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Abstract
Keyword Spotting (KWS) is here considered as a basic technology for Probabilistic Indexing (PrIx) of large collections of

handwritten text images to allow fast textual access to the contents of these collections. Under this perspective, a

probabilistic framework for lexicon-based KWS in text images is presented. The presentation aims at providing formal

insights which help understanding classical statements of KWS (from which PrIx borrows fundamental concepts), as well

as the relative challenges entailed by these statements. The development of the proposed framework makes it clear that

word recognition or classification implicitly or explicitly underlies any formulation of KWS. Moreover, it suggests that the

same statistical models and training methods successfully used for handwriting text recognition can advantageously be

used also for PrIx, even though PrIx does not generally require or rely on any kind of previously produced image

transcripts. Experiments carried out using these approaches support the consistency and the general interest of the proposed

framework. Results on three datasets traditionally used for KWS benchmarking are significantly better than those previ-

ously published for these datasets. In addition, good results are also reported on two new, larger handwritten text image

datasets (BENTHAM and PLANTAS), showing the great potential of the methods proposed in this paper for indexing and textual

search in large collections of untranscribed handwritten documents. Specifically, we achieved the following Average

Precision values: IAMDB: 0.89, GEORGE WASHINGTON: 0.91, PARZIVAL: 0.95, BENTHAM: 0.91 and PLANTAS: 0.92.

Keywords Pattern recognition � Posteriorgram � Relevance probability � Hidden Markov model � Recurrent neural network �
Handwritten text analysis and recognition � Keyword spotting � Large-scale indexing and search

1 Introduction

Massive quantities of historical manuscripts have been

converted into high-resolution images in the last decades as

a result of digitalization works carried out by archives and

libraries world wide. Billions of handwritten text images

have been produced through these efforts, and this is only a

minuscule part of the amount of handwritten documents

which are still waiting to be digitalized. The aim of

manuscript digitization is not only to improve preservation,

but also to make the handwritten documents easily acces-

sible to interested scholars and general public. However,

access to the real wealth of these images, namely, their

textual contents, remains elusive and there is a fast growing

interest in automated methods which allow the users to

search for relevant textual information contained in hand-

written text images.

In order to use classical plain-text indexing and search

Information Retrieval (IR) methods [1–4], a first step

would be to convert the handwritten text images into digital

text. But the image collections for which text indexing is

highly in demand are so large that the cost of manually

transcribing these images is entirely prohibitive, even by

means of crowd-sourcing approaches. An obvious alter-

native to manual transcription is to rely on automatic

Handwritten Text Recognition (HTR) [5–7]. However,

despite the great recent advances in the field [8–10], fully

automatic transcripts of the kind of historical images of

interest still lack the accuracy required to enable useful
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plain-text indexing and search. Another possibility is to use

computer-assisted transcription methods [11], but so far

these methods cannot provide the huge human-effort

reductions needed to render semiautomatic transcription of

large image collections feasible [12].

HTR accuracy becomes low on real historical hand-

written text images for many reasons, including unpre-

dictable, erratic layouts, lines with uneven interline spacing

and highly variable skew, etc. In addition, unambiguous

reading order of layout elements is difficult or impossible

to determine. Current state-of-the-art HTR systems achieve

good transcription results only if perfect layout, line

detection and reading order are taken for granted—as it is

the case in most published results. Clearly, for moderate

sized image collections, many of these problems can often

be fixed by simple and inexpensive manual postprocessing,

but this is completely impracticable when collections of

hundreds of thousands, or millions of images are

considered.

Interestingly, most or all of these problems disappear or

become much less severe if, rather than to achieve accurate

word-by-word image transcripts, the goal is to determine

how likely is that a given word is or is not written in some

indexable image region, such as a text line, a text block or

paragraph. This goal statement places our textual IR

problem close to the field known as Keyword Spotting

(KWS). A comprehensive survey on KWS for text images

has recently been published in [13].1

In recent works, we have explicitly adopted this I R

point of view to develop a search and retrieval framework

for untranscribed handwritten text images called Proba-

bilistic Indexing (PrIx) [19–24]. Generally speaking, KWS

aims at determining locations on a text image or image

collection which are likely to contain instances of the query

words, without explicitly transcribing the image(s). This is

also the aim of PrIx, but rather than focusing on specific

keywords, the likely locations of all the words which are

deemed possible keyword candidates are simultaneously

determined and indexed, along with the corresponding

probabilities.

Traditional taxonomy in KWS distinguishes Query-by-

Example (QbE) and Query-by-String (QbS) formulations,

depending on whether query words are specified by means

of example-images or just as character strings, respectively

[13]. Moreover, depending on whether or not word image

locations are known in advance, we have the ‘‘segmenta-

tion-based’’ and ‘‘segmentation-free’’ KWS formulations

[13] respectively. Many recent works assume an

intermediate view of KWS were relatively large image

regions (such as lines or paragraphs), which typically

contain several words, are considered the search targets

where word relevance likelihoods have to be determined.

This view, often referred to also as (word-)segmentation-

free, and called ‘‘line-segmentation-based’’ in [13], is

particularly interesting: it is very suitable to support the

kind of indexing and search features needed by PrIx to

provide textual access to large collections of handwritten

images and, moreover, automatic image segmentation into

these larger regions is generally very much less problem-

atic than individual word segmentation. Most of the

developments and results of this paper loosely adhere to

this view.

The proposed PrIx framework borrows fundamental

concepts from segmentation-free, lexicon-based, query-by-

string KWS formulations. As we will see, HTR and PrIx

can advantageously share statistical models and training

methods. However, it is important to realize that HTR and

PrIx are fundamentally different problems, even if both

may rely on identical probability distributions and models.

The HTR decision rule attempts to obtain the best sequence

of words or characters (transcript) for a given image.

Therefore the result epitomizes just the mode of the dis-

tribution; once a transcript has been obtained, the distri-

bution itself can be safely discarded. In contrast, PrIx

decisions are delayed to the query phase and, for each

decision, (an approximation to) the full distribution is used.

This obviously explains why proper KWS and PrIx can

always achieve better overall search results than those

provided by naive KWS based on plain HTR transcripts.

Our PrIx framework is also connected to existing works

published in the Content-based Image Retrieval commu-

nity. In particular [25–27] employ some type of distribution

to model the semantic content of an image, expressed as

keywords, and use that distribution to perform either QbS

or QbE image retrieval. Our work, however, uses much

richer models to represent this probability distribution (i.e.,

recurrent neural networks, hidden Markov models, n-gram

language models, etc.), and better exploits the correlations

present in human language, given that the content of the

images is text itself. We also describe how to build search

indexes allowing for serving fast queries, which is seldom

considered in previous works.

An indexing and search system can be evaluated by

measuring its precision and recall performance for a given

(large) set of keywords. Precision is high if most of the

retrieved results are correct while recall is high if most of

the existing correct results are retrieved. In the case of

naive indexing, based on automatic HTR transcripts, pre-

cision and recall are fixed numbers, which are obviously

closely correlated with the accuracy of the recognized

transcripts. In contrast, for a PrIx system based on the

1 Among the works cited in this survey, it is worth noting that many

recent developments are inspired in one form or the other in earlier

KWS works in the field of automatic speech recognition (ASR), such

as [14–18]. This is also the case of the work presented in this paper.
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likelihood that a keyword is written in an image region,

arbitrary precision-recall tradeoffs can be achieved by

setting a threshold to decide whether the likelihood is high

enough or not. We refer to this flexible search and retrieval

framework as the ‘‘precision-recall tradeoff model’’. Under

this model, it becomes even more clear that proper KWS

and PrIx has the opportunity of achieving better results

than naive KWS based on HTR transcripts, as previously

discussed.

Some of the developments and results presented in this

paper are based on techniques described in [19], or follow

research directions outlined in that paper. Contributions of

this paper to the state of the art of handwritten image

indexing and search include: First, a sound probabilistic

framework is presented which helps understanding the

relations between PrIx and other classical, maybe not-

probabilistic statements of KWS, and provides probabilis-

tic interpretations to many of these approaches. Second, the

development of this framework makes it clear that word

recognition implicitly or explicitly underlies any proper

formulation of KWS, and suggests that the same statistical

models and training methods successfully used for HTR

can advantageously used also for PrIx. Third, experiments

carried out using this approach on datasets traditionally

used for KWS benchmarking yield results significantly

better than those previously published for these datasets.

And fourth, PrIx results on two new, larger handwritten

text image datasets are reported, showing the great poten-

tial of the methods proposed in this paper for accurate

indexing and textual search in large collections of hand-

written documents.

