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ct

learning-based models applied to digital pathology require large, curated datasets with high-quality (H
ions to perform correctly. In many cases, recruiting expert pathologists to annotate large databases is not fe
nd it is necessary to collect additional labeled data with varying label qualities, e.g., pathologists-in-traini
orth, non-expert annotators). Learning from datasets with noisy labels is more challenging in medical applic
nce medical imaging datasets tend to have instance-dependent noise and suffer from high inter/intra-observ
ity. In this paper, we design an uncertainty-driven labeling strategy with which we generate soft labels from
ert annotators for multi-class skin cancer classification. Based on this soft annotation, we propose an unc

stimation-based framework to handle these noisy labels. This framework is based on a novel formulation usi
ranch min-max entropy calibration to penalize inexact labels during the training. Comprehensive experimen
trate the promising performance of our labeling strategy. Results show a consistent improvement by using s
ith standard cross-entropy loss during training (∼ 4.0% F1-score) and increases when calibrating the mod

e proposed min-max entropy calibration (∼ 6.6% F1-score). These improvements are produced at negligib
th in terms of annotation and calculation.

ds: Digital pathology, Non-expert annotators, Uncertainty estimation, Model calibration

oduction

al pathology research has experienced signif-
rowth in recent years thanks to the advent of
omputer vision techniques based on deep learn-

The deployment of convolutional neural net-
CNNs) has allowed the automatic identification
biomarkers and innovative features in the whole
ages (WSIs) that support the diagnostic process.

cular, these techniques have shown promising re-
r computer-aided diagnosis on different applica-
ch as prostate [2], breast [3] and skin cancer de-
[4], tissue segmentation [5], or mitosis detection
ong others. Nevertheless, deep learning mod-
ire large and curated datasets with high-quality

nnotations to perform properly. In the case of
pathology, a popular choice is the use of weakly

il addresses: madeam2@upv.es (Rocı́o del Amor),
ose.silva-rodriguez@etsmtl.ca (Julio
drı́guez), vnaranjo@dcom.upv.es (Valery Naranjo)

supervised strategies with WSI-level annotations.17

the multi-class scenario, an expert pathologist assig18

a unique label to the whole biopsy based on diagno19

tic or prognostic features. Then, deep learning mo20

els are trained using multiple instance learning (MI21

to automatically solve the task at hand. However, th22

pipeline does not consider real-world limitations a23

noise sources inherent to the annotation process, whi24

may hinder the performance of the model. These li25

itations are accentuated in some applications requiri26

a high level of expertise, such as several skin neoplas27

diagnosis (i.e., cutaneous spindle cell neoplasms, o28

of the most challenging skin neoplasms not studied29

previous studies [7]). In many cases, recruiting exp30

pathologists to annotate large databases is not feasib31

Unfortunately, without sufficient labels, the data-hung32

learning-based methods often struggle with overfittin33

leading to inferior performance [8]. To alleviate this34

sue, collecting additional labeled data with varying35

bel qualities, e.g., pathologists-in-training (hencefor36
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ert annotators) or using machine-generated la-
a common practice. However, directly introduc-

with low-quality (LQ) noisy labels may confuse
ork training, which easily leads to performance
tion [9, 10]. Therefore, how to effectively and
exploit the additional information in plentiful

sy labeled data is crucial to the medical image
s community.
ning from noisy labels is a widely recognized
ge in classical image recognition. Several efforts
en made to mitigate the negative impact of LQ

n medical image analysis [10–13]. However, this
n under-explored area, as existing literature on
with noisy labels lacks a clear distinction of ap-
scenarios, leading to ambiguous benchmarks.

pproaches [12, 13] assumed mixed data from
e sources, i.e., set-HQ and set-LQ labels are in-
inate. In contrast, other techniques [10, 11] were
ed for a scenario where experts label a small
, making LQ and high-quality (HQ) labels sepa-

main body of literature exploits multiple anno-
a crowdsourcing scenario, to extract the under-

oise-free label distribution. Nevertheless, gath-
ultiple annotators in the medical context may
alistic. The high level of expertise required, as
the time-consuming nature of such annotation,
rier to the implementation of these methods in
rld applications. These findings highlight the
r developing uncertainty-aware pipelines to ad-
e inherent uncertainty in the annotation process,
ay not require from multiple label sources.

d on these observations, we propose a novel
inty-driven labeling strategy for histology skin
classification. The key contributions of our work
summarized as follows:

single-annotator uncertainty-aware labeling
ategy with which we generate soft labels from
non-expert annotators for multi-class skin can-

r classification that quantify uncertainty in the
notations.

sed on these annotations, we present an exten-
e study for the use of soft label model calibra-
n compared to the ground truth, labeled by an
pert pathologist.

addition, we propose a novel formulation based
dual-branch entropy calibration (DBEC) to cal-
ate both, overconfident outputs and uncertain
ft labels, during training.

mprehensive experiments demonstrate the
omising performance of our labeling strategy.

