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A B S T R A C T

Adsorption kinetics are commonly modeled using pseudo-first order (PFO) and pseudo-second order (PSO)
rate laws. Both models are formulated via differential equations whose coefficients are commonly treated
as deterministic quantities, which are calculated from experimental data using regression techniques. In this
paper, we propose a full randomization of both models by assuming that all the parameters of the PFO and
PSO models are random variables with arbitrary densities. Then, we probabilistically solve both models by
determining semi-explicit expressions of the first probability density functions of the corresponding solution
stochastic processes, as well as the densities of the time until a fixed adsorbed amount of reactant has been
reached for each model too. The analysis is conducted under very general assumptions and is based on
extensive application of the so-called Random Variable Transformation (RVT) technique. Finally, we apply
all the aforementioned theoretical findings to model the adsorption of cadmium ions onto tree fern, using
real data. We compare the results obtained by the randomized PFO and PSO models, using a Bayesian and
a randomized version of the least mean square method to assign reasonable densities to model parameters.
After comparing the results, the PSO model is selected, and, we then show how the RVT technique can be
applied to obtain further key information, such as the second probability density function, of the solution and
the covariance function.
1. Preliminaries

All chemical reactions take place at a rate that depends on con-
ditions such as temperature, pressure, catalyst, concentration of the
reacting substances, radiation, etc. The area of reaction kinetics focuses
on the study of the rates of chemical reactions and the influence of the
above-mentioned conditions on the rates. It is well established that the
rate of a chemical reaction is directly proportional to the concentrations
of the reacting substances since they are continuously consumed in the
course of the reaction. As their concentrations decrease steadily, the
rate of the reaction must vary over time, becoming the process slower
as the reactants are used up. It is known that rate equations of chemical
reactions can be conveniently represented via first-order differential
equations whose right-hand side is mainly a linear or quadratic function
of the difference between adsorption capacity at the equilibrium and
the adsorption capacity at any previous time instants [1], [2, Ch. 7].
Below we specify some contributions where the adsorption chemical
process is modeled via these two types of differential equations, which
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are usually referred to as kinetics models. It is worth pointing out that
alternative approaches have also been considered to describe the dy-
namics of adsorption phenomena as Markovian processes [3], adaptive
neuro-fuzzy inference systems [4], artificial neural networks [5], etc.

Adsorption is defined as the deposition or adhesion of molecular
species (atoms, ions, or molecules) onto a surface. The adsorption
method has important applications, for example, it is widely used in
water and wastewater treatment processes [6–9]. There exist numerous
mathematical models that describe the interactions between adsorbents
and adsorbates at the equilibrium. The most extended models are the
Lagergren or Ho models for pseudo-first order (PFO) and pseudo-second
order (PSO), [10,11]. The PFO model is defined by the Lagergren
equation
d𝑞(𝑡)
d𝑡

= 𝑘1(𝑞e − 𝑞(𝑡)), (1)

being 𝑞e the adsorption capacity at equilibrium (mg/g), 𝑞(𝑡) the adsorp-
tion capacity at time 𝑡 (mg/g), and 𝑘1 > 0 the speed constant (min−1).
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The driving force of the process is 𝑞e−𝑞(𝑡), i.e. the vacant and accessible
active centers on the adsorbent surface. On the other hand, the equation
of the PSO model is
d𝑞(𝑡)
d𝑡

= 𝑘2(𝑞e − 𝑞(𝑡))2, (2)

where 𝑘2 > 0 is the speed constant (g/mg min−1). Both models have
een extensively applied, see [9,12–16]. A review of the application
f both models in the literature, over the last decades, can be found
n [17].

As previously indicated, the application of these kinetic models
epends on certain experimental conditions, which are indirectly em-
edded through the model parameters, namely, the adsorption capacity
t equilibrium, 𝑞e, and the corresponding speed constant, 𝑘𝑛 (𝑛 = 1, 2).

In practice, the nature of these parameters is uncertain rather than
deterministic since they are taken as nominal values that are fixed from
experimental data, so containing error measurements (epistemic uncer-
tainty). Even more, if the chemical experiment is carefully repeated
under exactly the same conditions, one also observes further discrep-
ancies that cannot be attributed to error measurements only but more
complex factors that happen at the atomic and molecular levels, which
are not completely known [18–20]. This second source of uncertainty is
commonly termed aleatoric uncertainty. These facts motivate that the
PFO and PSO models are better formulated, taking into account the
uncertainties involved in the chemical process (aleatoric uncertainty)
and the measurement process in the laboratory (epistemic uncertainty).

It is important to point out that there are mainly two ways of
considering uncertainties when dealing with differential equations. The
first approach is based on the so-called Stochastic Differential Equations
(SDEs), and the second one is formulated via Random Differential
Equations (RDEs). As pointed out in [21, p. 96], the methods and
techniques required to analyze SDEs and RDEs rigorously are distinctly
different. Below, we detail the most distinctive characteristics of SDEs
and RDEs. On the one hand, SDEs require considerable mathematical
efforts for their treatment, such as Itô calculus, and one assumes that
the uncertainty follows a specific pattern (typically Gaussian) that
drives the corresponding SDE. On the other hand, in the setting of
RDEs, uncertainty is directly assigned to each model parameter giving
greater flexibility in the choice of appropriate probability distributions
to quantify the uncertainty of the phenomena under study.

Under the SDE approach, uncertainties are driven by a stochastic
process whose sample path behavior is highly irregular (e.g., non-
differentiability). The so-called Itô-type SDEs are the most commonly
used in applications (they are driven by the Wiener process whose
trajectories are nowhere differentiable). The rigorous treatment of these
SDEs requires the Itô Calculus, which notably differs from the classical
Newton-Leibniz Calculus [22]. Itô-type SDEs can be naturally moti-
vated from classical ordinary differential equations by means of the
perturbation, via the so-called White noise, of some model param-
eters. This approach implicitly assumes that uncertainty is modeled
via the Gaussian pattern (the Wiener process and the White noise are
both Gaussian and also unbounded). Since the pioneering works by
Gillespie [23–25], SDEs have been applied to model the dynamic of
concentrations in chemical reactions. Although the approach proposed
in this paper is based on RDEs, we want to point out some recent
contributions related to the PFO and PSO models we will deal with
throughout this paper. In [26], one shows that the stochastic coun-
terpart of the PFO model is a linear SDE with additive noise whose
solution is the Ornstein–Uhlenbeck (OU) stochastic process, and after-
ward, authors propose a transformation of the OU process to formulate
a stochastic general kinetic model which includes the PSO version
to describe the approach to equilibrium and the variability inherent
in experimental adsorption kinetics. In [27], one studies the sharp
connection between the stochastically perturbed Keizer’s model, which
belongs to the PSO-type models, and its deterministic counterpart. Au-
2

thors incorporate stochastic incidence into the classical Keizer’s model s
and show that it may play a key role in the stochastic formulation for
irreversible biochemical reactions.

Complementary to SDEs, RDEs permit treating each model param-
eter (initial/boundary conditions, forcing term and/or coefficients) as
a random variable or a stochastic process rather than representing un-
certainties driven via stochastic processes having specific distributions
and properties (as Gaussianity or unboundedness as it happens with
the White noise in the setting of SDEs) which might be unrealistic
and hence limiting their applicability. As pointed out in the extant
literature [28], this approach gives more flexibility to RDEs than SDEs
to assign different types of probability distributions to model parame-
ters, so allowing for better capturing uncertainties when dealing with
real-world problems in different areas such as biology, chemistry, engi-
neering, etc. As pointed out in [29, p. 258], the theory and application
for RDEs are much less advanced than that for SDEs, so its development
is currently an active field of research.

In this paper, we shall study the randomized versions of the PFO and
PSO models (1) and (2), respectively, that can be compactly written as
the following RDE

d𝑞(𝑡, 𝜔)
d𝑡

= 𝑘𝑛(𝜔)(𝑞e(𝜔) − 𝑞(𝑡, 𝜔))𝑛, 𝑛 = 1, 2, 𝜔 ∈ 𝛺. (3)

Hereinafter, we will assume that their model parameters, 𝑞e(𝜔) and
𝑛(𝜔), are absolutely continuous random variables defined in a common
omplete probability space (𝛺,𝛺 ,P). For the sake of generality when
eveloping our theoretical findings, henceforth we assume that 𝑞e(𝜔)

and 𝑘𝑛(𝜔) have a joint probability density function (PDF), say 𝑓 𝑛
0 (𝑘𝑛, 𝑞e).

