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Abstract
Translational research policies aim to reshape how biomedical scientists organize, conceive, and conduct science in order to accelerate health-
care improvements and medical innovations. Yet most analyses and evaluations of these initiatives focus on measuring the outputs generated in
the different stages of the research process rather than observing scientists’ research practices directly. In this article, we analyze the collabora-
tion networks formed by the biomedical scientists participating in a large translational research initiative. Based on data derived from a large-
scale survey, we examine the network configurations established by biomedical scientists to advance their research in the context of the CIBER
program—a Spanish flagship initiative aimed at supporting translational research. We adopt an ego-network perspective and draw on three net-
work attributes—network diversity, tie strength, and tie content—to understand how scientists use their interpersonal connections to mobilize
tangible and intangible resources and enable the translation of scientific knowledge into practical applications. Our cluster analysis identifies a
range of scientist profiles: downstream-oriented scientists, upstream-oriented scientists, and brokering scientists. It shows that the scientists
participating in the CIBER program deploy different types of collaborative behavior and engage in a variety of medical innovation activities. This
suggests that the results achieved by a research program aimed at supporting collaborative networks will depend on the types of networks in
which the participating scientists engage. Consequently, evaluations of these programs need to capture collaboration patterns, and should focus
primarily on the collaborative process rather than the outputs that emerge from the collaboration.
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1. Introduction

In light of increased expectations about the socio-economic
impact of research (Penfield et al. 2014; Reale et al. 2018),
the focus of funding bodies has moved more and more to the
demonstration of impact beyond academia. Thus, scientists
applying to many public funding programs have to propose
ex-ante impacts based on ‘impact summaries’ or ‘pathways to
impact’ statements (Watermeyer 2016). Moreover, the idea of
research quality has been expanded to include societal quality
(Van der Meulen and Rip 2000) and ex-post impact evalua-
tions are becoming integral to a range of funding contexts
(Smit and Hessels 2021). This interest in socio-economic im-
pact is reshaping how scientists organize, conceive, and con-
duct science (Marincola 2003; Zerhouni 2005; Rogowski,
Hartz and John 2008).

The need to generate research results that respond to socie-
tal demands is particularly pressing in the biomedical field.
We are witnessing an unprecedented period of research dis-
coveries triggered by the rapid development of genome-
related technologies, artificial intelligence applications, and
massively increased data availability (Zerhouni 2005;
Gittelman 2016). However, these exponential increases have
not been matched by any systematic translation of research
findings into practice and healthcare improvements (de Wilde
et al. 2016). In fact, <10% of promising basic discoveries are
licensed for clinical application, and only 3% of published

research results progress to the clinical trial stage
(Contopoulos-Ioannidis et al. 2003; Khoury et al. 2007;
Maciulaitis et al. 2012). Actions to reduce the disconnect be-
tween lab and clinic have permeated policy agendas world-
wide (see Aarden, Marelli and Blasimme 2021 for a review).
Some ambitious US (Zerhouni 2003) and EU member states’
initiatives (Billig et al. 2007; Eggermont et al. 2019) reflect
this burgeoning interest among public funding agencies.
Biomedical scientists are being encouraged to establish inter-
disciplinary research networks (Long et al. 2014), occupy in-
termediary research network positions (de Groot et al. 2021),
or institute direct interactions with patients (Llopis and
D’Este 2016) to generate medical innovations and healthcare
improvements. These innovations can take multiple forms
from product-related outputs (e.g. novel drugs) to process-
oriented results (e.g. clinical guidelines) (Adler and Kwon
2013).

This reshaping of scientists’ roles, priorities, and practices
to include the delivery of socio-economic impact influences
every stage in the research process (Olmos-Pe~nuela et al.
2015; Watermeyer 2016). However, most policy initiatives to
accelerate healthcare improvements are based on a linear con-
ceptualization of translational research (Rogers 2003) in
which basic science informs and feeds clinical practice. This
linear schema assumes the existence of ‘translational gaps’
which need to be addressed, and thus focuses on measuring

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.

org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not al-

tered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Research Evaluation, 2023, 32, 426–440
https://doi.org/10.1093/reseval/rvad003

Advance access publication 7 March 2023

Article

D
ow

nloaded from
 https://academ

ic.oup.com
/rev/article/32/2/426/7071820 by guest on 19 M

arch 2024

https://orcid.org/0000-0003-1928-4608
https://orcid.org/0000-0002-3151-1933


the outputs generated at different stages along the ‘transla-
tional research continuum’ rather than direct observation of
scientists’ research practices (Molas-Gallart et al. 2016). In
this view, the main barrier to research translation is seen as
the identification of the large divide between basic and clinical
research which must be reduced in the successive stages of the
translational research process (Van der Laan and Boenink
2015).

This linear and compartmentalized conceptualization of
translational research often leads to evaluations that focus on
specific events (i.e. outputs, outcomes) as indicating the
achievement of a milestone in the translational continuum,
and evidence that the barriers to its achievement have been
overcome. A good example of this approach is Trochim et al.
(2011), who propose the assessment of a translational re-
search project based on the achievement of a series of mile-
stones and the time taken to move from one milestone to the
next. Other evaluation approaches focus on the analysis of ac-
ademic publications (Grazier et al. 2013; Morillo et al. 2014)
to infer the quality of the research results and identify collabo-
rative patterns based on citations counts and bibliographic
data.

