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Abstract 

This paper proposes a novel MPC approach called conditional scenario-based model predictive con- 
trol (CSB-MPC), developed for discrete-time linear systems affected by parametric uncertainties and/or 
additive disturbances, which are correlated and with bounded support. At each control period, a pri- 
mary set of equiprobable scenarios is generated and subsequently approximated to a new reduced set 
of conditional scenarios in which each has its respective probabilities of occurrence. This new set is 
considered for solving an optimal control problem in whose cost function the predicted states and in- 
puts are penalised according to the probabilities associated with the uncertainties on which they depend 
in order to give more importance to predictions that involve realisations with a higher probability of 
occurrence. The performances of this new approach and those of a standard scenario-based MPC are 
compared through two numerical examples, and the results show greater probabilities of not transgress- 
ing the state constraints by the former, even when considering a smaller number of scenarios than the 
scenario-based MPC. 
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. Introduction 

Model predictive control (MPC), also known as receding horizon control, is widely
sed in industry [1] and in other sectors [2–6] . This is due to the simplicity of its
mplementation and its robustness in the control of various processes that can be complex
nd have many inputs-outputs with constraints to consider. Robust [7,8] and stochastic [8–
1] MPC approaches are appropriate strategies for uncertain systems. The robust approach
ssumes that the uncertainties are unknown, but have known limits, when solving a min-max
ptimal control problem (OCP) based on the worst-case and where the constraints are
equired to be satisfied for all cases. 

Stochastic model predictive control (SMPC) considers that the uncertainties (bounded or
ot) are either parametric [12,13] , due to external disturbances [14–17] or both [18–20] are
tochastic in nature; but the information about how the uncertainties or random variables are
istributed is considered as known. These probability distributions in most cases are considered
s Gaussian distribution types and whose sequences in time are assumed as independent and
dentically distributed (i.i.d.). This statistical information is used to solve an OCP based on
xpected value, where the state and input constraints must be satisfied at least with a defined
evel of probability. In this way, the worst-case conservatism [21] , which does not always
ccur, is reduced when compliance with constraints is relaxed in probabilistic terms, and in
hich its transgression is allowed within a permitted level of probability. 
Most SMPC approaches in the literature are classified into two groups: deterministic strate-

ies [22–24] , and scenario-based or randomised strategies [18,25,26] . Comparisons between
echniques of both groups can be found in González et al. [27] , Grosso et al. [28] , Seron
t al. [29] . The deterministic strategies propose an OCP whose cost function is based on the
xpected value and state constraints defined as probabilistic or chance constraints. The non-
onvexity of these constraints can make the problem computationally unmanageable. Such
robabilistic constraints are converted into deterministic and convex equivalents and make
se of the knowledge of the first two statistical moments of the random variables by tighten-
ng [22] the hard constraints offline. This results in an OCP similar to that of a classic MPC
n structure and computational tractability. 

On the other hand, in the scenario-based strategies, this expected cost function is approx-
mated by the sample average by generating at each control period an appropriate set of
andom realisations, also called scenarios [30,31] , of the uncertainties for all the instants of
he prediction horizon. These realisations are included in a standard convex OCP with con-
traints that must be fulfilled for all the generated scenarios. The quality of the solution or
ts approximation to the original problem is conditioned by the number of realisations used
o solve the OCP. 

These scenario-based schemes have been used in practical applications for the control of
rocesses related to autonomous vehicles [32] , thermal comfort in buildings [3] , management
f water resources [28,33] or microgrids [6,34] . This is due to its flexibility in allowing the
nline addition of new statistical information since this is not required for offline constraint
ightening as in the case of deterministic approaches. In addition, if empirical data on uncer-
ainties are available, scenarios can be selected from such data; hence, it is not required to
now how the random variables are distributed. 

Such advantages imply a higher cost related to the time spent by the OCP to compute
 solution, which increases or decreases in line with the number of scenarios. Moreover, as
iscussed in Schildbach et al. [19] and Farina et al. [11] , when a small number of random
6881 
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cenarios are considered, there is a possibility that some are far from the reality of the
rocess and, consequently, the optimal controls calculated can cause erroneous behaviour in
he closed-loop system. In [18] , this number is calculated as the minimum number of scenarios
equired to satisfy the constraints in the states, according to an allowed level of probability
f transgression. 

To improve the cost function, while maintaining a permitted level of constraint transgres-
ion for a sufficiently high number of generated scenarios, some scenarios of this total can be
iscarded [35] from the OCP constraints. In [19] , a sample-removal pair is proposed and this
onsists of calculating a pair, given as a minimum number of scenarios to consider in the cost
unction and a maximum number of scenarios to discard from the constraints in the states,
n accordance with risk acceptability level of constraint violation. These scenario removal
chemes can cause an increase in the solution time because in addition to demanding a high
alue of scenarios; they require an appropriate algorithm [35] to identify unlikely scenarios
o be removed from the constraints, which could result in an OCP that is computationally
xpensive to solve. In the scenario tree-based MPC [36–39] approach, which is based on
ulti-stage stochastic optimisation, a tree-shaped structure is built according to different re-

lisations of the disturbances, where each node or bifurcation of the tree represents a certain
uture instant which is associated with the probability of being reached and its control ac-
ion, given the uncertainty. Every possible future path in this tree, beginning in the current
tate, is considered a scenario. Therefore, a reduced number of scenarios made up of those
hat are most likely to occur can be considered if an improvement is needed in the solution
ime [37,40] . 

Challenges such as improving the probabilities of constraint satisfaction and computational
ractability of a scenario-based MPC discussed above motivated the development of the new
cenario-based MPC approach introduced in this work. In summary, the contributions are
tated as follows: 

1. A novel scenario-based SMPC approach called conditional scenario-based model predictive
control (CSB-MPC), developed for discrete-time linear systems. Most SMPC approaches
consider systems with either strictly additive or parametric uncertainties; and whose reali-
sations are independent or correlated in time. This work addresses systems with bounded
parametric and/or additive uncertainties featuring a correlation between some or the whole
set of random variables. 

2. An algorithm that adapts the conditional scenario CS reduction method to the SMPC
framework to approximate a primary set of equiprobable scenarios into a reduced set of
CSs (that preserve the main characteristics of this primary set) with their probabilities of
occurrence. The CS concept was proposed as an approximation to the two-stage stochastic
mixed-integer linear programming problems, where a scenario consists of a realisation of
the random vector composed of the existing set of uncertainties, which are correlated. In
contrast, in the MPC context, a scenario consists of a sequence of various realisations of
that vector. 

3. A cost function where the probabilities of occurrence of the realisations of the uncertainties
are used as weights that penalise the states and inputs associated with these realisations.
This mitigates the effect of unlikely scenarios on the optimal control problem by giving
more relevance to states and inputs with higher probabilities of occurrence. 

4. The CSB-MPC has a higher probability of constraints satisfaction than a standard scenario-
based MPC for the same number of scenarios and offers a similar solution time, sometimes
6882 
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shorter, when a smaller sized primary set is used. With the above in mind, using a CSB-
MPC with a smaller number of scenarios is a viable option when a quicker solution time
is required but with no performance loss. 

The remaining structure of this paper is organised as follows. Section 2 addresses the type
f system to be considered and the formulation of the scenario-based MPC. The concept of
onditional scenario, its adaptation to MPC context and the proposed CSB-MPC approach
re presented in Section 3 . Through simulations of two numerical examples, the proposed ap-
roach and scenario-based MPC performances are discussed in Section 4 . Finally, conclusions
re drawn in Section 5 . 

. Problem statement 

In this section, the model of the system to be considered and the formulation of a Scenario-
ased MPC are described. 

.1. System dynamics 

Consider an uncertain linear time-invariant (LTI) system whose discrete state-space dy-
amic is given by Eq. (1a) in which its input u ∈ R 

n u is ruled by the state feedback control
aw Eq. (1b) , and subject to constraints in states Eq. (1c) and inputs Eq. (1d) , for a given
nstant of time i ∈ N 0 

 i+1 = A (δi ) x i + B(δi ) u i + Gw(δi ) (1a)

 i = K x i + v i (1b)

 ∈ X (1c)

 ∈ U (1d)

here vectors x ∈ R 

n x , w(δ) ∈ R 

n w and v k ∈ R 

n u represent the state, exogenous disturbances
nd the decision variables, respectively. A (δ) ∈ R 

n x ×n x is the state matrix, B(δ) ∈ R 

n x ×n u is
he system input matrix, G ∈ R 

n x ×n w is a matrix that reflects the effect of w(δ) on the sys-
em states, and K ∈ R 

n u ×n x is a feedback matrix that stabilises the system. Constraints Eqs.
1c) –(1d) are expressed as linear inequalities (e.g., F x x ≤ b x for Eq. (1c) , and F u u ≤ b u for
q. (1d) ). 

Vector δ ∈ R 

n δ is random, bounded and is composed of each of the parametric or additive
ncertainties, represented by the random variable ξn ∀ n ∈ { 1 , 2, . . . , n δ} , present in the system
uch that δ = [ ξ1 , ξ2 , . . . , ξn δ ] 

� . Thus, A (δ) , B(δ) and w(δ) are random and bounded since
ll or some of their elements are functions of δ. 

ssumption 1. Correlated Uncertainties: For a given instant of time i ∀ i ∈ { 0, 1 , . . . , } some
r the whole set of uncertainties { ξ1 ,i , ξ2,i , . . . , ξn δ ,i } of the random vector δi are correlated in
hat instant. The vector δ has a multivariate normal distribution and bounded support W δ . Any
equence { δ0 , δ1 , . . . } is independent and identically distributed (i.i.d.) and can be obtained
rom experimental data or by means of a random number generator. 
6883 
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.2. Scenario-based MPC 

At each sampling time and with the availability of the current state measure, SMPC strate-
ies [9,11,41] use a process model such as Eq. (1a) , whose uncertainties are stochastic in
ature and with known probability distributions, to solve an optimal control problem. This
CP solution generates the sequence of future controls to lead states toward the origin or a
esired operating point. 