The remaining sections of this paper are as follows: The

problem we are interested in is formally stated in Sect. 2,

which also presents the proposed general framework to be

developed in the following sections. Section 3 introduces

the concept of pixel-level word posteriors. While this

concept is instructive, the computational costs entailed are

exceedingly high. Therefore, in Sect. 4, we develop the

idea of computing relevance probabilities for adequately

sized, indexable image regions and explain how these

probabilities can be accurately computed. In Sect. 5 we

briefly review popular KWS approaches under the pro-

posed statistical framework and discuss our specific PrIx

proposal to efficiently compute accurate relevance proba-

bilities for line-shaped image regions. The experimental

settings and results are presented in Sect. 6 and Sect. 7.

Finally Sect. 8 concludes the paper summarizing the work

carried out and outlying future research.

2 Probabilistic indexing framework

The literature on text image KWS, outlined in Sect. 1,

considers the following general question, regarding a query

word v and a certain image or image region X : ‘‘Is v

written in X?’’

This is a ‘‘simple’’ yes/no question which, from a

probabilistic point of view, can be properly modeled by a

binary random variable. Associated with this question there

is another one which might appear more complex: ‘‘What

are the locations (if any) of word v within X?’’. However,

this can often be answered as a byproduct of solving the

main question. The probabilistic framework proposed in

[22] and presented here deals with these questions.

First, we need the above binary random variable which,

following common notation in the IR field, will be named

R (after ‘‘relevant’’). This entails a reformulation of the

original question as: ‘‘is the image X relevant for the word

v?’’, considering that X is relevant for v if at least one

instance of v is rendered in X .

Second, we propose another random variable X over the

set of image regions. A value of X (i.e., an arbitrary image

region), will be denoted as X . At this point we do not need

to consider what are the possible sizes or shapes of image

regions (a page, a paragraph, a line, a word-sized bounding

box, etc.) and, until we need to be more specific, we will

simply use the term ‘‘image’’ for a value of X.

Finally, we introduce the random variable, Q, over the

set of all possible user queries. An arbitrary value of Q is

generally denoted as q. The proposed framework properly

admits arbitrary types of queries: from single words, to

Boolean word combinations [28], or even ‘‘example image

patches’’, as in QbE KWS [29]. However, to keep the

presentation simple, in this paper we consider only con-

ventional string query search, where queries are individual

keywords, v, from a given vocabulary, V. Therefore, from

now on, a generic value of Q will be denoted as v.

We can now introduce the relevance probability

distribution2:

PðR ¼ yes j X ¼ X ; Q ¼ vÞ � PðR j X ; vÞ ð1Þ

which denotes the probability that X is relevant for the

keyword v. The relevance probability can be obviously

interpreted as the statistical expectation that v is written in

X and, therefore, the expected number of words from V

written in X an be simply computed as
P

v2V PðR j X ; vÞ.
On the other hand, PðR j X ; vÞ is also just the posterior

2 To simplify notation, from now on we will generally write PðR � � �Þ
and Pða � � �Þ, rather than PðR¼yes � � �Þ and PðA¼a � � �Þ, respec-
tively, except when the full notation helps enhancing clarity and/or

avoiding ambiguity.
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probability underlying the following 2-class classification

problem:

Given v; classify each X into one of these two classes:

� yes : v is (one of the words) written (somewhere) inX

� not : v does not appear inX

ð2Þ

Using a loss matrix k to weight the cost of each yes=not

decision, the resulting decision theoretic Bayes’ or mini-

mum expected risk rule amounts to classify X into the class

‘‘yes’’ iff [30]:

PðR j X ; vÞ [ s ; s ¼ kYN � kNN

kNY � kYY þ kYN � kNN
ð3Þ

where in this two-class case, k reduces to a single threshold

s. Under the precision-recall tradeoff model, this is exactly

the threshold to be adjusted in order to achieve the required

tradeoffs.

In the next sections we explain how to compute rele-

vance distributions for given images. We will start in

Sect. 3 by introducing the concept of ‘‘posteriorgram’’,

which represents word posterior probabilities computed at

the pixel level. While such a representation is conceptually

enlightening, its computation is expensive and, moreover,

it would require prohibitive amounts of memory and time

for keyword indexing and search. Therefore we will argue

that keyword search does not really need such a fine-

grained resolution and, in Sect. 4, we discuss the conve-

nience of computing the required probabilities for whole

indexable image regions of adequate size. Finally, in

Sects. 4.1 and 4.2 we explain how PðR j X ; vÞ can be

accurately derived from pixel-level word posteriors when

X is an adequate image region.

3 Pixel level keyword search: image
posteriorgram

The posteriorgram of a text image X and a keyword v is

the probability that v uniquely and completely appears in a

bounding box containing the pixel (i, j). In mathematical

notation:

PðQ ¼ v j X ¼ X ; L ¼ ði; jÞÞ � Pðv j X ; i; jÞ ;
1� i� I; 1� j� J; v 2 V

ð4Þ

where L is a random variable over the set of locations

(pixel coordinates) and I, J are the horizontal and vertical

dimensions of X , respectively. Pðv j X ; i; jÞ is a proper

probability distribution over the vocabulary V; that is:

X

v2V

Pðv j X ; i; jÞ ¼ 1; 1� i� I; 1� j� J ð5Þ

A simple way to compute Pðv j X ; i; jÞ is by considering

that v may have been written in any possible bounding box

b in Bði; jÞ, the set of all bounding boxes which contain the

pixel (i, j):

Pðv j X ; i; jÞ ¼
X

b2Bði;jÞ
Pðv; b j X ; i; jÞ

¼
X

b2Bði;jÞ
Pðb j X ; i; jÞPðv j X ; b; i; jÞ

ð6Þ

Pðv j X ; b; i; jÞ in Eq. (6) is the probability that v is the

(unique) word written in the box b (which includes the

pixel (i, j)). Therefore it is conditionally independent of

(i, j) given b, and Eq. (6) simplifies to:

Pðv j X ; i; jÞ ¼
X

b2Bði;jÞ
Pðb j X ; i; jÞPðv j X ; bÞ ð7Þ

This marginalization process is illustrated in Fig. 1; and

Fig. 2 shows real results of computing Pðv jX ; i; jÞ in this

way for an example image X and a specific keyword v.

The distribution Pðb j X ; i; jÞ of Eq. (7) should be

interpreted as the probability that some word (not neces-

sarily v) is written in the image region delimited by the

bounding box b. Therefore, this probability should be high

for word-shaped and word-sized bounding boxes centered

around the pixel (i, j), like some of those illustrated in

Fig. 1. In contrast, it should be low for boxes which are too

small, too large, or are too off-center with respect to (i, j).

For simplicity, it can be assumed that this distribution is

uniform for all reasonably sized and shaped boxes around

(i, j) (and null for all other boxes), and then just replace this

distribution with a constant in Eq. (7). Such a simplifica-

tion encourages the peaks of the posteriorgram to be rather

flat, as in Fig. 2.

On the other hand, the term Pðv jX ; bÞ, is exactly the

posterior probability needed by any system capable of

recognizing a pre-segmented word image (i.e., a sub-image

of X bounded by b). Actually, such an isolated word

Fig. 1 Marginalization bounding boxes b 2 Bði; jÞ. For v ¼ ‘‘mat-
ter’’, the thick-line box will provide the highest value of Pðv j X ; bÞ,
while most of the other boxes will contribute only (very) low amounts

to the sum

17504 Neural Computing and Applications (2023) 35:17501–17520

123



recognition task can be formally written as the following

classification problem:

v̂ ¼ argmax
v2V

Pðv j X ; bÞ ð8Þ

In general, any system capable of recognizing pre-seg-

mented word images implicitly or explicitly computes Pðv j
X ; bÞ and can thereby be used to obtain the posteriorgram

according to Eq. (7). For example, using a k-Nearest

Neighbor classifier, it can be approximated just as [30]:

Pðv j X ; bÞ ¼ kv

k
ð9Þ

where kv is the number of v-labelled prototypes out of the k

which are nearest to to the image in the bounding box b of

X .

Obviously, the better the classifier, the better the cor-

responding posteriorgram estimates. This is illustrated in

Fig. 2, which shows two examples of image posteriorgrams

obtained according to Eq. (7) using two different word

image recognizers. In both cases, well trained optical hid-

den Markov models (HMM) were used to compute Pðv j
X ; bÞ 8b 2 Bði; jÞ. P0ðv jX ; i; jÞ was obtained directly,

using a plain, context-agnostic optical recognizer, and

P2ðv j X ; i; jÞ was produced using a more precise contex-

tual word recognizer, additionally based on a well trained

bi-gram. As it can be seen, P0 values are only good for the

two clear instances of ‘‘matter’’, but almost vanish for a

third instance, probably because of the faint character ‘‘m’’.

