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Abstract: Kinematic chains are ensembles of elements that integrate, among other components, with 
the induction motors, the mechanical couplings, and the loads to provide support to the industrial 
processes that require motion interchange. In this same line, the induction motor justifies its im-
portance because this machine is the core that provides the power and generates the motion of the 
industrial process. However, also, it is possible to diagnose other types of faults that occur in other 
elements in the kinematic chain, which are reflected as problems in the motor operation. With this 
purpose, the coupling between the motor and the final load in the chain requires, in many situations, 
the use of a gearbox that balances the torque–velocity relationship. Thus, the gear wear in this com-
ponent is addressed in many works, but the study of gradual wear has not been completely covered 
yet at different operating frequencies. Therefore, in this work, a methodology is proposed based on 
statistical features and genetic algorithms to find out those features that can best be used for detect-
ing the gradual gear wear of a gearbox by using the signals, measured directly in the motor, from 
current and vibration sensors at different frequencies. The methodology also makes use of linear 
discriminant analysis to generate a bidimensional representation of the system conditions that are 
fed to a neural network with a simple structure for performing the classification of the condition. 
Four uniform gear wear conditions were tested, including the healthy state and three gradual con-
ditions: 25%, 50%, and 75% wear in the gear teeth. Because of the sampling frequency, the number 
of sensors, the time for data acquisition, the different operation frequencies analyzed, and the com-
putation of the different statistical features, meant that a large amount of data were generated that 
needed to be fused and reduced. Therefore, the proposed methodology provides an excellent gen-
eralized solution for data fusion and for minimizing the computational burden required. The ob-
tained results demonstrate the effectiveness of fault gradualism detection for the proposed ap-
proach. 
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1. Introduction 
Into the kinematic chains, there are ensembled elements with very noticeable im-

portance, such as the gearboxes, because they allow the transmission of movement with 
a defined speed and torque from a rotating mechanical power source through a shaft con-
nected to other loads in the chain, such as in the case of internal combustion motors or the 
case of electric motors [1]. Another advantage of a gearbox is in the motor shaft coupling 
through the transmission system because the same crankshaft turning speed can be con-
verted into different turning velocities on the wheels of vehicles [2]. The usage of gear-
boxes in any mechanism is very advantageous since they require reduced spaces, are 
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fixed, provide a considerable power transmission capacity, and possess a high perfor-
mance [3]. However, gearboxes can be of high cost, maintenance must be considered, and 
they are very difficult to manufacture [4]. Different applications of gearboxes can be 
found, for example, in electric and combustion vehicles [5], in energy generation through 
on-shore wind turbines [4] and off-shore tidal stream turbines [6], in aero vehicles such as 
helicopters [7], in conveyors [8], and sucker-rod pumping [9], among others. Due to the 
wide range of industrial and non-industrial applications on which the gearbox is an es-
sential module, it is necessary to detect the wear of its ensembled elements, as in the spe-
cific case of the gears. Although much research has been conducted where the study about 
gear faults is addressed, most of them have focused on fault detection once the damage is 
severe, such as in the case of a broken tooth [10,11]. However, in recent works, the evolu-
tion of the faults has gained attention through gradual conditions, but despite this, there 
are still some drawbacks and limitations in the methodologies reported that could be sus-
ceptible to improvement. 