According to the above, let k be the current time, ˆ x k the state measured at that moment and
 the prediction horizon. Model Eq. (1a) and its input Eq. (1b) , based on dual paradigm [42] ,
re used to predict the future states x i+1 | k ∀ i ∈ { 0, 1 , . . . , N − 1 } and inputs u i| k , for N steps
head of k; where the subscript i| k indicates the predicted value of the variable for the
nstant i, based on the information available at time k, and x 0| k = ˆ x k 

 i+1 | k = A (δi| k ) x i| k + B(δi| k ) u i| k + Gw(δi| k ) (2a)

 i| k = K x i| k + v i| k . (2b)

In SMPC schemes, predictions Eqs. (2a) and (2b) are commonly incorporated into

he cost function J ( ̂  x k , v k ) = E 

[ ∑ N−1 
i=0 

(‖ x i| k ‖ 2 Q 

+ ‖ u i| k ‖ 2 R 

) + ‖ x N | k ‖ 2 P 

] 
based on the ex-

ected value [22–24] , denoted by E , in which ‖ y ‖ 2 W 

= y � W y . In the scenario-based ap-
roaches [18,19,26] , this expected cost function is approximated by the sample average Eq.
3) , which consists of an average of the predicted trajectories of the states over a horizon N ,
or a finite number of M realisations of the uncertainties { �[1] 

k , �
[2] 
k , . . . , �

[ M] 
k } called scenar-

os [30,43] 

ˆ 
 ( ̂  x k , v k ) = 

1 

M 

M ∑ 

j=1 

[ N−1 ∑ 

i=0 

(
‖ x [ j] i| k ‖ 2 Q 

+ ‖ u 

[ j] 
i| k ‖ 2 R 

)
+ ‖ x [ j] N | k ‖ 2 P 

] 
(3)

here matrices { Q ∈ R 

n x ×n x | Q ≥ 0} , { R ∈ R 

n u ×n u | R > 0} and { P ∈ R 

n x ×n x | P > 0} penalise the
tates, inputs, and the terminal state x N | k , respectively. Scenarios �

[ j] 
k ∀ j ∈ { 1 , 2, . . . , M}

epresent the predictions of the uncertainties for N steps �[ j] 
k = { δ[ j] 

0| k , δ
[ j] 
1 | k , . . . , δ

[ j] 
N−1 | k } such

hat δ[ j] 
i| k = [ ξ [ j] 

1 ,i| k , ξ
[ j] 
2,i| k , . . . , ξ

[ j] 
n δ ,i| k ] 

� . Thus, the jth predicted trajectory is obtained by eval-

ating Eqs. (2a) and (2b) with �
[ j] 
k , fulfilling x [ j] 0| k = ˆ x k and the same decision vari-

bles { v k| k , v k+1 | k , . . . , v k+ N−1 | k } for all M. This is 

 

[ j] 
i+1 | k = A (δ

[ j] 
i| k ) x 

[ j] 
i| k + B(δ

[ j] 
i| k ) u 

[ j] 
i| k + Gw(δ

[ j] 
i| k ) (4a)

 

[ j] 
i| k = K x [ j] i| k + v i| k . (4b)

For every time k, the control problem in the scenario-based MPC framework is to
inimise Eq. (3) fulfilling the constraints on states Eq. (1c) and inputs Eq. (1d) for all
 

[ j] 
i+1 | k and u 

[ j] 
i| k , respectively, and in the terminal state x [ j] N | k ∈ X T [44,45] if required. The

forementioned is addressed in OCP Eq. (5) , whose solution yields the optimal controls
 

∗
k = { v ∗0| k , v 

∗
1 | k , . . . , v 

∗
N−1 | k } 
6884 
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min 

v 0| k ,v 1 | k , ... ,v N−1 | k 
ˆ J ( ̂  x k , v k ) (5a)

.t. 

x [ j] i+1 | k = A (δ
[ j] 
i| k ) x 

[ j] 
i| k + B(δ

[ j] 
i| k ) u 

[ j] 
i| k + Gw(δ

[ j] 
i| k ) (5b)

u 

[ j] 
i| k = K x [ j] i| k + v i| k (5c)

x [ j] i+1 | k ∈ X (5d)

u 

[ j] 
i| k ∈ U (5e)

x [ j] N | k ∈ X T (5f)

x [ j] 0| k = ˆ x k (5g)

∀ i ∈ { 0, 1 , . . . , N − 1 } , ∀ j ∈ { 1 , 2, . . . , M} . (5h)

Using the receding horizon (RH) strategy [46] , only the first element of v ∗k is applied to
he process in that time (i.e., u k = u 0| k = K ̂  x k + v ∗0| k ), repeating the OCP at the next sampling
ime. OCP Eq. (5) can be stated as a quadratic programming (QP) problem with a global
ptimum due to the quadratic and convex nature of Eq. (3) , the linear model Eq. (1a) , and
inear constraints Eqs. (5d) –(5f) 

ssumption 2. Optimal Control Problem: Matrices Q and R are defined by the designer.
or the uncertain system Eq. (1a) K and P can be obtained by solving an eigenvalues prob-

em (EVP) from a quadratic stability analysis using Lyapunov’s approach [7,47,48] , that makes
he A (δi ) + B(δi ) K matrix strictly stable. The sets X , U and X T ⊂ X are convex sets that con-
ain the origin in their interiors. For any instant of time the current state ˆ x k is assumed to be
easurable, the set �[ j] 

k ∀ j ∈ { 1 , 2, . . . , M} is generated according to Assumption 1 , and the
CP is assumed to find a feasible solution at that instant. 

.2.1. Number of scenarios 
Establishing an appropriate number of M possible realisations of uncertainties to be consid-

red to solve the OCP Eq. (5) is essential. This is because optimal solutions can be obtained
or a large number of realisations but at the expense of an excessive computational burden. On
he other hand, if number of realisations is small, an accurate approximation of the uncertainty
annot be achieved. For this reason, a certain balance [43] between the numerical tractability
nd quality of its solution is required. In [18,43] , this number is calculated according to a de-
ned probability level p ∈ [0, 1] of non-violation of constraints in the states P [ x i+1 | k ∈ X ] ≥ p,
6885 
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 very low confidence level β ∈ [0, 1] (e.g., β = 10 

−9 ) and the number of decision variables
 = n u N 

d−1 
 

j=0 

(
M 

j 

)
(1 − p) j p 

M− j ≤ β (6)

here M is the minimum value that satisfies Eq. (6) or by its approximation M ≥
( 2/ (1 − p) ) ( ln ( 1 /β) + d ) . 

As pointed out in Schildbach et al. [19] , a drawback to this random generation of scenarios
s that some may be far from the reality of the process, and consequently, the optimal con-
rols calculated can cause erroneous behaviour in the closed-loop system. To improve the cost
unction while P [ x i+1 | k ∈ X ] ≥ p holds for a sufficiently high number of M generated scenar-
os, D scenarios can be discarded [35] from the total of M scenarios constraints where D is
he maximum value that meets 

D + d − 1 

D 

) D+ d−1 ∑ 

j=0 

(
M 

j 

)
(1 − p) j p 

M− j ≤ β. (7)

In [19] , a sample-removal pair is proposed and consists of calculating the pair ( M, D) based
n a defined risk acceptability level of constraint violation ( 1 − p) such that P [ x i+1 | k ∈ X ] ≥ p,
here M is the number of scenarios to be considered in the OCP, D is the number of scenarios

hat can be discarded from the constraints in the states and ρ is a parameter related to the
imension of the unconstrained subspace of the search space R 

d 

∫ 1 

0 
U (v) dv ≤ 1 − p (8)

U (v) = min 

{
1 , 

(
D + ρ − 1 

D 

) D+ ρ−1 ∑ 

j=0 

(
M 

j 

)
v j (1 − v) M− j 

}
. 

The use of these scenario removal schemes represents an increase in the solution time,
hich could result in an OCP that is expensive to solve computationally. This is because of the
eed for large values for M to continue fulfilling P [ x i+1 | k ∈ X ] ≥ p with the remaining M −

scenarios; in addition to requiring an appropriate algorithm [19,35] to identify unlikely
cenarios to be removed from the constraints to reduce conservatism. 

. Model predictive control via conditional scenarios 

In this section, a novel scenario-based MPC approach is presented. At each sampling time,
 primary set of equiprobable scenarios is generated and is subsequently approximated to a
educed set of conditional scenarios, each with its probability of occurrence. This reduced
et is used to solve an OCP whose structure is similar to that of a scenario-based MPC Eq.
5) , but considers a new cost function in which the predicted states and inputs are penalised
ccording to the probabilities of occurrence associated with the realisations of the uncertainties
n which they depend. 

.1. Conditional scenario approach 

The conditional scenario (CS) concept was presented in Beltran-Royo [49] as an approxi-
ation to the two-stage stochastic mixed-integer linear programming (SMILP) problem, where
6886 
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he expected value of the second stage cost is commonly stated in terms of scenarios defined
s realisations of a random vector δ = [ ξ1 , ξ2 , . . . , ξn δ ] 

� . In this method such realisations are
ade assuming that δ has a known multivariate normal distribution and bounded support,

esulting in a set of so-called conditional scenarios, each with its respective probability of
ccurrence. 

