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Abstract: The condition monitoring of induction motors (IM), is an important concern for industry
due to the widespread use of these machines. Magnetic Flux Analysis, has been proven to be a
reliable method of diagnosing these motors. Among the IM types, squirrel-cage motors (SCIM) are
one of the most commonly used. In many industrial applications, the IM are driven by different
types of starters, quite often by soft-starters. Despite rotor damages are more prone to occur in line-
started motors, these kind of failures have been also reported in those ones driven by soft-starters.
Related to this, the use of these type of starters may introduce some harmonic components, that
could veil the magnetic flux signature of the different rotor faults. So, the aim of this study is to
confirm if the Stray Flux Analysis technique maintains its reliability in these cases. Thus, this article
presents the results of soft-started induction motors start-up tests, both in healthy and faulty motors.
The fault components are detected by analyzing the stray flux during the starting and the study is
complemented by analyzing the stray flux during the steady-state. In addition to the failure patterns,
numerical indicators have been found so the identification of the failures is not only qualitative, but
also quantitative. The results confirm the potential of the technique for detecting electromechanical
failures in soft-started SCIMs.

Keywords: induction machines; failure diagnosis; stray flux; signal processing; soft-starters

1. Introduction

Robustness, reliability and simplicity, are the main characteristics of induction motors
(IMs). It is because of those advantages, that IMs are involved in a large part of the
industrial processes of the industrialized countries [1]. Specifically, Squirrel Cage Induction
Machines (SCIM) represent a significant part of those industrial machines [2].

Despite the above-mentioned robustness of these motors, both electrical and mechan-
ical failures may appear thorough their operation time. Particularly dangerous are the
rotor faults because usually, they do not show external symptoms until a fatal failure
occurs [2–5].

On the other hand, different kinds of starting systems have become common in
industrial applications. Besides the star-delta, auto-transformer or the other typical starting
systems, the use of soft-starters has become one of the most preferred ones, due to their
advantages. These systems allow to damp the start-up current of induction motors, so the
suffered stresses become lower. Based usually on thyristors connected in anti-parallel, soft-
starters allow setting, among other parameters, the initial voltage and the duration of the
voltage ramp (and, in some cases, even limiting the maximum current during the starting).

But the use of soft-starters does not avoid the rotor to get damaged. As it is stated
in [6–10], the use of these drives amplifies certain harmonics of the start-up current, gen-
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erating additional stresses to the rotor. Even secondary torque harmonics may appear,
leading to resonance problems [10].

Attending to what is previously said and to avoid the costs associated to unexpected
failures, several monitoring systems and fault diagnosis methodologies have been devel-
oped. The aim is to detect the defects in their initial stages. One of those diagnosis methods,
is the one based on the analysis of the magnetic stray flux. The main idea of this method, is
that the presence of a failure in the motor, modifies the magnetic field in the surroundings
of the frame of the machine [11–14].

Previous studies have dealt with the condition assessment of soft-started motors [15–18].
Some of them are focused on the rotor fault diagnosis based on the start-up current
analysis using advanced time-frequency transforms [6–8,19,20]. Despite the results of
these works were satisfactory, it has been proven that the analysis of stray fluxes yields a
much richer harmonic content in the resulting time-frequency maps, compared to current
analysis [14,21], hence enabling a more reliable diagnosis of the fault since it can be based
on further harmonics. Thus, as the use of soft-starters introduce additional harmonic
components during the start-up that could veil the failure patterns, it becomes important
to confirm the reliability of the stray flux analysis method in these cases.

The aims of this study are:

1. To validate the fault diagnosis method, based on the transient analysis of the stray
flux in soft-started induction motors.

2. To obtain numerical indicators, so the severity of the failures can be categorized.

In this sense, the tests where carried out by using soft-starters of diverse manufacturers
and topologies. 270 signals were obtained during the laboratory tests and then analized
applying the STFT (Short Time Fourier Transform) method, obtaining time-frequency
maps and also numerical indicators. Thus, the failure identification is both qualitative and
quantitative. Besides, to complement the study, the steady-state signals where analized
applying the FFT (Fast Fourier Transform), obtaining numerical indicators also.