In relation to the reported methodologies that tackle the topic of fault identification 
in gearboxes, there exist several investigations focused on gears, making use of electric 
signals (current typically) for developing approaches to detect problems. For example, in 
[12], a methodology for detecting faults in a two-stages gearbox of wind turbines (WT) is 
described. There, the current signal from the WT generator is resampled by an adaptive 
algorithm, and through the fast Fourier transform (FFT), the fault features are extracted 
as normalized power differences considering the mean absolute value (MAV) and the 
standard deviation (SD). The faults considered were one and two teeth breakages, a gear 
crack, and top land wear. For its part, the methodology described in [13] makes use of the 
rotor current signal coming from a double-fed induction generator (DFIG) of a WT for 
gear faults identification. An angular resampling algorithm is applied, and through the 
Hilbert transform, an enveloped signal is generated from which the fault features are ob-
tained. Then, through a stacked autoencoder (SAE) and a support vector machine (SVM), 
the classification of the fault is carried out. For this work, the faults considered were one 
and two teeth breakages and chipped or cracked faults in the test gear. In another case, a 
fault diagnosis on a planetary gearbox of an induction motor was performed through the 
stator current in [14]. That work takes advantage of the load torque oscillations generated 
by the faulty elements bringing, as a consequence, amplitude modulation and frequency 
modulation (AM-FM). Then, an AM-FM model is derived through Fourier spectrum anal-
ysis. The analyzed faults correspond to one tooth breakage on the sun, ring, and planet 
gears. Nevertheless, the abovementioned methodologies strongly depend on the frequen-
tial spectrum analysis for extracting the features, which means that other related fault fre-
quencies might hide the real faults, not to mention that no fault graduality is considered. 
Several works have been reported regarding the vibration-based approaches for the fault 
diagnosis of gears; for example, in [15] an indicator is developed that evaluates the effects 
of wear on the gear performance for induction motors. This indicator is defined through 
a state vector of the time synchronous averaged signals considering the sideband ratios 
obtained from teeth meshing harmonics and their sidebands. Two averaged logarithmic 
ratios, with fixed and moving references, allow gear wear monitoring to be defined for a 
gear pair with artificial pits on teeth surfaces. Once again, the strong dependency of re-
lated frequencies at the sidebands could limit the type of fault to be analyzed. In this same 
line, the investigation carried out in [16] proposes an approach for monitoring and pre-
dicting surface profile changes and pitting the density in spur gears of a gearbox coupled 
with an induction motor. This approach considers three main stages starting with a 21-
degree-of-freedom dynamic model of the gear for simulating the element response, the 
use of two tribological models that estimate the wear depth and pitting density, and the 
updating of the models through continuous comparisons between measured versus esti-
mated signals. Likewise, in the work presented by [17], the use of the tribology and the 
vibration signals for developing a model based on a vector machine for multi-features 
fusion and an index for online wear debris monitoring are used to evaluate the wear and 
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pitting faults on planetary gears. However, the main drawback for these last two reported 
works is that in order to obtain higher accuracy in the prediction, the complexity of the 
models necessarily needs to be increased. Continuing with the condition monitoring of 
gear wear, in the paper presented in [18], a methodology is proposed based on supervised 
learning through infrared thermography. Hence, seven statistical features, together with 
the entropy and energy indicators, are computed from the thermal images. Then, linear 
discriminant analysis (LDA) and the neural networks classify the fault conditions. How-
ever, the main drawback of this approach is the necessary calibration of the thermal cam-
era, not to mention that only one operation frequency is considered. Equally important 
are the techniques based on data fusion; for instance, gear faults detection is performed 
through the framework in [19] and is applied to the drivetrain of WT with DFIGs. The 
time domain and frequency domain features are computed from stator and rotor current 
signals. Then, an SVM scheme performs fault identification both individually and com-
bined, and a Dempster–Shafer evidential reasoning (DSER) algorithm fuses the probabil-
istic outputs from the SVMs for comparison purposes. The fault conditions were one and 
two teeth missing, a chipped gear, and a cracked gear. Meanwhile, the method developed 
in [20] performs an information fusion of vibration and current signals for diagnosing a 
WT drivetrain gearbox. The feature extraction for the vibration and current considers 
some statistical time domain indicators such as Kurtosis, crest factor, and signal-to-noise 
ratio, and frequency domain indicators such as energy at each gear meshing frequency 
and its sidebands. Posteriorly, multiclass SVM probabilistic models define two classifiers 
whose outputs are fused through Dempster–Shafer theory and SoftMax regression. The 
gear conditions studied were one tooth breakage, chipped gear, and crack fault in the test 
gear. One disadvantage to these approaches was that they did not consider graduality for 
the fault conditions. From the previous works, it can be noted that the extraction of fea-
tures is very common in the development of diagnosis methodologies because they pro-
vide useful information related to the fault conditions [21]. Nonetheless, if they are not 
correctly selected, they can lead to stagnation problems due to information redundancy 
or because no information contribution exists. It must be highlighted from the previous 
discussion that most of the investigations work with fixed operating conditions during 
the fault diagnosis. However, some phenomena inherent to motor operation, introduce 
effects that could be erroneously interpreted as a failure. For example, fluctuating loads 
can be present during motor operation and their resulting effects are very similar to those 
produced by the presence of a broken rotor bar [22]. Thus, when a motor drives a varying 
load, the identification of faults under this situation can be very difficult, and the common 
techniques can confuse the effect produced by the operating condition with a fault condi-
tion delivering an incorrect diagnostic for a healthy motor [23,24]. There exist classical 
methodologies that help to identify frequencies related to faults on induction motors, such 
as eccentricities, broken rotor bars, and bearing defects, among others, through signature 
analysis, but even they are limited by the load effects that obscure and overwhelm those 
produced by the fault conditions [25]. On the other side, some investigations have used 
vibration signals to analyze the frequency spectrum of induction motors to observe those 
frequency components associated with the faults [26]. Other works introduce the stator 
current with the Wavelet transform and sliding windows for detecting rotor unbalances 
[27]. Meanwhile, applying the Hilbert transform for calculating the instantaneous fre-
quency on the stator current signal can be very helpful for the identification of faults in 
induction motors [28]. Recently, the motor current signature analysis (MCSA) has been 
enhanced through the use of the magnetic stray flux on the motor surround, which helps 
to detect fault conditions where current or vibration signals are not capable [29]. There-
fore, the interesting aspect of all these works is that they provide reliable results even 
under load fluctuations. Finally, although the effects of variations in the operating condi-
tions, such as fluctuating loads, have been reported, and there exist methodologies that 
tackle these situations, the proposed work takes for now as variations of the operation 
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conditions changes in the frequency of the variable frequency drive (VFD) that drives the 
motor. 

Accordingly, it is worth mentioning the studies that address the use of machine learn-
ing, heuristic, and statistical techniques on industrial applications to develop solutions to 
fault detection problems. As an example, the study carried out in [30] proposes a genetic 
algorithm (GA) method to estimate the characteristic parameters of the operation gear. 
Here, a resistance antenna is printed in the gear surface to provide the potential cracked 
locations over the surface, and this loss is sent to the GA approach to perform the estima-
tion of the natural frequency and quality factor of the antenna. On the other hand, a GA 
and the random forest (RF) classifier are integrated in [31] as a supervised system for 
multi-class fault diagnosis in spur gears considering statistical features in time, frequency, 
and time-frequency domains from vibration signals. Seven gear conditions are analyzed: 
normal, 10%/50%/100% of tooth breakage, pinion pitting, 0.5 mm pinion face wear, and 
misalignment. It can be noticed that the GA selects the features that best work for the 
classifier. However, a disadvantage of this approach is that performance evaluation in the 
GA requires going through the whole process of data matrix construction and classifier 
application, increasing the computational burden significantly. In the meantime, the work 
presented in [32] develops a methodology for diagnosing pitting faults on gears for the 
aerospace industry through vibration signals. This approach combines the data augmen-
tation theory with deep sparse autoencoder (DSAE) and SoftMax regression to evaluate 
six pitting conditions without gradual evolution and under the same operating condi-
tions. Additionally, this approach was designed considering the management of small 
sample sets by generating sample augmentation. In another case, the work presented in 
[33] develops a methodology based on vibration signals and statistical features selection 
optimization by performing a double selection process by GA and the fisher score for 
faults in elements of a kinematic chain. The conditions considered were normal, including 
bearing defects, half and one broken rotor bars, unbalance, and misalignment. This work 
also demonstrates that by using the GA technique, it is possible to optimize the process of 
detecting faults. However, here, no gradual evolution of the fault was considered, only 
one operating frequency was considered, and no data fusion was performed. 

