone 4.
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Figure 11. Experimental and simulated temperature for Zone 5.
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Pattern search is the optimization algorithm used to adjust the parameters of the mathe-
matical model. The objective function is the sum of the individual errors between the simulated
temperature and its corresponding experimental temperature, so that Fobj = sum6

i=1ei. The
simulation and recorded data allow the accuracy of the mathematical model to be evaluated.
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However, the tuning process starts initially by considering only one thermal zone,
in order to obtain the best parameters for Zone 1. The second step consists of adding
the experimental data from the second zone and uses the first results as initial conditions.
The third step uses the initial conditions of Zones 1 and 2 to adjust the results. This process
was continued until all six outputs were reached, looking for the best simulation result
in relation to the experimental data. Figure 13 shows the percentage errors between the
simulation and experimental results. The errors vary from 1.88% to 6.63% and maintain an
average of 4.0%, which allows us to conclude that the mathematical modeling strategy can
represent the case study with an acceptable level of error.
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Figure 13. Errors between simulation and experimental results.

Finally, a sensitivity analysis was applied to the mathematical model. The analysis
is based on determining the impact of each α coefficient on temperature at a single tem-
perature. We selected Zone 1 because it is the only zone that is in contact with the other
five zones and contains the heat source. The α coefficients were changed from their values
in Table 1. The new value took the original value and modified it with a range of variations
of ±5%, ±10%, and ±15%.

Figure 14 shows the results of the analysis, using the x as the input perturbations and
the y-axis for the percent temperature variation. Based on the results of the sensitivity
analysis, it is possible to state that all the coefficients α have a similar impact on the internal
temperature in Zone 1. The slight variation of α1,6 can be explained by the proximity to the
internal heat source and does not significantly change the conclusions.
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Figure 14. Sensibility analysis for α coefficients.
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4. Discussion

Many investigations of single and square thermal zones can be found in the litera-
ture [40,52–54]. However, most offices and residential buildings are composed of multiple
thermal zones connected by walls, windows or doors. This situation makes it necessary to
formulate and use multiple thermal zone models, which represent a better approximation
to real buildings. The methodology presented in this paper can be classified as gray box
models. This type of model provides insight into the impact of wall materials and structures
on specific variables. These relationships are difficult to understand in investigations using
black box models and specialized software. For example, Figure 15a shows the floor plan of
a house located at the Fraunhofer Institute for Building Physics in Holzkirchen, Germany.
This building is used as a case study in [48] and is analyzed with the commercial program
TRNSYS. However, Figure 15b shows the floor plan of the Renewable Energies department
of the engineering school Polytech Montpellier, located in the city of Perpignan (South of
France). In this case, the geometry of the thermal zones is not square and requires the use
of black box models implemented in specialized programs such as EnergyPlus [55].

(a) Fraunhofer Institute for Building Physics in Holzkirchen (b) Engineering school Polytech Montpellier

Figure 15. Residential and offices planes.

Using the methodology presented in this article, the case studies presented in Figure 15
can be analyzed without the need for specialized programs. With this methodology, any
type of structure can be studied, regardless of whether they are square, circular, or other
geometries. In addition, individual wall reinforcements can be considered as cladding
solutions and their impact on the overall thermodynamics.

The proposed methodology is a first version and can still be improved. Evaluating
the resulting mathematical model on a real structure can be costly, time consuming, and
difficult to control. For this reason, we decided to use similarity theory, building a reduced
scale model with similarity conditions in geometry and scaling for structural behavior [56].
This strategy is widely used in prototyping and initial testing of scientific theories [57–60].
The model used in this work has characteristics provided by the material and dimensions
of the walls. The low wall thickness, interior air volume, and thermal properties limit
the thermal capacity and allow high temperatures to be reached in a short time. These
temperatures may exceed comfort levels, but as a test scenario, the reduced scale model
provides sufficient information to refine the mathematical model. In a real scenario with
a full-scale model, the recorded information allows the model coefficients to be refined.
The real model can maintain the same structure as the reduced scale mathematical model,
changing only the values and heat sources. In this case, the developed methodology can be
classified as a viable tool for structural modeling.
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5. Conclusions

The paper presents a methodology for modeling multiple thermal zones, based on
graph theory and the lumped parameter technique. The methodology works with different
resistance subgroups defined by each thermal zone and the walls between contiguous zones.
A residential apartment is used as a case study. The methodology is applied in this case
study and generates a MIMO model with 28 parameters, 2 inputs, and 6 outputs. The pa-
rameters are coefficients generated from the resistance and thermal capacity of the walls
in each zone. The inputs are the environmental temperature and the internal heat source.
Finally, the outputs are the six internal temperatures, one for each zone. An experiment
is proposed and executed to verify the accuracy of the mathematical model. The research
is based on reduced scale models. A model of the apartment chosen as a study was built.
The reduced model has a 10 to 1 ratio with the original model, and an internal heat source
was considered to create heat flows between the different zones. The internal load is turned
on and off generating load and unload phases for the internal temperatures. The internal
temperatures reach levels above the comfort range, but facilitate the construction of the
mathematical model and reduce the data collection period. In a full-scale experiment,
the heat source must be extremely large and excessive energy consumption would result.
In addition, environmental conditions may introduce additional problems in the initial
testing of the methodology. The experimental data allowed to fit all 28 parameters and
achieve an error of less than 6.6% for all thermal zones. The performance of the mathemati-
cal model is acceptable by comparison with the experimental data, maintaining an average
difference of 4.0% between the experimental and simulated data. The experimental data
allowed to fit the 28 parameters and to achieve an error of less than 6.6% for all thermal
zones. Finally, the modeling technique allows the construction of a graphical matrix with
six nodes and the identification of the different ratio coefficients. The parameters of the
mathematical model are calculated during the loading and unloading phases. In addition,
the impact of each coefficient on the overall performance is evaluated.

In the future, the modeling technique will have to overcome some limitations, such as
solar radiation gains. This type of source is analyzed as a variable heat source and may
affect each zone differently, increasing the complexity of the adjustment process. Another
possible improvement is the application of the methodology in several apartments at
the same time or in buildings with several levels. On the other hand, experiments can be
performed to improve the adjustment process by including more elements such as windows
and multiple internal heat sources.
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Nomenclature
The following abbreviations are used in this manuscript:

Ce Specific heat kJ
kh·K

Cr Air thermal capacity kJ
K

Cw Walls thermal capacity kJ
K

G Graph arrangement
h Convection coefficient kJ

h·m·K
kt Thermal conductivity kJ

h·m2·K
L Wall thickness m
m Number of thermal zones
n Number of surfaces per zone
Si,j Superficial area m2

u Contact matrix
Rj Thermal resistance h·K

kJ
Rg Thermal resistance for floor and ceiling h·K

kJ
Ru Resistance equivalent h·K

kJ
Rw Inner envelope wall h·K

kJ
T Internal temperature ◦C
Text Environmental temperature ◦C
Tud Floor and ceiling temperature ◦C
Tw Walls temperature ◦C
V Volume m3

Z Thermal zone
α Heat transfer coefficient between zones kJ

h·K
β Heat transfer coefficient with environmental conditions kJ

h·K
φ Heat transfer coefficient with ground and floor kJ

h·K
ρ Density kg

m3
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