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Abstract: Induction motors (IMs) have been extensively used for driving a wide variety of processes
in several industries. Their excellent performance, capabilities and robustness explain their extensive
use in several industrial applications. However, despite their robustness, IMs are susceptible to
failure, with broken rotor bars (BRB) being one of the potential faults. These types of faults usually
occur due to the high current amplitude flowing in the bars during the starting transient. Currently,
soft-starters have been used in order to reduce the negative effects and stresses developed during the
starting. However, the addition of these devices makes the fault diagnosis a complex and sometimes
erratic task, since the typical fault-related patterns evolutions are usually irregular, depending on
particular aspects that may change according to the technology implemented by the soft-starter. This
paper proposes a novel methodology for the automatic detection of BRB in IMs under the influence of
soft-starters. The proposal relies on the combined analysis of current and stray flux signals by means
of suitable indicators proposed here, and their fusion through a linear discriminant analysis (LDA).
Finally, the LDA output is used to train a feed-forward neural network (FFNN) to automatically
detect the severity of the failure, namely: a healthy motor, one broken rotor bar, and two broken rotor
bars. The proposal is validated under a testbench consisting of a kinematic chain driven by a 1.1 kW
IM and using four different models of soft-starters. The obtained results demonstrate the capabilities
of the proposal, obtaining a correct classification rate (94.4% for the worst case).

Keywords: current signals; stray flux signals; LDA; automatic fault diagnosis; induction motor;
broken rotor bars; soft-starters

1. Introduction

Squirrel cage induction motors (SQIM) are indispensable elements widely used as
powertrain drives in an extensive variety of industrial applications, constituting approxi-
mately 89% of the power demanded in industrial plants [1]. Their high efficiency, low cost,
easy maintenance, and robustness have allowed the proliferation of these types of machines
as the main drives for many mechanisms and processes, namely, large capacity exhaust fans,
driving lathe machines, crushers, oil extracting mills, blowers, pumps, compressors. When
the application requires continuous starts and stops of the driving motor, break/damage
may arise due to the thermo-mechanical stresses developed in the rotor bars, especially
during the start-up transient of the machine [2]. Thus, squirrel cage induction motors are
vulnerable to frequent starts/stops and/or excessive load torque variations, and eventually
a failure can occur in the rotor bar or end ring of the rotor cage [2]. Although a motor
with damage in the rotor cage can continue operating, their performance and lifetime are
degraded, which eventually may lead to the shutdown of the involved processes, causing
huge time and economical losses if pertinent maintenance actions are not taken. In this
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context, in order to prevent/reduce the negative effects raised by continuous starts/stops
and transient states, different starting systems are used in the industry, such as the star-delta
starting, starting via auto-transformer or starting via soft-starters [3]. These methods have
allowed a reduction in the high-amplitude currents developed under the start-up transient
by controlling some parameters, such as the voltage profile, current profile or torque profile.
In this context, the inclusion of soft-starters has enabled control of the start-up current
profile by means of power electronic circuits containing thyristors installed in the different
power source phases of the motor supply line. Subsequently, by changing the thyristors
conduction time, a variation on the RMS value can be achieved, which in turn modifies
the starting current profile. Thus, many devices have the possibility to limit the current
during the startup transient, but most of them only allow the setting of the voltage and the
time. However, although these devices reduce the starting current, this does not prevent
motor faults from occurring. In fact, the use of soft-starters amplifies certain harmonics and
introduces other frequency components, which could certainly make the motor diagnostic
more difficult, even leading to erratic final diagnosis [4,5]. In this regard, although systems
and mechanisms have been developed to avoid/reduce rotor-related failures, they can
still occur. Hence, several monitoring systems and fault diagnostic techniques have been
developed in order to prevent the costs/side effects associated with unexpected failures.
Thus, the aim is to detect the failure in its initial stages, before catastrophic or irreversible
damage can occur. Most of these techniques and proposed methodologies have used
relevant information extracted from different physical quantities, which can be measured
by means of primary sensors. In this regard, some common physical magnitudes that have
been reported in the available technical literature are, among others: vibration signals [5],
partial discharges [6], current signals [7], and stray fluxes [8]. Each technique has pro-
vided satisfactory results for the diagnosis of certain types of faults. For example, some
previous works have proposed different methodologies relying on a single magnitude for
the automatic classification of broken rotor bars for motors started by direct online (DOL)
methods. In [9], the authors analyzed the stray flux signals with a feedforward neural
network (FFNN) for the automatic classification, reporting a 97% effectiveness. By its part,
Rivera et al. [10] studied specific signatures and patterns associated with a fault condition
from current signals by means of a time-frequency (t-f) map, achieving a 97.5% overall
effectiveness. However, as pointed out in some papers [11], the analysis of a single mag-
nitude may be suitable to detect certain faults, but not all, and even, when the technique
has exhibited satisfactory results in certain cases, there are specific situations in which the
appropriate technique can provide false indications. In this regard, Zamudio et al. [12]
proposed the fusion of stray flux and current signals by means of a feedforward neural
network (FFNN), achieving a 95% overall effectiveness. Other works have proposed the use
of convolutional neural networks (CNN) for the same purposes, reporting an accuracy rate
higher than 97% by analyzing the current demanded by the motor as a principal magnitude,
however, the method is limited to motors started by direct online (DOL) methods [13,14].
Moreover, although soft starters are widely used in industry, the number of works in the
literature about the automatic diagnosis of electric motor failures started with these types of
devices is limited. In this regard, Pasqualotto et al. [15] proposed an automatic classification
technique for diagnosing broken rotor bars by analyzing stray flux signals, and using a
convolutional neural network (CNN) as a main classifier. They achieved 94.4% accuracy.
However, the use of this kind of technique demands high computational resources, and
an elevated number of samples in order to train the method, which, in most of the cases,
is very difficult to achieve under practical terms. Hence, some authors have proposed
electric machine models by collecting data under healthy and faulty conditions [16], by
means of the hybrid finite element method (FEM)—an analytical model for reducing the
simulation time.