This work contributes to the development of a methodology that integrates a heuris-
tic technique, such as the GA, for the enhancement of feature selection into a data-fusion-
based scheme for detecting gear wear graduality in the applications of gearbox coupling 
in induction motors. The methodology implements five main processing stages: data ac-
quisition, features extraction, high-dimensional set of features, optimized selection pro-
cess, data fusion, and gear wear diagnosis. The data fusion is performed for the features 
extracted from the motor current signal and from the vibration signals of the gearbox. 
Four fault conditions are considered in this study: healthy state and three gear wear se-
verity levels, and the experimental test was carried out under five different operating fre-
quencies. Due to the aforementioned, the number of features is too high that need to be 
arranged in a matrix with high dimensionality ready for being used in the diagnosing 
stage. Then, the GA technique optimizes the feature selection process, and the optimized 
features are transformed into a two-dimensional representation/reduction through the 
LDA, which in turn feeds a simple artificial neural network (ANN), greatly facilitating the 
identification and classification of the conditions. The obtained results demonstrate that 
data fusion not only boosts the fault diagnosis but also an optimized feature selection can 
lead to accurate fault identification even for different operating frequencies. 

2. Theoretical Background 
In the next sections, the theoretical background addressing topics such as gear faults, 

statistical indicators, genetic algorithms, and linear discriminant analysis besides the arti-
ficial neural network is described. 
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2.1. Gearbox and Gear Wear 
According to [34], most industrial applications such as manufacturing, mining, air-

craft, navigation, vehicles, wind turbines, oil and gas, and power energy, among others, 
require power transmission, and to accomplish this goal, the gearbox is the essential mod-
ule. Basically, the gearboxes, also called gear reducers, are ensembles of open gears, shafts, 
and bearings mounted into enclosed housings that protect their elements from external 
pollution and environmental conditions [35]. Here, it is also adequate to define the gears 
as discs or wheels, in the classical way, with teeth in their perimeter and the purpose of 
providing a positive drive by meshing the teeth between them [36]. The gears inside the 
gearbox keep a ratio between their diameters in order to generate a torque–speed rela-
tionship between the input and output shafts that allow the mechanical power to be trans-
mitted. 

There are several reasons that cause problems in the gearbox, but, specifically speak-
ing, gear faults are, for instance, pitting, spalling, and wear, among others. In this sense, 
the standard ISO 10825 [29] presents a classification of general failure modes that occur 
on gears, which are permanent deformations, surface fatigue phenomena, fissures and 
cracks, tooth breakage, scuffing, and indications of surface disturbances. From these 
modes, indications of surface disturbances were adopted in this study due to cover faults 
such as sliding wear, corrosion, overheating, erosion, and electric erosion, Figure 1. How-
ever, of particular interest, the sliding wear will be analyzed because it is an unavoidable 
situation that occurs during the years of service of the gearbox. Additionally, in [34], a 
detailed explanation about how the gear wear occurs can be found, but in general, when 
the gears into the gearbox have contact due to the normal operation, surface sliding, and 
rolling between teeth that generate material removal leading to a mass loss, which is as-
sumed as surface wear. 

 
Figure 1. Failure modes according to ISO 10825 [37]. 

It is very important to highlight that gear wear has negative effects on the gearbox 
operation since it produces alterations in the geometry of the tooth, which, in turn, can 
cause a reduction in the contact area, modifying the force distribution. This means that 
when the geometry of the gear tooth changes, a transmission error occurs, affecting the 
meshing stiffness of the mechanical system and causing, as a final effect, an increment in 
noise and vibration levels [34]. Naturally, these effects can be used for the purposes of 
monitoring and diagnosing by means of data processing, which is well known as data-
driven techniques, into a machine learning framework. 
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2.2. Statistical Features 
The statistical indicators are reliable and essential tools extracted from data sets that 

highlight, in most cases, relevant and useful information about the data configuration, 
structure, profiles, and patterns that may not be directly visible by observing the data 
through tables or plots. Therefore, these indicators can be used as features obtained from 
acquired signals of the physical variables through sensors and data acquisition systems in 
the industrial process that help make decisions [38]. 

There are different types of statistical features that provide information about loca-
tion and variability, for example, those that indicate central tendency (means, RMS, SRM, 
etc.), dispersion (standard deviation, variance, etc.), or, for instance, distribution anoma-
lies such as skewness, Kurtosis, and high-order moments. Additionally, there are some 
statistical features related to the shape of waveforms (crest factor, latitude factor, etc.). In 
this sense, the statistical features adopted in this proposed work are 15 time-based, similar 
to those proposed in [33], and appendix A show the equations for such features. 

These features have demonstrated their usefulness in applications that tackle the 
problems of fault identification, monitoring, and diagnosis [39]. Additionally, these fea-
tures were chosen because they are easy to implement, and the computational burden 
required is lower than other more complex features, such as those based on gradients and 
entropies, or that require space transformation of the data, such as the frequency domain. 
The features selected pretend to obtain information referring to location, ubication, geom-
etry, form, and variability, which can give significant information about changes (events) 
with respect to the original conditions (normal). 

2.3. Genetic Algorithms 
Since the genetic algorithms (GA) were first systematically presented by Holland in 

[40], they have been used as a very powerful heuristic tool for searching and optimizing 
purposes. These algorithms are based on natural genetics and natural selection, consider-
ing three main stages: reproduction, crossover, and mutation. Additionally, the main 
characteristics, advantages, and disadvantages of the GA according to [41] are described 
below: 
• They are based on an iterative converging process (generations), taking initial values 

that evolve to the desired solution. 
• They are population-based, considering each member of the population (individual) 

as a potential possible solution that converges to the desired solution. 
• Strongly depends on an objective function that returns a value associated with the 

individual performance (fitness); in fact, this function is the key to adapting the GA 
to a specific problem. 

