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Abstract: PHBV films incorporating 3, 6 and 9% ferulic acid (FA) or p-coumaric acid (PCA) were
obtained by melt blending and compression moulding. The films’ microstructures and thermal
behaviours were analysed as well as their mechanical, optical and barrier properties. The overall
and specific migration of the materials in different food simulants was also characterised. FA was
homogeneously mixed with the polymer, whereas PCA was mainly dispersed as fine particles in the
PHBV matrices due to its higher melting point. These structural features promoted differences in the
physical properties of the films depending on the compound concentration. As the concentration
of both compounds rose, the barrier capacity of the films to oxygen, and to a lesser extent water
vapour, was enhanced. While FA promoted the extensibility of the films, 9% PCA enhanced their
brittleness. Both compounds affected the crystallisation pattern of the polymer, promoting smaller
crystalline formations and a slight decrease in crystallinity. Although the overall migration of every
film formulation was lower than the overall migration limit (OML), the release of active compounds
was dependent on the food simulant; almost total release was noted in ethanol containing simulants
but was more limited in aqueous systems. Therefore, these films could be used as food contact
materials, contributing to extending the food’s shelf life.

Keywords: ferulic acid; p-coumaric acid; phenolic acids; PHBV; overall migration; specific migration;
crystallinity; active food packaging

1. Introduction

The accumulation of plastic materials in marine and terrestrial ecosystems is currently
a major issue, greatly aggrieved by single use plastics [1]. The massive quantity of food
packaging used by the food sector makes it one of the main contributors to this large
amount of waste [2]. Nevertheless, food packaging is necessary for the preservation of
quality and safety, extending shelf lives and reducing food waste. Therefore, the food
industry requires the development of sustainable and biodegradable packaging systems
which exert no negative impact on ecosystems. In the last 20 years, significant efforts
have been made with the intention of substituting petroleum-based persistent polymers
for biobased and biodegradable materials for food packaging purposes [3,4]. Of these
materials, bio-polyesters produced by microorganisms as energy and carbon reserves [5–7],
such as polyhydroxyalkanoates (PHAs), are of special interest since these have functional
properties close to polyethylene terephthalate (PET), being biodegradable in a natural
environment. Additionally, these can be obtained from food waste culture media within
the framework of a circular economy.

Of the PHAs, poly(3-hydroxybutirate-co-3hydroxyvalerate) (PHBV) is a thermoplastic
polyester used in the formulation of the packaging of several products, with many studies
into its usage, performance and biodegradability [5]. Nevertheless, very few studies have
addressed the use of bioactive compounds in the polymer blend in order to obtain active
packaging materials for food applications [8,9]. Active packaging should have an active,
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sustained influence on the properties of the packaging in order to maintain food quality and
safety and extend food shelf lives [10]. The incorporation of naturally occurring compounds
with antioxidant and/or antimicrobial properties into the polymer matrix may contribute
to an improvement in the performance of the material while also providing it with a better
preservation capacity as food packaging, thus helping to extend the product shelf life and
reduce food waste.

Phenolic compounds are secondary metabolites produced by plants with known an-
tioxidant and antimicrobial activities, and with a proven thermal stability above the melting
temperature of some biodegradable polyesters [11–13]. Incorporating these compounds
into the polymer matrix can also contribute to its thermal stability, which makes its reuse
or recycling more feasible [14], while their release into the food system with which it is
in contact may favour product stability against oxidative or microbial spoilage [15–18].
Additionally, some phenolic compounds, such as catechin and gallate derivatives, have
been proposed as polyester stabilisers or indicators of ageing, having greater thermal and
oxidative stabilities in polymer matrices [11,19]. Generally, the incorporation of phenolic
compounds into PHA matrices leads to an increase in both the glass transition temperature
(Tg) and the thermo-degradation temperature, as well as crystallization disruption; these
have been attributed to a crosslinking effect based on the interchain hydrogen bonds of
phenolic hydroxyls and the carbonyl groups of polyesters [20–22].

Phenolic acids, such as ferulic and p-coumaric acids, exhibit proven antioxidant and
antimicrobial capacities depending on their molecular structure [13,23,24]. Specifically, an-
tioxidant, antibacterial, anti-inflammatory and other health-promoting properties have been
reported for ferulic and p-coumaric acids isolated from different plant products [25–31]. Sev-
eral studies have incorporated phenolic acids into PHBV matrices, analysing their effect on
the properties and the biodegradability of the polymer–phenol blends [8,9,15,32,33]. Never-
theless, no previous studies have been found on the incorporation of ferulic or p-coumaric
acid into PHBV matrices and its effect on the material properties for food packaging uses.
These phenolic acids are present in a wide variety of plants and are major compounds in
some lignocellulosic residues such as rice straw. These acids could be used in the design of
active PHBV films for food preservation purposes due to their antioxidant and antimicrobial
activities [31,34].

This study aims to obtain new insights into the impact of ferulic and p-coumaric
acids on the functional and structural properties of PHBV, its thermal behaviour and
crystallization, as well as its migration capacity in food systems. To this end, different
concentrations (3, 6 and 9%) of each compound were melt blended with the polymer,
obtaining films by compression moulding and characterising their relevant properties
(barrier, mechanical and optical) as food packaging materials.