Considering the above-mentioned statements, recent works have shown that the anal-
ysis of two different quantities at the same time can provide a more complete analysis and
can avoid false indications [12]. The proposed systems combine stray-flux and current
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signal analysis. Thus, the analysis of the current at the start-up could avoid false indica-
tors [17] and, in the case of the stray flux analysis, it has shown good results in motors
started by soft-starters [18]. Unfortunately, to the authors’ best knowledge, there is no
methodology capable of automatically diagnosing broken rotor bar failures in induction
motors started by means of soft-starters, a challenging task since the frequency components
and control technologies implemented by soft-starter manufacturers modifies the start-up
transient profile, leading to unpredictable fault pattern evolutions.

The main contribution of this paper is a novel methodology for the automatic detection
and severity quantification of rotor faults in soft-started induction motors by means of
current-stray flux signal fusion. The proposed methodology relies on a couple of indicators
that are introduced here, and are used to merge highly relevant information from current
and stray flux signals, which are captured during the motor start-up transient. These
indicators are based on the time-frequency maps obtained by applying the short-time
Fourier transform to the captured signals. Additionally, a linear discriminant analysis
(LDA) is performed in order to combine all the information, and finally a feed-forward
neural network (FFNN) is trained to implement an automatic fault diagnosis and fault
severity classification. The stray flux signals are captured by means of a handmade coil-
based sensor, which can be installed on the frame of the machine. The effectiveness of the
proposed method is verified under an experimental testbench with a 1.1 kW induction
motor and using four different industrial soft-starters.

2. Materials and Methods
2.1. Current Monitoring for Broken Rotor Bars

The diagnostic of failures in electric motors based on the analysis of the current signals
is a technique that has been extensively used, and has been greatly accepted at an industrial
level, mainly due to its capability to perform a remote diagnosis, since the current signals of
the motor can be accessed remotely (e.g., from the control center), and the large number of
faults that can be diagnosed with this technique [7]. In this regard, the conventional motor
current signature analysis (MCSA) is currently one of the most used online approaches in
industry for detecting faults in electric motors. The technique is based on the fact that under
normal conditions, the current in the rotor bars induces a clockwise field rotating at s · f .
When a rotor fault exists, an additional reverse rotating field is produced in accordance to
Fortescue’s Theorem, giving rise to a frequency component at −s · f . This subsequently
generates the amplification of the well-known lower sideband harmonic ( fLSH) appearing
in the line current, which is given by Equation (1).