• The variables for searching or optimizing are known as design variables since they 
integrate an individual, meaning that multiple optimizations can be run. 
The different advantages of the GA are the possibility of being applied to problems 

with discrete or continuous variables, non-linearities, discontinuities, nonconvexity, wide 
and short searching spaces, multi-objective, and high complexity, among others. Addi-
tionally, the GA is a simple concept but with robustness, is easy to understand, and does 
not require gradient-based computation, which makes them easy to implement in com-
parison with other heuristic techniques. All these advantages are the reasons they are 
adopted in this work. However, it is worth mentioning some disadvantages such as stag-
nation, local optimal instead global optimal solutions, and they can require long periods 
for the computational process.  

Despite this, GA has been adapted to a wide variety of applications in engineering 
problems demonstrating their effectiveness [42,43]. The next lines and the flow diagram 
of Figure 2 present the general steps for the implementation of the GA that is considered 
in this work. 
• Step 1: Generate a random initial population and set the initial algorithm parameters. 
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• Step 2: Evaluate the population performance, which means evaluating the fitness of 
each member by using the objective function. 

• Step 3: Perform individuals’ selection according to their fitness. 
• Step 4: Generate a new population, that will substitute the initial population, by 

means of the genetic operators: crossover and mutation. 
• Step 5: Evaluate the stopping criterion (maximum number of generations), if satis-

fied, then go to Step 6, if not, go to Step 2. 
• Step 6: Return the best solutions found. 

 
Figure 2. Flow diagram of the steps for implementing the GA. 

2.4. Linear Discriminant Analysis and Artificial Neural Networks 
According to [44], linear discriminant analysis (LDA) is a machine learning super-

vised technique normally used for the extraction of significant features and dimensional-
ity reduction in data-driven multiclass problems. This technique generates a representa-
tion or projection in two dimensions, or three dimensions, as grouped data points (clus-
ters) by taking advantage of the most discriminant linear information between a set of 
features of a high-dimensionality space. The representation is conducted because LDA 
looks to maximize, as much as possible, the linear separation of the classes that are differ-
entiated. Thus, for the application of the LDA, two measures must be computed: (a) 
Within-class scatter matrix, observed in (1), and (b) Between-class scatter matrix, observed 
in (2): 𝑠௪ = ෍ ෍ ൫𝑦௜௝ − 𝜇௝൯൫𝑦௜௝ − 𝜇௝൯்ேೕ௜ୀଵ௖௝ୀଵ  (1) 

𝑠௕ = ෍ ൫𝜇௝ − 𝜇൯൫𝜇௝ − 𝜇൯்௖௝ୀଵ  (2) 

where 𝑦 is de data vector of a class; 𝑦௜௝is the 𝑖𝑡ℎ sample of the class 𝑗; 𝜇௝ is the mean of 
the class 𝑗; 𝑁௝ is the number of samples in the class 𝑗; and 𝜇 is the mean of all the classes. 

This technique was adopted in this approach because it has demonstrated its full po-
tential in fault diagnosis applications [33] with the advantages of providing a low-dimen-
sionality projection of the classes found. However, also, when two or more physical vari-
ables are considered in the analysis, the LDA is a key tool for performing data fusion be-
cause the reduced features contain mixed information from such variables. Additionally, 
the purpose of LDA is to facilitate the task of the fault classifier. Regarding the classifica-
tion topic, this work proposed a simple structure of an artificial neural network (ANN) 
whose structure consists of an input layer, a hidden layer, and an output layer, as ob-
served in the diagram of Figure 3. 
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Figure 3. Structure adopted for the ANN. 

A simple structure of an ANN was selected in this work which aimed to reduce the 
computational burden through easy implementation and considering that the input to this 
ANN is through the features optimized by the GA and reduced by the LDA, ensuring 
easy learning of the fault conditions evaluated. 

3. Methodology 
In the next paragraphs, a detailed description of the methodology for detecting grad-

uality in gear wear based on statistical features, GA-based features optimization, and data 
fusion considering current and vibration signals is presented. Figure 4 shows a general 
block diagram of this proposed methodology addressing five main stages: (i) data acqui-
sition, (ii) features extraction, (iii) high-dimensional set of features, (iv) optimized selec-
tion process, and (v) data fusion and gear wear diagnosis. 

The first stage of the methodology starts with the data acquisition of the signals from 
the physical system, and an induction motor with a load coupling based on a gearbox 
containing a gear with gradual uniform wear is considered for this study. Then, the stator 
current of the motor is measured through a current clamp for one line since the three lines 
of the motor are assumed equal. Additionally, the vibrations are measured by means of 
an accelerometer placed in the gearbox housing, and only the axes Az and Ay are consid-
ered because they show the best behavior during the experimental tests. Both current and 
vibrations signals are acquired at the same time through an ADC of a proprietary moni-
toring system, and the data are stored and sent to the PC for further processing. As an 
additional note, this stage could consider for future analysis the use of additional sensors 
in other parts of the electromechanical system that would provide useful information re-
lated to other problems. For now, the scope of this work focuses on the wear of gear teeth 
in the gearbox through current and vibration signals. 
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Figure 4. Block diagram of the proposed methodology. 

In the second stage of the proposed approach, feature extraction was carried out, but 
first, data preparation and conditioning were performed. In this sense, the raw data were 
processed in the vector format for each channel measured (current channel, Ay, and Az 
vibration channels) considering only the steady state, whereby the transient state was re-
moved from the input data. Next, with the purpose of having as many features as possible 
for each signal, the data vectors were divided into overlapped time windows, and for each 
window, the 15 time-domain statistical features, such as those of Equations (A1) to (A15) 
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from Table A1, were computed. Therefore, the features extraction yields a large set of val-
ues that need to be arranged because the signals are considered for each channel (1 of 
current and 2 of vibration), per fault condition (healthy and 3 gradual conditions), per 
operating frequency (5 frequencies), per the number of trials (5 tests). Here, it can be clar-
ified that in the case of extra operating conditions during the experimental tests, their ac-
quired data must be considered for computing the corresponding statistical features. Sim-
ilarly, and in complement with the supposition of using additional sensors, their respec-
tive features must be also computed. 