By incorporating uncertainty during labeling w87

found average improvements of nearly ∼ 4.088

in averaged F1-score using the baseline metho89

which increases up to ∼ 6.6% using the propos90

dual-branch calibration.91

2. Related work92

2.1. Skin WSIs93

According to the World Health Organization, nea94

one in three diagnosed cancers worldwide is a skin ca95

cer [14]. Different techniques, such as dermatoscop96

wood lamp, CT scan and histopathology, are utiliz97

for the diagnosis of skin diseases. However, the go98

standard for skin cancer detection is histological i99

age analysis. Traditionally, histological slides wou100

be viewed with a light microscope. However, digi101

zation has created opportunities for automated analy102

using WSI. Applying deep-learning models to compu103

vision problems shows excellent potential in skin ca104

cer detection. Most research was based on the an105

ysis of dermoscopic images [15–21] and few stud106

have focused on the analysis of WSI [3, 4, 22–25].107

this vein, MIL approaches have been successfully a108

plied to Basal carcinoma (BCC) [3] or melanoma [109

reducing the time required to perform precise anno110

tions. However, many types of skin cancer have n111

yet been explored. These include cutaneous spindle c112

neoplasms (CSC), predominantly composed of spind113

shaped neoplastic cells arranged in sheets and fascic114

[26]. These lesions are relatively common. For exa115

ple, cutaneous squamous cell carcinoma is the seco116

most common epidermal cancer representing 20 %117

50% of skin cancers [27] and spindle cell melanom118

contributes 3% to 14% of all melanoma cases [28]. CS119

neoplasms are challenging to diagnose due to the co120

siderable morphological overlap between the differe121

tumor types that make up this group [7], which pos122

a particular problem for less experienced pathologis123

This hampers an accurate diagnosis and the applic124

tion of effective clinical treatment [29] in neoplasms125

which early detection and appropriate treatment are e126

sential for a good prognosis in malignant cases. D127

spite the complexity of these neoplasms, they had n128

been previously studied in the literature. Therefo129

the main objective of this paper is to classify, und130

a MIL-based approach, the seven types of fusocel131

lar skin neoplasms identified by expert pathologists132

the most challenging: leiomyomas (lm), leiomyosarc133

mas (lms), dermatofibromas (df), dermatofibrosarcom134

(dfs), spindle cell melanomas (mfc), fibroxanthom135

(fxa) and squamous cell carcinoma (cef).136
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certainty estimation
rtainty estimation methods are expected to im-
he understanding and quality of deep learning
to enhance their generalization during inference.
ethods have an outstanding interest in medical

tions due to the high expertise required to obtain
labels, the variability in acquisition systems and
resent in many databases [30], and the known
notator variability in different medical applica-
1, 32]. For these reasons, training uncertainty-
odels is key to the success of diagnostic support
in medical applications. An uncertainty-aware

arning model training usually covers two steps:
inty quantification and model calibration. Un-
y quantification aims to assess the prior proba-
f error for certain samples during training. From
spective of noisy labels, a main core of previ-
rature use multiple annotators in crowd-sourcing
os to quantify inter-observer agreement for each
[33–36]. Thus, crowd-sourcing methods aim to
the underlying noise-free label distribution by
neously training annotator-specific projections
e feature space [33–37]. Other solutions focus
r task-specific knowledge such as avoiding over-
nt outputs on neural networks [38] or leveraging
nfidence on non-informative regions [39]. Other
inty quantification approaches focus on sample
stimation, which may raise from image quality,
extraction, or out-of-distribution domains. Pre-
terature in this regard use a trained student model

the confidence of the model via Monte Carlo
t with image augmentations [24, 36, 40], cur-

learning [41], or co-teaching [42, 43]. After
inty estimation, deep learning models are cali-
o overcome the limitations detected in the train-
ples. Some approaches include sample weight-

ed on divergence observed by the Student-based
s [36], or calibrating the output of the network
n label smoothing [44] and entropy regulariza-
, 45, 46].