The aforementioned CS approach was adapted in Beltran-Royo [50] as a scenario reduction
ethod for a given large primary set { ̃  δ[1] , ˜ δ[2] , . . . , ˜ δ[ S] } ∈ S of scenarios, whose lth scenario

nd its probability are ˜ δ[ l] = [ ̃  ξ
[ l] 
1 , ˜ ξ

[ l] 
2 , . . . , ˜ ξ [ l] 

n δ ] � and ˜ p 

[ l] , respectively, ∀ l ∈ { 1 , 2, . . . , S} .
uch reduction is made based on S and a desired number of points E to discretise the
upport of each random variable ˜ ξ , and leading to a new set of C conditional scenarios
 ̂

 δ[1] , ˆ δ[2] , . . . , ˆ δ[ C] } ∈ S C , each one ˆ δ[ j] = [ ̂  ξ
[ j] 
1 , ˆ ξ

[ j] 
2 , . . . , ˆ ξ

[ j] 
n δ ] � with its own probability of oc-

urrence ˆ p 

[ j] ∀ j ∈ { 1 , 2, . . . , C} . The methodology of Beltran-Royo [51,52] for the reduction
f a primary set through the CS approach is described in Algorithm 1 , and in which the

lgorithm 1 Conditional scenario reduction method. 

nput: the primary set of scenarios { ̃  δ[1] , ˜ δ[2] , . . . , ˜ δ[ S] } , their probability levels
 ̃  p 

[1] , ˜ p 

[2] , . . . , ˜ p 

[ S] } and a desired integer value for E . 
utput: the new set of C conditional scenarios { ̂  δ[1] , ˆ δ[2] , . . . , ˆ δ[ C] } and their respective prob-

bility levels { ̂  p 

[1] , ˆ p 

[2] , . . . , ˆ p 

[ C] } , where C = n δE . 
rocedure: 

1: For each random variable ˜ ξn ∀ n ∈ { 1 , 2, . . . , n δ} obtain its extreme values I n = [ a n , b n ] in
which 

a n = min { ̃  ξ [1] 
n , ˜ ξ [2] 

n , . . . , ˜ ξ [ S] 
n } , b n = max { ̃  ξ [1] 

n , ˜ ξ [2] 
n , . . . , ˜ ξ [ S] 

n } 
2: Split every I n into E subintervals I n,e of equal or different lengths such that I n = 

⋃ E 
e =1 I n,e

∀ e ∈ { 1 , 2, . . . , E } and { I n, 1 , I n, 2 , . . . , I n,E } = { [ a n , b n, 1 ) , [ b n, 1 , b n, 2 ) , . . . , [ b n, (E−1) , b n ] } . 
3: For each I n,e , construct the sets { ̃  δ[1] 

n,e , 
˜ δ[2] 
n,e , . . . , 

˜ δ[ S n ] 
n,e } , { ̃  p 

[1] 
n,e , ˜ p 

[2] 
n,e , . . . , ˜ p 

[ S n ] 
n,e } with every pair

( ̃  δ[ l] , ˜ p 

[ l] ) ∀ l ∈ { 1 , 2, . . . , S} that meet the condition 

˜ ξ [ l] 
n ∈ I n,e and compute its respective

CS 

ˆ δ[ n,e ] with probability level ˆ p 

[ n,e ] 

ˆ δ[ n,e ] = E [ ̃  δ | ˜ ξn ∈ I n,e ] = 

1 

S n 

S n ∑ 

j=1 

˜ δ[ j] 
n,e , ˆ p 

[ n,e ] = 

1 

n δ

S n ∑ 

j=1 

˜ p 

[ j] 
n,e 

umber of reduced scenarios is C = n δE , provided that at least one scenario of S fulfills the
ondition 

˜ ξ [ l] 
n ∈ I n,e . As can be seen in step 3, this approach, rather than filtering or reducing

cenarios, performs an approximation of S to a set of conditional expectations. 
In [52] and [50] , comparisons were made of the performance of this reduction technique

nd two others (such as sample average approximation (SAA) [53] and scenario reduction
ased on probability distances (SRD) [54] ) to solve portfolio optimisation and capacitated
acility location problems. These three techniques yielded similar results, but with less time
edicated to the reduction by the CS (up to eight times faster). 
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.2. Formulation of conditional scenarios in MPC 

In the following, a procedure that adapts the CS reduction approach to the scenario-based
PC framework is proposed. As a remark, a scenario in the SMILP context consists of a real-

sation of the random vector δ (with cardinality n δ), while in the scenario-based MPC context
his consists of a sequence of N realisations of δ represented by �k = { δ0| k , δ1 | k , . . . , δN−1 | k } .
n line with the above, let S S be a set (with cardinality S) of random scenarios generated at
ime k

{ �[1] 
k , �

[2] 
k , . . . , �

[ S] 
k } ∈ S S (9)

�
[ l] 
k = { δ[ l] 

0| k , δ
[ l] 
1 | k , . . . , δ

[ l] 
N−1 | k } , ∀ l ∈ { 1 , 2, . . . , S} 

here S S is assumed to be a set of equiprobable scenarios, that is, �[ l] 
k has a probability of

ccurrence p = 1 /S. Hence, each element of { δ[1] 
i| k , δ

[2] 
i| k , . . . , δ

[ S] 
i| k } has a probability p 

[ l] 
i| k = 1 /S

{ p 

[1] 
k , p 

[2] 
k , . . . , p 

[ S] 
k } , p 

[ l] 
k = { p 

[ l] 
0| k , p 

[ l] 
1 | k , . . . , p 

[ l] 
N−1 | k } 

p 

[ l] 
i| k = 1 /S, ∀ i ∈ { 0, 1 , . . . , N − 1 } . 

Based on Algorithm 1 , the proposed procedure to approximate a set of equiprobable sce-
arios S S Eq. (9) to a reduced set of conditional scenarios S C Eq. (10a) , with probabilities of
ccurrence Eq. (10b) (where 

∑ C 
j=1 ˆ p 

[ j] 
i| k = 1 ), in the context of scenario-based MPC is sum-

arised in Algorithm 2 . To do this, the integers C (number of desired CSs) and E (number
f subintervals) must first be defined taking into account that they must satisfy the condi-
ion C = n δE 

{ ̂  �
[1] 
k , ˆ �

[2] 
k , . . . , ˆ �

[ C] 
k } ∈ S C (10a)

{ ̂  p 

[1] 
k , ˆ p 

[2] 
k , . . . , ˆ p 

[ C] 
k } (10b)

ˆ �
[ j] 
k = { ̂  δ[ j] 

0| k , ˆ δ[ j] 
1 | k , . . . , ˆ δ[ j] 

N−1 | k } , ˆ p 

[ j] 
k = { ̂  p 

[ j] 
0| k , ˆ p 

[ j] 
1 | k , . . . , ˆ p 

[ j] 
N−1 | k } , ∀ j ∈ { 1 , 2, . . . , C} . 

The implementation of this procedure is straightforward, since Algorithm 2 does not require
n optimisation stage or knowledge about how the random variables are distributed to perform
he reduction. 

ssumption 3. Scenario Generation and Reduction: Defining the integers C and E such
hat C = n δE . At every control period, a new primary set of equiprobable scenarios S S is
enerated in accordance with Assumption 1 and is later approximated to the CSs reduced
et S C applying the steps of Algorithm 2 . 

To illustrate how Algorithm 2 works, Fig. 1 (a) shows a primary set S S of 500 scenarios for a
rediction horizon N = 3 , considering a random vector δ = [ ξ1 , ξ2 ] � with multivariate normal

istribution δ ∼ N 2 (μ, �) , mean μ = [0, 0] � , covariance � = 

[
1 . 0 0. 8 

0. 8 1 . 0 

]
and bounds | δ| ≤

2, 2] � . By setting E = 7 , a new set S C of 14 CSs is obtained. For both S S and S C , the
lements δ

[ ·] 
i| k of �

[ ·] 
k , and 

ˆ δ[ ·] 
i| k of ˆ �

[ ·] 
k are plotted on its corresponding i| k-step graph. As

llustrated in Fig. 1 (b), every approximation 

ˆ δ[ ·] 
i| k belonging to each CS, has a probability of
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Algorithm 2 From scenarios to conditional scenarios in MPC. 
Input: the primary set of equiprobable scenarios Eq. (9) and a desired integer E such that 
C = n δE . 
Output: the new set of CSs { ̂  �

[1] 
k , ˆ �

[2] 
k , . . . , ˆ �

[ C] 
k } and their respective probabilities sequences 

{ ̂  p 

[1] 
k , ˆ p 

[2] 
k , . . . , ˆ p 

[ C] 
k } . 