In case of independence, this joint PDF can be factorized as the product
of the corresponding marginals PDF, 𝑓 𝑛

0 (𝑘𝑛, 𝑞e) = 𝑓𝑘𝑛 (𝑘𝑛)𝑓𝑞e (𝑞e).
The main goal of this paper is to probabilistically solve the random-

ized PFO and PSO models. As it shall see in detail later on, this goal
will be achieved by taking advantage of their explicit solutions given
by the following parametric stochastic process

𝑞(𝑡, 𝜔) = 𝑞e(𝜔)
(

1 − e−𝑘1(𝜔)𝑡
)

, 𝜔 ∈ 𝛺, (4)

and

𝑞(𝑡, 𝜔) =
𝑘2(𝜔)𝑞e(𝜔)2𝑡

1 + 𝑘2(𝜔)𝑞e(𝜔)𝑡
, 𝜔 ∈ 𝛺, (5)

respectively.
In the setting of Uncertainty Quantification, solving probabilistically

a model formulated via a differential equation means determining the
main statistical properties of the model. In many contributions, the goal
is just to determine the mean and the variance, which can be enough
when dealing with a one-dimensional Gaussian model. Here, we go
further and we face the computation of the so-called first probability
density (1-PDF), denoted by 𝑓1(𝑞, 𝑡), of the solution stochastic process
𝑞(𝑡, 𝜔) [30, Ch. 3]. The calculation of 1-PDF is advantageous since it
provides a full probabilistic description of the solution at each time
instant. In addition, all the one-dimensional statistical moments of
𝑞(𝑡, 𝜔) can be computed by integrating the 1-PDF,

E
[

𝑞(𝑡, 𝜔)𝑚
]

= ∫

∞

−∞
𝑞𝑚𝑓1(𝑞, 𝑡) d𝑞, 𝑚 = 1, 2,… , (6)

where E[⋅] denotes the expectation operator. In particular, one can
btain the mean

𝑞(𝑡) = E [𝑞(𝑡, 𝜔)] = ∫

∞

−∞
𝑞𝑓1(𝑞, 𝑡) d𝑞, (7)

nd the variance,

2
𝑞 (𝑡) = V [𝑞(𝑡, 𝜔)] = ∫

∞

−∞
𝑞2𝑓1(𝑞, 𝑡) d𝑞 − 𝜇𝑞(𝑡)2. (8)

dditionally, the 1-PDF permits calculating the probability that the

olution lies within any particular interval of interest [𝑎, 𝑏], at every
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time instant,

P [{𝜔 ∈ 𝛺 ∶ 𝑎 ≤ 𝑞(𝑡, 𝜔) ≤ 𝑏}] = ∫

𝑏

𝑎
𝑓1(𝑞, 𝑡) d𝑞,

As well as, the probability that the adsorbed amount exceeds a given
level, say 𝑞,

P [{𝜔 ∈ 𝛺 ∶ 𝑞(𝑡, 𝜔) > 𝑞}] = ∫

∞

𝑞
𝑓1(𝑞, 𝑡) d𝑞,

hich is often of specific interest when studying chemical reactions.
The paper is organized as follows. In Section 2, the 1-PDF of the

olution stochastic processes for both randomized models, PFO and PSO
re determined. Additionally, in this section, we compute, for both
odels, the density of a relevant quantity when dealing with kinetic

eactions, the time needed to reach a particular level of adsorbed
mount. In Section 3, we apply the theoretical results obtained in
ection 2 to real data corresponding to the adsorption of cadmium onto
round-up tree fern and show a comparative analysis between the PFO
nd the PSO models, showing the latter better measures of goodness-
f-fit. Then, additional key probabilistic information of the PSO model,
uch as the 2-PDF and the covariance function, are calculated. Finally,
onclusions are drawn in Section 4.

. Probabilistic solution via the 1-PDF of PFO and PSO kinetic
odels

This section is addressed to determine the 1-PDFs of the solution
tochastic processes for the PFO and the PSO models. As it shall be seen
ater, we will obtain semi-explicit expressions in both cases that are
ery useful in practice, as illustrated in Section 3. Additionally, we will
ntroduce a key random variable that describes the time associated with
specific adsorbed amount, and we will determine its PDF. To achieve

hese goals, we will take extensive advantage of the Random Variable
ransformation (RVT) technique. This method permits calculating the

oint PDF of a random vector which is obtained by mapping, via a
ne-to-one transformation, another random vector whose joint PDF is
nown.

heorem 1 (RVT Technique [30]). Let 𝐮(𝜔) = (𝑢1(𝜔),… , 𝑢𝑛(𝜔)) and
𝐯(𝜔) = (𝑣1(𝜔),… , 𝑣𝑛(𝜔)) be 𝑛-dimensional absolutely continuous random
vectors defined in a complete probability space (𝛺,𝛺 ,P), where 𝜔 ∈ 𝛺.
Let 𝐫 ∶ R𝑛 → R𝑛 be a one-to-one transformation of 𝐮 into 𝐯, i.e., 𝐯 = 𝐫(𝐮).
ssume that 𝐫 is continuous in 𝐮 and has continuous partial derivatives
ith respect to 𝐮. Then, if 𝑓𝐔(𝐮) denotes the joint PDF of vector 𝐮(𝜔), and
= 𝐫−1 = (𝑠1(𝑣1,… , 𝑣𝑛),… , 𝑠𝑛(𝑣1,… , 𝑣𝑛)) represents the inverse mapping
f 𝐫 = (𝑟1(𝑢1,… , 𝑢𝑛),… , 𝑟𝑛(𝑢1,… , 𝑢𝑛)), the joint PDF of vector 𝐯(𝜔) is given
y

𝐕(𝐯) = 𝑓𝐔 (𝐬(𝐯)) |
|

𝐽𝑛|| ,

here |
|

𝐽𝑛|| is the absolute value of the Jacobian, which is defined by

𝑛 = det
( 𝜕𝐬
𝜕𝐯

)

= det

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑠1(𝑣1,… , 𝑣𝑛)
𝜕𝑣1

⋯
𝜕𝑠𝑛(𝑣1,… , 𝑣𝑛)

𝜕𝑣1
⋮ ⋱ ⋮

𝜕𝑠1(𝑣1,… , 𝑣𝑛)
𝜕𝑣𝑛

⋯
𝜕𝑠𝑛(𝑣1,… , 𝑣𝑛)

𝜕𝑣𝑛

⎞

⎟

⎟

⎟

⎟

⎠

.

emark 1. It is worth pointing out that the calculation of the 1-PDF
an also be attacked using other techniques apart from the RVT method.
or example, the so-called Liouville-Gibbs theorem [30, Ch. 6] states a
artial differential equation (PDE) satisfied for the 1-PDF of the solution
f a RDE. Solving exactly this PDE is exceptional, so, in general,
ne must rely on numerical methods that provide approximations of
he 1-PDF. In contrast, as it shall be seen later, applying the RVT
echnique enables us to obtain semi-explicit (in terms of integrals) exact
xpressions of the 1-PDF, which is more advantageous. This justifies
hat we have chosen the RVT method in our subsequent analysis.
3

2.1. 1-PDFs of the solution stochastic processes of the PFO and PSO models

To determine the 1-PDF of the PFO model, we first fix 𝑡 > 0, and
pply Theorem 1 will the following notational identification, 𝐮(𝜔) =
𝑘1(𝜔), 𝑞e(𝜔)) and 𝐯(𝜔) = (𝑣1(𝜔), 𝑣2(𝜔)). We then define the following
ijective mapping 𝐫 ∶ R2 → R2, whose components, 𝑟1 and 𝑟2, are

defined by

𝑣1 = 𝑟1(𝑘1, 𝑞e) = 𝑘1,

𝑣2 = 𝑟2(𝑘1, 𝑞e) = 𝑞e
(

1 − e−𝑘1𝑡
)

,

where notice that its second component is just the solution of the PFO
model (see (4)). The components, 𝑠1 and 𝑠2, of its inverse mapping,
𝐬 ∶ R2 → R2, and the absolute value of its Jacobian, |𝐽 |, are respectively
given by

𝑘1 = 𝑠1(𝑣1, 𝑣2) = 𝑣1,

𝑞e = 𝑠2(𝑣1, 𝑣2) =
𝑣2 e𝑣1𝑡

e𝑣1𝑡 −1
,

⎫

⎪

⎬

⎪

⎭

|𝐽 | = e𝑣1𝑡

e𝑣1𝑡 −1
> 0,

since 𝑣1 = 𝑘1 > 0 and 𝑘1(𝜔) > 0, for all 𝜔 ∈ 𝛺. Therefore, according to
Theorem 1, the joint PDF of the random vector (𝑣1(𝜔), 𝑣2(𝜔)) is

𝑣1 ,𝑣2 (𝑣1, 𝑣2) = 𝑓 1
0

(

𝑣1,
𝑣2 e𝑣1𝑡

e𝑣1𝑡 −1

)

e𝑣1𝑡

e𝑣1𝑡 −1
, (9)

where recall that 𝑓 1
0 (𝑘1, 𝑞e) denotes the joint PDF of the initial random

parameters (𝑘1(𝜔), 𝑞e(𝜔)). Then, the 1-PDF of the solution stochas-
tic process of the PFO model, 𝑞(𝑡, 𝜔), is obtained by marginalizing
xpression (9),

FO ∶ 𝑓1(𝑞, 𝑡) = ∫

∞

0
𝑓 1
0

(

𝑘1,
𝑞 e𝑘1𝑡

e𝑘1𝑡 −1

)

e𝑘1𝑡

e𝑘1𝑡 −1
d𝑘1. (10)

otice that this expression is semi-explicit since it depends on the
alculation of an integral. In the particular case that 𝑘1(𝜔) and 𝑞e(𝜔)

are independent, this expression writes

PFO ∶ 𝑓1(𝑞, 𝑡) = ∫

∞

0
𝑓𝑘1 (𝑘1)𝑓𝑞e

(

𝑞 e𝑘1𝑡

e𝑘1𝑡 −1

)

e𝑘1𝑡

e𝑘1𝑡 −1
d𝑘1, (11)

where 𝑓𝑘1 and 𝑓𝑞e denote the PDFs of 𝑘1(𝜔) and 𝑞e(𝜔), respectively.
Now, we determine the 1-PDF of the solution stochastic process

corresponding to the PSO model. Again, we will take advantage of the
RVT technique. Let 𝑡 > 0 be a fixed time instant and we define the
one-to-one mapping 𝐫 ∶ R2 → R2,

𝑣1 = 𝑟1(𝑘2, 𝑞e) =
𝑘2𝑞2e 𝑡

1 + 𝑘2𝑞e𝑡
,

𝑣2 = 𝑟2(𝑘2, 𝑞e) = 𝑞e.