is paper, we focus on label-noise calibration, and
y the feasibility of estimating uncertainty from
nnotator labels. Contrary to much of the pre-

iterature, we study the case in which multiple
ors are not available. To this end, we define a
el-based annotation protocol. Then, we propose
ranch criterion for calibrating the trained neural
based on entropy regularization. The underly-
is two-fold: (i) penalizing overconfident predic-
high-certain samples, and (ii) forcing the net-

produce confident outputs on uncertain cases, to
e the limitations of the noisy labels based on the

features of each sample. Note that although we train189

10 models, one for each non-expert to validate the pr190

posed methodology, these models are independent sin191

only the labels of a single annotator are used to train t192

algorithm each time.193

3. Methods194

An overview of our proposed method is depicted195

Figure 1. In the following, we describe the problem fo196

mulation and each of the proposed components.197

Problem Formulation. Under the paradigm of Mul198

ple Instance Learning (MIL), instances are grouped199

bags of instances X = {xn}Nn=1 that exhibit neither d200

pendency nor ordering among them, and its number201

is arbitrary for each bag. In the multi-class scenar202

each bag is a member of one of K mutually exclusi203

classes, such that Yk ∈ {0, 1}. Note that, in contrast204

other MIL formulations, the individual instances do n205

have an associated label, but rather the label of the b206

is determined by the combination of features of the d207

ferent instances.208

Embedding-based MIL. In this work, we aim to tra209

a model capable of predicting bag-level labels using210

combination of features extracted at the instance lev211

This learning strategy falls under the embedding-bas212

MIL paradigm1. Let us denote a neural network mod213

fθ(·) : X → Z, parameterized by θ, which projects214

stances x ∈ X to a lower dimensional manifold z ∈ Z215

Rd, with d the embedding dimension. Then, we defi216

an aggregation, fa(·), which is in charge of combini217

the instance-level projections into a global embeddin218

Z. In particular, we use a global-average pooling alo219

instances, such that: Z = 1
N
∑

n{ fθ(xn)}Nn=1. Finally220

neural network classifier, fϕ(·) : Z → S, is in charge221

predicting softmax bag-level class scores, S k, such th222

S k ∈ [0, 1]. The optimization of the model paramete223

θ and ϕ is driven by the minimization of standard ca224

gorical cross-entropy loss between the reference lab225

and predicted scores such that:226

Lce = − 1
K

K∑

k=1

Yk · log(S k) (

1Based on the denomination proposed in [47]

3
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Dataset Confidence Annotation

Method overview. In this work, we address weakly supervised histology image classification on skin WSIs by quantifying the uncertai
ividual annotators during labeling. Concretely, we train an embedding-based Multiple Instance Learning (MIL) model to predict up to
categories using standard cross-entropy loss. We propose to quantify annotator-specific uncertainty by following a soft labels annotati
such that Y sl

k = [0, 1], and
∑

k Y sl
k = 1. In this fashion, our model captures information regarding inter-category dependencies and avo

g to uncertain, noisy annotations. Then, we propose a dual-branch min-max uncertainty calibration (DBEC) based on the annota
ls. Based on uncertainty calibration using Shannon entropy regularization (see Eq. 3), we propose to (i) maximize the entropy
fidence labeled samples, by entropy maximization (H+), and (ii) to minimize the entropy on samples labeled with low-confidence (H
tropy minimization encourages the network to produce confident outputs on uncertain cases, based on the features of the sample, a
nishing noise propagation. A threshold τ is empirically fixed to differentiate low and high certain labels, and the dual-branch min-m
ty is combined with cross-entropy loss (see Eq. 5). Circles in bag-level predictions and references indicate soft-max scores. The m
e color, the higher the score.

beling uncertainty

rtainty estimation methods assume that differ-
e sources are present in the dataset, both in im-
se and inter and intra- annotator variability. The
e is to calibrate the trained model to account
ntified uncertainties. Regarding inter-annotator
ity, a large body of literature quantifies this un-
y by obtaining labels from multiple annotators.
er, obtaining multiple annotators may not be pos-
specific scenarios requiring a high level of spe-

cialization or covering proprietary solutions, such237

medical applications. To overcome this limitation, w238

propose an annotator-level uncertainty quantification239

annotating the confidence associated with each samp240

in the form of soft labels. To this end, we differentia241

between the labeled samples using hard labels (HL), Y242

and soft labels (SL), Y sl
k . As previously described, ha243

labels assign a discrete value for each label such th244

Yhl
k ∈ {0, 1}, where Yk = 1 indicates that the correspon245

ing sample belongs to the class k. It is worth mentioni246

4
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the multi-class scenario, categories are consid-
utually excluded, and only one tag is given to
mple. Nevertheless, this labeling strategy fails
re the certainty of the annotator for each sam-
gather this information, we propose to use soft

such that Y sl
k ∈ [0, 1]. Note that in this case, Yk

tinuous value that corresponds to the probabil-
the annotator assigns to each class, such that:
= 1. For instance, in a case with high uncer-
he annotator might assign the following labels:
, 0, 0, 0, 0.9, 0.1, 0], whereas in a uncertain case,
l probability might be more distributed among
ies: Y sl = [0.2, 0.2, 0, 0, 0.6, 0, 0]. Then, the MIL
ation model previously described is trained us-
dard cross-entropy loss in Eq. 1 using soft anno-
bels. We believe that, in this fashion, the model
apture information regarding inter-category de-
cies and avoid over-fitting to uncertain cases, as
ed in the experimental stage of the present work.