In this sense, despite the simplicity of the FFT analysis, its main drawback is that the
time information is lost when transforming to the frequency domain. This means that it
is impossible to tell, looking at the FFT spectrum, when a particular event has occurred.
Since this fact is not very important when analyzing a stationary signal, this technique is
applied to the steady-state signal to obtain additional information. On the other hand, since
trends, abrupt changes, beginnings and ends of events, etc. are contained in non-stationary
signals, STFT method is applied to analyze the start-up transient signal. More details of
this techniques can be found in [22,23].

As far as the authors know, this is the first time that this approach is carried out and
the results, prove the potential of this method as a source of information in these cases.

2. Materials and Methods

Several previous studies have proven that the analysis of the external magnetic field,
allows to detect different types of failures in induction motors. In [24], Bellini et al. demon-
strated that, once obtained the Fourier Spectrum of the EMF induced in a proper coil sensor,
the study of the sideband components given by the expression:

f ± 2 · s · f (1)

where f = supply frequency and s = slip.
They appear at both sides of the fundamental component, apports significant informa-

tion about the rotor conditions. Besides, in [24] it was proven that the components given
by the expressions:

s · f (2)

3 · s · f (3)



Energies 2021, 14, 5757 3 of 17

are significantly affected when rotor faults exist. Also, in [25], it was stated that the
components given by the expressions (2) and (3) are mainly present in the axial magnetic
field, while the components given by (1) are essentially present in the radial one. Thus,
depending on the sensor position, either the radial or the axial components will prevail
over the other ones. According to this, as stated in [25], the axial field is measured when
the sensor is settled in the position A. The radial field, is mainly measured locating the
sensor in position C and when it is settled in position B, the sensor measures the radial
field and a portion of the axial one (see Figure 1).

Figure 1. Coil sensor positions.

On the other hand, Ishkova and Vitek [26] stated that some frequencies in the FFT
spectrum of the steady-state flux, would be amplified when mixed eccentricities exist.
Those frequencies are obtained from:

fecc(−) = f ·
(

1 − m · (1 − s)
p

)
(4)

fecc(+) = f ·
(

1 + m · (1 − s)
p

)
(5)

where p = pole pair number and m = 1, 2, 3 . . .
It is known that the aforementioned components evolve in a characteristic way during

the start-up (see Figure 2). And here relies the method used for this study. The analysis
of the evolution of these components under that transient, with proper time-frequency
tools [14], to confirm if it is possible to detect the failure patterns and indicators when the
motors are driven by soft-starters.
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Figure 2. Theoretical evolutions, under the starting, for the different failure components.

The stated hypothesis is that in a healthy motor, despite other harmonics with lower
amplitude related to constructive matters, no more than the fundamental component is
expected. This component will appear as a horizontal line in the time-frequency analysis.
As proven in various studies as [25], some additional harmonics can appear nearby but they
tend to zero as the motor reaches its nominal speed. In the case of broken-bar failures, both
radial and axial components will appear. The axial component given by (2), is expected
to drop from the supply frequency (50 Hz) in the initial stage of the start-up, to almost
0 Hz at steady state. The component given by (3) will evolve in a similar way, but this
time decreasing from 150 Hz to almost 0 Hz. Regarding to the radial component, given
by the expression (1), it will follow a V-shaped characteristic pattern, dropping to zero
and then increasing almost to f at steady state [14]. Finally, the two main components
(m = 1) associated to misalignments or eccentricities, for a 2-pair-of-poles machine, would
start at 50 Hz and drop to almost 25 Hz for fecc(−) (see Equation (4)) and almost 75 Hz for
fecc(+) (see Equation (5)). By using proper time-frequency analysis tools, such as STFT or
DWT (Discrete Wavelet Transform), the identification of the aforementioned patterns in
each component defined, would be a reliable way of determining the presence of each type
of failure.