2. Materials and Methods
2.1. Materials

Poly(3-hydroxybutyrate)-3-co-(hydroxyvalerate) or PHBV (Enmat Y1000P) with a
hydroxyvalerate fraction of 2% mol. was purchased in pellet form by TianAn Biologic
Materials (Ningbo, China). Ferulic acid (FA) and P-coumaric acid (PCA) were provided
by Sigma-Aldrich (Saint Louis, MO, USA). Phosphorus pentoxide (P2O5) and magnesium
nitrate (Mg(NO3)2) from Panreac Química (Barcelona, Spain) were used for conditioning
the samples at a controlled relative humidity.

The food simulants used for migration studies, such as ethanol (99.9% purity), glacial
acetic acid and isooctane, as well as UV-grade methanol, were acquired from Sigma-Aldrich
Chemie (Steinheim, Germany).

2.2. Preparation of Films

Prior to the mixing of film components, PHBV was dried in a vacuum oven at 60 ◦C
for 24 h to eliminate the absorbed water. The films were prepared by melt blending the
PHBV with different proportions of phenolic acids, as described in [35]. Specifically, 3,
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6 or 9 g of each acid per 100 g blend was used to obtain the different batches. The melt
blending of components was carried out in an internal mixer (Haake PolyLab QC, Thermo
Fisher Scientific, Dreieich, Germany) at 170 ◦C and 50 rpm for 5 min. Blend samples were
cold ground and stored in a desiccator with P2O5 (0% relative humidity) until use. Films
were obtained by the thermocompression of 3.5 g of each blend using a hydraulic hot plate
press (LP20, Labtech engineering, Bangkok, Thailand) by preheating for 5 min at 180 ◦C,
compressing for 4 min at 180 ◦C and 100 bar pressure and finally cooling for 3 min to about
70 ◦C. The obtained films were stored at 0% relative humidity until characterisation. PHBV
films with different ratios of ferulic acid were named 3FA, 6FA and 9FA, while those with
p-coumaric acid were named 3PCA, 6PCA and 9PCA.

2.3. Characterisation of Films
2.3.1. Final Concentration of Phenolic Acids in the Films

The final concentrations of both FA and PCA in the films after film processing were
analysed by spectrophotometric quantification of the film’s methanolic extracts [36]. Dry
film samples (100 mg) were extracted with 10 mL of methanol at 20 ◦C for 48 h under
stirring. Absorbances of the methanolic extracts were measured at 321 and 309 nm for FA
and PCA, respectively, using a UV-visible spectrophotometer (Thermo Scientific Evolution
201, Brooklyn, WI, USA), and compared with previously obtained standard curves for
each compound. The methanolic extract of the net PHBV films was used as a background.
Analyses were carried out in quadruplicate for each sample.

2.3.2. Microstructural Analyses

The microstructure of the different films was analysed by Field Emission Scanning
Electron Microscopy (FESEM Ultra 55, Zeiss, Oxford Instruments, Oxford, UK). The sam-
ples were stored for 1 week with P2O5 (0%HR) to ensure dryness and cryofractured by
immersion in liquid N2 to observe the film cross-section. Then, they were mounted on a
support stub and coated with platinum prior to observing them in the microscope at 1.5 kV.

2.3.3. Thermal Analyses

The polymer phase transitions in the different films were analysed by Differential
Scanning Calorimetry (DSC823e Stare Mettler-Toledo Inc., Greifensee, Switzerland). The
samples (5–10 mg) conditioned to 0% RH in P2O5 were placed in aluminium crucibles
and sealed. The samples were submitted to three steps: heating (10 ◦C/min), cooling
(50 ◦C) and heating (10 ◦C) under nitrogen flow between −30 ◦C and 200 ◦C. The degree of
crystallinity of the polymer was determined from the melting enthalpy, the polymer mass
fraction in the blend and the reported value of 100% crystalline PHB (∆H0PHB = 132 J/g
polymer) [37].

The thermal stability of the films was analysed by TGA using the TGA 1 STARe System
analyser (Mettler-Toledo, Greifensee, Switzerland). Samples of approximately 5 mg were
weighed in alumina crucibles and heated under a N2 flow (10 mL/min) at 10 ◦C/min from
25 to 600 ◦C.

The analyses were carried out in duplicate for each sample.

2.3.4. X-ray Diffraction (XRD)

The X-ray diffraction spectra of the different films were measured with an X-ray
diffractometer (AXS/D8 Advance, Bruker, Karlsruhe, Germany) using Cu-Kα radiation
(λ: 1.542 Å, 40 kV, 40 mA), a 2θ scan angle of between 10◦ and 60◦ and a step size of
0.04◦/min. For each sample, the crystallinity index (CI, expressed as a percentage) was
determined from the crystalline peak area divided by the total area under spectra using
Origin (OriginLab Corporation, Northampton, MA, USA).
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2.3.5. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the films were obtained using a FTIR spectrometer (Agilent Cary
630, Agilent Technologies Inc., Santa Clara, CA, USA) equipped with an attenuated total
reflectance (ATR) accessory. The spectra were obtained at a resolution of 2 cm−1 in the
wavelength range of 4000–500 cm−1, performing 32 scans for each spectrum. The analyses
were carried out in duplicate on each film.