Worse still, P0 values are relatively high for the similar, but

wrong word ‘‘matters’’; in fact very much higher than

for the third, faint instance of the correct one. In contrast,

the contextual recognizer leads to high P2 values for all the

three correct instances of ‘‘matter’’, even for the faint

one, while the values for the wrong word are very low.

Clearly bigrams such as ‘‘It matter’’ and ‘‘matter

not’’ are unlikely, thereby preventing P2ðv j X ; bÞ to be

high for any box b around the word ‘‘matters’’. On the

other hand, the bigrams ‘‘the matter’’ and ‘‘matter

of’’ are very likely, thereby helping the optical recognizer

to boost P2ðv j X ; bÞ for boxes b around the faint instance

of ‘‘matter’’.

Pixel-level posteriorgrams could be directly used for

keyword search: Given a threshold s 2 ½0; 1�, a word v 2
V is spotted in all image positions where Pðv jX ; i; jÞ[ s.
Varying s, adequate precision–recall tradeoffs could be

achieved.

4 Image regions for keyword indexing
and search

Computing the full posteriorgram as in Eq. (7) for all the

words of a large vocabulary (as needed for indexing pur-

poses) and all the pixels of each page image entails a

formidable amount of computation. The same can be said

for the exorbitant amount of memory which would be

needed to explicitly store all the resulting posterior prob-

abilities. Therefore such a direct approach is obviously

Fig. 2 Identical optical HMMs

were carefully trained in order

to help computing two 2-D

posteriorgrams, P0 and P2, for a

text image X and keyword v¼
‘‘matter’’. A context-agnostic

HMM?0-gram isolated word

classifier was used to obtain P0.

But much better posterior

estimates are offered by P2,

obtained using a contextual,

HMM?2-gram classifier
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inappropriate for indexing purposes and, moreover, it

becomes unfeasible for the size of text image collections

considered in this work. Clearly, rather than working at the

pixel level, some adequately small image regions, x, which

are indexable and suitable search targets for users, need be

defined to compute the relevance probabilities introduced

in Sect. 2.

While these concerns are seldom discussed in the KWS

literature, region proposal [31] has been the focus of a

number of studies in the object recognition community, as

well as in the field of document analysis—see e.g., [32],

which deals with graphic pattern spotting in historical

documents and [33–35], which apply region proposal

neural networks to various document layout analysis tasks.

In the traditional KWS literature, word-sized regions are

often considered by default. This is reminiscent of seg-

mentation-based KWS methods which required previously

cropped accurate word bounding boxes. However, as dis-

cussed in Sect. 1, this is not realistic for large image col-

lections. More importantly, by considering isolated words,

it is difficult for the underlying word recognizer to take

advantage of word linguistic contexts to achieve good

spotting precision (as illustrated in Fig. 2).

At the other extreme we may consider whole page

images, or relevant text blocks thereof, as the search target

image regions. While this can be sufficiently adequate for

many textual content retrieval applications, a page may

typically contain many instances of the word searched for

and, on the other hand, users generally like to get narrower

responses to their queries.

A particularly interesting intermediate search target

level consists of line-shaped regions. Lines are useful tar-

gets for indexing and search in practice and, in contrast

with word-sized image regions, lines generally provide

sufficient linguistic context to allow computing accurate

word classification probabilities. Moreover, as will be

discussed in Sect. 5.2, line region posteriorgrams can be

very efficiently computed.

4.1 Image-region relevance probabilities

Let us now examine how to obtain the relevance proba-

bilities PðR jX ; vÞ defined in Eq. (1) when X is a suit-

able (typically a line-shaped or any other small) image

region. To emphasize this greater concreteness, we will

write x rather than X .

4.1.1 Naive Word Posterior Interpretation of P(R j x; vÞ

If x were a word-sized, tight bounding box, then Pðv jxÞ
could be used as a proxy for PðR jx; vÞ as:

PðR¼yes j x; vÞ � Pðv j xÞ
PðR¼not j x; vÞ �

X

u 6¼ v

Pðu j xÞ ¼ 1� Pðv j xÞ ð10Þ

As will be discussed in Sect. 5, this is in fact the approach

implicitly or explicitly adopted by all word-segmentation-

based KWS methods. So it is not surprising that researchers

have tried to stretch this idea even if x is not a tight word

bounding box (i.e., it may contain multiple words). In this

case, however, the intuition behind the classification

problem underlying Pðv j xÞ is unclear: How the (unique)

‘‘most likely word’’ v̂ ¼ argmax vPðv jxÞ should be inter-

preted? Moreover, Pðv jxÞ sums up to one for all v2V; but

in keyword search, each word actually written in x should

have high relevance probability and, as mentioned above

(Sect. 2), the sum should rather approach the expected

number of different words written in x.

In Sect. 7, we empirically study whether using Pðv jxÞ
with line image regions can still provide useful KWS

performance. While the posterior underlying any isolated

word classifier can straightforwardly be used to obtain

Pðv jxÞ, in the comparative experiments of Sect. 7 we tried

to use the same underlying probability distributions for all

the methods. To this end, one can realize that Pðv jxÞ can
be readily obtained as a simple pixel-average of the pos-

teriorgram as follows:

Pðv j xÞ ¼
X

ij

Pðv; i; j j xÞ � 1

I �J
X

ij

Pðv j x; i; jÞ ð11Þ

where I �J is the number of pixels of x and, for simplicity,

possible positions (i, j) of words are assumed to be

equiprobable.

4.1.2 Proposed approximations to P(R j x; vÞ

To start with, let the correct transcript of x be the sequence

of words w ¼ w1;w2; . . .;wn, wk 2 V ; 1� k � n, and let us

abuse the notation and write v 2 w to denote that

9k; wk ¼ v. The definition of the class ‘‘yes’’ in Eq. (2) can

then be written as:

ðR ¼ yesÞ � ðv 2 wÞ � ðw1¼v _ w2¼v. . . _ wn¼vÞ
ð12Þ

Of course, if w were known, the relevance probability

PðR j x; vÞ would trivially be 1 if v 2 w and 0 otherwise. In

KWS or PrIx, no transcripts are available, but an obvious,

naive idea is to approximate w with a best HTR tran-

scription hypothesis, ŵðxÞ (see Sect. 4.4). This results in:

PðR j x; vÞ �
1 if v 2 ŵðxÞ
0 otherwise

�

ð13Þ
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While the simplicity of this idea makes it really enticing

(and it has in fact become quite popular), we anticipate that

ŵðxÞ is seldom accurate enough in practice, and this

method generally yields poor precision-recall

performance.

Therefore, we propose less simple but hopefully more

accurate developments. According to [36] and Eq. (12),

PðR j x; vÞ can be exactly written as:

PðR j x; vÞ ¼
Xn

k¼1

Pðwk ¼v j xÞ

�
X

l\k

Pðwk ¼v;wl¼v j xÞ

þ
X

m\l\k

Pðwk ¼v;wl¼v;wm¼v j xÞ

. . .

ð�1Þn�1 Pðw1¼v; . . .wn¼v j xÞ

ð14Þ

If the image regions are sufficiently small (e.g., line

regions), it can reasonably be expected that only one

instance of each keyword may appear in each region. In

these cases, all the joint probabilities in Eq. (14) vanish and

it simplifies to:

PðR j x; vÞ �
X

1� k� n

Pðwk ¼ v j xÞ ¼def
X

1� k � n

Pkvx ð15Þ

where the terms Pkvx ¼def Pðwk¼v jxÞ have been introduced to
simplify forthcoming notation. A drawback of this

approximation is that PðR jx; vÞ may become improper

since the sum can be greater than one if a keyword appears

more than once in x.

To avoid this problem, rather than plainly ignoring the

joint probabilities of Eq. (14), they can be approximated by

naive Bayes estimates:

PðR j x; vÞ �
Xn

k¼1

Pkvx

�
X

l\k

Pkvx Plvx

þ
X

m\l\k

Pkvx Plvx Pmvx

. . .

ð�1Þn�1 P1vx. . .Pnvx

ð16Þ

Equation (16) can be efficiently computed by dynamic

programming according to the following recurrence rela-

tion, which can be proved by simple induction:

PðR j x; vÞ � qðnÞ ; where

qðkÞ ¼
P1vx if k¼1

Pkvxþ qðk�1Þ ð1�PkvxÞ if k[1

� ð17Þ

Finally, inspired by the Fréchet’s bounds [37], another

approximation to Eq. (14) is proposed which does not

suffer from the problem of Eq. (15) and, moreover, is much

simpler than Eq. (16)/(17).