fLSH = f · (1− 2 · s) (1)

Furthermore, as reported in some investigations [19], it is possible to associate with
this anticlockwise field a negative-sequence current system which causes a pulsating torque
and a speed oscillation which, in turn, generates an additional frequency component of the
air-gap flux density component ( fUSH) given by Equation (2) [20].

fUSH = f · (1 + 2 · s) (2)

Hence, the MCSA mainly relies in the magnitude evaluation of these specific frequency
components, which are amplified when the motor operates under a fault condition.

2.2. Stray Flux Signals Analysis

Magnetic flux analysis for the condition monitoring of electric machines has been
found to be an excellent alternative to conventional techniques that have been widely used
in the industry, such as MCSA. This fact can be mainly attributed to the various advantages
that the analysis of magnetic flux signals provides over other approaches, among others:
it has proven to be efficient and reliable in cases where conventional methods produce
false indications (i.e., rotor axial air ducts, rotor magnetic anisotropy, low frequency load
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oscillations, etc.) [2,21], it is a non-invasive technique [19], very low cost sensors are
required (e.g., handmade coil-based sensors) [22], flexibility and simplicity of installation
of the available sensors [9]. In this regard, several previous pieces of research have been
devoted to investigating and analyzing magnetic stray flux signals for the fault detection
and diagnosis of electric motors under two main approaches: air-gap flux analysis, and
stray flux analysis [23,24]. Since the stray flux-based methods are non-invasive (i.e., the
sensors may be installed outside the frame of the machine), online methods without motor
disassembly can be adopted, allowing for the development of online test methods.

In order to analyze the magnetic stray flux signals in an induction motor, two main
components may be distinguished: axial stray flux, and radial stray flux [25]. These signals
are known to be modified when the electric motor is working under a fault condition, hence
introducing the amplification of some frequency components according to the fault [26].
Besides, as shown in some papers, as in [27], axial and radial stray flux can be captured
by using a proper sensor installed in the vicinity of the motor frame. In order to illustrate
this, Figures 1a,b show the presumed circulation of the radial and axial magnetic field
lines, respectively. Additionally, depending on the location of the coil-sensor, different stray
flux components are acquired, as shown in Figure 1. Thus, axial stray flux is measured at
position A, radial stray flux at position C, and, at position B, both axial and radial stray flux
are measured.
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2.3. Theoretical Fault-Related Frequency Evolution during Start-Up

Several research papers have proven that some faults modify the magnetic flux in
the vicinity of the motor frame (magnetic stray flux), which may yield the amplification
of some fault-related harmonics at specific frequencies [28]. Hence, as it has been pointed
out in some works, for the case when the motor operates under rotor bar damages, the
following harmonics may be observed to be amplified in the Fourier spectrum of the stray
flux and current signals:

• Frequency components of axial nature ( faxial) [19]. These frequency components may
be observed at one and three times the slip frequency, given by Equation (3) and
Equation (4), respectively, and can be observed in the axial stray flux signals.

faxial = s · f (3)

faxial = 3 · s · f (4)

where s = slip and f = power supply frequency.
• Sideband harmonics ( fSH), mainly observed in the radial stray flux signals [26,29].

These frequency components can be estimated by Equation (5).

fSH = f · (1± 2 · s) (5)

In this regard, by analyzing Equations (1)–(4), it can be discerned that the harmonics
related to rotor bar faults depend on the motor slip. Hence, it is expected to detect their
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evolution during the start-up transient, (when the motor speeds up) as the slip changes
from a maximum value of 1 (i.e., at motor standstill), and approaches to 0 (when the motor
reaches steady state). According to Equations (3)–(5), the theoretical evolution generated
by the amplification of the fault-related frequency components produces very well-known
patterns, which can be observed by means of a time-frequency map. Figure 2 shows the
expected evolution of the different fault-related frequency components given by (3)–(5),
according to the stray flux component (i.e., radial stray flux, axial stray flux) for a direct
online (DOL) start.
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2.4. Linear Discriminant Analysis

The linear discriminant analysis (LDA) is a technique that has been widely used as a
dimensionality reduction pre-processing stage for classification purposes. The main idea
is to collect a new set of features, in which the maximization of the data separability is
achieved for a certain number of considered classes. Hence, projecting a dataset onto a
lower d-dimensional space with appropriate class-separability avoids overfitting, and helps
reduce the computational burden [30]. The mathematical procedure to perform LDA can
be found in [31].