2.3.6. Tensile Properties

The tensile tests in the different films conditioned at 53% RH were performed following
the ASTM D882 standard method [38] using a universal testing machine (Stable Micro
Systems TA-XT plus, Haslemere, UK). Briefly, 25 × 100 mm film strips were cut, and their
thickness was measured with a digital micrometer (Comecta S.A., Barcelona, Spain) at six
random points. The film sample was clamped (5 mm separation) in the tension test clips
and stretched at 50 mm/min until break. Henky stress–strain curves were obtained and the
elastic modulus (EM), tensile strength (TS) and elongation at break (%E) were determined
from the force–distance curves. Twelve replicates per formulation were performed.

2.3.7. Barrier Properties

The oxygen permeability of the different films conditioned at 53% RH was deter-
mined following the ASTM D3985-05 standard method [39] using a permeation analyzer
(Model 8101e Oxysense, Systech Illinois, IL, USA). The films were cut to a surface area of
50 cm2 and their thickness was measured with a hand-held digital micrometer (Comecta
S.A., Barcelona, Spain). The oxygen permeability (OP) was calculated from the oxygen
transmission rate (OTR), the film thickness and the partial pressure of oxygen in the
instrument. Each sample was measured in duplicate.

The gravimetric method, ASTM E96/E95 M [40], was used to obtain the water vapour
permeability (WVP) of the films conditioned at 53% RH using Payne permeability cups
(Elcometer SPRL, Hermelle/s Argenteau, Belgium). The film samples were cut (35 mm
diameter) and their thickness was measured at six random points. The cups were filled with
5 mL of distilled water and covered with the film. To obtain a 100–53% RH gradient, the
cups were placed in a desiccator containing an oversaturated Mg(NO3)2 solution (53% RH)
at 25 ◦C. The cups were weighed every 2 h for 48 h with an analytical balance (±0.00001 g).
The WVP was calculated from the slope of weight loss vs. time data once the steady state
was reached, as described by Cano et al. in 2014 [41].

2.3.8. Optical Properties

Internal transmittance (Ti) and CIE-L*a*b*colour coordinates were determined for
the different films using a CM-5 spectrocolourimeter (Konica Minolta Co., Tokyo, Japan)
through reflectance measurements (from 400 to 700 nm) under white and black backgrounds
of known reflectance. The internal transmittance (Ti) and the infinitely thick reflectance (R∞)
spectra were determined applying the Kubelka–Munk theory for multiple scattering [42].
CIE-L*a*b* coordinates were obtained from R∞ spectra by considering illuminant D65 and
observer 10◦. From the CIE-L*a*b* coordinates, chroma, Cab* (Equation (1)), and hue, hab*
(Equation (2)), were calculated.

C∗
ab =

√
(a)2 + (b∗)2 (1)

h∗ab = arctan
[

a∗

b∗

]
(2)

2.4. Migration Analyses in Different Food Simulants

The overall migration (OM) of the films was determined according to the EN-1186 series
of European Standards [43–45], where it is specified that the overall migration limit for new
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materials intended for contact with foodstuffs should be 10 mg/dm2. The simulants used for
these tests are also specified (simulant A: distilled water; simulant B: 3% (w/v) acetic acid;
and simulant C: 10% (v/v) ethanol, to simulate aqueous foods, and ethanol 95% (v/v) and
iso-octane to simulate fatty foods). The test temperature and time were chosen by considering
the worst conditions under which the new material can be exposed, i.e., 40 ◦C for 10 days,
emulating storage at room temperature or below for an unspecified period. For this purpose,
1 dm2 film samples were immersed in 100 mL of simulant contained in tubes and kept for
10 days at 40 ◦C. After this time, the films were removed, and the simulant was evaporated till
dryness at 105 ◦C. The OM is the residual mass after evaporation of the simulant, expressed
as mg/dm2 of film. Each film sample was analysed in triplicate.

The specific migration of the incorporated phenolic acids was also measured. For
this purpose, the dried residue was extracted in methanol for 30 h under stirring and the
absorbance was measured in a spectrophotometer (Thermo Scientific Evolution 201, USA)
at the maximum wavelength for each of the acids (321 nm for ferulic acid and 309 nm for
p-coumaric acid). The FA and PCA concentrations of each sample were obtained using a
previously obtained calibration curve relating the concentration of the respective acid in
methanol solutions to its absorbance in the ultraviolet region [35]. Pure methanol was used
as a blank.

2.5. Statistical Analysis

The statistical analysis of the data was performed by an analysis of variance (ANOVA)
using Statgraphics Centurion XVII-X64 and using Fisher’s Least Significant Difference at
the 95% confidence level.