Procedure: 

1: Classify all the realisations of the uncertainties into N groups δi and p i ∀ i ∈ { 0, 1 , . . . , N −
1 } , with cardinality S so that each pair corresponds to the ith prediction step 

δi = { δ[1] 
i| k , δ

[2] 
i| k , . . . , δ

[ S] 
i| k } , p i = { p 

[1] 
i| k , p 

[2] 
i| k , . . . , p 

[ S] 
i| k } , p 

[ ·] 
i| k = 1 /S 

2: Apply Algorithm 1 to each pair ( δi , p i ) to obtain 

ˆ δ[ n,e ] 
i and its probability ˆ p 

[ n,e ] 
i , ∀ n ∈ 

{ 1 , 2, . . . , n δ} ∀ e ∈ { 1 , 2, . . . , E } 
3: Construct the new reduced set ˆ δi = { ̂  δ[1] 

i| k , ˆ δ[2] 
i| k , . . . , ˆ δ[ C] 

i| k } and its probabilities ˆ p i = 

{ ̂  p 

[1] 
i| k , ˆ p 

[2] 
i| k , . . . , ˆ p 

[ C] 
i| k } 

ˆ δi = { ̂  δ[1 , 1] 
i , . . . , ˆ δ[1 ,E ] 

i , . . . , ˆ δ[ nδ, 1] 
i , . . . , ˆ δ[ nδ,E ] 

i } 
ˆ p i = { ̂  p 

[1 , 1] 
i , . . . , ˆ p 

[1 ,E ] 
i , . . . , ˆ p 

[ nδ, 1] 
i , . . . , ˆ p 

[ nδ,E ] 
i } 

4: Randomly rearrange the ˆ δi and ˆ p i sequences ensuring that any pair ( ̂  δ
[ j] 
i| k , ˆ p 

[ j] 
i| k ) ∀ j ∈ 

{ 1 , 2, . . . , C} share the same positions. 
5: Construct jth conditional scenario 

ˆ �
[ j] 
k and its respective sequence of probabilities ˆ p 

[ j] 
k 

ˆ �
[ j] 
k = { ̂  δ[ j] 

0| k , ˆ δ[ j] 
1 | k , . . . , ˆ δ[ j] 

N−1 | k } , ˆ p 

[ j] 
k = { ̂  p 

[ j] 
0| k , ˆ p 

[ j] 
1 | k , . . . , ˆ p 

[ j] 
N−1 | k } 

6: Group them such that 

{ ̂  �
[1] 
k , ˆ �

[2] 
k , . . . , ˆ �

[ C] 
k } , { ̂  p 

[1] 
k , ˆ p 

[2] 
k , . . . , ˆ p 

[ C] 
k } 

o  

t  

3

 

b  

s  

l  

s  

m
 

o  

A  
ccurrence in accordance with the number of primary scenarios surrounding it. Considering

he first CS (coloured yellow), its values are ˆ �
[1] 
k = { 

[
0. 0553 

−0. 0085 

]
, 

[
0. 5295 

0. 4130 

]
, 

[−1 . 0872 

−0. 8625 

]
} with

ˆ p 

[1] 
k = { 0. 118 , 0. 109 , 0. 062} . 

.3. Cost function and control problem 

As mentioned in the previous section, two of the most important drawbacks in scenario-
ased MPC are the unlikely scenarios that could cause undesired behaviour in the closed-loop
ystem, and the computational tractability when the number of scenarios to be considered is
arge. For this reason, an approximation of the primary set of equiprobable scenarios to a
et of conditional scenarios is suitable since it would allow addressing both the drawbacks
entioned above. 
Given current instant k and according to Assumption 3 , consider S S the primary set

f generated scenarios Eq. (9) for N steps, whose subsequent approximation through
lgorithm 2 produces the new reduced set S C given by Eq. (10) . The value of C can be
6889 



E. González, J. Sanchis, J.V. Salcedo et al. Journal of the Franklin Institute 360 (2023) 6880–6905 

Fig. 1. Illustrative example of Algorithm 2 . (a) The primary set S S of 500 equiprobable scenarios (plus signs) for a 
prediction horizon N = 3 , the new reduced set S C of 14 CSs (each with their respective single-coloured dots), and 
the origin (black rhombus). (b) Probabilities of occurrence of the ˆ δ[ ·] 

i| k of each scenario at each time-step. 

d  

t  

l
 

i  

J  

T  

t  

i  

t  
efined according to any criterion, e.g., Eqs. (6) –(8) . In the case of using one of the last
wo mentioned schemes, the scenarios to be removed from the constraints are those with the
owest probability of occurrence. 

Evaluating Eqs. (4a) and (4b) with Eq. (10a) , produces the predictions of the states and
nputs for such reduced scenarios, which are then incorporated in the cost function given by

ˆ 
 CS ( ̂  x k , v k ) = 

1 

C 

C ∑ 

j=1 

[ N−1 ∑ 

i=0 

(
ˆ p 

[ j] 
i−1 | k ‖ x [ j] i| k ‖ 2 Q 

+ ˆ p 

[ j] 
i| k ‖ u 

[ j] 
i| k ‖ 2 R 

)
+ ˆ p 

[ j] 
N−1 | k ‖ x [ j] N | k ‖ 2 P 

] 
. (11)

his new function, in addition to taking into account the terms x [ j] i| k and u 

[ j] 
i| k , also includes

he set of probabilities Eq. (10b) as weights. This means that, the predicted state x [ j] i| k and

nput u 

[ j] 
i| k , which depends on the realisations ˆ δ[ j] 

i−1 | k and 

ˆ δ[ j] 
i| k , respectively, are penalised with

he probability of occurrence ˆ p 

[ j] 
i−1 | k and ˆ p 

[ j] 
i| k that are associated with such a realisation, where

ˆ p 

[ j] 
−1 | k = 1 /C since x [ j] 0| k = ˆ x k . 
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Fig. 2. Block diagram of CSB-MPC. 
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Thus, the control problem to be solved in the context of conditional scenario-based model
redictive control (CSB-MPC) is stated in Eq. (12) . In addition, in Fig. 2 the schematic
iagram of its operation is depicted 

min 

v 0| k ,v 1 | k , ... ,v N−1 | k 
ˆ J CS ( ̂  x k , v k ) (12a)

.t. 

x [ j] i+1 | k = A ( ̂  δ
[ j] 
i| k ) x 

[ j] 
i| k + B( ̂  δ

[ j] 
i| k ) u 

[ j] 
i| k + Gw( ̂  δ

[ j] 
i| k ) (12b)

u 

[ j] 
i| k = K x [ j] i| k + v i| k (12c)

x [ j] i+1 | k ∈ X (12d)

u 

[ j] 
i| k ∈ U (12e)

x [ j] N | k ∈ X T (12f)

x [ j] 0| k = ˆ x k , ˆ p 

[ j] 
−1 | k = 1 /C (12g)

∀ i ∈ { 0, 1 , . . . , N − 1 } , ∀ j ∈ { 1 , 2, . . . , C} (12h)
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As can be seen, the structure of Eq. (12) is similar to that of Eq. (5) , but with the difference
hat this new structure is based on a reduced set S C , obtained through the reduction stage,
nd the new cost function Eq. (11) . 

The OCP Eq. (12) covers the topic related to unlikely scenarios by giving more relevance
o the states and inputs that involve realisations with more probability of occurrence, and
ess importance given to those that are related to unlikely realisations, by means of their
ssociated probabilities. Likewise, according to Theorem 3.1 in Calafiore [43] and Theorem
.1 in Campi and Garatti [35] , it holds that any optimal solution v ∗k obtained by the scenario
rogram Eq. (12) , using C conditional scenarios, with C defined using either Eqs. (6) and (7) ,
as a guaranteed level 1 − β of feasibility, in a probabilistic sense, of meeting the probabilistic
onstraints P [ x i+1 | k ∈ X ] ≥ p. 

On the other hand, if solving Eq. (12) for C conditional scenarios presents better the
robability of constraints satisfaction, compared to solving Eq. (5) for C random equiprobable
cenarios, the topic related to computational tractability can be improved using a CSB-MPC
ith a number of conditional scenarios smaller than C. 
Recursive feasibility and stability in MPC is to ensure that the OCP is always feasible and

hat the system states, over time, converge asymptotically to a desired operating point. Based
n the dual paradigm, recursive feasibility and stability are obtained through the terminal cost
 x N ‖ 2 P , the terminal set X T and additional conditions [42,45] . If the initial state x 0 belongs
o the feasible set X f ⊂ X , there will exist a parametrised control law u i = K x i + v i ( ∀ i ∈
 0, 1 , . . . , N − 1 } ), whereby the states converge asymptotically to the origin, such that x N ∈
 T . For instants from N , the system is governed by the law u i = K x i ( ∀ i ∈ { N, N + 1 , . . . } ),

or which X T is positively invariant, ensuring that the OCP is feasible indefinitely. 
In a Scenario-based MPC in the current form of Eqs. (5) and (12) , recursive feasibility and

tability remains a subject of research. This is because Eq. (1a) considers both parametric and
dditive uncertainties, with a δ of stochastic nature, where all elements of the sequence of
ncertainties { δ0 , δ1 , . . . } are assumed to be independent and identically distributed (i.i.d.), i.e.,
ndependent in time; and whose δ characteristics can be time-varying in nature. An unbounded

can produce realisations with very large values of the uncertainties, making the OCP unable
o find a solution that satisfies the constraints, while a bounded δ, as proposed in this work
nd as is the case in most real processes, prevents these large and unlikely realisations from
ppearing, besides allowing the calculation of an appropriate cost ‖ x N ‖ 2 P and a robust invariant
et X T to be obtained. 

A practical way to ensure that the OCP Eq. (12) is always feasible is by introducing slack
ariables that soften the constraints [18,20] . These new decision variables are incorporated
nd penalised in the cost function to force their values to be zero if an optimum solution can
e obtained without violating the softened constraints. 