The inverse mapping, 𝐬 ∶ R2 → R2, of 𝐫 is obtained by isolating 𝑘2 in
the first component,

𝑘2 = 𝑠1(𝑣1, 𝑣2) =
𝑣1

𝑣2(𝑣2 − 𝑣1)𝑡
,

𝑞e = 𝑠2(𝑣1, 𝑣2) = 𝑣2.

nd, the absolute value of the Jacobian of the inverse mapping 𝐬 is

𝐽 | = 1
(𝑣2 − 𝑣1)2𝑡

> 0.

bserve that the inverse mapping is well defined,

2 − 𝑣1 = 𝑞e −
𝑘2𝑞2e 𝑡

1 + 𝑘2𝑞e𝑡
=

𝑞e
1 + 𝑘2𝑞e𝑡

> 0,

since 𝑡 > 0 and 𝑘2(𝜔) > 0 and 𝑞e(𝜔) > 0 for all 𝜔 ∈ 𝛺. Therefore,
by Theorem 1 the PDF of random vector 𝐯(𝜔) =

(

𝑞(𝑡, 𝜔), 𝑞e(𝜔)
)

can be
expressed, in terms of the known joint PDF 𝑓 2

0 (𝑘2, 𝑞e), as follows

𝑓𝑣 ,𝑣 (𝑣1, 𝑣2) = 𝑓 2
0

(

𝑣1 , 𝑣2

)

1 .

1 2 𝑣2(𝑣2 − 𝑣1)𝑡 (𝑣2 − 𝑣1)2𝑡
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Finally, marginalizing this expression with respect to the random vari-
able 𝑣2(𝜔) = 𝑞e(𝜔), and taking 𝑡 > 0 arbitrary, the 1-PDF of the solution
stochastic process, 𝑞(𝑡, 𝜔), given in (5), is

PSO: 𝑓1(𝑞, 𝑡) = ∫

∞

0
𝑓 2
0

(

𝑞
𝑞e(𝑞e − 𝑞)𝑡

, 𝑞e

)

1
(𝑞e − 𝑞)2𝑡

d𝑞e. (12)

Analogously as for the PFO, in the particular case that 𝑘2(𝜔) and
e(𝜔) are independent random variables, the above expression can be
xpressed as

SO: 𝑓1(𝑞, 𝑡) = ∫

∞

0
𝑓𝑘2

(

𝑞
𝑞e(𝑞e − 𝑞)𝑡

)

𝑓𝑞e (𝑞e)
1

(𝑞e − 𝑞)2𝑡
d𝑞e, (13)

where 𝑓𝑘2 and 𝑓𝑞e denote the PDFs of 𝑘2(𝜔) and 𝑞e(𝜔), respectively.

Remark 2. We must highlight that the transformation chosen to apply
Theorem 1 is not unique. The variable that we know how to isolate is
chosen and leaving the rest as the identity. In this manner, we ensure
the existence of the inverse, and the Jacobian is easily calculated. It
can be seen that the choice of a proper mapping is a key point. Indeed,
in [31], one illustrates through some models that the final expression
for the 1-PDF can become computationally costly depending on the
transformation we have defined when applying the RVT method.

2.2. PDF of the time, 𝑡(𝜔), to reach a fixed adsorbed amount

A key question when dealing with kinetics models formulated via
SDEs and RDEs is to determine when the reaction has consumed a
specific level of a reactant (see, for instance, [26,32], respectively). As
in the setting of RDEs, the model parameters are random variables, the
answer to this question is not a number but a random variable, and
the fullest way to answer this interesting issue is to obtain the PDF
of such a random variable. In this section, we answer this problem
for both models, PFO and PSO, in terms of the PDF of the random
vector (𝑞e(𝜔), 𝑘𝑛(𝜔)) under very general hypotheses. If 𝜌𝑞 > 0 denotes
the adsorbed amount of reactant, then from (4) is clear that

PFO ∶ 𝑡(𝜔) = 1
𝑘1(𝜔)

log
(

𝑞e(𝜔)
𝑞e(𝜔) − 𝜌𝑞

)

, 𝜔 ∈ 𝛺. (14)

Observe that the random variable 𝑡(𝜔) is well-defined if and only if it is
positive for each 𝜔 ∈ 𝛺. Then, from expression (14), 𝑡(𝜔) is defined in
the conditional probability space (𝛺,𝛺 ,P [⋅|𝐶]), where 𝐶 = {𝜔 ∈ 𝛺 ∶
𝑞e(𝜔)−𝜌𝑞 > 0} ∈ 𝛺. Now, we fixed 𝜌𝑞 > 0 and apply Theorem 1 to the
following bijective mapping 𝐫 ∶ R2 → R2, that transforms the vector
𝐮(𝜔) =

(

𝑘𝑛(𝜔), 𝑞e(𝜔),
)

into 𝐯(𝜔) = (𝑣1(𝜔), 𝑣2(𝜔)), being

𝑣1 = 𝑟1(𝑘1, 𝑞e) =
1
𝑘1

log
(

𝑞e
𝑞e − 𝜌𝑞

)

,

𝑣2 = 𝑟2(𝑘1, 𝑞e) = 𝑞e.

It is easy to check that the Jacobian is different from zero and compute
the inverse mapping of 𝐫. After some computations, we obtain the PDF
of the time, which in the case of PFO model is given by

PFO ∶ 𝑓𝑡(𝑡; 𝜌𝑞) =
1
𝑡2 ∫

∞

0
𝑓 1
0

(

1
𝑡
log

(

𝑞e
𝑞e − 𝜌𝑞

)

, 𝑞e

)

log
(

𝑞e
𝑞e − 𝜌𝑞

)

d𝑞e.

(15)

his PDF is defined in the conditional probability space (𝛺,𝛺 ,P [⋅|𝐶]).
To determine the PDF of the time with regard to the random PSO

odel, first, observe from (5), that given a value of 𝜌𝑞 , the random
ariable time is given by

SO: 𝑡(𝜔) =
𝜌𝑞

𝑘2(𝜔)𝑞e(𝜔)(𝑞e(𝜔) − 𝜌𝑞)
, 𝜔 ∈ 𝛺. (16)

Analogously as it has been explained for the PFO model, this random
variable 𝑡(𝜔) is well-defined if and only if 𝑞e(𝜔) − 𝜌𝑞 > 0, for each
𝜔 ∈ 𝛺, and then is defined in the same conditional probability space
(𝛺, ,P ⋅|𝐶 ) previously introduced. Then, we apply Theorem 1 to the
4

𝜔 [ ] (
Table 1
Adsorption capacity of cadmium ions onto tree fern, 𝑞𝑖, for different time instants 𝑡𝑖,
∈ {1, 2,… , 9}.
ource: Source [33].
𝑡𝑖 (min) 0 4 5 10
𝑞𝑖 (mg/g) 0 7.172414 8.022989 9.724138

𝑡𝑖 (min) 15 20 30 45 60

𝑞𝑖 (mg/g) 9.793103 10.551724 10.574713 11.103448 11.195402

following mapping, 𝐫 ∶ R2 → R2, that transforms 𝐮 =
(

𝑘2, 𝑞e
)

into
𝐯 = (𝑣1, 𝑣2),

𝑣1 = 𝑟1(𝑘2, 𝑞e) =
𝜌𝑞

𝑘2𝑞e(𝑞e − 𝜌𝑞)
,

𝑣2 = 𝑟2(𝑘2, 𝑞e) = 𝑞e.

The inverse mapping 𝐬 = 𝐫−1 ∶ R2 → R2, is easily obtained by isolating
𝑘2,

𝑘2 = 𝑠1(𝑣1, 𝑣2) =
𝜌𝑞

𝑣1𝑣2(𝑣2 − 𝜌𝑞)
,

𝑞e = 𝑠2(𝑣1, 𝑣2) = 𝑣2.

he absolute value of the Jacobian of the inverse mapping 𝐬 is

𝐽 | = 1
𝑣21

𝜌𝑞
𝑣2(𝑣2 − 𝜌𝑞)

> 0,

since 𝑣1 > 0 and 𝑣2 − 𝜌𝑞 = 𝑞e − 𝜌𝑞 > 0 in the conditional space,
(𝛺,𝛺 ,P [⋅|𝐶]), previously defined. Notice that 𝑣1 is just the time (see
xpression (16)). Then, given a fixed 𝜌𝑞 , according to Theorem 1, the
DF of the random vector 𝐯(𝜔) is

𝑣1 ,𝑣2 (𝑣1, 𝑣2) = 𝑓 2
0

( 𝜌𝑞
𝑣1𝑣2(𝑣2 − 𝜌𝑞)

, 𝑣2

)

1
𝑣21

𝜌𝑞
𝑣2(𝑣2 − 𝜌𝑞)

.