al-branch uncertainty calibration
forementioned soft-labeling strategy can differ-
between high-certain and uncertain labels pro-
y the annotator. Still, using standard cross-
might produce ill-calibrated models. These lim-
include reaching trivial solutions by producing
fident outputs from high-certain samples or triv-

form outputs on low-certainty samples. In ad-
we want to consider that samples labeled with
fidence might belong to a class other than the
st likely to be noted. To this end, we propose
ing the model during training to deal differently
th types of samples in a dual-branch fashion.

n entropy for confidence regularization. One
ain approaches to calibrating neural networks
an auxiliary term to regulate the output prob-

. Originally developed to reduce overconfident
ons, which are produced by training models us-
ss-entropy and hard labels, one of the main ap-
s lies in forcing the output distribution to ap-

ate a uniform distribution [38, 44]. To this end,
ral network is trained to minimize the Kullback
ler (KL) distance, DKL(p||u) = H(p, u) − H(p)
n an output distribution, p and an uniform distri-
u. Note that H(p, u) indicates the cross-entropy
n both distributions, and H(p) = H(p, p) is the
n entropy or self-entropy, such that H(p) =
pk · log(pk). It is straightforward to see that, in
of a target uniform distribution, minimizing the

tance is equivalent to maximizing the Shannon
of the output distribution.

DKL(p||q) = H(p, q) − H(p) =c −H(p) (

where =c indicates equality up to an additive constan297

Thus, standard model calibration using Shannon e298

tropy includes a regularization term to the standa299

cross-entropy loss weighted by an hyper-parameter β300

0, such that:301

L = Lce − βH(p) (

Dual-branch min-max entropy calibration. Inspir302

by previous literature on model calibration, we propo303

to use the Shannon entropy regularization in a du304

branch fashion. First, we want the model to avo305

overconfident outputs on high-certainty labeled sa306

ples, similarly to Eq. 3. Secondly, we aim to calibra307

the model to assign a confident category to each sa308

ple, even though the annotator might have high unc309

tainty in the label. For the latter, we draw on Sha310

non entropy minimization, which encourages the o311

put scores to differ from the uniform distribution (s312

Eq. 2). It is worth mentioning that, in the case of m313

imum entropy, the output scores tend to produce ha314

labels. Thus, we hypothesize that the model may315

able to overcome the potential noise from the uncerta316

labels, and produce more accurate predictions based317

the features of the sample. This formulation is inspir318

by the semi-supervised learning literature, in which e319

tropy maximization is used as a proxy to learn from u320

labeled samples [48]. From now on, and for simplic321

in the context of loss functions, we refer to the entrop322

maximization criteria −H(p) as H+, and the oppos323

minimization term as H− = H(p).324

Thus, we propose a dual-branch optimization cri325

rion to independently calibrate low and high-certain326

labeled samples, using the bag-level predicted scor327

S k, such that:328

LH =


H+(S k), if maxk Y sl

k > τ

H−(S k), otherwise
(

where τ is an empirically-fixed threshold that divid329

the input samples based on its certainty, quantified330

the confidence of the predominant category per samp331

maxk Y sl
k .332

Since using entropy calibration alone may yield tr333

ial results [49], the MIL model is trained with annotat334

soft labels, Y sl
k , and the dual-branch entropy calibratio335

using the overall following loss function:336

L = α+/−Lce + β
+/−LH (

5



Journal Pre-proof

Note337

in Eq.338
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that LH is the cross entropy loss at bag level
1, and LH refers to the dual-branch calibration
ed in Eq. 4, and α+/− and β+/− are disentan-
two terms, one for high-certainty labeled sam-
+, β+), and other for the opposite case (α−, β−).
rth mentioning that the values of threshold value
. 4 as well as the relative weight of the min-
tropy duality, β+ and β−, and cross-entropy loss,
α−, are hyperparameters empirically optimized
the experimental stage. Hereafter, we refer to
al-branch min-max entropy calibration term as

erimental setting

taset

alidate the proposed approach, we use the
NV1 database. This database comprises two pri-
tabases (DSV and DSG) from the University
Hospital of Valencia (Spain) and San Cecilio
ity Hospital in Granada (Spain). DSV and DSG
posed of histopathological skin images from

t body areas that contain cutaneous spindle cell
neoplasms, i.e, leiomyomas (lm), leiomyosarco-
s), dermatofibromas (df), dermatofibrosarcomas
pindle cell melanomas (mfc), fibroxanthomas
d squamous cell carcinoma (cef). Each database
nd DSG) comprises 180 and 91 different pa-
ho signed the pertinent informed consent. Two

pathologists established the WSI-level label of
ole database, 271 images. A summary of the
e description is presented in Table 1.