On the other hand, a combination (through Algorithm 2 to extract the most representative
cenarios of S S ) with approaches based on offline uncertainty sampling [12,16,17,26] (which
n general use either Eqs. (6) and (7) ) can be used to guarantee the recursive feasibility and
tability of Eq. (12) but require that the characteristics of the uncertainties (mean, covariance,
ounds) remain invariant, thus missing the attractiveness of the approach, which is the pos-
ibility to include new uncertainty data online, which may be the case for several processes.
or example, in Lorenzen et al. [12] , a first-step constraint D R and a terminal set X T are
roposed, considering that Eq. (1a) has only parametric uncertainties, bounded and with i.i.d.
equences. In [26] , a constraint for MPC initialisation, and a terminal robust invariant set
 T are proposed employing probabilistic reachable sets (PRS), considering that Eq. (1a) has
6892 
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x

nly additive uncertainties, whose sequences are time-correlated (non-i.i.d.) and possibly un-
ounded. In [17] , a system Eq. (1a) with only additive and unbounded uncertainties with
.i.d. sequences is considered. As in Hewing and Zeilinger [26] , it uses PRS to address prob-
bilistic constraints; feasibility and stability are addressed by incorporating slack variables in
he initial state constraints (called therein as flexible initial state constraint) and a robustly
nvariant terminal set, respectively. 

In this work, in order to maintain the classical formulation of a scenario-based MPC, the
easibility of the OCP at each time-step is assumed according to Assumption 2 . 

. Numerical examples 

In this section, two numerical examples are presented to illustrate and compare
he behaviour of a scenario-based MPC Eq. (5) and a CSB-MPC Eq. (12) for N r =
000 Monte Carlo simulations each. In both techniques, at each control period, a primary
et S S of scenarios is generated where the OCP Eq. (5) in the scenario-based MPC (for sim-
licity, hereafter referred to as ScMPC) is solved by considering M scenarios taken randomly
rom S S . The CSB-MPC Eq. (12) is solved for C conditional scenarios obtained from the
eduction of S S by applying Algorithm 2 . In each simulation, the purpose of each MPC strat-
gy is to control the system and steer its states from the initial point x [ j] 0| k = ˆ x 0 to the origin
assuming that the current state is measurable). 

All N r simulations were carried out using Matlab R2018b, installed on a standard com-
uter and the control actions were calculated with the quadprog toolbox [55] available in
he Mosek 9.2. optimisation software. Through a stability analysis of Lyapunov’s [7,48] ,
 and P matrices were computed using YALMIP [56] to solve a problem based on linear
atrix inequalities; and the robust invariant set X T , consisting of a polytope, was computed

sing the multi-parametric toolbox (MPT) [57] . Readers can reproduce the simulation results
ere presented or simulate an CSB-MPC with the specialised software conditional scenario-
ased MPC toolbox as developed by the authors and available in MATLAB Central [58] . 

The behaviour of both MPC strategies is analysed by means of performance indices, which
ere computed based on the N r closed-loop state responses and inputs. These are: 

• p s = 100 ( N s /N r ) : probability (in percentage) of success of a simulation, where N s is the
number of simulations out of all N r where no constraints were violated. 

• p c : the minimum probability (in percentage) that all states do not violate the constraints. 
• N v : the total number of constraints that were violated in all simulations. 
• PD avg : average percentage of deviation of violated constraints in the states. 
• IAE avg : mean value of the integral absolute error of all states. 
• IAU avg : mean value of the integral of the absolute value of the applied inputs. 
• t avg : average time taken by the MPC algorithm to obtain a solution. For ScMPC and CSB-

MPC, this time also includes the times it takes to generate the primary set S S , plus select M
or approximate to C scenarios, depending on the case. 

.1. Example 1 

Consider the second order discrete system in the form Eq. (1a) , given by 

 i+1 = 

[
1 0. 93 

0 1 

]
x i + 

[
0. 28 

0. 82 

]
u i + 

[
1 0 

0 1 

]
w(δi ) . 
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Table 1 
Performance indices of the MPCs in Example 1 for a S S of 5000 scenarios. 

Controller p s p c N v PD avg IAE avg IAU avg t avg 

ScMPC 100 92. 8% 98 . 8% 74 1 . 22% 69.054 4.239 22.0 ms 
CSB-MPC 100 98 . 1% 99 . 6% 19 0. 20% 69.554 4.198 43.8 ms 
ScMPC 80 91 . 0% 98 . 6% 93 1 . 34% 68.925 4.251 19.1 ms 
CSB-MPC 80 97 . 7% 99 . 6% 23 0. 26% 69.492 4.201 38.2 ms 
ScMPC 60 87 . 8% 98 . 0% 127 1 . 53% 68.728 4.268 16.3 ms 
CSB-MPC 60 96 . 9% 99 . 3% 31 0. 35% 69.399 4.207 31.7 ms 
ScMPC 40 81 . 4% 96 . 5% 201 1 . 88% 68.387 4.300 13.1 ms 
CSB-MPC 40 95 . 1% 99 . 1% 49 0. 52% 69.216 4.217 25.0 ms 
ScMPC 20 63 . 9% 94. 6% 424 2. 81% 67.643 4.390 10.1 ms 
CSB-MPC 20 87 . 7% 98 . 2% 131 0. 98% 68.649 4.250 18.3 ms 
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The sampling time is T s = 0. 5 s, the system state and input constraints are | x 2 | ≤ 1
or the second state and | u| ≤ 0. 8 , respectively. The two random variables, ξ1 and ξ2 ,
ontained in the vector of additive disturbances w ( δi ) = [ ξ1 ,i , ξ2,i ] � make up the random
ector δ = [ ξ1 , ξ2 ] � ( n δ = 2), which has a truncated multivariate normal distribution δ ∼
 2 (μ, �) with bounds | δ| ≤ [0. 05 , 0. 2] � ; and a mean vector μ = [0, 0] � and covariance

atrix � = 

[
0. 0004 0. 0017 

0. 0017 0. 01 

]
. 

.1.1. Simulation setup 

The performances in this example of a ScMPC and a CSB-MPC for various M, C =
 100, 80, 60, 40, 20} used to solve the OCP are compared for the cases of primary sets S S , con-
isting of 5000 and 1200 scenarios. All elements in this sequence meet the condition C = n δE 

see Assumption 3 ), and through Eq. (6) , with β = 10 

−9 , their theoretical probabilities of con-
traints satisfaction P [ x i+1 ∈ X ] ≥ p t are p t (M, C) = { 57 . 5% , 49 . 5% , 37 . 5% , 20. 2% , 0. 52% } .
he duration of each of the N r simulations in both MPCs is 20 sampling periods, start-

ng from the initial state x [ j] 0| k = ˆ x 0 = [8 , 0. 7] � . The prediction horizon is N = 15 , the cost
unction weights are Q = diag (1 , 1) and R = 0. 1 ; the terminal set X T consisting of a poly-
ope of 6 linear inequalities and K and P matrices are K = 

[−0. 7421 −1 . 5891 

]
and

 = 

[
2. 3026 0. 8572 

0. 8572 1 . 6983 

]
, respectively. 

.1.2. Results 
Tables 1 and 2 show the performance results of each MPC for the primary sets S S (5000)

nd S S (1200) , respectively. The first column corresponds to the type of controller, whose
ubscript indicates the number of scenarios used to solve its respective OCP. The subsequent
olumns indicate the performance indices, as defined at the beginning of this section and
hich were computed based on the N r closed-loop responses. Furthermore, these indices are
epicted in Fig. 3 (a) and (b), in which the orange and blue lines represent those in Tables 1 and
 , respectively. 

Both tables reveal that for the two cases of S S primary sets, CSB-MPCs obtained higher
onstraint satisfaction probabilities p s and p c than ScMPCs; where, according to Fig. 3 (a)
 greater difference is noted as the number of scenarios decreases. Likewise, it is verified
6894 
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Fig. 3. Graphs of the performance indices from Tables 1 ( S S (5000) , orange lines) and 2 ( S S (1200) , blue lines), 
corresponding to ScMPC (dashed lines) and CSB-MPC (solid lines), for 20, 40, 60, 80 and 100 scenarios. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

Table 2 
Performance indices of the MPCs in Example 1 for a S S of 1200 scenarios. 

Controller p s p c N v PD avg IAE avg IAU avg t avg 

ScMPC 100 91 . 6% 98 . 5% 87 1 . 27% 69.051 4.238 18.3 ms 
CSB-MPC 100 98 . 5% 99 . 7% 15 0. 24% 70.180 4.173 26.6 ms 
ScMPC 80 89 . 4% 98 . 3% 111 1 . 46% 68.924 4.250 15.7 ms 
CSB-MPC 80 97 . 9% 99 . 6% 21 0. 27% 69.843 4.190 22.2 ms 
ScMPC 60 86 . 2% 97 . 9% 144 1 . 72% 68.721 4.270 13.1 ms 
CSB-MPC 60 96 . 9% 99 . 5% 31 0. 38% 69.509 4.207 18.1 ms 
ScMPC 40 80. 3% 97 . 1% 217 2. 13% 68.380 4.304 10.6 ms 
CSB-MPC 40 95 . 0% 99 . 2% 50 0. 57% 69.207 4.218 14.1 ms 
ScMPC 20 66 . 0% 94. 5% 415 2. 83% 67.652 4.396 8 . 2 ms
CSB-MPC 20 87 . 4% 98 . 0% 133 1 . 04% 68.624 4.251 10.5 ms 

t  

p
 

p  

c  

S  

j  

M  
hat the empirical probabilities p s of the CSB-MPCs satisfy the theoretical probabilities p t ,
resenting values significantly above the estimated ones. 