2.5. Artificial Neural Network

Artificial Neural Networks (ANNs) are models employed to solve classification and
pattern recognition problems [32]. Over the great diversity of ANN architectures that can
be found in the literature, the feed-forward neural network (FFNN) structure is an excellent
alternative for its application in automated final diagnosis schemes, since this type of ANN
requires basic operations with a very low computational burden, has a simple and practical
design, and generalizes well over the data on which it is trained. Hence, it can be easily
incorporated into automated final diagnosis schemes that demand its implementation in
programmable logic devices.

The most general structure of an FFNN is composed of different interconnected layers:
one input layer (having n input neurons, Iinputi), one or more hidden layers, and one output
layer (composed of k neurons, Ok), as shown in Figure 3a. The interconnection of the
neurons in the different layers is performed by a series of weights (wi), and biases (bi)
according to Equation (6). The mathematical model of each neuron (shown in the schematic
of Figure 3b is given by Equation (6):

y = g

 n

∑
i=1

wixi + bi

 (6)
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where y is the output of the neuron, wi the synaptic weights, xi the inputs of the neuron, bi
the bias, and g(·) the activation function.
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2.6. Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a well-known time-frequency (t-f) decom-
position tool that allows the transformation of a time-domain signal into its time-frequency
domain. A simple method that allows the STFT of a discrete signal to be obtained, is to dis-
sect it into sliding windows that can overlap with each other, and then obtain the frequency
content of each window, applying the fast Fourier transform (FFT). After computing the
FFT of each window, a t-f map is obtained, containing the frequency content of the signal
on different time intervals.

Mathematically, the STFT of a discrete-time signal, XSTFT , of length N can be computed
by Equation (7):

XSTFT [k, l] =
N−1

∑
n=0

x[n] · w[k · L− n]e−j(2π·l· n
N ) (7)

where x[n] is the discrete-time signal, n is the time domain index, l = 0, . . . , N − 1,
k = 0, . . . , [(N/L)− 1] , w[·] is the applied windowing function and L determines the
time separation among adjacent sections. Figure 4 shows the simplest way to obtain
the time-frequency map of a signal by means of the STFT.
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3. Proposed Methodology

This section presents the proposed methodology for the automatic detection of broken
rotor bars in soft-started induction motors under the start-up transient. When there is a
failure in the motor, some harmonics are amplified in the stray flux and current spectrum.
Hence, it is possible to observe their pattern evolution during the starting transient (since
they are slip dependent) by means of a time-frequency map. These evolutions are identified
by using a pair of indicators, which are the arithmetic mean and the maximum energy of
specific t–f regions (depicted as shadowed areas in Figure 5) of the stray flux (R fij), and
current signals (RCij). Such indicators can be computed by Equations (8)–(11), for the mean
and maximum energy, respectively.

mean
(

RFij
)
=

1
Ndp

 t f inal

∑
k=tinitial

f f inal

∑
l= finitial

(Ek,l)RFij

 (8)

mean
(

RCij
)
=

1
Ndp

 t f inal

∑
k=tinitial

f f inal

∑
l= finitial

(Ek,l)RCij

 (9)

max
(

RFij
)
= max

 t f inal

∑
k=tinitial

f f inal

∑
l= finitial

(Ek,l)RFij

 (10)

max
(

RCij
)
= max

 t f inal

∑
k=tinitial

f f inal

∑
l= finitial

(Ek,l)RCij

 (11)

where Ek,l is the normalized (over the fundamental frequency component) energy density
at the (k, l) coordinate of the t–f map region under consideration (i.e., RFi,j or RCi,j), finitial
and f f inal are, respectively, the initial and final frequency samples defining the considered
t–f region, tinitial and t f inal are, respectively, the initial and final time samples defining the
analyzed t–f region, and Ndp is equal to the total number of data points enclosed by the
processed region.