In the third stage of the approach, the features extracted are arranged into a matrix 
of features of high dimensionality. The features of this matrix have information about the 
original data distribution, including structure, profiles, patterns, tendency, geometry, 
asymmetry, anomalies, etc. With this information, it is possible, theoretically, to apply 
data-driven techniques for fault conditions identification and classification. Nevertheless, 
despite the power of data processing algorithms, if inadequate feature discrimination is 
made, then it can cause stagnation problems, overfitting, or unreachable convergence. Ad-
ditionally, the dimensions of the matrix of features are high, but as many operating con-
ditions and different types of sensors are included as the highest, these dimensions will 
be. 

In the fourth stage of the methodology, a GA-based scheme for optimizing the selec-
tion of features is integrated into the data-driven process flow as follows. According to 
the steps of the previous section for applying the GA, the scheme begins by generating a 
random initial population. It must be remarked that the individuals of the population are 
binary strings, where each bit, according to its string position, is an index that represents 
one of the 15 statistical features, and the string length considers the indexes for all the 
channels (current channel, Ay, and Az vibration channels). Therefore, the individuals that 
form the initial population represent, in fact, a combination of statistical features, taking, 
as a minimum, the combination of at least two features. Posteriorly, the individuals’ per-
formance is evaluated by taking from the matrix of high dimensionality combinations of 
features that are indicated by the indexes and computing their variance, which is to say, 
the variance of the features (VF). The VF is then considered as the fitness value for each 
individual and is used for performing an elitist selection by keeping those individuals 
with the highest value since this indicates that the features have high dispersion and can 
be separated in fault conditions. The new generation of the population is defined consid-
ering the individuals with the best performance (fitness) through the genetic operators 
that, through crossover and mutations, generate new indexes; this way, the algorithm con-
vergence is guaranteed. Now, for this scheme, the stopping criterion for the iterative pro-
cess is through a maximum number of iterations (generations). If the maximum number 
of generations is not reached yet, then the new population generation is evaluated, else 
the scheme returns the individual (index combination) with the highest fitness found. Last 
but not least, the best individual found is used for taking the corresponding features from 
the matrix of high dimensionality to conform a new matrix with low dimensionality, 
which from now will be known as the matrix of optimized features. In the case of using 
extra sensors, the string length must consider the number of features per sensor channel, 
but the structure is kept equal. 

Finally, in the last stage of the methodology, the optimized features of the current 
and vibration are fused and once again reduced through the LDA technique aiming to 
boost the faults diagnosis as much as possible. The data fusion is achieved because the 
LDA technique takes from the matrix of optimized features those that better differentiate 
the classes detected to conform the points of the clusters no matter if the features are from 
the current or vibration. The LDA projection in 2 dimensions, feature 1 versus feature 2, 
is very helpful to visualize graphically the fault conditions, and it could be considered as 
a pre-classification stage. Additionally, the output of the LDA generates adequate inputs 
for the classifier facilitating its task and reducing its structure complexity since only two 
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inputs (vectors of feature 1 and feature 2) are considered. Considering the aforemen-
tioned, the classifier is an ANN with a simple structure: one input layer with 2 neurons, a 
2-stage hidden layer with 3 and 10 neurons, respectively, and an output layer with 4 neu-
rons (one per condition). The output of the classifier are the conditions detected: the 
healthy state and gradual gear wear (25%, 50%, and 75% wear). It is worth mentioning 
that, in the case, that other types of fault conditions were included in the analysis, then 
this last stage remains almost equal, and only the ANN structure must add as many out-
put neurons as the fault conditions analyzed. 

4. Results and Discussion 
4.1. Experimental Setup 

The experimental test bench for performing the trials was constituted by a simple 
electromechanical system of an induction motor with a coupling based on a gearbox to 
the load, Figure 5a. The induction machine consists of a three-phase electric motor model 
WEG00236ET3E145T-W22 and consumes a rated power of 1492 W. Meanwhile, the motor 
coupling to the load is made through a gearbox model Baldor GCF4X01AA with a reduc-
tion ratio of 4:1, driving the motor shaft. For the final electromechanical load, a DC gener-
ator model Baldor CDP3604 is used, entailing approximately 20% of the motor load. With 
the aim of testing the system under different operating conditions, the motor was driven 
through a variable-frequency drive (VFD) model WEGCFW08, feeding the induction mo-
tor at the frequencies 5 Hz, 15 Hz, 50 Hz, 60 Hz, and an additional test was carried out at 
60 Hz with a soft starter. By its part, the current signal is measured through a hall effect 
sensor model Taruma Corporation L08P050D15, and the vibration signals are measured 
by means of a triaxial accelerometer model LIS3L02AS4 mounted in a board that incorpo-
rates signal conditioning and antialiasing filtering stages. The data acquisition system 
(DAS) consists of a low-cost proprietary board based on a field programable gate array 
(FPGA) integrating an analog to digital converter (ADC) of a 14-bit resolution acquiring 
the signals from the sensors at sampling frequencies of 4 kHz and 3 kHz, for the current 
and vibration, respectively. The acquisition time of each trial is 30 s, but only the steady 
state is considered for the study, whereby the first 10 s of the trials are removed from data, 
and the final number of samples is 80 kS and 60 kS, for the current and vibration, respec-
tively. A total of five trials were executed per operating frequency, five frequencies were 
considered (5 Hz, 15 Hz, 50 Hz, 60 Hz, and 60 Hz with soft starter), and these trials were 
carried out for four fault conditions The fault conditions entail the healthy gear (HLT) and 
gear wear at 25%, 50%, and 75%, as observed in Figure 5b. For its part, for data processing, 
the time windows have a 1 s length and consider an overlapping of 50%, which generates 
39 exact windows. 
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(a) (b) 

Figure 5. Experimental setup, in (a) Physical system, and (b) Gears with gradual wear. 