Database distribution. DSV: database from Valencia;
tabase from Granada. Lm:leiomyomas; lms: leiomyosarco-
ermatofibromas; dfs: dermatofibrosarcomas; fxa: fibroxan-
pindle cell melanomas; cef: squamous cell carcinoma.

lm lms df dfs mfc fxa cef Total
28 19 52 11 32 28 10 180
27 9 16 7 6 26 - 91
55 28 68 28 38 44 10 271

rding the non-experts labeling, an annotation
l was designed to ensure that 106 WSIs were an-
by all non-expert annotators (dense set). In con-
e rest were only annotated by some non-expert
gists (non-dense set). It is worth mentioning
use of a dense set allows us to establish data-

d comparisons between annotators, without re-
everyone to annotate the entire data set, with the
that this process entails. Table 2 shows images

used by each non-expert annotator for training, valid376

tion and testing of the models. To establish fair co377

parisons the validation and test images belonged to t378

dense set. Note that the images were annotated follo379

ing the soft strategy proposed in Sec. 3.1 2.380

To process the large WSIs, these were downsa381

pled to 10x resolution and divided into patches382

size 512x512x3 with a 50% overlap. Aiming at p383

processing the biopsies and reducing the noisy patch384

a mask indicating the presence of tissue in the patch385

was obtained by applying the Otsu threshold meth386

over the magenta channel. Subsequently, the patch387

with less than 20% of tissue were excluded from t388

database.389

Table 2: Number of images used for training, validation and test
the models of each non-expert annotator (ten in total). Note that
the validation and test set the same samples labeled by all non-expe
were used.

1 2 3 4 5 6 7 8 9 10
Tain 148 142 151 143 154 145 155 149 152 15
Val 26
Test 54

4.2. ROI extraction390

To select the instances with tumor from the W391

to train and validate the proposed approach, we e392

tend the model proposed in [50] for the six neoplasm393

under study. This method was based on a teach394

model paradigm to increase the annotated databa395

while avoiding manual annotations. In this vein, this a396

proach enhances the detection of tumor regions in W397

using pseudolabels from non-labeled data. As the o398

put of this section, we obtain the patches with tum399

lesions used as input for the MIL-based model.400

4.3. Implementation details401

The proposed methods were trained using the diff402

ent train subsets for each non-expert annotator (10 in403

tal), see Table 2. The backbone fθ(·) used was a VGG404

[51] pre-trained on Imagenet [52], using patches resiz405

to 224 × 224 images. Models were trained during 1406

epochs with a batch size of 1 whole slide image, u407

ing a learning rate of η = 1 · 10−3 with SGD optimiz408

The model performance was continuously monitored409

the validation subset, and early stopping was appli410

to keep the model with the best accuracy on this su411

set. The proposed uncertainty calibration DBEC in E412

5 was trained similarly, but the learning rate was e413

ponentially decreased in the last 20 epochs to ensu414

2The soft labels will be available on request.
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. In this case, early stopping was not applied
e calibration moved predictions away from the
of the training labels. Hyperparameters were
pirically such that: α+ = 1, β+ = 0.1, α− = 0.1,
and τ = 0.7. For the motivation of these values,
r the reader to the ablation experiments. All the
d experiments were implemented using Pytorch
1.9.1 and Python 3.7. Experiments were con-

on the NVIDIA DGXA100 system. The code is
available on https://github.com/cvblab/

ng_Uncertainty.

aluation metrics

der o evaluate the performance of the proposed
hes regarding previous literature, we use stan-
etrics for multi-class classification. In particu-
obtain accuracy (ACC) and macro-averaged F1-
It is worth mentioning that, although explicitly
ed, metrics are obtained using as reference the
truth, labeled by the expert pathologists, Yk.