Marginalizing the last expression with respect to the last component of
the random vector 𝐯(𝜔), one obtains the PDF of the time, for a fixed 𝜌𝑞 ,
n the conditional probability space (𝛺, ,P [⋅|𝐶]),

SO: 𝑓𝑡(𝑡; 𝜌𝑞) = ∫

∞

0
𝑓 2
0

( 𝜌𝑞
𝑡𝑞e(𝑞e − 𝜌𝑞)

, 𝑞e

)

1
𝑡2

𝜌𝑞
𝑞e(𝑞e − 𝜌𝑞)

d𝑞e. (17)

emark 3. Similarly, as we have done for the 1-PDF of the solution
tochastic processes of the PFO and PSO models (see expressions (11)
nd (13), respectively), we can particularize expressions (15) and (17)
n the case that random variables 𝑘1 and 𝑞e are independent in the PFO
odel, and 𝑘2 and 𝑞e are independent in the PFO model as follows

FO ∶ 𝑓𝑡(𝑡; 𝜌𝑞) =
1
𝑡2 ∫

∞

0
𝑓𝑘1

(

1
𝑡
log

(

𝑞e
𝑞e − 𝜌𝑞

))

𝑓𝑞e
(

𝑞e
)

log
(

𝑞e
𝑞e − 𝜌𝑞

)

d𝑞e, (18)

where 𝑓𝑘1 and 𝑓𝑞e denote the PDFs of 𝑘1(𝜔) and 𝑞e(𝜔), respectively.

PSO: 𝑓𝑡(𝑡; 𝜌𝑞) = ∫

∞

0
𝑓𝑘2

( 𝜌𝑞
𝑞e(𝑞e − 𝜌𝑞)𝑡

)

𝑓𝑞e
(

𝑞e
) 1
𝑡2

𝜌𝑞
𝑞e(𝑞e − 𝜌𝑞)

d𝑞e, (19)

here 𝑓𝑘2 and 𝑓𝑞e denote the PDFs of 𝑘2(𝜔) and 𝑞e(𝜔), respectively.

. Application to real data

In this section, we illustrate how the theoretical findings established
n Section 2 can be applied to real data. The data collected in Table 1
hows the adsorption of cadmium ions onto tree fern. For further details
bout the chemical experiment see Ref. [33].

In order to apply the results obtained in Section 2, we first need
o set an admissible joint PDF, 𝑓 𝑖

0(𝑘𝑖, 𝑞e), of model parameters, i.e., of
he random vector (𝑘𝑖(𝜔), 𝑞e(𝜔)), 𝑖 = 1 (for the PFO model) and 𝑖 = 2

for the PSO model). As this is a crucial step in practice, we will apply
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two approaches, the first one is based on Bayesian techniques, while
the second one is based on the randomization of the Least Mean Square
(RLMS) method, which consists in minimizing a certain distance (mean
square error) that will be specified later.

3.1. PFO model: Bayes and RLMS parameter estimation

Bayesian estimation of model parameters. We use the Bayesian approach
to estimate the distribution of the random parameters 𝑘1(𝜔) and 𝑞e(𝜔).
This approach solves the limitations of other traditional methods,
such as the maximum likelihood principle and the least mean square
method, which do not take into account the variability that is to be
expected in the model parameters. The Bayesian framework is set up by
assuming a probability model, 𝜋(𝐲|𝜽), for the observed or experimental
ata, 𝐲, given the vector of unknown parameters, 𝜽, and a prior
istribution for the unknown parameters, 𝜋(𝜽). Then, using Bayes’s
ormula one obtains the posterior distribution of the parameters de-
ending on the experimental data, 𝜋(𝜽|𝐲). For more information about
he theoretical foundations and applications of Bayesian estimation
ethod, it can be seen, for instance, in Ref. [34]. In our problem,

he amount of adsorbent, 𝑞𝑖 is strictly positive (see Table 1). Thus,
e assume that these set of values are random variables that follow a
amma distribution, whose mean is given by the solution of the model
t each time instant 𝑡𝑖, i.e.,

𝑖|𝜽 ∼ Ga(𝛼𝑖, 𝛽), (20)

here 𝛽 > 0 is the rate parameter and 𝛼𝑖 > 0 is the shape parameter.
hen, from the definition of the expectation of a Gamma distribution,
nd according to the solution of the PFO model given in (4), one must
atisfy
[

𝑞𝑖
]

=
𝛼𝑖
𝛽

= 𝑞e(1 − 𝑒−𝑘1𝑡𝑖 ) ⟹ 𝛼𝑖 = (𝑞e(1 − 𝑒−𝑘1𝑡𝑖 ))𝛽. (21)

n the Bayesian model (20)–(21), 𝜽(𝜔) = (𝑞e(𝜔), 𝑘1(𝜔), 𝛽(𝜔)) is the
unknown vector of parameters, and we consider a Gamma distribution
for the conditional density of the data given the vector 𝜽(𝜔) (𝜋(𝐲|𝜽)).
The next step is to consider appropriate prior distributions for the
parameters 𝑞e(𝜔), 𝑘1(𝜔) and 𝛽(𝜔), which allows us to include prior
information about the parameters. Based on the literature, see [35] and
the references therein, we know that 𝑞e(𝜔) and 𝑘1(𝜔) must be positive,
and moreover the latter is always smaller than 1. Then, we choose
the following non-informative distributions, taking into account the
information about the range

𝑞e(𝜔) ∼ U(0, 100), 𝑘1(𝜔) ∼ U(0, 1), 𝛽(𝜔) ∼ Ga(0.01, 0.01).

Since 𝛽 is the rate parameter of the Gamma distribution and we only
know that it is positive, a fairly common non-informative distribution
for these cases where the rate parameter is unknown is another Gamma
distribution centered at 1 and with fairly large variance. As it is known,

arkov Chain Monte Carlo (MCMC) techniques are applied to calculate
he posterior distribution of the model parameters. For this goal, we
ave used the free statistical software WinBUGS, which uses Gibbs
ampling and Metropolis algorithm, to generate a Markov chain by
ampling from full conditional distributions, [36–38]. We set 3 chains,
5000 iterations for each chain, and a burn-in period of 5000 iterations
o assess the convergence of MCMC chains. Convergence of MCMC
hains has been evaluated by examining the trace plots (see Fig. A.8,
ppendix). Trace plot is useful to assess the convergence or lack thereof
f the Markov chain. It is a visual approach to monitoring convergence,
n order to observe that the Markov chains constructed by the MCMC
lgorithm have reached their stationary process. Thus, convergence
ccurs when Markov chains converge in distribution to the posterior
istribution of interest. Let us recall that the stationary distribution of
he Markov chains is the posterior density. Fig. A.8 shows a random
catter around a mean value and that the three chains were well mixed.
inBUGS automatically calculates the deviance quantity. It is defined
5

as −2 log(𝜋(𝐲|𝜽)) [38, p. 140], and it serves as a Bayesian measure of
fit. The right column in Fig. A.8 shows the posterior distribution of
each parameter of the Bayesian model. These distributions have been
determined using the non-parametric method called kernel density
estimation [39]. The bandwidth values that WinBUGS used in each case
to smooth the samples to produce density estimates are shown in the
same plot. The sample size is represented by 𝑁 , which is 20000 since
we have considered 25000 iterations, 5000 of which were used for
burn-in. To complete the statistical analysis, we have performed other
convergence diagnostics using the coda package in R. Specifically, the
graphical results for the Gelman and Rubin’s convergence diagnostic
are shown in Fig. A.9 (see Appendix). From this plot, we can observe
that the potential scale reduction factor is close to 1 for all the esti-
mated parameters. This fact indicates that MCMC sampling converges
to the estimated posterior distribution for each parameter [34, p. 285].
Once we have obtained the PDFs, 𝑓𝑘1 (𝑘1) and 𝑓𝑞e (𝑞e), by means of
the Bayesian method, we can observe that there is a negative cor-
relation between random variables 𝑘1(𝜔) and 𝑞e(𝜔) (see Fig. A.10 in
Appendix). To account for this statistical dependence, we will construct
the joint PDF, 𝑓 1

0 (𝑘1, 𝑞e), of the random vector (𝑘1(𝜔), 𝑞e(𝜔)) by applying
the theory of copulas [40]. This means that 𝑓 1

0 (𝑘1, 𝑞e) marginally be-
haves as 𝑓𝑘1 (𝑘1) and 𝑓𝑞e (𝑞e), but considering the statistical dependence
between 𝑘1(𝜔) and 𝑞e(𝜔). We will specifically apply the FGM (Farlie–
Gumbel–Morgenstern) copula, which depends on a parameter, say 𝜉,
that modulates this negative dependence [40,41]. In our calculations,
we have taken 𝜉 = −0.6. Computations have been carried out by
Mathematica© Software [42].