The matrix of features of high dimensionality is structured as follows. The statistical 
features are arranged in column format; first appear the 15 features for the current next to 
them have placed the 15 features of vibration in the Ay axis, and next to them are placed 
the 15 features of vibration in the Az axis, yielding a total of 15 × 3 = 45 columns. In the 
row format, the samples are placed, which means the feature values of the four gear wear 
conditions, per five operating frequencies, per five trials, per 39-time windows, yielding 
a total of 4 × 5 × 5 × 39 = 3900 rows. It is worth mentioning that, with the aim of obtaining 
a generalized methodology, if extra operating conditions need to be considered, then the 
row dimensions of the matrix of features could be extended. To do this, the statistical fea-
tures of the extra operating conditions are computed and arranged as extra rows in the 
matrix, but without forgetting that by every extra condition, the features of previous op-
erating conditions must be computed in a permuted way, such as in Figure 6. Finally, the 
size of the matrix of high dimensionality for this work is 3900 rows × 45 columns, as ob-
served in the figure, and this arrangement is important because the indexes that the GA 
proposes as combinations of features will be used for taking the features directly from this 
matrix, as observed in stages three and four of the methodology diagram of Figure 4. 
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Figure 6. Arrangement of the matrix of features of high dimensionality. 

As previously mentioned, the structure of the ANN considers two neurons for the 
input layer, three and ten neurons for the hidden layer, and four neurons for the output 
layer, and the activation functions are “tangent” and “linear” for the hidden and output 
layers, respectively. The backpropagation algorithm is used for feature learning. Due to 
the GA scheme for selecting features and the feature reduction through LDA, the com-
plexity in the ANN structure is avoided. Finally, to validate the classifier, 70% of the val-
ues from the matrix of features were used for network training, and the remaining 30% 
was used for validation. In addition, these percentages were extracted by random selec-
tion with the aim of obtaining more precise and reliable results. 

4.2. Case Study: Fault Diagnosis without Features Optimization 
For comparison purposes, the results of applying the fault diagnosis for gears with 

graduality wear without feature optimization are presented and discussed next. Figure 7 
plots what is obtained when all the features extracted from the signals (current, Ay vibra-
tion, and Az vibration) are processed directly through the LDA reduction technique. 
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Figure 7. LDA applied over all the features in the matrix of high dimensionality. 

As can be observed from the figure, the discriminant analysis tries to project in two 
dimensions the features from the matrix of high dimensionality as data points that form 
clusters. Nonetheless, the separation of the clusters is not achieved successfully, and in 
consequence, a hard overlapping is observed. The reason for the algorithm fail is because 
features exist in the matrix of high dimensionality that do not provide useful information, 
and even there are features that have similar information between them, which cause sin-
gularities for the analysis. Initially, the purpose of extracting too many features is of hav-
ing as much information as possible about the data distribution in such a way that this 
information can be useful for fault diagnosis; notwithstanding, this situation demon-
strates that adequate data-driven through feature optimization is necessary. 

4.3. Case Study: Fault Diagnosis with Features Optimization withouth Data Fusion 
Now, with the objective of demonstrating the importance of data fusion, this case 

study considers feature optimization by taking separately the analysis of current signals 
and vibration signals. Figure 8 displays the results of applying the feature optimization 
over current signals with LDA projection and ANN classification but without data fusion. 

From the figure, the discussion can be addressed in two aspects. On one hand, the 
projection of the features into a two-dimensional representation through the LDA is ob-
served in Figure 8a and clearly indicates how significant the improvement in the classes 
detected and cluster separation with respect to Figure 7 was. That means the four condi-
tions can be appreciated; however, the overlapping between the clusters is still noticeable. 
The region for each condition is delimited, but the condition of the gear wear at 75% was 
divided into two regions. On the other hand, the performance of the optimization process 
of the features selection is validated through the confusion matrix of Figure 8b. This ma-
trix indicates an overall performance achieved by the ANN in the classification of the 
healthy state and the three gradual gear wear conditions of 72.4%. The worst results hap-
pened when the diagnostic indicated that the conditions were healthy; 50% and 75% were 
considered as a condition of gear wear at 25%. 
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(a) (b) 

Figure 8. Features optimization through GA for current signal (not data fusion is considered), in (a) 
Two-dimensional projection of clusters (fault conditions) through LDA with limit bounds, and (b) 
Confusion matrix that validates the ANN classification of faults. 

Respectively, Figure 9 similarly shows the results of applying the optimization pro-
cess for features selection through GA with an LDA projection and the ANN classification, 
but in this case, for the vibration signals, specifically from the axes Ay and Az, means 
without data fusion. 

 
 

(a) (b) 

Figure 9. Features optimization through GA for Ay and Az vibration signals (not data fusion is con-
sidered), in (a) Two-dimensional projection of clusters (fault conditions) through LDA with limit 
bounds, and (b) Confusion matrix that validates the ANN classification of faults. 

Regarding the observed results from the figure, the following can be discussed. The 
LDA projection in 2D of the optimized features from vibration signals in Figure 9a shows 
a clear separation of the regions that delimit the four conditions analyzed and, likewise, 
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the case of the current. However, in this case, the gear wear at 25% is divided into two 
zones, which is not correct, but also the clusters overlapping are still visible, and this sit-
uation is confirmed in the validation through the classification stage. Therefore, the cor-
responding performance of the optimized selection of features for vibration signals with-
out data fusion is validated through the confusion matrix of Figure 9b. The confusion ma-
trix shows how the ANN for this case achieves an overall performance of 83.7%, which is 
much better than even that using the current. Now, for this case, the worst results are 
appreciated from the matrix when the condition of gear wear at 25% is considered as a 
condition at 75%, but also the condition of gear wear at 75% is considered as conditions 
25% and the healthy state. 

4.4. Case Study: Fault Diagnosis with Features Optimization and with Data Fusion 
Now, regarding the afore revised cases, it is the turn to present the results of the 

proposed methodology, that is to say, gradual gear wear detection through GA-based fea-
tures selection optimization and data fusion by means of LDA-ANN techniques. There-
fore, the results of applying the proposed approach on current signal and vibration signals 
(Ay and Az axes) are depicted in the plots of Figure 10.  