PðR j x; vÞ � max
1� k� n

Pkvx ð18Þ

This approximation is intuitively appealing (see Figs. 2

and 3 for illustrations) and, as will be seen below, leads to

the simplest and most effective method to obtain image

region relevance probabilities.

4.2 Estimating image-region relevance
probabilities from posteriorgrams

In PrIx or in KWS no transcript of x is available, but Pkvx�
Pðwk ¼v j xÞ can be estimated from the posteriorgram for

k 2 f1; 2; . . .g. To this end, we can divide the whole region

x, into n (maybe slightly overlapping or disjoint) subre-

gions or blocks, B1; . . .Bk; . . .Bn, where a sufficiently high

and wide (usually rather flat) local maximum of Pðv j
x; i; jÞ is observed for some v 2 V (see Fig. 2, where n

should be around 25, the number of likely words in x; or

more concretely, the unidimensional illustration of Fig. 3,

where n would be 9 or 10). Then:

Pkvx � max
ði;jÞ2Bk

Pðv j x; i; jÞ ð19Þ

This estimate can be used in any of the approximations

given by Eqs. (15,16)/(17, 18) discussed in Sect. 4.1. Since

only approximate local maxima of Pðv jx; i; jÞ are required,
simple maximum detection techniques can be used. How-

ever, the performance of the resulting relevance probabil-

ities will depend on one or two adjustable parameters

(n and/or an adequate threshold) which need to be opti-

mized using validation data.

The case of Eq. (18) deserves special attention. In this

case, a closed-form expression for the relevance probability

distribution can be straightforwardly derived:

PðR j x; vÞ � max

ði;jÞ2Bk

1� k � n
Pðv j x; i; jÞ ¼ max

i;j
Pðv j x; i; jÞ

ð20Þ

Interestingly, the number of subregions, n, and the subre-

gions themselves, needed in this derivation, finally become

irrelevant and no extra adjustable parameters are needed.

On the other hand, since the maximization of Eq. (20) can

be carried out during the process of computing Pðv jx; i; jÞ
itself, it does not add any computational cost to this
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process. Moreover, the precise locations of the spotted

words within spotted regions are trivially obtained as a

byproduct of the maximization in Eq. (20).

One may argue that this approximation may be

exceedingly rough. This issue has been empirically studied

in [38] for the BENTHAM dataset described in Sect. 6.2. The

results show that Eq. (20) generally yields fairly precise

approximations and, moreover, the results are practically

exact for more than 99.5% of the (line) regions and words

spotted.

The derivation of Eq. (20) from Eqs. (14), (18) and (19)

provides a formal explanation to a similar max heuristic

which has been successfully used for confidence estimation

in several works of automatic speech and handwritten text

recognition [39, 40], and recently also for keyword

indexing and search in [19].

The relative performance of all the proposed approxi-

mations will be empirically studied in Sect. 7.1. We

anticipate that a best choice will be Eq. (20), based on

Eq. (18).

4.3 Line-region keyword indexing and search

At the beginning of Sect. 4, line image regions were sug-

gested as particularly adequate targets for keyword index-

ing and search. In connection with the discussion in

Sect. 3, the following two main advantages of these

regions can be identified:

1. Line regions provide rich linguistic context which

allows computing precise word classification

probabilities.

2. Line region posteriorgrams can be very efficiently

computed by smart choices of the sets of relevant

marginalization boxes, Bði; jÞ; and wise vertical

subsampling.

For a line-shaped region, the relevant sets of marginal-

ization boxes needed to compute the posteriorgram

according to Eq. (6) can be defined just by horizontal

segmentation. As discussed later, these sets can be

accurately and efficiently obtained as a byproduct of using

a holistic, segmentation-free, context-aware handwritten

recognizer on the whole line image region.

Vertical subsampling, on the other hand, can be made by

guessing a line height and running, with some overlap, a

vertical-sliding rectangular window of this height, as in

[41] (Fig. 2 was made in this way, with large overlap to

achieve high vertical resolution). However, in many cases,

line detection and segmentation techniques [34, 35, 42–45]

can be accurate enough to allow for computation reduc-

tions and maybe improved precision. The possible lack of

robustness of this approach can be alleviated by means of

over-segmentation [46].

In what follows we regard (as in [19, 47–52], among

others—see also [13]) line-shaped image regions as our

target resolution level for PrIx keyword indexing and

search. As discussed in Sect. 4.2, once a line spot is

determined, the exact location(s) of the keyword searched

for within the line can also be easily obtained.

We assume that each handwritten page image has

undergone basic preprocessing steps including correction

of overall page skew and other simple geometrical distor-

tions [11]. We do not need to assume that preprocessing

includes any kind of character or word segmentation. Line

segmentation is not essentially needed either [41] but, as

discussed above, for effectiveness, efficiency and simplic-

ity, text can be assumed to be organized into distinguish-

able, roughly horizontal lines.

4.3.1 1-D posteriorgram and line-region relevance
probabilities

A line image region x can be processed ‘‘frame-wise’’ by

extracting m narrow vertical boxes (or ‘‘frames’’) at uni-

formly spaced horizontal positions. This way, x can be seen

as a sequence of m frames, effectively reducing x to a 1-

dimensional object. The corresponding posteriorgram is

also 1-D: Pðv j x; iÞ, 1� i�m, and Eq. (7) becomes:
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Fig. 3 A 1-D posteriorgram

obtained using a HMM?2-gram

contextual recognizer, following

the approach outlined in

Sect. 5.2
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Pðv j x; iÞ ¼
X

s2SðiÞ
Pðs j x; iÞPðv j x; sÞ ð21Þ

where SðiÞ is the set of reasonably shifted and sized seg-

ments which contain the frame i and, as in Eq. (7), Pðs j
x; iÞ can be assumed uniform and replaced by an adequate

constant.

A fairly complete real example of this kind of context-

aware line image posteriorgram is shown in Fig. 3. As

discussed previously, an important advantage of line-level

processing is that it allows to easily take into account the

rich context provided by words surrounding each query

word.

It is straightforward to rewrite the derivations and dis-

cussions of Sect. 4.2 to obtain line-region relevance prob-

abilities from Pðv j x; iÞ. In particular, Eq. (20) becomes:

PðR j x; vÞ � max
i

Pðv j x; iÞ ð22Þ

4.4 Keyword spotting and handwritten text
recognition

Many authors in the field of KWS consider that KWS and

HTR are different problems which require distinct meth-

ods. Aiming to shed light on this debate, in this subsection

KWS is re-visited from the HTR point of view.

In Sect. 2, it was pointed out that KWS essentially boils

down to answering the question: ‘‘Is the word v written in

the text image region x?’’. As discussed in Sect. 4.1, a

direct answer to this question would be to check whether v

appears in a word sequence w which constitutes the tran-

script of x. But, since w is unknown, here we consider it as

the value of a new random variable, W , defined over all the

possible transcripts of x. This allows us to obtain the KWS

relevance probability by marginalization on W:

PðR j x; vÞ ¼
X

w

PðR;W ¼w j x; vÞ �
X

w

PðR;w j x; vÞ

¼
X

w

PðR j w; x; vÞPðw j x; vÞ

ð23Þ

where w ranges over the set of all sequences of words in V.

Now, since w is given in PðR j w; x; vÞ, this probability can

take only two values: 1 if v 2 w, or 0 otherwise. On the

other hand, since image transcripts (w) are independent

form user queries (v), the term Pðw j x; vÞ in Eq. (23)

simplifies to Pðw j xÞ and we can write:

PðR j x; vÞ ¼
X

w:v2w

Pðw j xÞ ð24Þ

That is, KWS relevance probabilities can be properly

computed on the base of the probability that a sequence of

words w is the transcript of the image region x.

Interestingly, this is exactly the same distribution used by

modern HTR systems, which provide a most likely tran-

script of the given text image region x according to the

minimum Bayes error criterion [30]; that is:

ŵ ¼ argmax
w

Pðw j xÞ ð25Þ

Note that the sum of Eq. (24) requires considering multiple

HTR decoding hypotheses, not just the best one defined by

Eq. (25). Each of these hypotheses entails a corresponding

word segmentation hypothesis, which implicitly provides

the marginalization boxes (segments in this 1-D case)

commented in Sect. 4.3. See details in Sect. 5.2 and

[19, 53, 54].