To carry out the laboratory tests, a 4-pole SIEMENS 400 V, 1.1 kW single-cage induction
motor was used. A DC machine was coupled to it acting as a load when needed. The
characteristics of the SCIM tested, are shown in Table 1, according to the data provided by
the manufacturer.

Table 1. Rated characteristics of the SIEMENS motor.

Rated power 1.1 kW
Rated frequency 50 Hz
Rated voltage 400 V
Rated primary current 2.4 A
Rated speed 1440 rpm
Rated slip 0.04
Connection Star
Pole pairs 2
Frame material Aluminium

The bench used in the laboratory tests, is shown in Figure 3.
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Figure 3. Test bench used in the laboratory.

The sensor used to capture the stray flux, was manufactured in the laboratory. The
main characteristics are shown in Figure 4. There, the dimensions are depicted. The coil
has 1000 turns of a 0.2 mm diameter wire.

Figure 4. Coil sensor characteristics.

The tests, were carried out in three stages:

1. In a first stage, the healthy motor was tested, both with and without load.
2. In a second stage, 1 bar breakage was forced in the motor and it was tested both with

and without load.
3. In a third stage, 2 bar breakages were forced in the motor and it was tested both with

and without load.

To force the different levels of failure, a hole was drilled to cut the connection between
the bar and the short-circuit end ring (see Figure 5). The bars drilled, were consecutive in
these tests.

Figure 5. 1 and 2 forced bar breakages.

In each stage, the motor was started using four different models of soft-starters, each
one of them from well-known trademarks. The four models employed, had different
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topologies and regulation settings. Their main characteristics are shown in Table 2 (see also
Figure 6).

Table 2. Characteristics of the soft-starters.

Model A Model B Model C Model D

Manufacturer SIEMENS ABB OMRON SCHNEIDER
Rated power (kW) 1.5 1.5 2.2 4
Rated freq. (Hz) 50 50 50 50
Rated voltage (V) 380–400 380–400 380–400 400
Maximum current (A) 3.6 3.9 5.5 9
Volt. ramp duration (s) 0–20 1–20 1–25 1–5
Controlled phases R-T R-S R-S-T R

Figure 6. Tested soft-starters.

In each stage, the flux sensor was set consecutively in the three known positions (A, B
and C), in order to capture both the axial and the radial components (see Figure 1). For
each position of the sensor, the motor was started by means of the 4 different soft-starters.
For each soft-starter, at least 3 different regulations of time (voltage ramp) and initial
torque/current were set, depending on the available possibilities. For each test, the stray
flux and the current of each phase were captured, both during the starting and at steady
state. The induced emf signals were captured by connecting the sensor coil to a digital
waveform recorder. The sampling rate was fs = 5 kHz and the acquisition time was set in
40 s. Consequently, 270 signals were obtained when the three stages of tests were finished.

Once the signals were obtained, the start-up transient part of each one was analized
by means of the STFT and the time-frequency maps were obtained. Once those maps
were depicted, we were able to identify some of the expected failure patterns and so, we
obtained the numerical indicators related to them.

To complement this study, the steady-state parts of the obtained signals were analyzed
by means of the FFT, obtaining numerical indicators as a complementary way to confirm
the presence of the fault and categorize its severity. Although the steady-state analysis, as
it has been stated in other studies, may point out false failure alarms, in combination with
the transient analysis of the start-up is useful to confirm the presence of rotor damages [14].

3. Results

In this section, trying to be concise, only the representative results will be shown.
In Figures 7–14, different STFT analyses (time-frequency maps) are depicted. Settled the
sensor in the position B in every case, the results correspond to the healthy, 1-broken-bar
and 2-broken-bars motor driven by each soft-starter, them regulated as it is shown in
Table 3. The reasons for selecting position B are: (1) This position enables measuring both
the axial and radial portion of the flux. Therefore, its information for the diagnosis is richer
than that of other positions (such as A or C in Figure 1) that only enable to measure the axial
or radial, but not both of them simultaneously, and (2) the amount of stray flux measured
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at this position is larger than for others, a fact that yields higher amplitudes of the possible
fault components present in the emf signals.