Following the abovementioned definitions, the proposed methodology (depicted in
Figure 5) is as follows:

• Step 1. Acquire current and magnetic flux signals (obtained in the vicinity of the
motor frame, in axial + radial direction) simultaneously under the start-up transients
by means of an oscilloscope, a magnetic flux sensor, and a current sensor. A coil-based
sensor is the one used during the experimentation of this paper, which is described in
detail in the next section.

• Step 2. Apply a time-frequency decomposition tool to obtain a time-frequency map
of the captured stray flux and current signals; in this paper the STFT is computed
by applying Equation (7). The STFT is selected since it can be easily implemented in
programmable logic devices, and it allows a clear visualization of the fault compo-
nents evolution.

• Step 3. Using Equations (8)–(11), compute the proposed indicators: mean
(

RFij
)
,

mean
(

RCij
)
, max

(
RFij

)
, max

(
RCij

)
in each region of interest, in order to characterize

the fault-related pattern evolution for the stray flux and current signals. The regions of
interest are obtained by dividing the t-f map into a grid of m rows by n columns. These
regions of interest are in areas covered by the start-up transient. During the startup
transient, the current reaches a high value in its amplitude, and it decreases until it
arrives at steady state. Therefore, in using the envelope of the current signal, this
part can be automatically isolated by setting a limit value (obtained through the last
samples) equal to the maximum envelope amplitude at steady state. The intersection
of this limit value with the time axis will be nearly at the end of the start-up transient.
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• Step 4. Perform a feature reduction and fusion signals by applying an LDA, as
described in Section 2.3. After that, a two-dimensional projection is obtained, in
which the maximization of the data separability is achieved for the considered classes:
healthy motor, one broken rotor bar, and two broken rotor bars. This projection allows
the data clustering between the different fault severities to be observed, since the main
projection axes are selected to be Feature 1 and Feature 2, respectively.

• Step 5. Perform an automatic classification of the motor condition status: healthy, one
broken rotor bar, and two broken rotor bars, by means of the proposed indicators. For
the purposes of this paper, an FFNN with hyperbolic tangent sigmoid and SoftMax
activation functions in the hidden and output layers are used, respectively. The FFNN
architecture is selected due to its simplicity, the low computation resources demanded
by its calculation, and the ease of its implementation in hardware devices.
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4. Experimental Setup

Multiple experiments were carried out using a laboratory squirrel cage induction
motor with 28 rotor bars, in order to validate the proposal. The main characteristics of
the motor are listed in Table 1. The IM was driving a DC machine, which operated as a
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load. Hence, the load level was controlled by varying the excitation current of the DC
machine. The experimentation testbench is shown in Figure 6. During the tests, two main
physical magnitudes were captured: the magnetic stray flux, and the current demanded by
the stator winding. To obtain the stray flux signals, a coil sensor is attached to the motor
frame. This sensor was made in the laboratory, and it consists of an air coil with an internal
diameter of 39 mm and an external diameter of 80 mm with 1000 turns (Figure 7 shows the
dimensions and outline of the used sensor). Furthermore, in order to capture the current
signals, a current clamp was installed in one of the stator power supply lines. Finally, an
oscilloscope waveform recorder was used in order to acquire the current and stray flux
signals for 30 s, and a sampling frequency of 5 kHz.

Table 1. Rated values and characteristics of the driving induction motor.

Power (kW) 1.1
Frequency (Hz) 50

Voltage (V) 400
Current (A) 2.4
Speed (rpm) 1440
Connection Star

Number of Pole Pairs 2
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Additionally, the machine was started by using four different soft-starters from dif-
ferent manufacturers (see Figure 8). The characteristics of the different soft-starters used
are shown in Table 2. In this way, several tests were carried out using different levels of
initial voltage/torque and different voltage ramp duration depending on the topology of
the soft-starter, as described in Table 3. This allowed us to obtain several signals under
different working conditions of the induction machine.
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Table 2. Main characteristics of the industrial soft-starters used during experimentation.