As compared with the approximations proposed in

Sects. 4.1–4.2, Eq. (24) can be used to obtain ‘‘exact’’

relevance probabilities. However, the sum in Eq. (24)

constitutes a complex computational problem. It can be

solved by means of a dynamic programming technique

similar to the ‘‘forward’’ approach proposed in [55]. But,

even using this technique, the computational cost is still

exceedingly high [54]. In this paper, we will omit these

computational details, even though this ‘‘exact’’ approach

will be used as a reference in the comparative results of

Sect. 7.1.

5 Interpretation of other KWS methods
and details of the proposed approaches
for PrIx

In the framework proposed in Sect. 3, a KWS method is

assumed to implicitly or explicitly visit all the image

locations (i, j) and all the possible bounding boxes (BB) b

containing (i, j) (or adequately selected subsets of locations

and BBs thereof). For each (i, j) and b, an (isolated) word

recognizer or word-matching technique of some kind is

used to estimate the posterior probability, Pðv j X ; bÞ, that
a given keyword v is the (only) word written in b. Then

Eq. (7) is somehow used to compute the pixel-level pos-

teriorgram, from which region relevance probabilities are

computed as explained in Sects. 4.1 and 4.2.

A single b encompasses OðI �JÞ pixels. Thus, the com-

puting cost of estimating Pðv j X ; bÞ for all v 2 V is at least

XðN I JÞ, where N is the number of keywords. In general,

for each image location there are OððI JÞ2Þ possible b’s,

and the number of locations is OðI JÞ. Therefore, the

overall computational complexity of directly computing a

posteriorgram in this way, for all the I �J pixels in a full

image, is really huge: at least XðN ðI JÞ4Þ.
It is then no surprise that the history of development of

KWS for text images can be interpreted in terms of how to
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deal with the different components of this exorbitant

computational cost.

5.1 Interpretation of KWS methods

According to the framework introduced in this paper, three

main aspects can be identified which characterize most

(QbS) KWS methods for (handwritten) text images pro-

posed so far.

• How to effectively sample the exceedingly large

number of image pixel locations.

• How to select a sufficiently effective set Bði; jÞ of

marginalization BBs and how to deal with the summa-

tion required in Eq. (7)

• How to estimate the word classification posterior Pðv j
X ; bÞ for each b 2 Bði; jÞ.

We start discussing the first two aspects, which are closely

inter-related and together aim to deal with the computa-

tional costs which essentially depend on the image size,

I �J.
All of the word-segmentation-based KWS techniques

[13] circumvent the high computing cost of Eq. (7) by

reducing the summation to just one fixed word-sized BB.

Moreover, KWS ‘‘scores’’ (proxy for word posteriors, see

below) are computed only at the relatively very small

number, l, of previously given locations of these word BBs.

Obviously, by naively assuming perfect word image

detection and segmentation, the computational cost is

dramatically reduced down to OðN lÞ, which clearly

explains the mighty popularity of this simplistic idea.

Some works, such as [56], rely on automatic over-seg-

mentation of the text images to mitigate the impact of word

segmentation errors. Such techniques rely on a richer, more

realistic subsampling and, to some extent, go toward

approximating the marginalization in Eqs. (6) and (7).

In fully segmentation-free KWS methods [13], sub-

sampling generally performed through a sliding-window

sweep over the image—see, e.g., [57]. However, full pixel-

by-pixel sweep is again much too expensive and, in many

works, an adequately small number p of key-points which

define possible elements of the objects of interest (words),

are previously located [13, 57]. This way, assuming

marginalization is simplistically reduced to just one can-

didate BB or ‘‘patch’’ (which is usually the case) compu-

tational cost can be reduced down to OðN pÞ where, in

general, p[[ l.

On the other hand, in KWS approaches which work with

(word-unsegmented) line image regions, the summation in

Eq. (7) becomes unidimensional (i.e., Eq. (21)). In many of

these approaches this sum is more or less explicitly

approximated only by the dominating addend (which is

typically a good approximation – generally much better

than relying on a single, given BB). Then, dynamic pro-

gramming techniques are used to avoid repeated compu-

tations during a sliding window process over the horizontal

positions of x. This is specifically the case of word-seg-

mentation-free dynamic time warping KWS methods such

as [47, 48], as well as all the modern techniques based on

HMMs [49, 51, 52] and recurrent neural networks [50].

Nevertheless, obtaining a full 1-D posteriorgram for

each of the M line-regions in an image would still entail

high computational cost. The size of the set of marginal-

ization segments, S(i), is OðI2Þ and segment lengths are

O(I). Therefore, even if repeated computations are avoided,

the overall asymptotic time complexity is OðNMI2Þ. For-
tunately, in this simpler 1-D case, reasonably good and

computationally cheaper approximations can be obtained

in a variety of ways. In Sect. 5.2 we describe the approach

we propose to deal with this computational complexity.

Let us now discuss the last aspect which characterize a

KWS method; namely how to estimate the word classifi-

cation posteriors Pðv jX ; bÞ. Three main approaches can be

identified: distance-based, HMMs and (recurrent) neural

networks (RNN).

Many early approaches to KWS, notably segmentation-

based ones, are based on distances between vector repre-

sentations of queries and images. Most distance-based

methods are QbE [13], but some recent QbS proposals such

as [58] are also distance-based. It is well known that dis-

tances can be used to approximate probability distributions

in several ways [30]. If y and z are, respectively, repre-

sentations of a query word v and an image BB ðX ; bÞ, then
a simple estimator of the classification posterior required

in Eq. (7) is: Pðv j X ; bÞ � /ðy; zÞ
�P

u /ðu; zÞ, where

/ðu; zÞ ¼ expð�dðu; zÞÞ, dð�; �Þ is the distance, and

u ranges over (an adequate set of) query word representa-

tions. Distance-based KWS methods [13] generally drop

the denominator (sum in u) and use just unnormalized

distance-based ‘‘scores’’. While the resulting lack of basic

probabilistic properties may not change the individual

average precision of each query (see Sect. 6.1), unnor-

malized scores may severely hinder the global average

precision for a large set of queries.

Consider now HMMs. A word v is commonly modeled

as a concatenation of character HMMs, which estimate the

likelihood PðX ; b jvÞ that v is rendered in the BB ðX ; bÞ.
This is proportional to Pðv jX ; bÞ assuming P(v) and

PðX ; bÞ are uniform. But improper normalization leads to

similar problems as in distance-based methods and some

heuristic form of word-length normalization is often

required, as it is typically the case with the popular ‘‘filler’’

models [51] (see more details in [55]).

Let us finally focus on RNN [50]. For a given image BB

ðX ; bÞ, these networks directly provide a sequence of
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posterior probabilities Pðc j X ; b; iÞ where c is a character

and i is a horizontal position within b. For a keyword v,

composed of characters c1; . . .; cK , dynamic programming

can be used to obtain a best matching path Uð�Þ, which
assign each position i to one of the K characters of v. Then

usual independence assumptions lead to the naive Bayes

approximation: Pðv jX ; bÞ �
Q

i PðcUðiÞ jX ; b; iÞ, where i

ranges over the horizontal positions of b.

5.2 Proposed approaches for PrIx

To finish the formal part of this paper, we present details of

the specific approaches we propose to efficiently compute

accurate, context-aware line-region posteriorgrams, and the

corresponding relevance probabilities. They formally fol-

low the statistical framework developed in the preceding

sections and, as previously mentioned, rely on techniques

introduced in [19]. The main idea is to use a word lattice or

graph (WG) [19, 59], obtained as a byproduct of solving

Eq. (25) of Sect. 4.4 [11, 19]. A WG of a (line) image

region, x, is a very compact representation of a huge

amount of alternative image transcription results, including

the probability of each of the (millions of) hypothesized

words and the corresponding word segmentation

boundaries.

A posteriorgram Pðv jx; iÞ can be obtained from a WG of

x following essentially the same arguments as in Eq. (15)

or, more specifically, its 1-D version, Eq. (21). The basic

idea is to consider that, for each position i, the ‘‘relevant,

reasonably shifted and sized’’ segments in SðiÞ are those

given by the multiple word segmentation hypotheses

associated with all the WG edges, e, labeled with the word

v and such that i is included within the segmentation

boundaries specified by the departing and ending nodes of

e. See [19] for more details. These word boundaries are

generally very accurate, not only for the words in the best

hypothesis of the WG (called the ‘‘1-best’’ transcript), but

also for most of the edges associated with high-probability

paths of the WG. Therefore, these boundaries and proba-

bilities provide highly informative data to allow very

accurate computation of Eq. (21).