Table 3. Regulation of each soft-starter whose results are shown.

Manufacturer Time Position Initial Current/Torque Position

SIEMENS 5 s 70%
ABB 10 s 55%
OMRON Middle Middle
SCHNEIDER 3 s C

Figure 7. Results of the STFT analyses of the stray flux under the start-up transient, for the SIEMENS
soft-starter, corresponding to the healthy and 1 broken bar motor.

Figure 8. Results of the STFT analyses of the stray flux under the start-up transient for the SIEMENS
soft-starter, corresponding to the 1 and 2 broken bars motor.
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Figure 9. Results of the STFT analyses of the stray flux under the start-up transient for the ABB
soft-starter, corresponding to the healthy and 1 broken bar motor.

Figure 10. Results of the STFT analyses of the stray flux under the start-up transient for the ABB
soft-starter, corresponding to the 1 and 2 broken bars motor.

Figure 11. Results of the STFT analyses of the stray flux under the start-up transient for the OMRON
soft-starter, corresponding to the healthy and 1 broken bar motor.
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Figure 12. Results of the STFT analyses of the stray flux under the start-up transient for the OMRON
soft-starter, corresponding to the 1 and 2 broken bars motor.

Figure 13. Results of the STFT analyses of the stray flux under the start-up transient, for the
SCHNEIDER soft-starter, corresponding to the healthy and 1 broken bar motor.

Figure 14. Results of the STFT analyses of the stray flux under the start-up transient for the SCHNEI-
DER soft-starter, corresponding to the 1 and 2 broken bars motor.

3.1. STFT Analyses of Start-Up Transient

The STFT analyses show that the s · f component, found in the axial flux, is present
in the cases of bar breakages for every model of soft-starter. It is also noticeable that this
component, is more evident as the severitiy of the fault rises. Related to this, different
colors in the time-frequency maps obtained denotes different energy density. Thus, colors
tending to red denote higher densities meaning, in those patterns related to failures, that
the severity of the fault is higher.
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On the other hand, the V-shaped component, linked to bar breakages and present in
the radial flux, is not evident. This may be due to the large amplitude of the s · f component,
that may partially mask the radial one. Nonetheless, the significant amplification of the
s · f component clearly evidences the presence of the fault.

The time-frequency maps also show the presence of the fecc(−) component, which is
linked to eccentricities, even in the healthy motor. This component is typically associated to
eccentricities present in the motor and may be also amplified due to misalignment between
the motor and the driven load. Note that, regardless of the presence of this component,
which denotes the presence of eccentricity and exists at all tested conditions, the component
at s · f is clearly increased as the fault gets worse and this occurs for every soft-starter.
Therefore, this component is proven to be a good indicator of the presence of the rotor fault.

Summarizing, the qualitative results obtained until now ratify that this methodology
allows to identify the presence of the faults studied, even when the motors are driven by
soft-starters of different topologies.

To reinforce the reliability of the methodology, numerical indicators where obtained
from the STFT analyses. Centering the search in the track of the s · f component, the highest
value of amplitude was obtained for each case. In the case of the healthy motor, the tracks
of the s · f component of the faulty cases were taken as reference. Thereby, the obtained
values for each model of soft-starter are shown in Table 4:

Table 4. Numerical indicators related to the s · f component, for each soft-starter.