 
 

(a) (b) 

Figure 10. Features optimization through GA and data fusion (current signal and Ay and Az vibra-
tion signals), in (a) Two-dimensional projection of clusters (fault conditions) through LDA with limit 
bounds, and (b) Confusion matrix that validates the ANN classification of faults. 

As it can be appreciated, the GA optimizes the selection process by providing a set 
of features from the matrix of high dimensionality that allows the LDA to reduce and 
project in two dimensions the classes detected as clusters, with enough separation to dif-
ferentiate the fault conditions of the gear. For example, in this projection, as in Figure 10a, 
the regions delimited for each cluster perfectly define the gear wear condition: healthy, 
gear wear at 25%, gear wear at 50%, and gear wear at 75%. In addition, the clusters over-
lapping are very slight in comparison with those obtained without data fusion; this way, 
the use of the GA and the data fusion are justified in this application. Meanwhile, the 
confusion matrix of Figure 10 b) helps to validate the effectiveness of the proposed meth-
odology since the ANN achieves an overall performance of 92.2%. Here, the worst errors 
in the diagnostic were two, the condition of 25% predicted as 75% and the condition of 
75% predicted as 25%; nevertheless, both occurred with a very low percentage. 
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Finally, several experimental tests were carried out by adding white Gaussian noise 
to the original measured signals of a 40 dB magnitude with the aim of inducing some 
aleatory disturbances. Of course, it must be clarified that the original measured signals 
processed by the proposed methodology had inherent noise due to the electronic and 
background noise, but the noise added was more evident. Hence, Figure 11 presents the 
results obtained by the proposed methodology under noise effects. Similarly, just as in the 
previous results for this case study, Figure 11a shows the LDA projection of the clusters 
representing the gear conditions with slight overlapping between the wear condition of 
25% and 75%. On the other side, Figure 11b shows the confusion matrix that validates the 
classifier; it is observed that the general performance reached 91.4%, which is very similar 
to those results without white Gaussian noise. 

 
 

(a) (b) 

Figure 11. Feature optimization through the proposed methodology with Gaussian noise added for 
40 dB, in (a) Two-dimensional projection of clusters (fault conditions) through LDA with limit 
bounds, and (b) Confusion matrix that validates the ANN classification of faults. 

Some interesting aspects that must be highlighted are that the LDA projection 
through the two output features (feature 1 and feature 2) with the slight overlapping be-
tween the fault conditions of the gear wear of 25% and 75% are fed to the ANN. This slight 
overlapping is normal, considering that the fault conditions are analyzed under variations 
of the operating frequency of the motor (5 Hz, 15 Hz, 50 Hz, 60 Hz, and 60 Hz with a soft 
starter). This brings as a consequence the fact that no matter what structure is adopted for 
the ANN, its accuracy and precision provide similar results. Thus, if a clearer separation 
between the classes detected through the LDA can be obtained (without overlapping), 
then a higher accuracy and precision of the ANN classification can be reached. 

In order to present a comparison between the case studies, Table 1 presents a sum-
mary in which the configurations of each case can be observed and explicitly the features 
returned by the GA-based optimized selection of features mechanism implemented in this 
work. Thus, the table shows, in each case, the physical variables used, the features selected 
through GA, if data fusion was performed or not, and the overall performance achieved 
in every case. It is notorious that for the cases where the GA optimization was applied, 
the selected features in common were the mean, the SRM, and the high-order moments. 
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Table 1. Case studies performance comparisons. 

Case 
GA Optimized 

Features 
Data 

Fusion 
Overall 

Performance (%) 
Current + Vibrations (Ay, Az) No (all features used) No Not achieved 

Current 
Mean, Max, SRM, CF, IF, 

5thM, 6thM No 72.5 

Vibrations (Ay, Az) Mean, SRM, Kur, 6thM No 83.7 

Current + Vibrations (Ay, Az) Mean, Max, SRM, CF, IF, 
5thM, 6thM 

Yes 92.2 

Current + Vibrations (Ay, Az) + 
white Gaussian noise 

Mean, SRM, Sk, Kur, 
5thM Yes 91.4 

It must be mentioned that the conventional reported methodologies, such as the sig-
nature analysis, based on frequency analysis, already address the direct detection of spe-
cific faults; nevertheless, they have been validated by taking into account fixed or static 
operating conditions, which means they normally carry out their experimentations under 
one operating frequency (50 Hz or 60Hz) and without considering graduality in the ana-
lyzed faults. On the other hand, a conventional way for diagnosing faults on induction 
motors requires feature extraction directly from the measured signals and then applying 
a faults classifier based on ANN. However, this process implies that such ANN could 
require a very complex structure in order to obtain accurate and reliable results; obvi-
ously, the computational burden and the processing time will increase significantly, not 
to mention that expert knowledge that will be required for its development. Although the 
proposed methodology implies five stages for its implementation, due to the integration 
of basic data processing techniques for features calculation, extraction, and reduction, 
they allow a very simple structure to be defined for the classifier, and in general, the meth-
odology simplicity does not require the expert knowledge of using the techniques 
adopted. 