RLMS estimation of model parameters. To apply this technique, we
first need to assume specific parametric distributions for the model
parameters 𝑘1(𝜔) and 𝑞e(𝜔). Taking into account the positiveness and
boundedness of both random variables within the setting of our chem-
ical application, we will assume that 𝑘1(𝜔) has a Beta distribution with
shape parameters 𝑘11 > 0 and 𝑘21 > 0, i.e., 𝑘1(𝜔) ∼ Be(𝑘11; 𝑘

2
1), and 𝑞e(𝜔)

has a Gaussian distribution of parameters 𝜇𝑞e and 𝜎𝑞e > 0 truncated on
the positive real numbers, i.e., 𝑞e(𝜔) ∼ N𝑇 (𝜇𝑞e ; 𝜎𝑞e ), where 𝑇 = (0,+∞)
(hence observe that we implicitly assume that 𝜇𝑞e > 0). The choice
of some reasonable distributions is a critical point when applying the
RLMS method to estimate model parameters since many possibilities
may be reasonable, but a decision must be made. Our previous choice
is consistent with the results that we have previously obtained by the
Bayesian approach as well as the available information about the model
parameters. Indeed, as it has been previously commented, it is known
from the literature that the random parameter 𝑘1(𝜔) lies between 0
and 1. Moreover, as we can observe in Fig. A.8 (see Appendix), the
shape of the PDF of this parameter may follow a beta distribution
for adequate values of its parameters. It motivates that a reasonable
distribution for 𝑘1(𝜔 is Be(𝑘11; 𝑘

2
1), where 𝑘11 > 0 and 𝑘21 > 0 must be

determined. In the case of 𝑞e(𝜔), from the graphical representation of
the trace plot and of the posterior distribution in Fig. A.8, we can
observe that both have symmetric positive densities. Therefore, we
made the decision of choosing a normal distribution truncated on the
positive real numbers. For consistency with the Bayesian approach
previously applied to perform the estimation of model parameters, we
now determine the joint PDF of the random vector (𝑘1(𝜔), 𝑞e(𝜔)) by
applying the FGM copula with parameter 𝜉 = −0.6. This copula will
be denoted by 𝑓 1

0 (𝑘1, 𝑞e; 𝑘
1
1, 𝑘

2
1, 𝜇𝑞e , 𝜎𝑞e ) to emphasize the dependence on

the parameters corresponding to the initial distributions. At this point,
notice two facts, first, that these parameters 𝑘11, 𝑘

2
1, 𝜇𝑞e and 𝜎𝑞e need to

be determined yet, and secondly, that the PDF of the stochastic solution
process will depend on them, 𝑞(𝑡, 𝜔; 𝑘11, 𝑘

2
1, 𝜇𝑞e , 𝜎𝑞e ). These parameters

are calculated by solving the following optimization program

min
𝑘11 ,𝑘

2
1 ,𝜇𝑞e ,𝜎𝑞e>0

9
∑

𝑖=1

(

𝑞𝑖 − E
[

𝑞(𝑡𝑖, 𝜔; 𝑘11, 𝑘
2
1, 𝜇𝑞e , 𝜎𝑞e )

])2
, (22)

where the values 𝑞𝑖, 𝑖 = 1, 2,… , 9, are collected in Table 1, and
the expectation, E

[

𝑞(𝑡 , 𝜔; 𝑘1, 𝑘2, 𝜇 , 𝜎 )
]

, is calculated via (7), being
𝑖 1 1 𝑞e 𝑞e
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Table 2
Results of different heuristic methods implemented in Mathematica′ applied to the optimization problem (22) corresponding to the PFO model.
Methods Time in seconds (min) Optimal values Error

𝑘1
1 𝑘1

2 𝜇𝑞e 𝜎𝑞e
Nelder–Mead 505.1485 (8.42) 117.899632 320.476332 10.693922 0.145774 1.020992
Random Search 428.56876 (7.14) 117.113796 325.643579 10.671013 0.164020 1.040055
Simulated Annealing 777.560168 (12.96) 113.131991 309.063337 10.686646 0.130588 1.021799
Table 3
Expectations (𝜇𝑞 (𝑡)) and standard deviations (𝜎𝑞 (𝑡)) of the solution stochastic process of the random PFO model at every time instant, for both
Bayes and RLMS approaches.

𝑡 = 4 𝑡 = 5 𝑡 = 10 𝑡 = 15 𝑡 = 20 𝑡 = 30 𝑡 = 45 𝑡 = 60

Bayes 𝜇𝑞 (𝑡) 7.1460 7.9914 9.9804 10.4876 10.6196 10.6640 10.6675 10.6676
𝜎𝑞 (𝑡) 0.445843 0.423805 0.290430 0.259239 0.261084 0.264852 0.265401 0.265419

RLMS 𝜇𝑞 (𝑡) 7.0333 7.8906 9.9508 10.4948 10.6399 10.6898 10.6938 10.6939
𝜎𝑞 (𝑡) 0.305580 0.294833 0.187270 0.145382 0.142650 0.145270 0.145755 0.145771
Table 4
Comparison of the root mean square error (RMSE) and the mean abso-
lute percentage error (MAPE) using the Bayes and the RLMS techniques
to determine the PDFs of the model parameters, 𝑘1(𝜔) and 𝑞e(𝜔) for the
random PFO model.

RMSE MAPE

Bayes 0.338432 2.58%
RLMS 0.336814 2.90%

𝑓1(𝑞, 𝑡) the expression given in (10), that by construction will depend
on parameters 𝑘11, 𝑘

2
1, 𝜇𝑞e and 𝜎𝑞e . Notice that the objective function in

he optimization program is defined by the Euclidean distance between
he data, 𝑞𝑖, and the expectation of the solution stochastic process. To
arry out this optimization problem we have implemented different
euristic methods, implemented in Mathematica©, the results of which
re shown in Table 2. These provide local optimal, hence the results
re slightly different but consistent. Then, we have chosen the Nelder–
ead method since it gives the smallest error, obtaining the following

ptimal values
1
1 = 117.899632, 𝑘21 = 320.476332, 𝜇𝑞e = 10.693922, 𝜎𝑞e = 0.145774.

Results. In Fig. 1, we show the 1-PDF of the solution stochastic process,
𝑓1(𝑞, 𝑡), of the PFO model, at the time instants 𝑡𝑖, 𝑖 ∈ {1, 2,… , 9},
listed in Table 1. We show the graphical representation of 𝑓1(𝑞, 𝑡)
obtained via the two approaches previously applied to estimate the
PDF of the model parameters, 𝑘1(𝜔) and 𝑞e(𝜔), namely, the Bayesian
and the RLMS methods. We can observe from these two graphical
representations that the results obtained by means of both methods
are similar, although the PDFs calculated applying the RLMS method
are more leptokurtic (lower variability). This fact can be explained
by the methodology we have applied. Indeed, when applying RLMS
method, we first perform a deterministic fitting to obtain initial values
for the parameters on which the distributions chosen for the model
parameters depend on. This strategy stretches the search performed by
the optimization algorithm to find the best parameters that minimize
the objective (error) function utilized when applying the RLMS method.
This provides accurate values for the fitting, which gives rise to tighter
confidence intervals and, consequently, leptokurtic distributions. In
contrast, the assignment of probability distributions according to the
Bayesian approach begins with non-informative prior densities having a
higher variance, which leads to probability distributions having slightly
larger variability. This behavior is clearer observed in Fig. 2, where
6

Table 5
Values of the probabilities 𝑝, 𝑝1 and 𝑝2, defined in (23) and (24), at the time instants
𝑡𝑖, 𝑖 ∈ {2,… , 9}, collected in Table 1. This corresponds to the random PFO model.

𝑝 𝑝1 𝑝2

𝑡 = 4
Bayes 0.9504 0.0316 0.0180
RLMS 0.9492 0.0219 0.0289

𝑡 = 5
Bayes 0.9485 0.0308 0.0207
RLMS 0.9493 0.0207 0.0300

𝑡 = 10
Bayes 0.9481 0.0247 0.0272
RLMS 0.9492 0.0203 0.0305

𝑡 = 15
Bayes 0.9482 0.0256 0.0262
RLMS 0.9488 0.0252 0.0260

𝑡 = 20
Bayes 0.9479 0.0261 0.0260
RLMS 0.9493 0.0255 0.0252

𝑡 = 30
Bayes 0.9480 0.0261 0.0259
RLMS 0.9505 0.0248 0.0247

𝑡 = 45
Bayes 0.9480 0.0260 0.0260
RLMS 0.9500 0.0250 0.0250

𝑡 = 60
Bayes 0.9480 0.0260 0.0260
RLMS 0.9500 0.0250 0.0250

the real data, 𝑞𝑖, 𝑖 = 0, 1,… , 9 (collected in Table 1), the expectation
(𝜇𝑞) and the expectation plus/minus 1.96 standard deviations (𝜇𝑞 ±
1.96𝜎𝑞) have been plotted. To quantitatively reinforce these comments,
in Table 3, we show the expectation and standard deviation values
for each time instant. We can see how the expectation values increase
until stabilizing around the value 10.7 and how, on the other hand,
the values of the standard deviation decrease until stabilizing over
time around 0.27, when applying the Bayes approach and 0.15 for the
RLMS case, approximately. Furthermore, it can be seen that, indeed,
the standard deviation is slightly greater when applying the Bayesian
method while the expectation is very similar. In order to compare the
results obtained by applying both methods, in Table 4, we show two
measures of goodness-of-fit, the root mean square error (RMSE) and
the mean absolute percentage error (MAPE). We can observe that these
measures are quite similar for both Bayes and RLMS approaches, as
expected.