Soft-Starter Model Start-Up Transient
Duration (s)

Initial Applied
Voltage

Schneider 5 30%

Schneider 4 40, 50%

Schneider 3 55%

Schneider 2 67, 50%

Schneider 1 80%

ABB 20 40%

ABB 10 55%

ABB 1 70%

Omron 1 72%

Omron 12, 5 58%

Omron 25 44%

SIEMENS 0 100%

SIEMENS 5 70%

SIEMENS 10 50%

SIEMENS 20 40%

Table 3. Characteristics and rated values of the industrial soft-starters used during tests.

Manufacturer Siemens ABB Omron Schneider

Model type 3RW3013-1BB14 PSR3-600-70 G3J-S405BL ATS01N109FT
Country of production Germany China Japan Germany

Number of controlled phases 2 2 3 1
Frequency (Hz) 50 50 50 50

Power (kW) 1.5 1.5 2.2 4
Voltage (V) 380–400 380–400 380–400 400

Maximum current (A) 3.6 3.9 5.5 9
Voltage ramp duration (s) 0–20 1–20 1–25 1–5

As a studied fault, broken rotor bars were induced in the induction motor by drilling
a hole at the bar-end ring contact. Figure 9a shows the rotor in healthy conditions, before
any hole was drilled. Besides, Figures 9b,c show the one and two induced broken rotor
bars, respectively.
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5. Results and Discussion

This section shows and describes the results obtained during the experimentation by
following the proposed methodology. Additionally, the fault-related harmonics pattern
evolution during the start-up transient of the machine are evidenced and examined by
means of time-frequency maps. Thereafter, the resulting decision regions modelled by
the proposed FFNN architecture are presented. Finally, the effectiveness of the proposed
methodology is presented.

Figures 10 and 11 show the results obtained when computing the STFT of the magnetic
stray flux and current signals, respectively, for a healthy motor and a motor working under
two broken rotor bars. These signals were captured during the experimentation, and they
correspond to the Schneider starter when setting different starting times: 1 s, 2 s, 4 s. The
STFT was obtained with a window size of 4096 samples, and a sliding size of 128 data
points. When comparing the results shown there, it is relevant to note that due to the
behavior established by each starter (defined by the technology used by the manufacturer),
it is possible to appreciate a diversity of frequency components introduced by it, in such a
way that different start-up times yield a different fault-related frequency evolution. Thus,
for example, it is not possible to discern a clear difference (in terms of frequency content)
between the healthy motor and the motor with two broken rotor bars in the stray flux
signals when the starting time is set to 3 s, since similar t-f maps are obtained. However,
if the start-up time is set to 4 s, it is possible to appreciate a very clear amplification of
the rotor-related fault components (indicated with an arrow in Figure 10) in the t-f stray
flux maps. In contrast, if this same analysis is carried out for current signals, it is more
evident that there is a clear difference between a healthy motor and a motor with two
broken rotor bars when the starting duration is 3 s. These results highlight the need and
the relevance of merging the information provided by the magnetic stray flux and current
signals simultaneously.
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On the other hand, the effectiveness, per evaluated class (HLT, 1BRB, 2BRB), is obtained
through the calculation of the fault detection rate index (FDR). This index can be computed
by dividing the number of correct classifications over the total number of samples in each
class. In this regard, Figures 12–15 show the FDR obtained by evaluating the different
soft-starters, and for the different machine healthiness states, i.e., a healthy motor (HLT), a
motor with one broken rotor bar (1BRB), and a motor with two broken rotor bars. These
results were obtained for an FFNN architecture with two neurons in the input layer, a
hidden layer with two neurons, and three neurons in the output layer (corresponding to
the three evaluated motor states). In addition, for the evaluation of the FFNN, 540 training
samples were used for training, and another 180 different samples were used for validation,
using each of the different models of soft-starters evaluated. As it can be observed in
Figures 12–15, it is possible to discriminate and separate the different evaluated motor
states by means of the proposed methodology, even in cases where variations in the fault-
related pattern evolutions are introduced by alterations/perturbations according to the
control components and mechanisms implemented by different soft-starters. Figure 12
shows that a high FDR is achieved, since only a few samples have been misclassified,
reaching a 94.8% overall classification success. Similarly, Figure 13 confirms the excellent
performance of the proposed methodology for the diagnosis and automatic classification of
rotor faults when the ABB soft-starter is employed, since a total of 539 out of 540 samples
have been classified correctly. In a similar fashion, Figures 14 and 15 show the classification
results obtained when the proposed methodology is applied to the induction motor started
by means of the Omron and Schneider soft-starter, respectively. In these Figures, it can be
observed that the proposal is able to correctly classify among the different fault studied
cases, since an overall FDR of 95% is achieved (only a few samples have been misclassified
between healthy motor, and motor with one broken rotor bar). Additionally, the best
results were obtained when evaluating the SIEMENS soft-starter, in which an FDR of 99.8%
was achieved. On the other hand, the lowest performance was found when the motor
was started using the ABB soft-starter, obtaining an FDR of 94.4%. This may be due to
the diverse and erratic behavior of the slip changes experienced by the motor at start-up,
introduced by the soft-starter, according to the manufacturer′s technology.
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space; (b) Confusion matrix.