What is common to this evaluative analyses on translational
research is the focus on the specific outputs of the research
process. In the present study we focus on the collaborative re-
search practices that accompany translational research. We
apply a set of analytical techniques derived from social net-
work analysis to obtain a granular understanding of transla-
tional research. Some scholars suggest that close collaboration
and knowledge flows among diverse actors from distinct pro-
fessional settings are the cornerstone of the translational pro-
cess (Lander and Atkinson-Grosjean 2011; Currie and White
2012; Crabu 2018). The implication is that medical innova-
tion does not advance automatically from laboratory bench
(basic) to patient bedside (applied). Rather, it is enabled by
clinician-scientists operating at the intersection between sci-
ence and care (Kluijtmans et al. 2017), and a greater focus on
the bi-directional nature of knowledge and resource flows
allowing basic scientists to feed on research questions from
clinical practice (e.g. patient-inspired research). This is consid-
ered a core element of translational research (Marincola
2011).

It follows that there is a need to investigate how biomedical
scientists involved in translational research collaborate (Long
et al. 2014; Llopis, D’Este and D�ıaz-Faes 2021). By focusing
on the collaborative practices, our analysis builds upon studies
that emphasize the role of knowledge brokers (i.e. individuals
who facilitate knowledge transfer between different knowl-
edge domains and professional settings) in the translational re-
search process (Lomas 2007; Lander and Atkinson-Grosjean
2011).

Our approach borrows concepts and indicators from social
network studies and employs an ego-network approach
(Phelps, Heidl and Wadhwa 2012; Borgatti, Brass and Halgin
2014) to provide a fine-grained picture of how biomedical sci-
entists organize their collaborative practices. Our research set-
ting is the biomedical research community in Spain,
specifically a flagship initiative aimed at supporting transla-
tional research: the Biomedical Research Networking Centers
(CIBER) program. The CIBER operates in different research
areas and has specific goals which suggests that the collabora-
tive processes associated with CIBER initiatives will differ
across contexts. We conducted a large-scale survey to capture

the variety of scientists’ collaborative practices and participa-
tion in medical innovation activities. We explored the diversity
of partners with which scientists interact (network diversity),
the intensity of each interaction (tie strength), and the specific
resource(s) channeled through each tie (tie content).
Operationalization of these network concepts constitutes the
primary data for this study. We performed a cluster analysis
to group scientists based on similar collaborative practices and
involvement in different medical innovation activities. The
analysis identified three scientist profiles, each representing a
different way of conducting collaborative biomedical research.
We discuss the implications of our analysis and the differences
it reveals in relation to the evaluation of translational research
activities to support collaborative research.

2. Research practices and collaborative ties: an
ego-network perspective

Interpersonal ties are crucial in biomedicine. Identifying re-
search problems, designing lab experiments, collecting and an-
alyzing data, and documenting findings often require
formation of collaborative networks (Cannella and McFadyen
2016). At the same time, the development of research net-
works is crucial to catalyze the potential means by which (bio-
medical) science can generate impact beyond academia
(Lomas 2007; Long et al. 2014; Kabo and Mashour 2019).
For instance, the successful launch of a new venture
(Davidsson and Honig 2003) and the capacity to generate cre-
ative ideas (Kijkuit and van den Ende 2007; McFadyen,
Semadeni and Cannella 2009) depend in part, on the structure
of the interpersonal connections among the actors. Scientists
interpersonal networks often extend beyond the boundaries of
the organizations in which they are embedded (Levin and
Cross 2004; Perry-Smith and Shalley 2014), and involve
exchanges with multiple individuals, which can be difficult to
trace. In biomedicine, bridging the divide between diverse
actors (e.g. basic scientists or medical practitioners) from dis-
tinct institutional settings (e.g. universities or hospitals) helps
to reduce the gap between bench and bedside (Currie and
White 2012; D�ıaz-Faes et al. 2020; Llopis and D’Este 2022).

The study of collaborative practices requires close observa-
tion of the heterogeneous attributes of scientists’ collaborative
ties, and an understanding of how these ties help mobilize tan-
gible and intangible resources. We adopted an ego-network
perspective allowing a focus on the individual (the ‘ego’), the
ego’s direct ties with other individuals (the ‘alters’), and
the nature of these ties (Borgatti, Brass and Halgin 2014). In
the following sub-sections, we discuss three ego-network
attributes: diversity (connecting different professional commu-
nities), tie strength, and tie content.