3. Results and Discussion
3.1. Structural and Molecular Properties of the Films

The effect of the incorporation of phenolic acids on the film microstructure was
evaluated by FESEM and FTIR spectra. The final concentration of active compounds in the
thermally processed films was considered in this analysis, as it can affect the arrangement
of the components in the matrix. The actual amounts of PCA in the films were 2.90 ± 0.02,
6.10 ± 0.02 and 8.73 ± 0.04 g PCA/100 g of film in the 3PCA, 6PCA and 9PCA samples,
respectively (98 ± 6% of the incorporated acid), while ferulic acid was retained in lower
amounts, namely 2.68 ± 0.02, 4.54 ± 0.07 and 7.62 ± 0.04 g FA/100 g of film for the 3FA, 6FA
and 9FA samples, respectively (85 ± 6% of the incorporated acid). This was also observed in
a previous study [35], where the partial degradation of FA during processing was attributed
to its greater thermosensitivity. Similar losses in FA were observed by other authors for
PLA-based thermoprocessed films or PLA-PHBV blend films [32,46]. In fact, FA melts at
173 ◦C and degrades between 200 and 240 ◦C [47]. Therefore, throughout its blending with
the polymer at 170 ◦C and subsequent film thermoforming at 180 ◦C, it can suffer partial
degradation in the liquid state due to local overheating and the shear forces applied in the
mixer. In contrast, PCA melts between 210 and 216 ◦C, simultaneously degrading during
melting [47]. Therefore, at the temperature of blending and film formation, PCA was more
stable in the solid state, making mixing more difficult and preventing degradation [35].

Figure 1 shows the FESEM micrographs of the different films, in which the different
structural features of each film can be observed. Differences in the melting points of the
phenolic acids influenced the microstructure of the film. As PCA remained solid during
blending, PCA particles were observed to be dispersed in the polymer matrix, which was
more evident at the highest PCA concentration in the films (Figure 1). In contrast, FA in
the liquid state was homogeneously mixed with the polymer, and molecular interactions
between the phenolic acid and the polymer chain were favoured, e.g., via hydrogen bonds
between the phenolic or carboxylic hydroxyls and the carbonyl group of the polyester
or -OH end-chain groups [20,21]. Thus, films with FA at any concentration presented a
homogeneous cryofracture surface according to the molecular mixture of polymer and
phenolic acid. However, in the cross-section of the PCA films, small, scattered particles
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appeared in the polymer matrix, attributed to PCA particles that did not melt during
processing. This was especially noticeable at higher concentrations (6 or 9%) of PCA in the
films (Figure 1). Differences in the structural arrangement of phenolic acids in the polymer
matrix can alter their functional and thermal properties, as well as the appearance of the
films.
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The molecular changes produced in the PHBV matrix due to the incorporation of phenolic
acids were evaluated through the FTIR-ATR spectra of the films (Figure 2). These showed
the typical spectra of PHBV [48–50], as the major component, but small differences could be
observed when phenolic acids were incorporated. All the samples showed bands associated
with the vibrations of polymer functional groups. Thus, stretching of the C-H group was
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observed in the region between 836 and 980 cm−1, while C-H bending vibrations were
reflected in the peaks at 1382 and 1462 cm−1 [48,51]. Peaks at 1052, 1133 and 1280 cm−1

related to the C-O-C stretching bands also appeared, as well as the characteristic peak of the
C=O stretching vibration at 1722 cm−1 [50–52], which overlaps with the carbonyl vibration of
phenolic acids (1670–1691 cm−1) when these are present in the films.
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Films containing phenolic acids also exhibit new small peaks between 1500 and
1650 cm−1, where there are no bands of the major compound (PHBV) in the films. These
peaks at 1518, 1584, 1602 and 1630 are similar in films containing both PCA and FA but
are much more defined, with a higher relative intensity for films with PCA, especially at
the highest concentrations. These can be associated with the C=C bond vibration of the
p-substituted aromatic ring and vinyl group [53–56]. The higher relative intensities of these
peaks for films with p-coumaric acid seem to reflect the greater contribution of non-bonded
PCA molecules to the polymer, since the compound is mainly present as dispersed particles.
In general, films with added phenolic acids show a moderate peak at 3450 cm−1, belonging
to the absorption band of their hydroxyl group [57,58].