The performance for different t-f map grid sizes was evaluated using the overall
efficiency reported by the FFNN, which is calculated dividing the samples that are correctly
classified into the total number of samples. In this regard, Table 4 shows the results obtained
for different time-frequency map sizes ranging from three rows by three columns, up to
nine rows by nine columns. When comparing these results, it can be highlighted that the
chosen grid size is highly relevant for the final diagnosis, and it has a significant impact
on the efficiency achieved by the FFNN. Thus, the results show that the greater the size of
the grid, the higher the efficiency achieved, however, a limit can be observed where the
efficiency begins to decrease. This point is reached when the grid size is equal to nine rows
by nine columns. Additionally, Table 4 shows that the best performance of the proposed
methodology is achieved when the size of the t-f map grid is eight rows by eight columns.

Energies 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

 

  
(a) (b) 

Figure 13. Classification results of the proposed methodology obtained for the ABB soft-starter. (a) 
Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional 
space; (b) Confusion matrix. 

 

 

 

 
(a) (b) 

Figure 14. Classification results of the proposed methodology obtained for the Omron soft-starter. 
(a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional 
space; (b) Confusion matrix. 

 

  
(a) (b) 

Figure 15. Classification results of the proposed methodology obtained for the Schneider soft-
starter. (a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-
dimensional space; (b) Confusion matrix. 

Figure 13. Classification results of the proposed methodology obtained for the ABB soft-starter.
(a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional
space; (b) Confusion matrix.



Energies 2022, 15, 2511 15 of 19

Energies 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

 

  
(a) (b) 

Figure 13. Classification results of the proposed methodology obtained for the ABB soft-starter. (a) 
Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional 
space; (b) Confusion matrix. 

 

 

 

 
(a) (b) 

Figure 14. Classification results of the proposed methodology obtained for the Omron soft-starter. 
(a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional 
space; (b) Confusion matrix. 

 

  
(a) (b) 

Figure 15. Classification results of the proposed methodology obtained for the Schneider soft-
starter. (a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-
dimensional space; (b) Confusion matrix. 

Figure 14. Classification results of the proposed methodology obtained for the Omron soft-starter.
(a) Resulting decision regions modelled by the proposed NN-based classifier over the 2-dimensional
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Table 4. Overall classification efficiency of the proposed method for different mesh sizes, and for the
different soft-starters studied.