Moreover, this improvement in the probability of constraint satisfaction by CSB-MPCs
roduces lower numbers of violated constraints N v and lower percentages of deviations from
onstraints PD avg than ScMPCs, being almost one-third of those reported by ScMPCs (e.g.,
cMPC 20 and CSB-MPC 20 in Table 1 ). In addition, Fig. 4 shows the closed-loop state tra-

ectories and applied inputs for M, C = 20 in Table 2 , contrasted with those of a standard
PC with constraints (in which p s = 0. 1% and p c = 46 . 5% ) that is based on the nominal
6895 



E. González, J. Sanchis, J.V. Salcedo et al. Journal of the Franklin Institute 360 (2023) 6880–6905 

Fig. 4. 1000 system closed-loop responses and applied inputs to a standard MPC with constraints (light brown solid 
lines), ScMPC 20 (light blue solid lines) and CSB-MPC 20 (light red solid lines) controllers, for a S S of 1200 Scenarios. 
The brown dotted line, blue dashed line, and red dash-dotted line represent the mean trajectories of standard MPC, 
ScMPC and CSB-MPC, respectively; and the system constraints, | x 2 | ≤ 1 . 0, | u| ≤ 0. 8 , represented by black dashed 
lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

m  

(  

(
 

n  

t
 

i  

a  

s  
odel of the system. As can be seen in the detailed view, the state trajectories of the ScMPC
 N v = 415 , PD avg = 2. 83% ) transgress the limits, more times than those of the CSB-MPC
 N v = 133 , PD avg = 1 . 04% ), which has better probabilities p s and p c . 

Note that for both primary sets S S = 5000 and S S = 1200 (see Fig. 3 ), the CSB-MPC do
ot show considerable variations in indicators p s , p c , N v and PD avg , as is the case for indicator
 avg , which decreases with S S (1200) , approaching those of the ScMPC. This decrease in t avg

s because the time used in the additional scenario-reduction stage of the CSB-MPC, is less
s the primary set to approximate is smaller. With this in mind and with an appropriately
ized S S , a CSB-MPC against a ScMPC with the same number of scenarios is a good option
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Fig. 5. Quadruple tank process schematic diagram. 
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ue to its higher probabilistic feasibility of constraints satisfaction, with similar solution times
 avg . Furthermore, in case of needing a decrease in the solution time t avg , a CSB-MPC with
 smaller number of scenarios than a ScMPC could be used. For example, considering the
PCs in Table 2 , if similar performance indices to those of the ScMPC 100 ( t avg = 18 . 3 ms)

re required, but with a lower solution time, the CSB-MPC 60 ( t avg = 18 . 1 ms) or CSB-MPC 40

 t avg = 14. 1 ms) could be used. Note that the others ScMPC reported in Table 2 do not offer
imilar or superior characteristics to those required, as do the mentioned CSB-MPCs, which
ven offer higher probabilities, lower violated constraints N v and lower PD avg . 

Regarding indicators IAE avg and IAU avg , both controllers presented similar values with
light variations and close to 69 and 4.2, respectively, which compared to those of a MPC with
 perfect forecast ( IAE pf = 60. 969 and IAU pf = 4. 304), they are close to IAU pf but, because
f uncertainties, considerably above IAE pf . In some moments, in all the MPC simulations,
he states exceeded their allowed limits. This was not the case for the applied inputs, which
eached their allowed values without violating them. 

.2. Example 2 

This example consists of a quadruple tank process [27] whose schematic diagram is de-
icted in Fig. 5 and whose control objective is to maintain the liquid level in the tank T i
 i ∈ { 1 , 2, 3 , 4} at a desired setpoint h i by means of the flow rates Q 1 and Q 2 delivered by
umps 1 and 2, respectively. These flows are proportional to the applied voltage Q 1 = k 1 v 1 ,
 2 = k 2 v 2 and are subsequently split by the valves in proportions determined by the param-

ters γ1 , γ2 ∈ [0, 1] . 
The nonlinear equations of this system and its discrete time linear model, for a sampling

ime T s = 5 s, in the form Eq. (1a) are described in the Appendix and whose state x =
 x 1 , x 2 , x 3 , x 4 ] � and input u = [ u 1 , u 2 ] � vectors represent the deviations of the liquid levels in
entimetres and voltages from the selected operating point, respectively. 

The constraints on the system states are [ −1 . 2, −1 . 2] � ≤ [ x 3 , x 4 ] � ≤ [1 . 2, 1 . 2] � cm , cor-
esponding to the deviations in the liquid levels in tanks 3 and 4. Similarly, the constraints
n the inputs are [ −1 . 0, −1 . 0] � ≤ [ u 1 , u 2 ] � ≤ [1 . 0, 1 . 0] � V , which corresponds to the vari-
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Table 3 
Performance indices of the MPCs in Example 2 for a S S of 10, 000 scenarios. 

Controller p s p c N v PD avg IAE avg IAU avg t avg 

ScMPC 330 92. 0% 96 . 6% 88 1 . 40% 76.702 18.772 678 ms 
CSB-MPC 330 92. 7% 96 . 9% 79 1 . 32% 76.699 18.760 780 ms 
ScMPC 240 90. 9% 96 . 2% 99 1 . 45% 76.703 18.777 463 ms 
CSB-MPC 240 92. 5% 96 . 9% 82 1 . 37% 76.699 18.761 554 ms 
ScMPC 150 89 . 5% 95 . 6% 115 1 . 55% 76.707 18.789 314 ms 
CSB-MPC 150 91 . 2% 96 . 7% 95 1 . 40% 76.700 18.764 393 ms 
ScMPC 90 86 . 7% 94. 8% 144 1 . 78% 76.712 18.804 205 ms 
CSB-MPC 90 89 . 0% 95 . 9% 118 1 . 51% 76.704 18.771 267 ms 
ScMPC 60 83 . 9% 94. 0% 175 1 . 94% 76.718 18.823 154 ms 
CSB-MPC 60 85 . 9% 94. 8% 152 1 . 68% 76.708 18.779 203 ms 
ScMPC 42 80. 1% 92. 8% 220 2. 03% 76.728 18.848 78 ms
CSB-MPC 42 80. 8% 93 . 0% 213 1 . 84% 76.713 18.789 124 ms 

a  

i  

t  

t

�

4
 

s  

T  

fi  

t  

{  

p  

[  

w  

p

K

4
 

S  
tions in the voltages applied to the pumps 1 and 2. All uncertainties ( n δ = 6 ) are stacked
n the random vector δ = [ ξ1 , ξ2 , . . . , ξ6 ] � , which has a truncated multivariate normal dis-
ribution δ ∼ N 6 (μ, �) , with bounds | δ| ≤ [0. 01 , 0. 01 , 0. 17 , 0. 17 , 0. 17 , 0. 17] � , mean vec-
or μ = [0, 0, 0, 0, 0, 0] � , and covariance matrix � with value 

= 10 

−3 ×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0. 0250 0. 0225 0 0 0 0 

0. 0225 0. 0250 0 0 0 0 

0 0 6 . 40 0 0 5 . 12 

0 0 0 6 . 40 5 . 12 0 

0 0 0 5 . 12 6 . 40 0 

0 0 5 . 12 0 0 6 . 40 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

.2.1. Simulation setup 

In this example, the performances of a ScMPC and a CSB-MPC for a primary
et S S consisting of 10, 000 and a smaller set of 1300 scenarios are compared.
he numbers of scenarios selected are M, C = { 330, 240, 150, 90, 60, 42} , which ful-
l the condition C = n δE (see Assumption 3 ), and through Eq. (6) , with β = 10 

−9 ,
heir theoretical probabilities of constraints satisfaction P [ x i+1 ∈ X ] ≥ p t are p t (M, C) =
 81 . 3% , 74. 9% , 62. 0% , 42. 5% , 24. 2% , 9 . 0% } . The duration of each simulation is 40 sam-
ling periods for both MPCs and the nonlinear system initial state is x [ j] 0| k = ˆ x 0 =
 −6 . 7 , −6 . 5 , −1 , −1] � . The MPCs parameters are prediction horizon N = 12, cost function
eights matrices Q = diag (3 , 3 , 1 , 1) and R = I 2 . The robust invariant set X T consisting of a
olytope of 54 hyperplanes, and K and P matrices are 

 = 

[−0. 4824 −0. 4075 −0. 2635 0. 0484 
−0. 2867 −0. 3645 0. 0402 −0. 3402 

]
, P = 

⎡ 

⎢ ⎢ ⎣ 

5 . 0037 2. 0305 −0. 5713 −0. 4862 
2. 0305 5 . 0796 −0. 6271 −0. 4581 

−0. 5713 −0. 6271 1 . 7320 0. 1207 
−0. 4862 −0. 4581 0. 1207 1 . 5524 

⎤ 

⎥ ⎥ ⎦ 

. 

.2.2. Results 
Tables 3 and 4 show the performance results of each MPC for cases S S (10, 000) and

 S (1300) , respectively; where, as in Example 1, the first column corresponds to the type
6898 



E. González, J. Sanchis, J.V. Salcedo et al. Journal of the Franklin Institute 360 (2023) 6880–6905 

Fig. 6. Graphs of the performance indices from Tables 3 ( S S (10, 000) , orange lines) and 4 ( S S (1300) , blue lines), 
corresponding to ScMPC (dashed lines) and CSB-MPC (solid lines), for 42, 60, 90, 150, 240 and 330 scenarios. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Performance indices of the MPCs in Example 2 for a S S of 1300 scenarios. 