The intervals plotted in Fig. 2 have been built using the following
rule

𝑝 = P
[

{𝜔 ∈ 𝛺 ∶ 𝜇𝑞(𝑡) − 1.96𝜎𝑞(𝑡) ≤ 𝑞(𝑡, 𝜔) ≤ 𝜇𝑞(𝑡) + 1.96𝜎𝑞(𝑡)}
]

, (23)

where 𝑝 ≈ 0.95, at each 𝑡 = 𝑡𝑖, 𝑖 = 2… , 9. In Table 5, we show the exact
values of 𝑝 at every 𝑡 . Observe that they are about 0.95. Additionally,
𝑖
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Fig. 1. Graphical representation of 1-PDF of the solution stochastic process of the random PFO model, 𝑓1(𝑞, 𝑡), given in Eq. (10), at the time instants 𝑡𝑖, 𝑖 = 1, 2,… , 9, collected in
Table 1. Left: The PDF of model parameters has been obtained using the Bayesian method. Right: The PDF of model parameters has been obtained using the RLMS method.
Fig. 2. Probabilistic fitting using the real data shown in Table 1 (points). The solid and dashed lines represent, respectively, the expectation (𝜇𝑞 = 𝜇𝑞 (𝑡)) and plus/minus 1.96
standard deviations (𝜎𝑞 = 𝜎𝑞 (𝑡)) of the solution stochastic process of the random PFO model (4). Calculations have been carried out with the PDFs obtained via the Bayes (left)
and the RLMS (right) estimates for the PDFs of the model parameters, 𝑘1(𝜔) and 𝑞e(𝜔).
Fig. 3. PDF of the time, 𝑓𝑡(𝑡; 𝜌𝑞 ), for different fixed values of the adsorbed amount of reactant 𝜌𝑞 ∈ {7.172, 8.023, 9.724, 10.575, 11.195}. Calculations have been carried out with the
PDFs of the model parameters, 𝑘1(𝜔) and 𝑞e(𝜔), obtained via the Bayes (left) and RLMS (right) methods, in the context of the random PFO model.
in Table 5 we have included the following probabilities

𝑝1 = P
[

{𝜔 ∈ 𝛺 ∶ 𝑞(𝑡, 𝜔) ≥ 𝜇𝑞(𝑡) + 1.96𝜎𝑞(𝑡)}
]

,

𝑝2 = P
[

{𝜔 ∈ 𝛺 ∶ 𝑞(𝑡, 𝜔) ≤ 𝜇𝑞(𝑡) − 1.96𝜎𝑞(𝑡)}
]

,
(24)

to highlight that the intervals are not symmetric with respect the mean
𝜇𝑞(𝑡), particularly for the first four time instants. This happens both
when using the Bayes and the RLMS estimates obtained for the PDFs of
the model parameters.

In Fig. 3, we show the PDF of the time, 𝑡(𝜔), until a given adsorbed
amount of the chemical reactant, 𝜌𝑞 > 0, is reached, for different
values of 𝜌 ∈ {7.172, 8.023, 9.724, 10.575, 11.195}, and using as PDFs
7

𝑞

of the model parameters 𝑘1(𝜔) and 𝑞e(𝜔) the ones obtained via the
Bayes and RLMS methods. From these graphical presentations we can
observe that both the expectation and the variability increase with 𝜌𝑞 .
Notice that slightly higher variability is obtained via the Bayes method.
As indicated Section 2.2, the PDF, 𝑓𝑡(𝑡; 𝜌𝑞), has been calculated in the
conditional probability space (𝛺,𝛺 ,P [⋅|𝐶]), being 𝐶 = {𝜔 ∈ 𝛺 ∶
𝑞e(𝜔) − 𝜌𝑞 > 0}, where the random variable, 𝑡(𝜔), is well-defined. In
Table 6, the probability, P [𝐶], of this event 𝐶 has been calculated, for
the values of 𝜌𝑞 that have been previously indicated, via the Bayes and
RLMS approaches. We complete the information collected in Table 6
with the values of the expectation and variance of 𝑡(𝜔). These statistics
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Fig. 4. Graphical representation of 1-PDF of the solution stochastic process of the random PSO model, 𝑓1(𝑞, 𝑡), given in Eq. (12), at the time instants 𝑡𝑖, 𝑖 = 1, 2,… , 9, collected in
Table 1. Left: The PDF of model parameters has been obtained using the Bayesian method. Right: The PDF of model parameters has been obtained using the RLMS method.
Table 6
Probability, P [𝐶], of the event 𝐶 = {𝜔 ∈ 𝛺 ∶ 𝑞e(𝜔)−𝜌𝑞 > 0} calculated in the context of
the random PFO model, on the probability space (𝛺,𝛺 ,P). Expectation, E [𝑡(𝜔)|𝐶], and
variance, V [𝑡(𝜔)|𝐶], of the time until a given amount of adsorbed amount of reactant,
𝜌𝑞 , is reached. All the information has been calculated using the Bayes and RLMS
approaches for different prefixed values of the chemical concentration, 𝜌𝑞 .

𝜌𝑞 ⟶ 7.172 8.023 9.724 10.575 11.195

P [𝐶]
Bayes 1 0.999987 0.997603 0.658030 0.025141

RLMS 1 1 1 0.793255 0.000291

E [𝑡(𝜔)|𝐶]
Bayes 4.05 5.07 8.92 15.49 17.85

RLMS 4.16 5.19 9.02 16.70 24.00

V [𝑡(𝜔)|𝐶]
Bayes 0.21 0.35 2.01 98.22 337.45

RLMS 0.11 0.17 0.65 71.09 602.21

have been calculated using the PDF, given in formula (15), and P[𝐶].
For example, the expectation is calculated by

E [𝑡(𝜔)|𝐶] = E
[

𝑡(𝜔)1𝐶
]

∕P [𝐶] , 𝜔 ∈ 𝛺,

where 1𝐶 is the characteristic function for the event 𝐶. For example,
according to Table 6, around 9 min are required to reach the adsorbed
amount of reactant 𝜌𝑞 = 9.724. Observe that the figures collected in this
table, for the expectation and the variance, agree with the graphical
behavior visualized in Fig. 3 in the sense that the mean and variance
increase with 𝜌𝑞 .

3.2. PSO model: Bayes and RLMS parameter estimation

In this subsection we perform a similar probabilistic analysis to the
one shown in the previous section but for the random PSO model. Both
methodologies Bayes and MC are applied to estimate the PDFs of the
model input random variables, 𝑘2(𝜔) and 𝑞e(𝜔). From these marginal
PDFs we construct the joint PDF using the FGM copula with parameter
𝜉 = −0.6. The results will be presented following an analogous structure
as for the PFO model, but avoiding the repetition of unnecessary details.

Bayes parameter estimation. Similarly as it has been done for the PFO
model, we will first apply the Bayesian approach to estimate the
marginal PDFs of the random parameters 𝑘2(𝜔) and 𝑞e(𝜔) for PSO
model. We have chosen the Gamma distribution, with parameters 𝛼𝑖 > 0
and 𝛽 > 0, for the data shown in Table 1 given the vector of unknown
parameters 𝜽(𝜔) = (𝑞e(𝜔), 𝑘2(𝜔), 𝛽(𝜔)). In this case, given the expression
of the solution of the PSO model, we have that

E[𝑞𝑖] =
𝛼𝑖 =

𝑘2𝑞2e 𝑡𝑖
⟹ 𝛼𝑖 =

(

𝑘2𝑞2e 𝑡𝑖
)

𝛽. (25)
8

𝛽 1 + 𝑘2𝑞e𝑡𝑖 1 + 𝑘2𝑞e𝑡𝑖
For consistency with the study performed to model PFO, the prior
distributions chosen for the random model parameters are the same,

𝑞e(𝜔) ∼ U(0, 100), 𝑘2(𝜔) ∼ U(0, 1), 𝛽(𝜔) ∼ Ga(0.01, 0.01).

In this case, we set 3 chains, 50000 iterations for each chain, and a
burn-in period of 5000 iterations to assess the convergence of MCMC
chains. Similarly, as the PFO model, the convergence of MCMC chains
was evaluated by examining the trace plots in Fig. A.11 (see Appendix)
and using the Gelman and Rubin’s convergence diagnostic shown in
Fig. A.12 (see Appendix). In this case, we also observe that the potential
scale reduction factor is close to 1 for all the estimated parameters.
Then, the MCMC sampling converges to the estimated posterior distri-
bution for each parameter. In Fig. A.13 (see Appendix), we see that
there is a negative correlation between the random parameters 𝑞e(𝜔)
and 𝑘2(𝜔).