3.2. Thermal Behaviour and Crystallinity of the Films

PHBV exhibits a high degree of crystallinity that results in a narrow processing win-
dow, hindering its processability in conventional industrial equipment [59]. Different
strategies have been used to overcome this issue, such as blending with other polymers,
fillers or compatibilisers [59–61]. Blending with phenolic acids could affect the crystalli-
sation of the polymer, inhibiting nucleation and spherulite formation. Previous studies
reported an increase in the polymer glass transition, as a result of blending with phenolic
compounds, and changes in the crystallisation pattern [8]. Figure 3 shows the thermograms
of the different film samples obtained after the first heating, where the behaviour of the
thermoprocessed material itself is shown, and after the second heating step of the DSC
analysis, in which the material’s thermal history was erased. In both scans, a typical glass
transition and melting endotherm of the semi-crystalline polymer were observed, although
the presence of phenolic acids affected the thermal behaviour depending on the added
compound and its concentration. Table 1 shows the values of the melting temperature (Tm)
(the first peak when two appeared) and enthalpy (∆Hm) of both heating scans and the glass
transition temperature (Tg) and degree of crystallinity (χc) of the polymer (determined
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from ∆Hm values) of the first heating. FA provoked an increase in the Tg values, which
was enhanced when its concentration rose in the films, whereas no significant changes
were observed with PCA. This varying effect can be attributed to the different compound–
polymer interactions established in each case. FA acid could interact more easily with
the polymer when it melts during blending, giving rise to polymer chain entanglements
through hydrogen bonds, as previously metioned, which would make the molecular mo-
bility more restricted, thus increasing the Tg value. These interactions can be promoted
by a great number of FA molecules in the blend. In contrast, solid PCA particles in the
PHBV matrix did not interact with polymer chains to the same extent and, therefore, no
significant changes in the glass transition temperature were observed.
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Regarding PHBV crystallisation, at zero and low concentrations of phenolic acids,
a single melting peak was observed, whereas from concentrations of 6% upwards of
both acids, two overlapped melting peaks appeared, with the second peak being more
pronounced as the concentration of phenolics rose. Moreover, the melting temperature
of the first peak decreased as the concentration of phenolic acids increased. Therefore,
both compounds affected the crystallisation pattern of the polymer depending on their
concentration. The appearance of two melting peaks is related to the recrystallisation of the
polymer after melting due to the formation of smaller crystalline domains that melt at lower
temperatures and the subsequent recrystallisation due to the annealing undergone by the
material during heating [62]. In this sense, the first peak could be attributed to the melting
temperature of the smaller crystals formed during cooling that melt at lower temperatures.
Therefore, as observed in other blends of PHBV [63], phenolic acids promoted the formation
of smaller crystalline domains; this effect was more notable when their concentration rose in
the blend and when the cooling rate of the material increased [64,65]. This can be attributed
to the steric hindrance imposed by the compounds present in the crystallisation of the
PHBV chains, reducing the packing efficiency in the crystals [66].

There were also significant differences between net polymer and blends with FA as
regards the melting enthalpy per g polymer (Table 1), which suggested that this compound
could also limit the crystallisation of the polymer. The differences between the pure
polymer and blends were greater in the second heating step, where crystalline domains
were formed at a higher cooling rate (50 ◦C/min), than in the first heating, where the
polymer films were cooled more slowly (about 37 ◦C/min). This suggests that FA delayed
the crystallisation rate of PHBV, thus reaching a lower degree of crystallinity when cooled
fast. The formation of a hydrogen bond between PHBV and phenols has been described by
other authors to reduce the polymer crystallisation [21,22]. PCA has no significant effect on
the final crystallisation of PHBV, probably due to the fact that the compound does not mix
completely but remains as dispersed particles.
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The X-ray diffractograms of the different samples (Figure 4) show the typical crys-
talline pattern of PHBV [61,67], with two main peaks at 2θ, 13.5◦ and 17◦, which are
associated with the (020) and (110) diffraction planes of the α phase and the orthorhombic
lattice of PHBV, respectively. The intense peak at 2θ (27◦) could correspond to boron
nitride, which is incorporated into the commercial polymers as a nucleating agent [61]. No
changes in the crystalline pattern were provoked by phenolic acid incorporation at any
concentration. Nevertheless, as also deduced from DSC analyses, it promoted a decrease in
the degree of crystallinity (χc) that was determined from diffraction intensity data after the
deconvolution of peaks (area of crystalline peaks divided by the total area of crystalline
peaks and amorphous halo). Thus, phenolic acids affected the kinetics of PHBV crystallisa-
tion, hindering crystal formation and reducing the size of crystalline domains and the final
crystallinity index in the blends, depending on the cooling rate of the material.
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Figure 4. RX diffraction spectra of the films with different formulations, showing the crystallinity
index in percentage.

Small differences between the degree of crystallinity obtained from diffractograms
and the melting enthalpy may be explained by the dynamic heating in DSC that induces
polymer recrystallisation, which affects the total enthalpy values. Nevertheless, in both
methods, the phenolic acids could be observed to reduce crystallisation depending on the
cooling rate of the material. Although this reduction occurred for both the homogeneously
blended FA and the dispersed PCA, it was mainly seen to take place in the former case.

Table 1. Melting temperature (Tm) and enthalpy (∆Hm) of the different blend films obtained in the
first and second heating steps of DSC analyses. The glass transition temperature (Tg) and degree of
crystallinity (χc) were obtained from the first heating step of DSC.