Controller p s p c N v PD avg IAE avg IAU avg t avg 

ScMPC 330 91 . 8% 96 . 5% 89 1 . 46% 76.703 18.770 577 ms 
CSB-MPC 330 95 . 1% 98 . 1% 52 1 . 36% 76.682 18.725 572 ms 
ScMPC 240 90. 3% 95 . 8% 104 1 . 35% 76.702 18.775 415 ms 
CSB-MPC 240 92. 4% 96 . 9% 83 1 . 40% 76.698 18.759 407 ms 
ScMPC 150 89 . 6% 95 . 7% 113 1 . 62% 76.707 18.784 238 ms 
CSB-MPC 150 90. 7% 96 . 4% 100 1 . 40% 76.702 18.768 247 ms 
ScMPC 90 87 . 0% 94. 7% 141 1 . 83% 76.713 18.800 141 ms 
CSB-MPC 90 88 . 5% 95 . 8% 123 1 . 53% 76.705 18.775 149 ms 
ScMPC 60 84. 1% 93 . 8% 175 2. 01% 76.723 18.820 95 ms
CSB-MPC 60 85 . 7% 94. 8% 155 1 . 73% 76.709 18.782 100 ms 
ScMPC 42 79 . 8% 92. 0% 225 2. 10% 76.730 18.844 67 ms
CSB-MPC 42 80. 3% 92. 7% 217 1 . 86% 76.714 18.792 71 ms

o  

b  

n  

o
 

o  

t  

s
 

f controller and the subsequent columns indicate the performance indices as defined at the
eginning of this section (which were computed based on the N r closed-loop responses of the
onlinear system). Furthermore, these indices are depicted in Fig. 6 (a) and (b), in which the
range and blue lines represent those in Tables 3 and 4 , respectively. 

As in Example 1, it is verified that the CSB-MPCs obtained higher empirical probabilities
f constraint satisfaction p s and p c than ScMPCs; and their p s are significantly above the
heoretical probabilities of constraint satisfaction p t , signifying higher feasibility of an OCP
olution, in a probabilistic sense. Moreover, the CSB-MPCs reported better N v and PD avg
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Fig. 7. Nonlinear system responses to a ScMPC 330 , CSB-MPC 330 and CSB-MPC 42 controllers, for a S S of 1300 
Scenarios. The 1000 closed-loop trajectories and applied inputs (thin solid lines), mean trajectory (thick solid lines), 
mean trajectory with standard deviation (dotted lines), minimum and maximum values (blue dashed lines) and 
constraints (black dashed lines) | x 3 | , | x 4 | ≤ 1 . 2, | u 1 | , | u 2 | ≤ 1 . 0. (a) ScMPC 330 . (b) CSB-MPC 330 . (c) CSB-MPC 42 . 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

i  

o
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m  

C  

t  

N  

l  

l
 

s  

 

ndices than the ScMPCs, except for the case M, C = 240 in Table 4 , where the CSB-MPC
btained a slightly higher PD avg , but with fewer constraints violated. 

The closed-loop trajectories of the nonlinear system and the applied inputs for ScMPC 330 ,
SB-MPC 330 , and CSB-MPC 42 in Table 4 are shown in Fig. 7 (a)–(c), respectively. In Fig. 7 (a)
nd (b), very similar behaviours are observed by both controllers; however, the best perfor-
ances are presented by the CSB-MPC 330 (see Fig. 6 ). Comparing the performances of
SB-MPC 330 con CSB-MPC 42 , it is noted that a decrease in the number of scenarios use

o solve the OCP leads to an increase in the number of trajectories that violate the limits.
evertheless, the mean trajectories with standard deviations (dotted lines) are kept within the

imits (black dashed lines), indicating that the probability that a state is within the allowed
imits is at least 68%. 

As in Example 1, it is observed for a CSB-MPC that the solution time t avg decreases
ignificantly as the primary set becomes small, but does not significantly alter the probabilities

p s and p c . This can be seen for the S S (1300) case in Fig. 6 (a), where the t avg times of the
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u  
SB-MPC are very close to those of a ScMPC, in some cases lower; e.g., CSB-MPC 240 and
SB-MPC 330 in Table 4 . These CSB-MPCs mentioned, in addition to having shorter solution

imes t avg than their corresponding ScMPC, have better p s , p c and N v . In this way, with
uitable size of S S , if an improvement of the time t avg is required, a CSB-MPC is a viable
lternative compared to a ScMPC. For example, if similar or superior performance indices
o those of the ScMPC 330 ( t avg = 577 ms) in Table 4 are required, but with a lower solution
ime, the CSB-MPC 240 ( t avg = 407 ms) with a 170 ms quicker solution time could be used. 

The lowest IAE avg and IAU avg indicators where obtained by the CSB-MPCs, although
ery similar to those of ScMPC at values close to IAE avg = 76 . 7 and IAU avg = 18 . 8 , which
ompared to those of a MPC with a perfect forecast, they are close to IAE pf = 74. 908 and
AU pf = 19 . 440. In the same way as in Example 1, the closed-loop trajectories exceeded their
llowed limits at some moments in all the simulations in both controllers. The inputs applied
nitially reached their allowed maximums without transgressing them. 

.3. Final comments 

As a summary of Examples 1 and 2, the results show that a CSB-MPC compared to a
cMPC with the same number of scenarios offers a better probability of constraint satisfaction
nd above the theoretical one, increasing the feasibility of an OCP solution, in a probabilistic
ense. Such better probabilities of the CSB-MPC represent a decrease in the number of times
onstraints are violated and the deviation from the limits violated. 

Furthermore, a decrease in the size of the primary set S S does not significantly alter the
robabilities of constraints satisfaction in a CSB-MPC, but it can significantly reduce the time
t takes for the OCP to find a solution, even close to that of a ScMPC, or in some cases
maller. 

. Conclusion 

A novel model predictive control approach is introduced in this paper. This MPC scheme,
alled conditional scenario-based model predictive control (CSB-MPC), is designed for
iscrete-time linear systems affected by correlated and bound parametric uncertainties and/or
dditive disturbances. In this approach, a primary set of equiprobable and randomly generated
cenarios is approximated to a set of conditional scenarios with their respective probabilities
f occurrence. These are incorporated in the cost function of an optimal control problem
here the predicted states and inputs are penalised according to the probabilities associated
ith the uncertainties on which they depend. 
The performances of the CSB-MPC and those of a scenario-based MPC were compared

sing two numerical examples, whose results showed greater empirical probabilities of con-
traints satisfaction and less distance outside the constraints by the former, even when the
SB-MPCs have a smaller number of scenarios than the scenario-based MPCs. Moreover, for
 smaller primary set, the CSB-MPC offers similar solution times, in some cases shorter than
hose of a standard scenario-based MPC. Consequently, if a trade-off between the level of
onstraints satisfaction and the computational tractability is required, using a CSB-MPC with
 smaller number of scenarios than a scenario-based MPC is a viable option. 

Future research directions will concentrate on issues such as defining the theoretical prop-
rties of feasibility and stability of the proposed approach, both for bounded and unbounded
ncertainties; as well as analysing in more detail the influence of the prediction horizon
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ength, cost function weights, size of the primary set and the number of scenarios on the
ffectiveness of the technique in order to develop a selection principle for these parameters. 
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ppendix A 

By performing a mass balance and applying Bernoulli’s law, the equations of the quadruple
ank process [27] in Fig. 5 are 

 1 ̇  h 1 = −a 1 

√ 

2gh 1 − a 12 sgn (�h) 
√ 

2g| �h| + β2 v 2 

 2 ̇  h 2 = −a 2 

√ 

2gh 2 + a 12 sgn (�h) 
√ 

2g| �h| + β1 v 1 

 3 ̇  h 3 = a 1 

√ 

2gh 1 − a 3 

√ 

2gh 3 + γ1 k 1 v 1 

 4 ̇  h 4 = a 2 

√ 

2gh 2 − a 4 

√ 

2gh 4 + γ2 k 2 v 2 

here A i and a i are the cross section of the tank i and its base outlet pipe, respectively;
 12 is the cross section of the pipe connecting T 1 and T 2 , g is the gravity; β1 = (1 − γ1 ) k 1 ,
2 = (1 − γ2 ) k 2 and �h = h 1 − h 2 . 

By linearising the above equations around the operating point P 

o = { h 

o 
1 =

 . 873 cm , h 

o 
2 = 8 . 187 cm , h 

o 
3 = 7 . 720 cm , h 

o 
4 = 8 . 039 cm , v o 1 = 4. 0 V , v o 2 = 3 . 5 V } with

 i = 144 cm 

2 ; a 1 , a 2 , a 12 = 0. 352 cm 

2 ; a 3 = 1 . 006 + ξ1 cm 

2 , a 4 = 1 . 006 + ξ2 cm 

2 ;
 1 , k 2 = 33 . 333 cm 

3 / (V.s) ; γ1 = 0. 6 , γ2 = 0. 7 , g = 981 cm / s 2 . By discretising with a
ampling time T s = 5 s the resulting equations using Euler’s approximation, and taking into
ccount additive disturbances caused by other hydraulic connections, we obtain the discrete
ime model of the form Eq. (1a) 

 i+1 = A (δi ) x i + Bu i + Gw(δi ) 

ith 

 ( δi ) = 

⎡ 

⎢ ⎢ ⎣ 

0. 421 0. 483 0 0 

0. 483 0. 422 0 0 

0. 097 0 0. 722 − 0. 277 ξ1 ,i 0 

0 0. 095 0 0. 727 − 0. 271 ξ2,i 

⎤ 

⎥ ⎥ ⎦ 

, 

B = 

⎡ 

⎢ ⎢ ⎣ 

0 0. 347 

0. 463 0 

0. 694 0 

0 0. 810 

⎤ 

⎥ ⎥ ⎦ 

, G = I 4 . 
6902 



E. González, J. Sanchis, J.V. Salcedo et al. Journal of the Franklin Institute 360 (2023) 6880–6905 

H  

t  

v

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

[  

[  

 

[  

[  

[  

 

[  

[  

[  

 

[  

[  
ere the state x = [ x 1 , x 2 , x 3 , x 4 ] � and input u = [ u 1 , u 2 ] � vectors represent the deviations of
he liquid levels and voltages from P 

o , respectively (e.g., x 1 = h 1 − h 

o 
1 , u 1 = v 1 − v o 1 ) and the

ariables ξ represent the uncertainties and w ( δi ) = [ ξ3 ,i , ξ4,i , ξ5 ,i , ξ6 ,i ] � . 
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23] M. Cannon, B. Kouvaritakis, S.V. Raković, Q. Cheng, Stochastic tubes in model predictive control with proba-
bilistic constraints, IEEE Trans. Autom. Control 56 (1) (2011) 194–200, doi: 10.1109/TAC.2010.2086553 . 