RLMS estimation of model parameters. In this case we consider that
the RVs 𝑘2(𝜔) and 𝑞e(𝜔) have a parameter-dependent particular dis-
tributions. Once, for consistency with the study performed for the
PFO model, we assume that 𝑘2(𝜔) has a Beta distribution with shape
parameters 𝑘12 > 0 and 𝑘22 > 0, 𝑘2(𝜔) ∼ Be(𝑘12; 𝑘

2
2), and 𝑞e(𝜔) has a

Gaussian distribution truncated with mean, 𝜇𝑞e , and standard deviation,
𝜎𝑞e , truncated on the positive real numbers, i.e. 𝑞e(𝜔) ∼ N𝑇 (𝜇𝑞e ; 𝜎𝑞e )
being 𝑇 = (0,+∞). The joint PDF, 𝑓0(𝑞, 𝑡; 𝑘11, 𝑘

2
1, 𝜇𝑞e , 𝜎𝑞e ), is constructed

using the FGM copula with parameter 𝜉 = −0.6. The unknown pa-
rameters, 𝑘11, 𝑘21, 𝜇𝑞e and 𝜎𝑞e are obtained solving the solution of
optimization program (22) by considering 𝑘12 and 𝑘22 instead of 𝑘11 and
𝑘21, respectively. Based on Table 7 and the same reasons as in the
previous case, we have obtained the following result

𝑘12 = 153.519698, 𝑘22 = 4033.860911, 𝜇𝑞e = 11.633311, 𝜎𝑞e = 0.117726.

Results. In Fig. 4, we show the 1-PDF of the solution stochastic process
of the PSO model obtained by applying the Bayes and the RLMS
approaches. As it also happened for the PFO model and based on the
same reasons, we can observe that the expectation obtained by both
approaches is similar, while the variability is smaller via the RLMS
method (the 1-PDF is more leptokurtic). In Table 8, we show the values
of RMSE and the MAPE, being smaller these goodness-of-fit measures
slightly smaller for the RLMS method. These figures are in agreement
with the graphical results observed in Fig. 5, where we have plotted the
expectation and the expectation plus/minus 1.96 standard deviations,
using the Bayesian and the RLMS approaches. According to Table 9,
these intervals have been constructed by (23) with 𝑝 ≈ 0.95, and, for
the first time instants, they are not symmetric. Table 10 also shows
that the values of the expectations are quite similar for each time
instant and that they increase until reaching the equilibrium value,
about 11.2, while the values of the standard deviations decrease until
stabilizing at values 0.24, in the Bayes case, and 0.12, in the RLMS
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d
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𝑡

Fig. 5. Probabilistic fitting using real data shown in Table 1 (points). The solid and dashed lines represent, respectively, the expectation (𝜇𝑞 = 𝜇𝑞 (𝑡)) and plus/minus 1.96 standard
eviations (𝜎𝑞 = 𝜎𝑞 (𝑡)) of the solution stochastic process of the random PFO model (5). Calculations have been carried out with the PDFs obtained via the Bayes (left) and the
LMS (right) estimates for the PDFs of the model parameters, 𝑘2(𝜔) and 𝑞e(𝜔).
Table 7
Results of different heuristic methods implemented in Mathematica′ applied to the optimization problem (22) corresponding to the PSO model.
Methods Time in seconds (min) Optimal values Error

𝑘1
1 𝑘1

2 𝜇𝑞e 𝜎𝑞e
Nelder–Mead 393.381492 (6.55) 153.519698 4033.860911 11.633311 0.117726 0.267344
Random Search 344.929808 (5.75) 153.751582 4063.047530 11.6216846 0.101027 0.271482
Simulated Annealing 644.124919 (10.74) 148.605498 4028.554913 11.668446 0.120093 0.279787
j
T
C

C

w

E

T

Table 8
Comparison of the root mean square error (RMSE) and the mean abso-
lute percentage error (MAPE) using the Bayes and the RLMS techniques
to determine the PDFs of the model parameters, 𝑘1(𝜔) and 𝑞e(𝜔) in the
random PSO model.

RMSE MAPE

Bayes 0.172720 1.71%
RLMS 0.172351 1.65%

Table 9
Values of the probabilities 𝑝, 𝑝1 and 𝑝2, defined in (23) and (24), at the time instants
𝑖, 𝑖 ∈ {2,… , 9}, collected in Table 1. This corresponds to the random PSO model.

𝑝 𝑝1 𝑝2

𝑡 = 4
Bayes 0.9505 0.0290 0.0205
RLMS 0.9490 0.0227 0.0285

𝑡 = 5
Bayes 0.9509 0.0284 0.0207
RLMS 0.9491 0.0224 0.0285

𝑡 = 10
Bayes 0.9485 0.0268 0.0247
RLMS 0.9493 0.0226 0.0281

𝑡 = 15
Bayes 0.9486 0.0256 0.0258
RLMS 0.9489 0.0237 0.0274

𝑡 = 20
Bayes 0.9489 0.0248 0.0263
RLMS 0.9489 0.0244 0.0267

𝑡 = 30
Bayes 0.9490 0.0242 0.0268
RLMS 0.9493 0.0249 0.0258

𝑡 = 45
Bayes 0.9490 0.0239 0.0271
RLMS 0.9501 0.0249 0.0250

𝑡 = 60
Bayes 0.9490 0.0239 0.0271
RLMS 0.9489 0.0256 0.0255

case, approximately. As it happens in the PFO model, the variability is
smaller when applying the RLMS.
9

t

In Fig. 6, we show the PDF of the time until a given adsorbed
amount of reactant 𝜌𝑞 ∈ {7.172, 8.023, 9.724, 10.575, 11.195} is reached.
This PDF has been calculated in the conditional probability space
(𝛺,𝛺 ,P [⋅|𝐶]). In Table 11, we collect the probability of the event
𝐶 and the conditional expectation and variability. From Fig. 6 and
Table 11, we can observe that both the expectation and the variability
increase when 𝜌𝑞 does. From Table 11, we can derive, for example, that
around 12 min are required to adsorb 𝜌𝑞 = 9.724 mg/g of reactant. This
value differs with respect to the one provided by the PFO model, which
was about 9 min only.

Going further with the PSO model: computing the 2-PDF and the covariance.
Comparing the goodness-of-fit collected in Tables 4 and 8, we conclude
that the PSO model provides better fitting. We have carefully revised
recent literature about the PSO model, [43,44]. According to these
contributions, the PSO model better reveals the adsorption mechanism
at the active sites in most cases [43, p. 14], as it happens in our
study case. From a theoretical perspective, this is justified because the
PSO model is nonlinear, so taking better into account the complex
dynamics often present in the adsorption process. Now, we will show
how the RVT technique can be applied to obtain further probabilistic
information about the solution corresponding to the PSO model. Specif-
ically, we shall compute the 2-PDF, 𝑓2(𝑞1, 𝑡1; 𝑞2, 𝑡2), of 𝑞(𝑡, 𝜔), i.e., the
oint PDF of the solution at two arbitrary times instants, say 𝑡1 and 𝑡2.
his two-dimensional PDF permits computing the covariance function,
ov𝑞(𝑡1, 𝑡2)

ov𝑞(𝑡1, 𝑡2) = E
[

𝑞(𝑡1, 𝜔)𝑞(𝑡2, 𝜔)
]

− E
[

𝑞(𝑡1, 𝜔)
]

E
[

𝑞(𝑡2, 𝜔)
]

, (26)

here
[

𝑞(𝑡1, 𝜔)𝑞(𝑡2, 𝜔)
]

= ∫R2
𝑞1𝑞2𝑓2(𝑞1, 𝑡1; 𝑞2, 𝑡2) d𝑞1 d𝑞2. (27)

he covariance function provides a statistical measure of how much

wo variables change together. Furthermore, the covariance permits
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Fig. 6. PDF of the time, 𝑓𝑡(𝑡; 𝜌𝑞 ), for different fixed values of the adsorbed amount of reactant 𝜌𝑞 ∈ {7.172, 8.023, 9.724, 10.575, 11.195}. Calculations have been carried out with the
PDFs of the model parameters, 𝑘2(𝜔) and 𝑞e(𝜔), obtained via the Bayes (left) and the RLMS (right) methods, in the context of the PSO model.
Fig. 7. Graphical representation of covariance function of the solution stochastic process of the random PSO model, Cov𝑞 (𝑡1 , 𝑡2), given in Eqs. (26)–(28), at the time instants 𝑡𝑖,
𝑖 = 1, 2,… , 9, collected in Table 1. Left: The PDF of model parameters has been obtained using the Bayesian method. Right: The PDF of model parameters has been obtained using
the RLMS method.
Table 10
Expectations (𝜇𝑞 (𝑡)) and standard deviations (𝜎𝑞 (𝑡)) of the solution stochastic process of the random PSO model at every time instant, for both
Bayes and RLMS approaches.