lts

mparison to the literature

is subsection, we study the obtained results by
posed methods, concerning previous literature.
carried out a detailed study of the success cases
itations encountered, by means of a detailed

f the annotations made by the in-training pathol-

tative evaluation. The quantitative results ob-
raining the model using expert labels, and non-
abels using hard labels (HL), annotated soft la-
L), and the proposed dual-branch entropy cali-
(DBEC) on the respective test subset of each
ert annotator are depicted in Table 3. Results

d using annotated soft labels from non-expert
gists reach an average F1-score of 0.364, which
n improvement of ∼ 4.0% compared to hard la-
simply training the model using standard cross-
loss. This fact demonstrates that the annotation
l developed in the paper is optimal for model
when expert labels are not available. Once our
d dual-branch entropy calibration (DBEC, see
s incorporated during training, results achieve an
F1-score of 0.389. In addition, some notewor-

rovements can be observed for some non-expert
ors. For example, annotators 1, 2, and 8 show
ements of ∼ 13.1%, ∼ 21.5% and ∼ 13.2%, re-
ly. Although the results obtained are still far

from those obtained using the ground truth from the e462

pert pathologists, the models obtained bridge the ga463

going from a difference of ∼ 25% to ∼ 18% regar464

ing F1-score. Furthermore, this paper is the first stu465

to address the multi-class problem of spindle cell ne466

plasms. While previous studies focus on binary pro467

lems to identify benignity or malignity of neoplasm468

[50], in this study we try to identify the distinct ne469

plasms that have considerable morphological overl470

between them. Therefore, the results obtained in th471

paper establish a benchmark for the comparison of fu472

ther models.473

In-depth results analysis. Although, as discuss474

above, the methodology based on confidence annotati475

offers promising results, the variability in the results o476

served among different annotators calls for an in-dep477

analysis of the annotated labels, their advantages, a478

limitations. To this end, we proceed to study the acc479

racy of the annotations made by non-expert pathologi480

in the training subset, the number of samples label481

with low confidence, and their distribution in relation482

the classes, in Figure 2. Likewise, we display the co483

fusion matrices obtained by the non-expert annotato484

concerning the expert annotations, as well as those o485

tained using the model trained with hard labels and t486

proposed dual-branch entropy calibration, in Figure 3487

Regarding the gap observed between models train488

using the ground truth or non-expert labels, this is due489

the quality of the latter labels, which shows an avera490

F1-score of 0.4510 (see Figure 2 (a)), which sets an u491

per limit on the results that the model can extract usi492

pathologist-in-training labels. As observed in the cor493

sponding confusion matrix (see Figure 3 (a)), this pro494

lem accentuates in certain classes such as lms and c495

which show lower prevalence concerning other class496

in the used dataset (see Table 1). In addition, it can497

observed how non-expert pathologists show lower co498

fidence when labeling a sample corresponding to tho499

categories (see Figure 2 (b)). This make sense since, f500

example, in the case of lms the pathologists-in-traini501

are often confused with lm as they have the same mo502

phological features. These limitations produce the dr503

in results between both types of labels observed in t504

quantitative metrics, which can be observed in the co505

responding confusion matrix (see Figure 3 (b)). Int506

estingly, once the proposed dual-branch calibration507

used, obtained results for those low-confidence class508

improve (see Figure 3 (c)). Concretely, promising i509

provements for the classes lms, dfs, and fx are observe510

which coincide with those categories that pathologi511

show the least confidence (see Figure 2 (c)). This m512

7
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Quantitative comparison to prior literature. The metrics presented are the accuracy and micro-averaged F1-score (ACC/F1-score). T
ined with expert labels (second column) is used as the upper bound of the non-expert-based models. Colored values indicate the relat
ent of each method concerning the baseline using hard labels from non-expert in terms of the F1-score. Green indicates improvem
worsening lack. HL: hard labels; SL: soft labels; H+: entropy maximization. Gray background highlights the averaged results.

Annotator Expert Non-Expert
HL+H+ HL SL DBEC

1 0.653/0.620 0.408/0.277 0.428/0.295 ↑ 1.8% 0.530/0.408 ↑ 13.1%
2 0.571/0.467 0.408/0.288 0.530/0.424 ↑ 13.6% 0.571/0.503 ↑ 21.5%
3 0.612/0.584 0.448/0.386 0.489/0.401 ↑ 1.5% 0.428/0.330 ↓ 5.6%
4 0.551/0.520 0.448/0.309 0.428/0.355 ↑ 4.6% 0.489/0.364 ↑ 5.5%
5 0.673/0.601 0.551/0.448 0.571/0.460 ↑ 1.2% 0.530/0.442 ↓ 0.0%
6 0.591/0.555 0.428/0.298 0.428/0.304 ↑ 0.6% 0.428/0.315 ↑ 1.7%
7 0.673/0.602 0.469/0.348 0.551/0.427 ↑ 7.9% 0.530/0.444 ↑ 9.6%
8 0.693/0.655 0.367/0.259 0.408/0.270 ↑ 1.1% 0.469/0.391 ↑ 13.2%
9 0.653/0.614 0.387/0.280 0.469/0.323 ↑ 4.3% 0.387/0.299 ↑ 1.9%

10 0.632/0.525 0.469/0.353 0.530/0.390 ↑ 3.7% 0.530/0.398 ↑ 4.5%
Avg. 0.630/0.574 0.438/0.324 0.473/0.364 ↑ 4.0% 0.489/0.389 ↑ 6.6%