The four aspects which characterize a KWS method are

now briefly outlined for the proposed approaches: To cope

with the exceedingly large number of pixel locations in a

page image, it is first sampled vertically by adopting line

image regions as discussed in Sect. 4.3, and horizontally

according to the segmentation boundaries included in each

line region WG. Similarly, we let the word segments rep-

resented in each WG define the sets of marginalization

BBs. The word classification posteriors Pðv jX ; bÞ are

obtained from the word likelihoods associated to the WG

edges (which were computed essentially as discussed

above for HMMs or RNNs). As explained in detail in [19],

a specific normalization process is applied to the WG so as

to convert edge likelihoods into the so-called edge poste-

riors, which are then directly interpreted as values of rel-

evance probability (RP). Finally, with all these data we

efficiently compute the sum of Eq. (21). Figure 4 shows

the key components and methods explained above and

illustrates the proposed PrIx generation workflow.

For a line image region of length I, the computational

cost of obtaining a posteriorgram in this way is in Hðj IÞ,
where j depends on the size of the WG [19]. Given the

posteriorgram, keyword indexing relevance probabilities

are cheaply computed by any of the 1-dimensional versions

of Eqs. (17)–(20) (with no extra costs in the case of

Eq. (22)). So, once the WGs of the M extracted line image

regions are available, the overall computational effort per

page image is OðN M j IÞ. According to Toselli et al.

[19, 60], this cost is generally dominated the cost of pro-

ducing the WGs themselves, which is also basically linear

with N, M and I, but grows much faster with j. See [19, 60]
for more details, including real computing times of WG

generation.

6 Experimental framework

The experimental setup adopted to assess the KWS per-

formance of the proposed approaches is presented here,

including: evaluation measures, benchmark datasets, query

sets, and empirical settings adopted for RNN and HMM

optical modeling and for the different methods used to

compute image-region relevance probabilities.

6.1 Evaluation measures

Let L be the set of (line) image regions and Q the set of

queries. Let E ¼ L	Q be the set of ‘‘events’’. According

to Sect. 2, an event, ðx; qÞ 2 E, is relevant if and only if q is

truly written in x. Let r be the total number of relevant

events in E and, for a given threshold, s, let dðsÞ and hðsÞ
be the number of relevant events detected (retrieved) by the

system and the number of correctly detected events (also

called ‘‘hits’’), respectively. The Recall, qðsÞ, and the raw

(non-interpolated) precision, p0ðsÞ, are defined as:

qðsÞ ¼ hðsÞ
r

; p0ðsÞ ¼ hðsÞ
dðsÞ ð26Þ

The interrelated trade-off between recall and precision can

be conveniently displayed as the so-called recall-precision

(R-P) curve, p0ðqÞ [61]. Raw precision can be ill-defined

and, moreover, raw R-P curves can present an undesired

saw-tooth shape [1]. Both of these issues, which may lead

to counter-intuitive performance results, can be avoided by
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the so-called interpolated precision, p, which at a certain

recall level q is defined as:

pðqÞ ¼ max
q0:q0 
q

p0ðq0Þ ð27Þ

Intuitive arguments in favor of pðqÞ, which is generally

adopted in the literature, are discussed in [1]. Good search

and retrieval systems should achieve both high precision

and high recall for a wide range of values of s. A com-

monly accepted scalar measure which meets this intuition

is the area under the (interpolated) R-P curve, pðqÞ,
referred to as (interpolated) average precision (AP)

[62, 63].

Interpolated precision becomes even more necessary for

fair evaluation of the naive 1-best KWS approach

(Sect. 4.1, Eq. (13)), where relevance probabilities are 1 or

0, independently of s. In this case, only one R-P point,

ðq0; p0Þ, is defined in the raw R-P curve, leading to a null

raw AP which prevents comparison with other KWS

approaches. In contrast, the interpolated precision curve

becomes: pðqÞ¼p0 if 0�q�q0, pðqÞ¼ 0 otherwise; and

the resulting interpolated AP is: p0 � q0.

6.2 Datasets

The main experiments were conducted on two relatively

large historical handwriting datasets, called BENTHAM [64].3

and PLANTAS [12]. Examples of images from these collec-

tions can be seen in the web sites of the demonstrators

discussed in Sect. 84. In addition, comparative experiments

were carried out on smaller, more usual benchmarking

datasets; namely, IAM, PARZIVAL (PAR) and GEORGE

WASHINGTON (GW). Main dataset features are summarized

in Table 1 and full details can be consulted in [38].

The standard fourfold cross-validation scheme adopted

by most other authors for GW (which is a very small set)

was also adopted here and the figures in Table 1 are

averages over the 4 folds. In all the cases, ground-truth line

segmentation was available, both for training and testing

images, and it was used in the experiments. We leave for

future works to experiment with the vertical subsampling

and over-segmentation ideas discussed in Sect. 4.3. All the

datasets are publicly available and the details needed to

produce results comparable with those reported in this

paper appear in the corresponding dataset repositories5.

6.3 Query sets

Several criteria can be assumed to select the keywords to

be used in KWS assessment experiments. Clearly, a KWS

system may perform better or worse depending on the

query words it is tested with and how these words are

distributed on the test set. Of course, the larger the set of

keywords, the more reliable the empirical results. Since our

approach is aimed at indexing applications, testing with

large keyword sets is mandatory.

According to these observations, in this work all the

words that appear in the training partition of each dataset

are considered keywords. For the benchmark datasets

(IAM, GW and PAR) this allows us to produce results

which are exactly comparable with those of the best

approaches published so far. Also for this reason, we use

the query set provided by Dr. Frinken and used in previous

works [19], which contains the most frequent IAM training

words excluding punctuation marks and stop words

(around 3.4K words). Finally, about one hundred words

corresponding to numbers were not included in the query

set for PLANTAS. Table 1 shows the sizes of the query sets

used in each of the five datasets considered.

It is important to remark that, in contrast with other

keyword selection criteria which adopt only test-set words

for queries, here many of the keywords do not actually

Fig. 4 PrIx workflow based on word lattices obtained using HTR optical and language models

3 It is exactly the same dataset used in the ICFHR-2014 HTRtS

competition [64], but differs from other datasets, also based on

Bentham’s manuscripts, used in the ICFHR’14 and ICDAR’15 KWS

competitions.
4 BENTHAM: http://transcriptorium.dsic.upv.es/demots/kws/index.php/

ui/chapters/bentham and PLANTAS: http://transcriptorium.dsic.upv.es/

demots/kws/index.php/ui/chapters/plantas.

5 BENTHAM: https://zenodo.org/record/44519#.YxCuDEhBzZ8 PLAN-

TAS: https://zenodo.org/record/6608342#.YxCu-0hBzZ9 IAM, -

PAR, GW: http://www.fki.inf.unibe.ch/databases.
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appear in any of the test images. We say that these key-

words are non-relevant, while the remaining ones are rel-

evant. The amounts of relevant keywords are also shown in

Table 1. Trying to spot non-relevant words is challenging

since, depending on the system accuracy, similar relevant

words may be erroneously spotted, thereby leading to

important precision degradations.

6.4 Experimental setup

The PrIx (or KWS) approaches to be assessed require

statistical optical character models and language models

which must be trained from the available training images

and transcripts. For language modeling, the simple and

time-honored state-of-the-art n-gram approach [65] was

adopted in all the cases. But, for optical modeling, two

alternative approaches were considered: HMMs, which is a

well understood, proper statistical approach [65], and

RNNs, which are recently showing superb performance in

HTR [8, 10, 66]. Both methods have been used in the main

experiments (BENTHAM and PLANTAS), while only RNNs

have been used in the comparative experiments with IAM,

PARZIVAL and GW.

In general, a similar system architecture was used in all

the experiments. However, depending on the dataset and

the optical modeling (HMM or RNN), some details of

image pre-processing and feature extraction were different.

The values of all training (or testing) meta-parameter

which needed to be tuned were optimized using the vali-

dation set of each dataset. The general architectures and the

specific details are discussed below.

6.4.1 Hidden Markov optical modeling

For HMM optical modeling, line images were preprocessed

for slant, slope and size normalization [11] and then rep-

resented as sequences of feature vectors. Feature extraction

(for BENTHAM and PLANTAS) was based on geometric

moments normalization [67]. HMM training was carried

out with the embedded Baum Welch algorithm [65], using

all the training line images and their corresponding

transcripts.

A left-to-right HMM was used for each character. The

number of states and Gaussian densities per state where

roughly set up taking into account the average characters’

width and other dataset features, and finally optimized

using validation data. More details about meta-parameter

settings are given in [38, 68].