𝑡 = 4 𝑡 = 5 𝑡 = 10 𝑡 = 15 𝑡 = 20 𝑡 = 30 𝑡 = 45 𝑡 = 60

Bayes 𝜇𝑞 (𝑡) 7.3777 7.9511 9.4272 10.0510 10.3952 10.7643 11.0256 11.1611
𝜎𝑞 (𝑡) 0.390147 0.370661 0.302418 0.271691 0.256937 0.244843 0.239724 0.238489

RLMS 𝜇𝑞 (𝑡) 7.3233 7.9086 9.4145 10.0532 10.4064 10.7853 11.0538 11.1932
𝜎𝑞 (𝑡) 0.219735 0.208422 0.164517 0.142718 0.131562 0.121818 0.117275 0.115966
Table 11
Probability, P [𝐶], of the event 𝐶 = {𝜔 ∈ 𝛺 ∶ 𝑞e(𝜔)−𝜌𝑞 > 0} calculated in the context of
the random PSO model, on the probability space (𝛺,𝛺 ,P). Expectation, E [𝑡(𝜔)|𝐶], and
variance, V [𝑡(𝜔)|𝐶], of the time until a given amount of adsorbed amount of reactant,
𝜌𝑞 , is reached. All the information has been calculated using the Bayes and RLMS
approaches for different prefixed values of the chemical concentration, 𝜌𝑞 .

𝜌𝑞 ⟶ 7.172 8.023 9.724 10.575 11.195

P [𝐶]
Bayes 0.999791 0.999791 0.999600 0.997797 0.953805

RLMS 1 1 1 1 1

E [𝑡(𝜔)|𝐶]
Bayes 3.74 5.19 12.17 25.14 80.33

RLMS 3.80 5.25 12.06 23.86 65.81

V [𝑡(𝜔)|𝐶]
Bayes 0.30 0.61 5.93 68.46 4828.12

RLMS 0.09 0.19 1.37 10.52 616.54

knowing if the stochastic process has properties such as stationarity,
that play a key role in many applications.
10
To determine an explicit expression to the 2-PDF of the solution
stochastic process, 𝑞(𝑡, 𝜔), of the PSO model, we fix 𝑡1, 𝑡2 > 0 being
𝑡1 ≠ 𝑡2. Without loss of generality, we will assume that 𝑡1 < 𝑡2. Now,
we will apply Theorem 1 using the following mapping 𝐫 ∶ R2 → R2 as

𝑣1 = 𝑟1(𝑘2, 𝑞e) = 𝑞(𝑡1) =
𝑘2𝑞2e 𝑡1

1 + 𝑘2𝑞e𝑡1
,

𝑣2 = 𝑟2(𝑘2, 𝑞e) = 𝑞(𝑡2) =
𝑘2𝑞2e 𝑡2

1 + 𝑘2𝑞e𝑡2
.

Isolating both 𝑘2 and 𝑞e, we obtain the inverse mapping of 𝐫, 𝐬 ∶ R2 →
R2,

𝑘2 = 𝑠1(𝑣1, 𝑣2) =
−(𝑡1𝑣2 − 𝑡2𝑣1)2

𝑡1𝑡2(𝑡2 − 𝑡1)𝑣1(𝑣1 − 𝑣2)𝑣2
,

𝑞e = 𝑠2(𝑣1, 𝑣2) =
(𝑡1 − 𝑡2)𝑣1𝑣2
𝑡1𝑣2 − 𝑡2𝑣1

.

The absolute value of the Jacobian of the inverse mapping 𝐬 is

|𝐽 | =
|

|

|

𝜕𝑠1 𝜕𝑠2 −
𝜕𝑠1 𝜕𝑠2 |

|

|

=
|

|

|

𝑡2 − 𝑡1 |

|

| ≠ 0.

|
𝜕𝑣1 𝜕𝑣2 𝜕𝑣2 𝜕𝑣1 | |

|

𝑡1𝑡2(𝑣1 − 𝑣2)2 |
|
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Fig. A.8. MCMC trace plot (left column) and marginal posterior distribution (right column) of the samples for the model parameters, 𝑘1(𝜔), 𝑞e(𝜔), the rate parameter of Gamma
distribution, 𝛽(𝜔), and the deviance. This corresponds to PFO model.
Notice that the inverse mapping is well defined since 𝑡1 ≠ 𝑡2 entails
𝑣1 ≠ 𝑣2. Then, the joint PDF of the random vector (𝑣1(𝜔), 𝑣2(𝜔)) is

𝑓𝑣1 ,𝑣2 (𝑣1, 𝑣2)

= 𝑓 2
0

(

−(𝑡1𝑣2 − 𝑡2𝑣1)2

𝑡1𝑡2(𝑡2 − 𝑡1)𝑣1(𝑣1 − 𝑣2)𝑣2
,
(𝑡1 − 𝑡2)𝑣1𝑣2
𝑡1𝑣2 − 𝑡2𝑣1

)

|

|

|

|

|

𝑡2 − 𝑡1
𝑡1𝑡2(𝑣1 − 𝑣2)2

|

|

|

|

|

,

or equivalently, the 2-PDF of the solution stochastic process is

𝑓2(𝑞1, 𝑡1; 𝑞2, 𝑡2)

= 𝑓 2
0

(

−(𝑡1𝑞2 − 𝑡2𝑞1)2

𝑡1𝑡2(𝑡2 − 𝑡1)𝑞1(𝑞1 − 𝑞2)𝑞2
,
(𝑡1 − 𝑡2)𝑞1𝑞2
𝑡1𝑞2 − 𝑡2𝑞1

)

|

|

|

|

|

𝑡2 − 𝑡1
𝑡1𝑡2(𝑞1 − 𝑞2)2

|

|

|

|

|

, (28)

for 𝑡1 ≠ 𝑡2. In Fig. 7, we have plotted the covariance function Cov𝑞(𝑡1, 𝑡2)
of the solution stochastic process of PSO model using the parameters
distributions of models parameters calculated by the Bayes and the
RLMS methods. Let us remember that the variance can be obtained
from the covariance function by taking 𝑡1 = 𝑡2, so, it is identified
with the diagonal of the covariance surface. From the plot, we can
observe that, the Bayesian method gives a higher value than the RLMS
method, being both constant as 𝑡 increases, all these features are in
full agreement with the analysis performed previously. From both plots,
we observe that the covariance is always positive, and approximately
constant as 𝑡1 and 𝑡2 increase, being higher in the case that the Bayesian
approach has been applied.
11
4. Conclusions

In this paper, we have proposed the full randomization of two
widely used kinetic models, formulated via differential equations, to
describe the chemical adsorption process. The novelty of our proposal is
that model parameter are treated as random variables rather than deter-
ministic constants. As a consequence, both models are reformulated by
random differential equations. We then solve both models probabilisti-
cally by determining their respective first probability density functions,
which is advantageous with respect to the classical approach, since it
permits probabilistically determining relevant information about the
chemical process. A strength point in the theoretical analysis is its
generality since all the results have been obtained assuming arbitrary
distributions for the model parameters. Besides, we have faced an
important challenge when random differential equations are applied
to real data, namely, how to determine reasonable probability dis-
tributions for the model parameters. We have shown two methods
to answer this inverse problem, and we have compared the results
obtained for the two models. At this point, it is important to point out
that this is a critical step in the process of uncertainty quantification
when dealing with real-world models since the choice of appropriate
distributions is, in general, not unique. In our case, we have validated
our results by means of goodness-of-fit measures for two methods
applied. Although we have obtained satisfactory results, it must be also
remarked the limitations of our approach. First, it has relied on the
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Fig. A.9. Gelman and Rubin convergence diagnostic plots, calculated by three Markov chains, for the model parameters, 𝑘1(𝜔), 𝑞e(𝜔), the rate parameter of Gamma distribution,
𝛽(𝜔), and the deviance. This corresponds to PFO model.
application of the Random Variable Transformation method, which has
depended on the knowledge of explicit expressions for the solutions of
the PFO and PSO models as well as the definition of an appropriate
multidimensional invertible mapping whose inverse and Jacobian are
calculable. Albeit the two randomized models analyzed throughout the
paper are mathematically simple, we think that the results obtained can
be useful to provide more realistic answers to applied problems as well
as can open new avenues to study other randomized kinetic models in
Chemistry.
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Fig. A.10. Cross-correlation plot for the model parameters, 𝑘1(𝜔), 𝑞e(𝜔), the rate parameter of Gamma distribution, 𝛽(𝜔), and the deviance. This corresponds to PFO model.

Fig. A.11. MCMC trace plot (left column) and marginal posterior distribution (right column) of the samples for the model parameters, 𝑘2(𝜔), 𝑞e(𝜔), the rate parameter of Gamma
distribution, 𝛽(𝜔), and the deviance. This corresponds to PSO model.
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Fig. A.12. Gelman and Rubin convergence diagnostic plots, calculated by three Markov chains, for the model parameters, 𝑘2(𝜔), 𝑞e(𝜔), the rate parameter of Gamma distribution,

(𝜔), and the deviance. This corresponds to PSO model.
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Fig. A.13. Cross-correlation plot for the model parameters, 𝑘2(𝜔), 𝑞e(𝜔), the rate
arameter of Gamma distribution, 𝛽(𝜔), and the deviance. This corresponds to PSO
14
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