Manufacturer Healthy 1 Broken Bar 2 Broken Bars

SIEMENS −36.06 dB −21.66 dB −13.84 dB
ABB −42.64 dB −24.03 dB −11.88 dB
OMRON −40.23 dB −21.59 dB −13.78 dB
SCHNEIDER −33.56 dB −22.51 dB −20.23 dB

Attending to the values obtained, indicators between −24.03 dB and −11.88 dB,
linked to the time-frequency patterns observed in the maps previously shown, evidence
the presence of rotor bar breakages. Moreover, the values shown in Table 4, confirm the
robustness of the indicators. Comparing the three studied cases (healthy, 1-broken-bar
and 2-broken-bars state), the indicator stays quite stable even for different topologies of
soft-starter. Values in the range of −38.10 ± 4.50 dB, confirm the healthy state of the rotor,
while values in the range of −22.80 ± 1.20 dB, reveal the presence of 1 broken bar. On the
other hand, in the case of 2 broken bars, although the indicator also stays quite stable for the
models of soft-starter controlling 2 or 3 phases, it is noticeable that the SCHNEIDER model
(1 controlled phase) exhibits less sensibility in terms of variation of the indicator, attending
to the fault severity. For the case of the three models controlling more than 1 phase, the
indicator stays in the range of −12.85 ± 1.00 dB. In the case of the SCHNEIDER one, the
value of the indicator stays close to the 1-broken-bar one, but with variation enough to
confirm the increase of the severity of the fault, as it is shown in Table 5. Anyway, for all
the soft-starters tested, the difference between the healthy and the faulty state keeps clear
enough to determine the presence of rotor faults.

Thus, regarding to the severity categorization and attending to the indicators, it is
noticeable the strong dependence on the number of phases controlled by the soft-starter.
In the case of the SCHNEIDER model (1 controlled phase), the variation between the 1-
broken-bar and the 2-broken-bars indicators is significantly lower than in the other 3 cases,
as Table 5 shows.
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Table 5. Variation of failure indicators, for each soft-starter.

Manufacturer Healthy vs. 1-Broken-Bar 1-Broken-Bar vs. 2-Broken-Bars

SIEMENS 39.92% 36.13%
ABB 43.64% 50.58%
OMRON 46.33% 36.16%
SCHNEIDER 32.93% 10.15%

To summarize the quantitative aspect of the analyses, indicators between −24.03 dB
and −21.60 dB linked to the s · f component, will reveal the presence of 1 broken bar in the
rotor. On the other hand, indicators between −20.22 dB and −11.88 dB linked to the s · f
component, will reveal the presence of 2 broken bars.

3.2. FFT Analyses of the Steady State

To corroborate the results obtained in the STFT analyses, FFT analyses of the steady-
state were carried out. Note that, at this regime, the soft-starter is by-passed and should
not interfere in the analyses. The objective here is to check if the results of steady-state
stray flux analyses under that regime, are coherent with those of the start-up. One could
think that this steady-state analysis could be enough to detect the presence of the fault, but
the problem of this methodology is the possibility of false indications which have raised
when only steady-state data are used [27]. This is why in this paper the aforementioned
methodology relying on starting analysis is proposed. The signals analyzed correspond to
the same settings of the STFT ones, with the tested motor loaded.

In Figures 15–22, the FFT spectra are depicted. These FFT steady-state analyses,
were focused on the s · f component, which was the clearer one in the transient analyses
previously shown.

Figure 15. Results of the FFT analyses of the stray flux under the steady state, for the SIEMENS
soft-starter, corresponding to the healthy and 1 broken bar motor.
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Figure 16. Results of the FFT analyses of the stray flux under the steady state for the SIEMENS
soft-starter, corresponding to the 1 and 2 broken bars motor.

Figure 17. Results of the FFT analyses of the stray flux under the steady state for the ABB soft-starter,
corresponding to the healthy and 1 broken bar motor.

Figure 18. Results of the FFT analyses of the stray flux under the steady state for the ABB soft-starter,
corresponding to the 1 and 2 broken bars motor.
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Figure 19. Results of the FFT analyses of the stray flux under the steady state for the OMRON
soft-starter, corresponding to the healthy and 1 broken bar motor.

Figure 20. Results of the FFT analyses of the stray flux under the steady state for the OMRON
soft-starter, corresponding to the 1 and 2 broken bars motor.