6.4.2 Recurrent neural network optical modeling

The RNN architecture adopted, shown in Fig. 5, was

essentially the same as that introduced in [10]. It consists of

a stack of 2D convolutional blocks (including LeakyReLU

activations and max pooling layers), followed by a stack of

bidirectional long short-term memory (BLSTM) recurrent

layers [8, 69], which process the result of the previous

blocks column-wise. Finally, each column is linearly

transformed to have as many features as characters are in

the particular dataset, plus an additional symbol used by

CTC. Dropout was used to reduce overfitting in between

the BLSTM layers and before the final linear layer output.

For IAM, exactly the same models as those trained in

[10] were used.6 For the other datasets, however, we used a

smaller model with four convolutional blocks (with 16, 16,

32, 32 features per block, respectively), and three recurrent

blocks (with 256 units each). This smaller architecture was

adopted to reduce the experimental costs. Although the

results may then be suboptimal for these datasets, they are

superior to previous comparable state-of-the-art results, as

shown later.

All the models were trained using CTC [8]. On the other

hand, to combine the RNN outputs with n-gram language

models, RNN output posterior probabilities were

Table 1 Main datasets features
BENTHAM PLANTAS IAM PAR GW

Hands Several One Many Three Two

Words/line 9.3 10.1 8.8 6.3 7.5

Training ? valid. running words 99.0 80.0 62.4y 19.7 3.7

Test running words 7.9 117.0 8.3 8.4 1.2

Training lexicon 8.7 11.0 7.8y 3.2 0.9

Keywords 8.7 10.9 3.4 3.2 0.9

Relevant 4.9 1.5 1.1 1.2 0.2

All numbers are thousands of words, except for ‘‘Words/line’’

yAdditional text-only data used for language modeling: 3.1 million running words, with a lexicon of approx.

19 K words

6 Training scripts are available here: https://github.com/jpuigcerver/

Laia.
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transformed into pseudo-likelihoods [70]. See [10] for full

details.

6.4.3 Lexicon and Language Modeling

A lexicon was extracted from the training partition of each

data set. For the benchmarking corpora, the standard tok-

enization for each dataset was adopted. The lexicae of

BENTHAM and PLANTAS were extracted through a slightly

improved, specific tokenization scheme, described in detail

in [68].

For each corpus, except PLANTAS and IAM, a 2-gram

word language model was straightforwardly trained from

the corresponding training text, using Kneser-Ney back-off

smoothing [71]. For PLANTAS, a 2-gram language model

was similarly trained from the original tagged training text

produced in [12]. Then tags and modernized word versions

were removed from the resulting model, thereby leaving a

diplomatic-only language model for its use in PrIx. This

language model is available for download along the full

PLANTAS dataset. In the case of IAM, the large standard

external text-only LOB dataset (also available from the

IAM repository) was used to train the corresponding

2-gram.

Viterbi decoding meta-parameters associated with each

2-gram (grammar scale factor and word insertion penalty)

were tuned to optimize the WER on the corresponding

validation sets.

6.4.4 Line image word-graphs

The PrIx approaches adopted in the experiments rely on

line image WGs, either to compute posteriorgrams, as

discussed in Sect. 5.2, or just to straightforwardly obtain

1-best image transcription hypotheses. For HMM optical

models, the procedure is a well-known variation of stan-

dard Viterbi decoding, as discussed in detail in [19]. In the

case of RNN, output character posterior probabilities were

converted into pseudo-likelihoods [10], which were then

considered as emission densities of (single-state) character

HMMs (see details in [70]). Using these simplified HMMs,

the standard HMM approach was followed both to combine

character likelihoods with language model probabilities

and to obtain the WGs as a byproduct of Viterbi decoding

(see [72, 73]).

As discussed in [19, 60], the computational cost of

obtaining a WG grows very fast with the WG size. Both

RNN and HMM WG sizes were controlled by means of

standard pruning during the decoding process. In addition,

explicit WG pruning [74] was applied to the generally

larger HMM WGs, so as to make them comparable with

those obtained using RNNs (see details in [38]).

WGs were normalized as discussed in [19]. A calibra-

tion parameter (called ‘‘logarithm base factor’’ in [19]) was

used in this step to empirically tune the posterior proba-

bility calibration [75]. It was tuned for each optical mod-

eling approach on the validation partition of each corpus.

6.4.5 Posteriorgrams and line-region relevance
probabilities

From the normalized WGs, 1-D posteriorgrams, Pðv jx; iÞ,
were obtained as explained in Sect. 5.2. Finally, line-level

keyword relevance probabilities, PðR jx; vÞ, were calcu-

lated as explained in Sects. 4.1 and 4.2. In particular,

Eq. (20) [or, more specifically, its 1-D version, Eq. (22)]

was used in all the experiments, while other approaches

were tested only for the results reported in Sect. 7.1.

In two of these approaches [the 1-D versions of

Eqs. (15) and (16)], a threshold was employed to find

significant local maxima of the 1-D posteriorgram. A local

maximum was detected if Pðv jx; i � 1Þ � Pðv jx; iÞ became

larger than the threshold. The values of this threshold were

optimized using validation partitions.

7 Results

First, only the BENTHAM dataset and RNN optical models

were used to empirically explore the relative performance

of the approximations here proposed to compute keyword

relevance probabilities. Then, for the best approximation,

Fig. 5 Outline of the

convolutional-recurrent neural

network architecture used for

optical modeling
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PrIx (or KWS) evaluation results were obtained both for

BENTHAM and PLANTAS using both RNN and HMM optical

modeling. Finally, our best system was applied to the three

benchmarking datasets and the results are compared with

other state-of-the-art results for these corpora.

7.1 Testing different approximations
to compute relevance probabilities

For the first series of experiments, aimed to assess and

compare the different approximations to the relevance

probability PðR j x; vÞ proposed in Sects. 4.1 and 4.2, only

the BENTHAM dataset and RNN optical modeling were used.

Table 2 reports the (interpolated) average precision (AP)

achieved. The approximations range from the roughest

ones given by Pðv j xÞ [Eq. (10), using Eq. (11)] and 1-best
KWS, to the potentially most accurate, but also much more

computationally expensive approximation, given by by

Eq. (24). In order to illustrate the challenges entailed by

trying to spot non-relevant keywords, AP results using only

relevant queries are also shown in Table 2 (column APr).

The results achieved by Eqs. (16)/(17), (18)/(20)

and (24) are practically identical. As discussed in Sect. 4.4,

the computational cost of Eq. (24) is too high as compared

with the posteriorgram-based approaches. Therefore this

result is reported here only as a reference point. As

expected, the other approximations [Eqs. (11), (13), (15)]

are significantly worse, the naive 1-best providing the

worst performance.

Among the approximations considered, Eq. (18)/(20) is

as good as the best ones, and also the fastest and simplest

one, and it does not have any meta-parameter which needs

to be tuned. In what follows, results will be reported only

for this approach.

7.2 Comparing HMM and RNN optical modeling

Using only Eq. (18)/(20) [or its 1-D version, Eq. (22)], the

second series of experiments were devoted to study how

the search and retrieval performance is affected by adopt-

ing different optical models (HMM and RNN) to compute

the posteriorgrams. In addition to the BENTHAM dataset, the

other large dataset presented in Sect. 6.2 (PLANTAS) is

considered. The resulting R-P curves are shown in Fig. 6,

along with the corresponding AP results. For completeness,

naive 1-best KWS results [Eq. (13)] using RNNs are also

given.

According to these results, only small performance

differences are observed between choosing HMM or RNN

for optical modeling. This applies to both BENTHAM and

PLANTAS, both of which are fairly large datasets which

exhibit important and different handwriting challenges.

While RNNs are known to generally outperform HMMs

for character optical modeling, the present results suggest

that this superiority mainly affects the modes of the mod-

eled distributions – thereby typically leading to 1-best

transcript with better character error rates. However, when,

as in PrIx, the whole word-level distribution is brought into

play, the superiority appears less obvious.

7.3 Results obtained with benchmarking
datasets

Additional experiments were carried out with three well

established benchmark datasets IAM, PARZIVAL (PAR) and

GEORGE WASHINGTON (GW). Figure 6 shows R-P curves and

AP results obtained for these datasets, using RNN optical

modeling and the relevance probability approximation of

Eq. (18)/(20).

To place our results in comparison with previously

published work, Table 3 presents word-segmentation-free,

query-by-string, line-level KWS results obtained by other

authors on the same three datasets. The following

approaches have been considered: convolutional deep

belief network (CDBN) [76, 77], dynamic time warping

(DTW) [48, 76], Bayesian logistic regression classifier

(BLRC) [78], HMMs [19, 51, 77, 79] histogram of gradi-

ents (HOG) [48], our previous work on lexicon-based KWS

[19], HMM-filler with background modeling (Filler-BGR)

[52], and bidirectional long-short term memory (BLSTM)

[50], The pyramidal histogram of characters (PHOC)

approach presented in [58] is not included because it is

fully segmentation-based [13].