First Heating Second Heating

Film Tg (◦C) Tm1 (◦C) ∆Hm1
(J/g PHBV) χc (%) Tm2 (◦C) ∆Hm2

(J/g PHBV)

PHBV 7.2 ± 0.0 c 171.3 ± 1.0 a 85.1 ± 3.0 c 64.4 ± 0.2 a 170.2 ± 0.4 a 88.0 ± 6.0 bc

3FA 7.5 ± 0.2 c 167.8 ± 0.3 b 76.0 ± 2.0 a 57.8 ± 1.5 c 166.3 ± 0.7 b 71.1 ± 1.2 a

6FA 9.0 ± 0.2 b 163.6 ± 0.9 c 75.9 ± 0.2 ab 57.5 ± 0.1 bc 161.6 ± 0.5 c 69.7 ± 0.3 a

9FA 15.0 ± 0.2 a 163.7 ± 4.9 c 75.5 ± 0.5 a 57.2 ± 0.4 c 157.8 ± 0.0 e 70.7 ± 0.1 a

3PCA 7.1 ± 0.7 c 167.9 ± 0.4 b 88.0 ± 9.0 c 66.5 ± 7.5 a 166.2 ± 1.2 b 92.0 ± 6.0 c

6PCA 5.3 ± 0.5 d 163.1 ± 0.3 c 83.7 ± 0.4 bc 63.4 ± 0.4 ab 159.8 ± 0.7 d 87.4 ± 0.0 bc

9PCA 7.0 ± 0.0 c 158.8 ± 0.7 d 84.7 ± 1.3 c 64.1 ± 1.0 a 154.4 ± 0.7 f 82.6 ± 0.1 b

Superscript letters indicate significant differences between the formulations (p < 0.05).
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The thermal stability of the polymer was analysed by TGA. Figure 5 shows the mass
loss curves as a function of temperature and their derivative curves (DGTA). They are
similar to those reported by other authors for PHBV [68,69], with 289 ◦C as the temperature
at which the maximum degradation rate occurs. Although pure FA and PCA degrade at
lower temperatures than polymer (210–216 and 200–240 ◦C, respectively [47]), all films
showed a single degradation peak. Nevertheless, these compounds caused some alterations
in the onset and main degradation temperatures of the matrix due to the established molec-
ular interactions, changes in the polymer crystallinity or potential hydrolysis effects in the
polymer chains that produce less thermostable oligomers. The initial and peak degradation
temperatures varied as a function of the compound added and its concentration. For low FA
concentrations (3 and 6%), the onset and peak degradation temperatures slightly increased,
resulting in a more thermostable matrix, despite the previously mentioned reduction in
crystallinity. This could be due to the polymer cross-linking effect in the amorphous phase
caused by the hydrogen bonds between ferulic acid and PHBV chains, as observed by
other authors when studying films of other polyesters [32,46]. However, for the highest
FA concentration (9%), both the initial degradation temperature and the peak degradation
temperature decreased, resulting in a less thermally stable material, probably due to the
prevailing hydrolysis effect with high acid concentrations. In the case of PCA, both onset
and peak temperatures slightly decreased as the compound concentration rose, suggesting
no significant cross-linking effect in the amorphous phase; this was coherent with the
obtained Tg values and was a consequence of the prevalent solid state of the compound
dispersed in the matrix. This decrease could be attributed to the small reduction in the
degree of crystallinity of the polymer or some hydrolysis effect in the polymer chains.
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3.3. Mechanical, Barrier and Optical Properties of the Films

The molecular interactions and structural changes caused by the addition of FA and
PCA to the matrix resulted in changes in the mechanical, barrier and optical properties,
shown in Table 2, together with variations in the mean film thickness. These parameters
were also affected by the presence of phenolic acids, which seemed to promote the material
flowability, since films tended to be thinner when the concentration of the added compound
rose. This behaviour could be attributed to a certain hydrolytic effect of phenolic acids that
could reduce the chain length of polymers, promoting the flowability index of the melt
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during the thermocompression step. However, the reduction in the interchain forces in the
presence of the added compound could have a similar effect.

Table 2. Mean values and standard deviation of the film thickness (t), water vapour permeability
(WVP), oxygen permeability (OP), elastic modulus (EM), tensile strength (TS), elongation at break
(E%) and colour coordinates: lightness (L*), hue (hab*) and chroma (Cab*).

PHBV 3FA 6FA 9FA 3PCA 6PCA 9PCA

t (µm) 160 ± 16 a 152 ± 24 ab 152 ± 16 bc 137 ± 15 de 144 ± 12 bcd 143 ± 23 cd 131 ± 12 e

WVP × 1012

(g/msPa)
5.4 ± 0.4 a 4.2 ± 0.7 bcd 4.5 ± 0.4 bc 3.4 ± 0.1 e 3.8 ± 0.3 cde 4.7 ± 0.2 ab 3.6 ± 0.3 de

OP × 1013

(cm3/msPa)
3.70 ± 0.20 a 3.00 ± 0.20 b 3.00 ± 0.04 b 2.78 ± 0.14 b 2.39 ± 0.03 c 2.70 ± 0.20 b 1.26 ± 0.06 d

EM (MPa) 1520 ± 90 a 1480 ± 50 a 1280 ± 40 b 1060 ± 90 c 1480 ± 70 a 1260 ± 70 b 1490 ± 50 a