Figure 21. Results of the FFT analyses of the stray flux under the steady state, for the SCHNEIDER
soft-starter, corresponding to the healthy and 1 broken bar motor.
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Figure 22. Results of the FFT analyses of the stray flux under the steady state for the SCHNEIDER
soft-starter, corresponding to the 1 and 2 broken bars motor.

By analyzing these results, fault indicators related to the s · f component were iden-
tified. They are shown in Table 6. These fault indicators were obtained by means of a
self-custom Matlab code. The higher the indicator is, the higher is the severity of the
fault related to it. Taking the SIEMENS soft-starter as an example and attending to the
results shown in Table 6 and Figures 15 and 16, we can see that at the corresponding
frequency of the s · f component, the amplitude of the signal (indicator) has a value of
−59.62 dB in the healthy case. Once the bar breakage appears, this indicator for the s · f
component increases its value, reaching −43.53 dB. As the failure severity increases, so
does the indicator associated to the s · f component, reaching a value of −36.29 dB in the
2-broken-bar case. The same trend follow the indicators of the s · f component when the
other soft-starters are used.

Table 6. Numerical indicators related to the s · f component, for each soft-starter.

Manufacturer Healthy 1 Broken Bar 2 Broken Bars

SIEMENS −59.62 dB −43.53 dB −36.29 dB
ABB −59.34 dB −45.61 dB −35.46 dB
OMRON −60.09 dB −43.53 dB −35.28 dB
SCHNEIDER −61.79 dB −43.90 dB −36.28 dB

To summarize the quantitative aspect of the FFT analyses:

• Indicators between −59.34 dB and −61.80 dB linked to the s · f component, will
confirm the healthy state of the rotor.

• Indicators between −43.50 dB and −45.61 dB linked to the s · f component, will reveal
the presence of 1 broken bar in the rotor.

• Indicators between −35.27 dB and −36.30 dB linked to the s · f component, will reveal
the presence of 2 broken bars in the rotor.

All this analyses corroborate the coherent results of the start-up stray-flux-based
methodology and at the same time, indicate that simultaneous analysis of start-up and
steady-state stray flux signals (which can be carried out in the same measurement) can be a
powerful and reliable method to detect the presence of the fault.

4. Conclusions

The object of this article, has been to evaluate if even when IMs are driven by soft-
starters, the analysis of the start-up transient stray flux can provide evidences of the
presence of different rotor faults. On the other hand, it was also a goal to confirm if
this methodology could even categorize the severity of the faults, despite the side effects
introduced in the signals by soft-starters.
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According to the results obtained from the laboratory tests, this approach, combined
with the steady-state analysis of the stray flux, provide reliable information about the
conditions of the rotor.

The component s · f of the axial flux, related to broken bar faults, is evidenced in
the time-frequency maps obtained from the transient-based analyses. And this occurs
regardless of the type and topology of the soft-starter employed to start the motor.

Furthermore, indicators have been obtained so the identification of the failures and its
severity are not only qualitative, by means of the patterns shown in the time-frequency
maps, but also qualitative.

Finally, the combination of the transient-based analyses with the steady-state ones,
allows to avoid false failure alarms and confirm the presence of rotor failures.

To conclude, even though more studies will be developed to prove if these conclusions
can be extended to other rotating electrical machines, the results confirm that the stray
flux analysis under the starting, allows to detect electromechanical faults, even when
the motor is driven by soft-starters. Thus, due to the extended use of these devices in
industrial applications, this study reinforces the applicability of the method. Furthermore,
the obtaining of the indicators, will be helpful to advance in the automation of the diagnosis,
combining their recognition with the automatic identification of the fault patterns.

In this sense, the results presented in this paper open the way to implement stray-flux-
based methodologies in the soft-starter itself. The incorporation of additional sensors, such
as triaxial flux sensors and current ones, in combination with built-in Artificial Intelligence
devices, could lead industrial soft-starters to become smart devices, able to apply these
methodologies and add not only the motor-starting-control functionalities, but also the
motor-diagnosis ones.

Future works will deal with the application of the proposed methodologies in a
broader number of motor sizes, including large industrial motors.
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