T-F Map Grid Size Overall Classification Efficiency (%)

Rows (m) Columns (n) ABB Omron Schneider Siemens

3 3 83.6 72.8 74.6 79.2
4 4 96.3 74.1 84.8 79.4
5 5 96.4 83.6 86.9 87.3
6 6 97.5 83.6 90.4 93.8
7 7 99.1 85.2 91.1 94.1
8 8 99.8 94.4 95.0 94.8
9 9 98.1 91.4 92.0 94.8

Additionally, Table 5 summarizes the results obtained with the proposed methodology,
and its comparison with the latest works reported in the literature for the automatic
detection of broken bars in induction motors. The comparison includes the main techniques
used in each proposed methodology, the technique applied to start the motor, the physical
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magnitude analyzed, and the accuracy rate achieved. As shown in Table 5, most of
the works have been focused on the study of one unique magnitude to diagnose BRB
faults, and many of them have reported the analysis under the transient regime of the
current signals. For example, Martinez et al. [33] studied the current signals in order to
provide an automated final diagnosis by means of an artificial neural network, reporting
an overall effectiveness of 100%. However, they analysed only current signals, which may
lead to a false diagnosis due to its intrinsic implications [21]. In contrast, Pasqualotto
et al. [34] analysed stray flux signals, and proposed a methodology relying on a CNN in
order to generate an automated final diagnosis. They achieved an accuracy rate of 66.7%,
which in real terms is a very low efficiency that can potentially lead to a false indication.
Furthermore, the use of a CNN as a main classifier may limit the viability of the method
since a higher number of samples is required for training the CNN. In this regard, in order
to avoid the high computational complexity for classification, in [35] the authors proposed
a methodology based on the use of STFT with Gaussian and Kaiser windowing and an
Otsu algorithm, achieving an accuracy rate of 100%. However, the proposed methodology
is focused on DOL motor starters. In contrast, the proposed methodology is focused on
the analysis of stray flux, and current signals, obtaining an overall effectiveness of 94.4%,
being even higher in some of the soft starter models used in the experimentation as shown
in Table 4.

Table 5. Comparison of different methodologies used in literature to detect broken bars in induction
motors.

Reference Methodology Accuracy
Rate Start-Up Method Signal Analyzed

Martinez et al. [33] Homogeneity, kurtosis, ANN 100% DOL Current
Zamudio et al. [12] STFT, FFNN 95% DOL Current and Stray Flux

Pasqualotto et al. [34] CNN, STFT, data
augmentation techniques 66.7% DOL Stray Flux

Pasqualotto et al. [15] CNN, STFT, data
augmentation techniques 94.4% Soft-Starters Stray Flux

Zamudio et al. [9] STFT, FFNN 97% DOL Stray Flux

Lopez et al. [35]
Multi-STFT, Otsu

Segmentation,
Normal-distribution

100% DOL Current

Valtierra et al. [14] STFT, CNN 100% DOL Current

Camarena et al. [36] Wavelet Transform,
Correlation Pearson 99% DOL Current

Ince et al. [13] CNN, back-propagation (BP)
algorithm 97.87% DOL Current

Rivera et al. [10] Tooth-FFT, Pearson correlation 97.5% DOL Current

Proposed Approach STFT, FFNN, arithmetic
mean and maximum value 94.4% Soft-starter Current and Stray Flux

6. Conclusions

This paper has introduced a novel methodology for the automatic diagnosis of broken
rotor bars in soft-started induction motors by means of the information fusion of current
and stray flux signals. The proposed methodology relies on a pair of indicators proposed
here. Such indicators are based on the arithmetic mean and maximum value, respectively,
of specific regions from a time-frequency map; which are obtained by analyzing the current
and stray flux signals captured during the start-up transient of the machine. These indi-
cators are based on the fact that rotor faults yield the amplification of specific frequency
components, which are found to be slip-dependent; hence, their evolution and amplifica-
tion can be tracked by the proposed indicators. Additionally, as it can be observed in the
results, it is very relevant to combine the information provided by the current and the stray
flux signals, since the control mechanisms applied by each soft-starter manufacturer tend
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to modify the fault pattern evolutions, depending on the parameters used, according to
the specific motor application and particular necessities of the final user. In this regard,
the proposed methodology shows an excellent performance in the automatic classification
among the studied faults, invariably to the soft-starter used, since an overall performance
higher than 94.4% is achieved in any case. Finally, the obtained results show that, by
means of the proposed methodology, it is possible to automatically discriminate among a
healthy motor, a motor working under one broken rotor bar, and a motor working under
two broken rotor bars. The proposal may find a great applicability under a vast array of
applications demanding automated final diagnosis, especially those where the motor is
constantly operated under starts/stops by means of a soft-starter.
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