(a)

(b)

(c)

In-depth study of the soft labels annotated by in-training
sts. (a) Quality of the labels, in terms of F1-score, in the
ubset. Reference labels are the expert ground truth. (b) Per-
f samples with maximum confidence above the threshold
(c) Average confidence per each class, on positive samples.
ed lines indicate average values.

uced by the lower-confidence entropy minimiza-
hich encourages the model to produce confident
ons in those cases in which confidence falls be-
fixed threshold τ. In this fashion, predicted la-
ve away from the annotator bias, based on the

inherent features of each sample, and show the best ge518

eralization compared to expert annotations. Althou519

the proposed approach offers consistent improvemen520

among most annotators, still some limitations can be o521

served. For instance, it shows the least effect when no522

increases. Annotators 3 and 9, which show low acc523

racy on the training dataset (see Figure 2 (a)), also off524

worse results regarding the proposed approach. Also525

no use is made of soft labels (see 2 (b), annotator 5), t526

results remain the same as using hard labels.527

5.2. Ablation studies528

The following experiments aim to demonstrate t529

convenience of the proposed approaches in an emp530

ical fashion. First, we compare the benefits of lab531

ing uncertainty instead of using a direct calibration532

hard labels. Then, we motivate the choice of the comp533

nents and hyper-parameters used for the proposed du534

branch uncertainty calibration setting in Eq. 5.535

Artificial vs. annotated soft labels. As previously d536

cussed, we propose in this work to calibrate the mod537

training to the inherent uncertainty of non-expert538

beling by annotating the confidence for each indepe539

dent class per sample. The benefit of calibrating CN540

to avoid overconfident predictions has already be541

demonstrated in previous literature [38]. We follo542

two main artificial methods used in this regard:543

bel smoothing (LS) [44] and entropy regularization (544

[38]. Concretely, LS modifies the hard labels to assi545

a uniform distribution over non-positive categories su546

that: YLS R
k = (1− ϵ)Yk +

ϵ
K . Entropy calibration is bas547

on Shannon entropy maximization (H+), as describ548

8
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Normalized confusion matrices, averaged among non-expert annotators, obtained using (a) raw hard labels, (b) the model trained us
ls, and (c) the model trained using the dual-branch entropy calibration proposed in Eq. 5. Reference labels are the expert ground truth

ethod section (see Eq. 3). In our experiments,
irically optimized the hyper-parameters for both
and β = 0.2. We depict in Figure 4 the results

ard labels (HL), both artificial regularization ap-
s (LS and H+), and the model trained using the
d annotated soft labels (SL).

Ablation study on the use of artificial model calibration of
ls (HL) or annotated soft labels (SL). For the first approach,
othing (LS) and entropy maximization (H+) are used. F1-
resented for each method and non-expert annotator.

obtained results show that regularizing neural
outputs improves the model performance. In

ar, entropy-based regularization outperforms la-
othing, as indicated by previous literature [38,
ncretely, average improvements of F1-score of
and ∼ 2.4% are obtained, respectively. The

d labeling confidence approach outperforms the
l entropy-based calibration across most annota-

tors (see Figure 4 annotators 2, 3, 4, 8 − 10). Co563

cretely, an average improvement of ∼ 4% is observe564

as already depicted in Table 3. This indicates that565

belling the confidence of the annotator for the differe566

classes for each sample offers benefits beyond preve567

ing the model from producing overconfident outputs.568

is worth mentioning that this improvement is produc569

at a negligible cost, both in terms of annotation time a570

computational level. This may be because it introduc571

a sample-dependent distribution over labels, as oppos572

to these artificial methods.573

Uncertainty calibration optimization. The followi574

experiments aim to demonstrate the convenience of t575

different components of the dual-branch entropy ca576

bration (DBEC) for uncertainty assessment proposed577

Eq. 4 when trained using soft labels (SL). Concrete578

we fix the used threshold τ = 0.7, then train and mo579

ify the relative weight of both branches to emulate t580

absence of each term. First, each term is trained in581

vidually, by using β− = 0 and α− = 0, (DBEC (H582

configuration), and β+ = 0 and α+ = 0, (DBEC (H583

configuration), respectively. Then, both terms are584

cluded as indicated in the implementation details. A585

erage results among the 10 in-training pathologists a586

presented in Table4.587

Table 4: Ablation experiment on the components of the proposed c
ibration formulation.