24] T.A.N. Heirung, J.A. Paulson, J. O’Leary, A. Mesbah, Stochastic model mredictive control - how does it work?
Comput. Chem. Eng. 114 (2018) 158–170, doi: 10.1016/j.compchemeng.2017.10.026 . 

25] A. Mesbah, Stochastic model predictive control with active uncertainty learning: a survey on dual control, Annu.
Rev. Control 45 (2018) 107–117, doi: 10.1016/j.arcontrol.2017.11.001 . 

26] L. Hewing, M.N. Zeilinger, Scenario-based probabilistic reachable sets for recursively feasible stochastic model
predictive control, IEEE Control Syst. Lett. 4 (2) (2020) 450–455, doi: 10.1109/lcsys.2019.2949194. 

27] E. González, J. Sanchis, S. García-Nieto, J. Salcedo, A comparative study of stochastic model predictive con-
trollers, Electronics 9 (12) (2020) 2078, doi: 10.3390/electronics9122078 . 

28] J.M. Grosso, P. Velarde, C. Ocampo-Martinez, J.M. Maestre, V. Puig, Stochastic model predictive control
approaches applied to drinking water networks, Optim. Control Appl. Methods 38 (4) (2016) 541–558, doi: 10.
1002/oca.2269 . 

29] M.M. Seron, G.C. Goodwin, D.S. Carrasco, Stochastic model predictive control: insights and performance
comparisons for linear systems, Int. J. Robust Nonlinear Control 29 (2019) 5038–5057, doi: 10.1002/rnc.4106 . 

30] G. Calafiore, M.C. Campi, The scenario approach to robust control design, IEEE Trans. Autom. Control 51 (5)
(2006) 742–753, doi: 10.1109/tac.2006.875041 . 

31] M.C. Campi, S. Garatti, M. Prandini, The scenario approach for systems and control design, Annu. Rev. Control
33 (2) (2009) 149–157, doi: 10.1016/j.arcontrol.2009.07.001 . 

32] A. Muraleedharan, H. Okuda, T. Suzuki, Real-time implementation of randomized model predictive control for
autonomous driving, IEEE Trans. Intell. Veh. 7 (1) (2022) 11–20, doi: 10.1109/tiv.2021.3062730. 

33] H.A. Nasir, M. Cantoni, Y. Li, E. Weyer, Stochastic model predictive control based reference planning for
automated open-water channels, IEEE Trans. Control Syst. Technol. 29 (2) (2021) 607–619, doi: 10.1109/tcst.
2019.2952788 . 

34] S. Polimeni, L. Meraldi, L. Moretti, S. Leva, G. Manzolini, Development and experimental validation of hier-
archical energy management system based on stochastic model predictive control for off-grid microgrids, Adv.
Appl. Energy 2 (2021) 100028, doi: 10.1016/j.adapen.2021.100028 . 

35] M.C. Campi, S. Garatti, A sampling-and-discarding approach to chance-constrained optimization: feasibility and
optimality, J. Optim. Theory Appl. 148 (2) (2010) 257–280, doi: 10.1007/s10957- 010- 9754- 6 . 

36] D. Bernardini, A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems,
in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, Shanghai, China, 2009, pp. 6333–6338, doi: 10.1109/cdc.2009.5399917 . 

37] A. Mesbah, I.V. Kolmanovsky, S.D. Cairano, Stochastic Model Predictive Control, first ed., Springer International
Publishing, 2018, pp. 75–97 . 

38] A.D. Bonzanini, J.A. Paulson, A. Mesbah, Safe learning-based model predictive control under state- and input-
dependent uncertainty using scenario trees, in: 2020 59th IEEE Conference on Decision and Control (CDC),
IEEE, Jeju, Korea (South), 2020, doi: 10.1109/cdc42340.2020.9304310. 

39] Y. Bao, K.J. Chan, A. Mesbah, J.M. Velni, Learning-based adaptive-scenario-tree model predictive control with
improved probabilistic safety using robust Bayesian neural networks, Int. J. Robust Nonlinear Control 33 (5)
(2022) 3312–3333, doi: 10.1002/rnc.6560. 

40] P. Velarde, L. Valverde, J. Maestre, C. Ocampo-Martinez, C. Bordons, On the comparison of stochastic model
predictive control strategies applied to a hydrogen-based microgrid, J. Power Sources 343 (2017) 161–173,
doi: 10.1016/j.jpowsour.2017.01.015 . 

41] D. Mayne, Robust and stochastic MPC: are we going in the right direction? IFAC-PapersOnLine 48 (23) (2015)
1–8, doi: 10.1016/j.ifacol.2015.11.255 . 

42] D. Mayne, J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive control: stability and optimality,
Automatica 36 (6) (2000) 789–814, doi: 10.1016/S0005- 1098(99)00214- 9 . 

43] G.C. Calafiore, Random convex programs, SIAM J. Optim. 20 (6) (2010) 3427–3464, doi: 10.1137/090773490.
44] F. Blanchini, Set invariance in control, Automatica 35 (11) (1999) 1747–1767, doi: 10.1016/S0005-1098(99)

00113-2. 
45] D.Q. Mayne, P. Falugi, Stabilizing conditions for model predictive control, Int. J. Robust Nonlinear Control 29

(4) (2018) 894–903, doi: 10.1002/rnc.4409 . 
46] J. Rawlings, Model Predictive Control: Theory, Computation, and Design, second ed., Nob Hill Publishing,

Madison, Wisconsin, U.S., 2017 . 
6904 

https://doi.org/10.1109/TAC.2016.2625048
https://doi.org/10.1109/TAC.2010.2086553
https://doi.org/10.1016/j.compchemeng.2017.10.026
https://doi.org/10.1016/j.arcontrol.2017.11.001
https://doi.org/10.1109/lcsys.2019.2949194
https://doi.org/10.3390/electronics9122078
https://doi.org/10.1002/oca.2269
https://doi.org/10.1002/rnc.4106
https://doi.org/10.1109/tac.2006.875041
https://doi.org/10.1016/j.arcontrol.2009.07.001
https://doi.org/10.1109/tiv.2021.3062730
https://doi.org/10.1109/tcst.2019.2952788
https://doi.org/10.1016/j.adapen.2021.100028
https://doi.org/10.1007/s10957-010-9754-6
https://doi.org/10.1109/cdc.2009.5399917
http://refhub.elsevier.com/S0016-0032(23)00303-4/sbref0037
https://doi.org/10.1109/cdc42340.2020.9304310
https://doi.org/10.1002/rnc.6560
https://doi.org/10.1016/j.jpowsour.2017.01.015
https://doi.org/10.1016/j.ifacol.2015.11.255
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1137/090773490
https://doi.org/10.1016/S0005-1098(99)00113-2
https://doi.org/10.1002/rnc.4409
http://refhub.elsevier.com/S0016-0032(23)00303-4/sbref0046


E. González, J. Sanchis, J.V. Salcedo et al. Journal of the Franklin Institute 360 (2023) 6880–6905 

[  

[
[  

[  

[  

[  

[  

[  

[  

[  

[  

[  
47] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,
Society for Industrial and Applied Mathematics, Philadelphia, U.S., 1994, doi: 10.1137/1.9781611970777 . 

48] J. Maciejowski, Predictive Control: With Constraints, first ed., Prentice Hall, London, U.K., 2002 . 
49] C. Beltran-Royo, Two-stage stochastic mixed-integer linear programming: the conditional scenario approach,

Omega 70 (2017) 31–42, doi: 10.1016/j.omega.2016.08.010. 
50] C. Beltran-Royo, Two-stage stochastic mixed-integer linear programming: from scenarios to conditional scenar-

ios, Optimization (2018) 1–30 . Online https:// optimization-online.org/ . 
51] C. Beltran-Royo, Fast scenario reduction by conditional scenarios in two-stage stochastic MILP problems, Optim.

Methods Softw. 0 (0) (2019) 1–22, doi: 10.1080/10556788.2019.1697696 . 
52] C. Beltran-Royo, From scenarios to conditional scenarios in two-stage stochastic MILP problems, Int. Trans.

Oper. Res. 28 (2) (2020) 660–686, doi: 10.1111/itor.12851 . 
53] A.J. Kleywegt, A. Shapiro, T. Homem-de-Mello, The sample average approximation method for stochastic

discrete optimization, SIAM J. Optim. 12 (2) (2002) 479–502, doi: 10.1137/s1052623499363220. 
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