TS (MPa) 37 ± 2 a 37 ± 2 a 33 ± 3 b 31 ± 4 b 38 ± 2 a 38 ± 2 a 28 ± 7 c

E% 3.6 ± 0.4 c 4.6 ± 0.7 b 4.7 ± 0.8 b 4.2 ± 0.7 b 4.2 ± 0.5 b 5.6 ± 0.7 a 2.4 ± 1.0 d

L* 83.9 ± 0.4 b 81.7 ± 0.5 d 80.8 ± 0.3 e 81.0 ± 0.5 e 82.0 ± 0.2 cd 82.1 ± 0.4 b 85.1 ± 0.5 a

Cab* 13.5 ± 0.3 e 14.0 ± 0.4 d 14.7 ± 0.5 c 15.9 ± 0.5 ab 15.5 ± 0.4 b 16.0 ± 0.7 a 11.8 ± 0.5 f

hab* 89.8 ± 0.5 a 87.9 ± 0.4 c 86.6 ± 0.5 e 86.3 ± 0.7 e 89.7 ± 0.4 ab 89.3 ± 0.4 b 87.4 ± 0.8 d

Superscript letters in each column indicate significant differences between film samples (p < 0.05).

The barrier capacity of the films was also affected by the addition of phenolic acids.
Specifically, the water vapour permeability (WVP) slightly decreased when the phenolic
acid concentration rose, thus indicating that phenolic acids reduced the water affinity of
the polymer, which reduced its water permeation capacity, probably due to the hydrogen
bond formation between phenolic hydroxyls and the end-chain hydroxyls of the polyester.
This effect was statistically significant (p < 0.05) at 9% concentration of both acids, without
significant differences between them. Likewise, the addition of phenolic acids led to a
significant reduction in the oxygen permeability (OP) in every case, which was more
pronounced for p-coumaric acid at 9% (28% reduction). These effects can be attributed to
the structural changes caused by the compound in the polymer matrix, which modify both
the diffusion of the permeant molecules (water or oxygen) and their chemical affinity with
the matrix. In particular, the reduction in OP may be affected by the antioxidant action of
phenolic acids, which can act as oxygen scavengers, reducing its passage through the film,
as described by other authors for antioxidant organic compounds [70]. This effect is more
remarkable in the case of p-coumaric acid, which could be due to its freer form in separate
particles, which could better exhibit a oxygen scavenging capacity.

The elastic modulus, the tensile strength and the elongation at break values of the
PHBV films were similar to those reported by Requena et al. for this polymer [71]. The
incorporation of phenolic acids produced changes in the tensile behaviour depending on
the type of compound and its concentration. FA slightly reduced the elastic modulus and
resistance to break of the films in line with its concentration, but promoted film extensibility
(17% increase at 9%). A similar effect was also observed for PCA at 3 and 6%, but at 9%,
the films maintained their initial stiffness and became more brittle with a lower resistance
to break. The gain in extensibility of the films could be related to the decrease in their
crystallinity or to the partial hydrolysis effect provoked by the acids. Nevertheless, the
greater brittleness of the films with 9% PCA could be attributed to the higher ratio of
dispersed particles in the film, as shown in FESEM images (Figure 1), acting as a reinforcing
filler that promotes stiffness but favours breakage at lower deformations.

The presence of dispersed PCA particles in the films also caused a decrease in the film
transparency, observable to the naked eye and quantified by the internal transmittance (Ti),
as shown in Figure 6. As the PCA concentration rose in the films, Ti decreased; this effect
was highly remarkable for 9% PCA due to the light scattering effect provoked by dispersed
particles. In contrast, the addition of FA did not significantly change the transparency of the
films, coherently with its homogenous mixture with the polymer, while it slightly promoted
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Ti values and film transparency, which may be attributed to the changes induced in the
refraction index of the polymer matrix, especially at a concentration of 9%. The changes in
light–film interactions promoted by the phenolic acids also affected the colour parameters,
shown in Table 2. The slightly more transparent films containing FA became slightly darker,
with a more saturated and redder (lower hue) colour as the FA concentration rose, also due
to the contribution of the natural colour of the compound. In contrast, for less transparent
films (those containing PCA), this effect was mitigated, as they became lighter and less
saturated in colour, especially for 9% PCA, which was reflected in the most significant
decrease in film transparency.
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Therefore, differing concentrations of FA and PCA in the PHBV films provoked modi-
fications in their physical properties which depended greatly on the structural arrangement
of the compounds in the polymer matrix. FA was homogeneously mixed with the polymer,
whereas PCA was mainly dispersed within the polymer matrix due to the fact that melt
blending was hindered by its higher melting point. The dispersion of PCA reduced the
compound–polymer chain interactions but produced a reinforcing filler effect depending
on the compound concentration. These differences could also affect the migration of the
compound from the matrix to the food systems to develop their antioxidant or antimicrobial
effects, as discussed in the next section.