Target Criteria
SL DBEC (H+) DBEC (H−) DBEC (H+/−)

ACC 0.438 0.461 0.386 0.489
F1-score 0.324 0.334 0.281 0.389

The results show that using only the positive entro588

term, which calibrates the network by penalizing con589

dent predictions, improves around ∼ 2% in terms of t590

9
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e. In contrast, using only low-confidence sam-
ring training does not show good results. How-

incorporating this term into the general formu-
he figures of merit reach the improvements dis-
earlier in the article. These results show the use-
of including both terms in the proposed double-
formulation.
e following, we perform a study regarding the
ld used to compute the positive or negative en-
alibration, τ. Concretely, we sample homoge-
τ values between [0, 1]. The obtained results

esentative annotators are depicted in Figure 5.

Ablation study on the effect of the confidence threshold
proposed dual-branch entropy calibration (DBEC) based on

soft labels.

erformance of the DBEC proposed in relation to
lue shows a characteristic shape. The non-expert
ors that show an improvement in the model per-
ce using the proposed term first drop the ob-
results when increasing τ. Then, an absolute

is reached around τ values of 0.7 and 0.8. Fi-
ncreasing the hyper-parameter from this value
the performance, since entropy minimization is
to all samples, even when high confidence is an-
. Based on these observations, we fixed τ = 0.7
implementation of the dual-branch calibration.

clusions

levant body of literature on uncertainty estima-
uires multiple annotators to quantify individual
noise and inter-annotator variability. Neverthe-

quiring multiple rater views is a limiting factor in
ange of applications, such as medical imagining.
cular, in the case of digital pathology imaging,
level of expertise is required to perform image
, which may make it unfeasible to recruit mul-
notators. To address this limitation, in this work

we have proposed to capture individual uncertainties624

annotating soft labels instead of unique categories.625

addition, and inspired by previous literature on mod626

calibration using Shannon entropy, we have proposed627

dual-branch min-max entropy calibration (DBEC) c628

teria that optimize the model training to (i) avoid ov629

confident outputs by entropy maximization, and (ii) pr630

duce confident outputs on samples labeled with high u631

certainty by Shannon entropy minimization, which f632

cuses on inherent features of each sample.633

The proposed uncertainty estimation method is v634

idated in the challenging context of skin whole sli635

image (WSI) multi-class image classification, under t636

multiple instance learning (MIL) paradigm. It is wo637

highlighting the scarce literature on this field since,638

the best of our knowledge, this is the first work th639

aims to distinguish among 6 different relevant path640

logical categories. Over the AI4SKIN dataset, we ha641

generated new uncertainty-driven soft labels from 10642

training pathologists, so-called non-expert annotato643

Uncertainty-aware MIL models have been trained u644

ing soft labels, and the novel dual-branch min-max e645

tropy calibration, and they have been evaluated using646

ground truth annotated by expert pathologists. Resu647

show a consistent improvement by using soft labels w648

standard cross-entropy loss during training (∼ 4.0649

F1-score), and increases when calibrating the mod650

with the proposed min-max entropy calibration DBC651

(∼ 6.6% F1-score). In addition, we have observed th652

improvements using the DBCE appear in categories th653

non-expert annotators presented high uncertainty, whi654

supports our claim that the entropy minimization term655

this case helps the model to move away from the anno656

tor bias. These improvements are produced at a negli657

ble cost, both at the level of annotation and calculatio658

Still, during the experimental stage, we found som659

limitations in our study. First, the proposed formu660

tions are still highly dependent on the quality of t661

produced labels. In the context of non-expert anno662

tors, this may produce limitations when labels are t663

noisy. Likewise, the annotation of soft labels depen664

on the commitment of the experts recruited and do665

not bring improvements when performed in a very lo666

proportion. We believe that the framework developed667

this work opens the door to different interesting lines668

further research. Learning how to combine certain e669

pert labels with uncertain non-expert labels might be670

great interest, such as crowd-sourcing methods able671

obtain the underlying label distribution using the le672

number of annotators, among others.673
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• Skin histological images are used for the first time to develop an end-to-end 
automatic system able to distinguish between seven different types of spindle 
cell neoplasms. 
 

• We propose an uncertainty-aware labeling strategy with which generate soft 
labels from 10 non-expert annotators for multi-class skin cancer classification 
that quantify uncertainty in the annotations. 

 

• Based on these annotations, we present an extensive study for the use of soft 
label model calibration compared to the ground truth, labeled by an expert 
pathologist. 

• A novel formulation based on dual-branch entropy calibration (DBEC) is 
proposed to penalize both, overconfident outputs and uncertain soft labels, 
during training. 

• Comprehensive experiments demonstrate the promising performance of our 
labeling strategy. By incorporating uncertainty during labeling, we found average 
improvements of nearly ∼4.0% in averaged F1-score using the baseline methods, 
which increases up to ∼ 6.6% using the proposed dual-branch calibration. 
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