5. Conclusions 
This work presents a methodology for detecting faults of gradual gear wear (healthy 

gear wear at 25%, 50%, and 75%) in a gearbox integrating a GA for optimizing the selection 
process of statistical features in the time domain, but also performing data fusion of those 
features from current and vibration signals through LDA, and performing the classifica-
tion of conditions through a simple structure of ANN. This methodology enhances the 
detection and diagnosis of fault conditions even under different frequency operating con-
ditions of the analyzed system; in contrast, this is with conventional approaches that per-
form their experimentations under fixed operating conditions and without considering 
the gradual evolution of the faults. The obtained results demonstrate the following. The 
overall performances that were reached in the diagnostic in the case study concluded that 
the GA-based optimized selection of features without data fusion for current and sepa-
rately for vibrations were not as low as expected if omitting the intervention of the GA. 
Additionally, it must be emphasized that those results were obtained under different op-
erating frequencies (5 Hz, 15 Hz, 50 Hz, and 60 Hz with VFD and 60 Hz with soft starter), 
which deserves the recognition of its merit. Of course, the overall performance in the di-
agnostic of the proposed approach, where additionally to the optimized selection of fea-
tures the data fusion is applied, succeeded the previous results. Therefore, another con-
clusion is that the use of the GA perse significantly improves the detection of gradual gear 
wear, no matter the conditions under the experimental tests, but the data fusion also 
boosts to overcome the limitations due to the use of only one type of variable. For instance, 
the conventional methodologies perform faults detection through signature analysis; this 
is well documented, but it is also mentioned that the use of frequency analysis can yield 
the wrong detection if operating conditions vary. However, the proposed approach is 



Energies 2023, 16, 948 19 of 22 
 

 

based on the extraction of features from the tests performed under operating conditions 
variations (different operation frequencies), and they can reflect the fault’s behavior 
through the data distribution. Another important aspect to be addressed is the features 
returned by the GA scheme; an initial supposition assumes that the more information is 
available, the greater possibilities of faults detection exist, but this asseveration is not true 
because the information used for this task must be useful, with profiles and patterns that 
allow it. In this sense, the matrix of high dimensionality directly processed by the LDA 
can project an inadequate two-dimensional representation of the faults, the reasons for 
which are diverse, considering features without variations, repeated information, and ab-
normal singularities. It is very notorious that the common features selected in all the case 
studies coincide with the mean, SRM, and the 6thM, but also some other features, such as 
the CF, IF, Kur, and 5thM appear. From these features, only the mean is the classical sta-
tistical indicator of central tendency, but the others are more related to the geometry of 
the signal waveform such as CF, IF, or anomalies in the form distribution, such as the 
high-order moments (Kur, 5thM, and 6thM). Perhaps, the main limitation of the proposed 
methodology is that it still requires extraction at the beginning; all the features from the 
input signals have the intention of reducing the computational burden required by apply-
ing the GA scheme. This means that, in this work, the GA does not compute the features 
during execution; instead, the population is the indexes that represent the features (al-
ready computed and arranged in the matrix of high dimensionality) that will be combined 
to evaluate their performance through its variance. In future work, some other applica-
tions will be considered, and a broader range of electromechanical elements and their as-
sociated fault conditions will be tackled with this approach, such as the broken rotor bars, 
misalignment, unbalance, and bearing defects, among others. Additionally, there will be 
explored and studied the effects of considering additional operating conditions such as 
fluctuating loads; this situation makes hard the proper identification of the faults because 
the effects of these loads are very similar to other fault conditions, and it will be interesting 
to explore the potential of our proposed scheme under this context. Additionally, there 
will be studies on the use of other domain-based features, as well as other physical varia-
bles for the data fusion that helps to improve the diagnosis results, such as the case of 
stray flux for example. 
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Appendix A 
The statistical features adopted in this work are observed from Expressions (A1) to 

(A15) in Table A1. 
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Table A1. Time-domain statistical features defined. 

Feature Equation  

Mean 𝑥̅ = 1𝑛 ∙ ෍ (𝑥௜)௡௜ୀଵ  (A1) 

Maximum Value (Max) 𝑥ො = max (𝑥) (A2) 

Root Mean Square (RMS) 𝑅𝑀𝑆 = ඨ1𝑛 ∙ ෍ (𝑥௜)ଶ௡௜ୀଵ  (A3) 

Square Root Mean (SRM) 𝑆𝑅𝑀 = ൬1𝑛 ∙ ෍ ඥ|(𝑥௜|௡௜ୀଵ ൰ଶ
 (A4) 

Standard Deviation (SD) 𝜎 = ඨ1𝑛 ∙ ෍ (𝑥௜ − 𝑥̅)ଶ௡௜ୀଵ  (A5) 

Variance (Var) 𝜎ଶ = 1𝑛 ∙ ෍ (𝑥௜ − 𝑥̅)ଶ௡௜ୀଵ  (A6) 

Form Factor with RMS (FF-RMS) 𝑆𝐹ோெௌ = 𝑅𝑀𝑆1𝑛 ∙ ∑ |𝑥௜|௡௜ୀଵ  (A7) 

Form Factor with SRM (FF-SRM) 𝑆𝐹ௌோெ = 𝑆𝑅𝑀1𝑛 ∙ ∑ |𝑥௜|௡௜ୀଵ  (A8) 

Crest Factor (CF) 𝐶𝐹 = 𝑥ො𝑅𝑀𝑆 (A9) 

Latitude Factor (LF) 𝐿𝐹 = 𝑥ො𝑆𝑅𝑀 (A10) 

Impulse Factor (IF) 𝐼𝐹 = 𝑥ො1𝑛 ∙ ∑ |𝑥௜|௡௜ୀଵ  (A11) 

Skewness 1 (Sk) 𝑆௞ = 𝐸ሾ((𝑥௜ − 𝑥̅)ଷሿ𝜎ଷ  (A12) 

Kurtosis 1 (Kur) 𝑘 = 𝐸ሾ((𝑥௜ − 𝑥̅)ସሿ𝜎ସ  (A13) 

5th Moment 1 (5thM) 5𝑡ℎெ = 𝐸ሾ((𝑥௜ − 𝑥̅)ହሿ𝜎ହ  (A14) 

6th Moment 1 (6thM) 6𝑡ℎெ = 𝐸ሾ((𝑥௜ − 𝑥̅)଺ሿ𝜎଺  (A15) 
1 High-order moments. 

From table, 𝑥 is the input data vector from which the statistical features are going to 
be extracted; 𝑛 is the total number of data in the sample set; 𝑖 is the corresponding ith 
sample that takes values from 𝑖 = 1,2,3, … , 𝑛. 
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