It should be noted that the experimental setups adopted

in some of these works may vary significantly with respect

to the setup adopted in this work. In particular, the results

marked with y were obtained using query sets selected

Table 2 BENTHAM interpolated average precision (AP) for various

approximations to PðR j x; vÞ, using RNN optical models

Approximations to PðR j x; vÞ AP APr

Equation (11)—line-region word posterior 0.782 0.884

Equation (13)—1-best transcripts 0.763 0.821

Equation (15)—Sum (improper distribution) 0.879 0.918

Equation (16)—Naive Bayes, by DP, using Eq. (17) 0.913 0.950

Equation (18)—Max(direct with Eq. (20)) 0.914 0.952

Equation (24)—‘‘Exact’’ (high computing cost) 0.913 0.950

APr corresponds to the reduced query sets of relevant-only queries

(Table 1)
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from the test partitions and those marked with z using

much smaller query sets. In addition, in some cases it is not

completely clear whether the results are provided in terms

of AP or mAP.7 Therefore, the results of Table 3 can only

be considered loosely comparable. Notwithstanding the

differences, we think the superiority of the methods pro-

posed in this work can be sensibly acknowledged.

7.4 Storage efficiency

As compared with most KWS techniques, our approach

relies on ‘‘off-line’’ pre-computation of PrIx’s that allow

fast ‘‘on-line’’ search for information in large collections of

text images. Therefore it is relevant to analyze how much

information needs PrIx to pre-compute and store.

A rule of thumb, followed by our methods, is that PrIx’s

should be comparably (much) smaller than the images for

which they provide the indexing. For example for PLANTAS

and BENTHAM, the average size of a 300 dpi uncompressed

page image is about 30 MB. For the same datasets, PrIx

produces an average of about 2000 spots per page (see

details in Table 4 and in [38]). And the size of a PrIx spot

is no more than 20 bytes, assuming we allot 8 characters

per word on average, plus 4 and 8 bytes to store the rele-

vance probability and the bounding box, respectively.

Therefore the ratio from (uncompressed) PrIx-size to

Image-Size is less than 0.0015.

Clearly, the size of an image depends on its resolution

and many other factors. Therefore, we prefer a less

ambiguous analysis where PrIx size is instead compared

with the size of a ‘‘perfect’’ transcript of the image. We

refer to this metric as PrIx density and define it as the ratio

between the total number of PrIx spots and the number of

running words written in the indexed images. To put it

another way, it is the average number of word hypotheses

that PrIx needs to retain to achieve its AP performance.

This metric, along with the AP values already given in

Fig. 6, is reported in Table 4 for BENTHAM and PLANTAS.

Obviously, the density of 1-best HTR transcripts is close to

1, but the AP is poor. In contrast, the AP of PrIx is much

better, at the expense of a larger density.

8 Conclusions and outlook

A probabilistic indexing framework for query-by-string,

word-segmentation-free, lexicon-based KWS, aimed at

providing access to the textual contents of large collections

of handwritten text images, has been presented. The

Fig. 6 Interpolated R-P curves and AP results for BENTHAM and PLANTAS, using both HMM and RNN optical modeling, and IAM, PAR and GW

using only RNN optical modeling. The (degenerate) curves for naive 1-best KWS are also shown for BENTHAM and PLANTAS

Table 3 AP results achieved by several line-region KWS approaches

on IAM, PAR and GW, with varied empirical setups loosely com-

parable with ours

References Approach IAM PAR GW

[76] CDBN-DTW – 0.59y 0.56y

[78] BLRC 0.49z – –

[79] 2-gram Filler-HMM 0.55y – 0.74y

[51] Classic Filler-HMM – 0.86y 0.62y

[52] Filler-BGR 0.58z – –

[77] CDBN-HMM 0.65y 0.92 y 0.71y

[48] HOG-DTW – – 0.79 y

[19] HMM ? 2-gram LM 0.72 0.89 0.77

[50] BLSTM 0.78 0.94 0.84

This work (Fig. 6) 0.89 0.95 0.91

Three best results for each dataset are typeset in boldface

yQuery set selected from test transcripts (all keywords are relevant)

zQuery set is much smaller than that used in this work

7 Mean of single-keyword APs, see [38].
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formulation of this framework, referred to as PrIx, makes it

self-evident that KWS is always more or less explicitly

based on word recognition posterior probabilities, and

provides probabilistic interpretations of many classical

KWS views and methods. Various developments of this

framework into specific PrIx approaches have been pro-

posed and empirically evaluated. The most efficient and

effective of these approaches are based on (line) image

region posteriorgrams, obtained from word-graph repre-

sentations of the joint probability distributions of image

regions and the text contained therein. As discussed in

previous works, these distributions can be advantageously

estimated using the same statistical models and training

methods, and similar decoding procedures as those used in

state-of-the-art handwritten text recognition systems. Fol-

lowing this idea, our approaches outperform more or less

significantly all the methods proposed and tested so far on

three traditional benchmarking datasets. Moreover, results

obtained for two larger, more practically realistic historical

corpora are also very good and clearly show the capabili-

ties of these approaches for indexing large collections of

handwritten text images.

The PrIx approaches presented in this paper are all

lexicon-based (LB). As applied to large-scale indexing, LB

methods in general are known to be faster and more

accurate than lexicon-free (LF) ones, based on raw char-

acter processing. However, since LB KWS relies on a

predefined lexicon, fixed in the training phase, it does not

support queries involving out-of-vocabulary (OOV) key-

words. This issue has not been explicitly studied in the

present work. In fact, aiming to obtain results comparable

with other state-of-the-art KWS approaches, the experi-

ments were carried out with query sets selected from the

training texts, thereby guaranteeing that all query words are

in-vocabulary. It is worth noting, however, that while the

OOV problem may be serious if the indexed vocabulary is

small, it becomes much less important with very large

vocabularies – which is generally the case in real indexing

applications. Several live PrIx demonstrators which sup-

port this fact are publicly available for on-line testing8

(these systems also support flexible queries such as

searching for word sequences and the Boolean AND/OR/NOT

query methods described in [28]).

OOV queries can be supported by smoothomg the (im-

plicitly null) relevance probabilities of OOV query words,

using the indexed probabilities of ‘‘similar’’ in-vocabulary

words [80]. While reasonably good results are achieved

with these methods, they always entail query response time

penalties for OOV queries – and these penalties can

become prohibitive for large collections of say hundreds of

thousands or millions of images. Therefore our current

work for LF PrIx abandons the use a lexicon altogether to

favor working at character level. However, it also attempts

to keep the good performance of LB PrIx by actually

producing relevance probabilities for ‘‘pseudo-words’’ (in

fact arbitrary character sequences) which are ‘‘discovered’’

in the very test images being indexed. Key ideas and results

in this direction have already appeared in [22, 54, 81] and

actual search interfaces have been developed and are

publicly available for some large-scale collections of his-

torical manuscripts, such as: CHANCERY [20] (more than

83,000 page images),9 The (full) BENTHAM PAPERS
10 (90,000

images), SPANISH THEATER GOLDEN AGE
11 (TSO, 40,000

images), CARABELA
12 (125,000 images) and FINISH COURT

RECORDS
13 (FCR, 100,000 images). The techniques used in

these works will be presented in an upcoming publication

devoted to lexicon-free probabilistic indexing.
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Table 4 Search performance (AP) and indexing density for PLANTAS and BENTHAM, using the two optical modeling approaches, HMM and RNN,

for PrIx and 1-best HTR. Density is the ratio between the number of PrIx spots and the number of running words in the ground-truth transcripts

PrIx HMMs PrIx RNN 1-best HMMs 1-best RNN

AP Density AP Density AP Density AP Density

BENTHAM 0.907 7.8 0.914 7.9 0.740 1.0 0.763 0.9

PLANTAS 0.909 13.0 0.924 13.5 0.722 1.0 0.794 1.0

8 See: http://prhlt-carabela.prhlt.upv.es/PrIxDemos.

9 http://prhlt-kws.prhlt.upv.es/himanis.
10 http://prhlt-kws.prhlt.upv.es/bentham.
11 http://prhlt-carabela.prhlt.upv.es/tso.
12 http://prhlt-carabela.prhlt.upv.es/carabela.
13 http://prhlt-kws.prhlt.upv.es/fcr.
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6608342#.YxCu-0hBzZ9 and IAM, PAR, GW: http://www.fki.inf.

unibe.ch/databases.
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