3.4. Migration in Food Simulants

An important aspect of newly developed packaging materials intended for contact
with food is the migration of the film compounds. This is regulated by UNE-EN 1186-
1:2002 [43] and UNE-EN 1186-3:2022 [45], which specify both the overall migration limit
(OML = 10 mg/dm2) and the test conditions (food simulants, temperature and contact time)
to determine the overall migration (OM). For active packaging materials, Regulation (EC)
No 450/2009 [72] establishes that the amounts of active components released should not be
taken into account in the determined OM values, as they are not part of the passive material.
Therefore, the fraction of the migrated residue corresponding to the active component (AF
or PCA) was quantified spectrophotometrically in the methanolic extract of the residue
obtained from each simulant. Nevertheless, their use as active compounds for food contact
materials should be authorised by the European Food Safety Authority (EFSA) according
to Regulation (EC) No 1935/2004 [73].

All the films were well preserved in every simulant at 40 ◦C throughout the test
duration, and the OM values in different simulants are shown in Figure 7, in which the
active compound migration is represented as a non-solid bar and the difference with respect
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to the total migration values represent the OM values (solid bars) that must be lower than
the overall migration limit (OML: 10 mg/dm2). In no case was the OML reached, with
the OM being less than 10 mg/dm2 in the different film formulations for all the solvents
used (food simulants). Specifically, the total migration values in isooctane were very
limited for every film formulation (less than 1.2 mg/dm2), as reported by several studies
on PHBV [15,74,75] as well as other polyesters, such as PBSA [76] or PLA [77]. In this case,
the specific migration of active compounds was not determined since, additionally, the
solubility of phenolic acids in isooctane is very low [78].
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shown as a line (-).

The percentage release of phenolic acids with respect to the initial content of each film
was determined and shown in Figure 8 for the different simulants used. The kind of simu-
lant greatly affected the final release of active compounds. Simulants containing ethanol
delivered higher amounts of phenolic compounds from the matrix, with a practically total
migration of both active compounds, whereas in distilled water or acidic water, the release
was between 12 and 33% or 40 and 60% of the film content, respectively, depending on the
compound concentration in the film. The migration of the active compound at equilibrium
time (as simulated in the test) is related to the solubility of the phenolic acids in each
solvent and their affinity with the polymer matrix (partition coefficient). The ability of each
solvent to swell the polymer matrix and modify the overall compound interactions will
also affect the active compound migration [35]. The solubility of both acids in ethanol was
much greater (about 200 times) than in water [47,79] and thus increased when the ethanol
ratio rose in the ethanol–water mixtures [80]. Additionally, ethanol promotes the swelling
and degradation of the polyester matrix [81,82], which will affect compound release. The
compound concentration in the film has a remarkable influence on its migration into water
(distilled or acidic) simulants. This result is coherent with that observed in a previous
study [35] on the release kinetics of the compounds in aqueous food simulants at 20 ◦C, in
which the equilibrium release value increased as the compound concentration in the film
rose. This indicates that the partition coefficient of the active compound was affected by the
different changes produced in the polymer matrix by the differing compound concentration.
The higher migration values of active phenolic compounds in acidic water suggest a partial
degradation of the polymer matrix by polymer hydrolyses, which promoted compound
delivery.
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with the polymer, p-coumaric acid was present as dispersed particles that did not melt 
during blending at 170 °C. Both compounds enhanced the barrier capacity of the PHBV 
films, mainly for oxygen with 9% PCA. Films with FA became more extensible, with a 
small reduction in the elastic modulus and resistance to break, whereas those containing 
9% PCA were more brittle and stiffer. Films with PCA gained opacity as the concentration 
of dispersed PCA particles increased, whereas FA enhanced the film transparency. The 
changes promoted in the physical properties of the films were explained by different com-
pound interactions with the polymer chains, the structural arrangement and the modifi-
cation of polymer crystallinity, which was more noticeable for the homogeneously mixed 
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Figure 8. Mean values and standard deviations of the percentage release of the phenolic acids
incorporated into each film in the different food simulants.

4. Conclusions

The incorporation of ferulic and p-coumaric acids into PHBV matrices by melt blend-
ing gave rise to different structural arrangements of the compounds, mainly due to their
different melting points. While ferulic acid was homogenously mixed in the liquid state
with the polymer, p-coumaric acid was present as dispersed particles that did not melt
during blending at 170 ◦C. Both compounds enhanced the barrier capacity of the PHBV
films, mainly for oxygen with 9% PCA. Films with FA became more extensible, with a small
reduction in the elastic modulus and resistance to break, whereas those containing 9% PCA
were more brittle and stiffer. Films with PCA gained opacity as the concentration of dis-
persed PCA particles increased, whereas FA enhanced the film transparency. The changes
promoted in the physical properties of the films were explained by different compound
interactions with the polymer chains, the structural arrangement and the modification of
polymer crystallinity, which was more noticeable for the homogeneously mixed FA. This
compound improved the thermal stability of the polymer at 3 and 6%.

The overall migration of every film formulation was lower than the OML, whereas
the release of active compounds was dependent on the food simulant; full release was
noted in simulants containing ethanol but was more limited in aqueous systems. Therefore,
these films could be used as food contact materials, helping to extend food shelf lives. It is
necessary to validate these materials in real foods in order to evaluate their potential as
active food packaging for the purposes of preventing oxidative and microbial spoilage and
preserving food quality and safety.
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