2.1. Connecting professional communities: network

diversity

Network diversity refers to differences among network mem-
bers (Nahapiet and Ghoshal 1998). The literature shows that
diverse networks allows the focal individual greater exposure
to new knowledge, and the skills or abilities of their network
partners (Burt 1995; Reagans and McEvily 2003). Network
diversity can be grounded on network members job-related
and/or demographic characteristics such as gender, ethnicity,
experience, or knowledge basis. For instance, Boschma’s
(2005) proximity framework defines five types of proximity
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(or distance) among individuals—cognitive, social, spatial, or-
ganizational, and institutional—and has been used to analyze
diversity in research collaborations and dyadic interactions
among network partners in the biomedical context (Bone et al.
2020). Cognitive distance is considered critical since diverse
alters provide access to distinct knowledge stocks, resources,
and frames of reference and increase the opportunities for
knowledge recombination (Tindall, Cormier and Diani 2012;
Tortoriello, Reagans and McEvily 2012).

One type of diversity which matters for translational research
is professional diversity (Califf and Berglund 2010).
Collaborative practices associated to bridging together individu-
als from different professional domains are an important source
of network diversity (Currie and White 2012). For instance, col-
laborations involving biomedical scientists, medical practi-
tioners, and patients lead to a greater variety of medical
innovations (Llopis and D’Este 2016). This is because healthcare
innovations often require resources and contextualized knowl-
edge from different professions (Adler and Kwon 2013; Axler
et al. 2018; Meseguer et al. 2022). Most translational initiatives
require some reconfiguration of the professional and institu-
tional barriers that separate fundamental research and health-
care (Goldblatt and Lee 2010; Lander and Atkinson-Grosjean
2011). However, research problems whose solution requires
very specialized knowledge and expertise are likely to depend on
homogeneous networks (Ter Wal et al. 2016), which facilitate
effective flows of information and favor coordination based on
reciprocity (Coleman 1988; Reagans and McEvily 2003).
Therefore, considering the advantages associated to each of
these network configurations, we expect that biomedical scien-
tists’ collaborative networks will differ depending on the range
of professional communities involved.

2.2. Building strong and weak ties

Scientists seeking to adopt research practices conducive to the
generation of socio-economic impact must decide how much
time and energy to devote to building their networks. The scien-
tist’s capacity to build trust-based relationships with exchange
partners based on common experience, shared meanings, and
kinship is an important indicator of adoption of research practi-
ces related to translational research (Molas-Gallart et al. 2016).
At the same time, the network literature points to the advan-
tages of devoting limited efforts to interactions to enable access
to distant social circles in order to promote creativity and inno-
vation (Burt 1995; Levin, Walter and Murnighan 2011).

Network research suggests that the efforts devoted to inter-
personal ties can be assessed based on tie strength and tie du-
ration. Tie strength is defined as ‘a (probably linear)
combination of the amount of time, the emotional intensity,
the intimacy (mutual confiding), and the reciprocal services
which characterize the tie’ (Granovetter 1973, p. 1361), and is
rooted in a relational approach which focuses on the proper-
ties of the dyadic linkages between network partners (Borgatti
and Cross 2003; Levin and Cross 2004). Some studies use in-
teraction frequency to proxy for tie strength (Hansen 1999;
McFadyen and Cannella 2004). Tie duration is measured as
the length of time since the tie with the network partner was
established. Although frequency and duration are different re-
lational attributes, both measure the level of personal invest-
ment in the relationship (Cannella and McFadyen 2016).

Research on tie strength suggests there is no optimal config-
uration, and that both strong and weak ties provide the focal
individual with different benefits. Weak ties provide access to

non-redundant information by bridging between socially dis-
tant groups; their maintenance requires minimal time and en-
ergy and they provide efficiency and novelty benefits (Levin,
Walter and Murnighan 2011; Tortoriello, Reagans and
McEvily 2012). Strong ties facilitate reciprocity and foster the
development of common goals, values, and language which re-
sult in trust and shared perspective. Some scholars suggest
that a balance between weak and strong ties (Bruggeman
2016) is particularly useful for gathering highly complex
knowledge. Therefore, we expect a heterogeneity of tie pat-
terns based on the strength and frequency of scientists’ dyadic
ties to research partners.

2.3. Gathering instrumental resources: tie content

Network ties can act as conduits for multiple types of resour-
ces (Burt 1997; Sosa 2011). Studies adopting a tie content per-
spective focus on the variety of resources that can flow
through interpersonal interactions. In this view, the tangible
(e.g. financial, equipment, materials) and intangible (e.g. ad-
vice, advocacy) resources that focal individuals obtained
through their interpersonal networks can be considered addi-
tional sources of heterogeneity at the dyad level.

Most of the literature adopting a social network lens in the
academic context considers that the primary benefit derived
from establishing an interpersonal network is a greater access
to new information and insights (McFadyen, Semadeni and
Cannella 2009; Phelps, Heidl and Wadhwa 2012). However,
we know that network links are used to gain access to other
resources than information and insights. For instance, Gómez-
Solórzano, Tortoriello and Soda (2019) show that mutual
trust and the support provided by interpersonal networks pro-
mote innovative behaviors among corporate R&D scientists.
Cross and Sproull (2004) proposed the concept of ‘actionable
knowledge’ to capture the different ways that interpersonal
networks are used in projects. They show that interpersonal
networks are used to get access to multiple resources, and dis-
tinguish among various components of actionable knowledge,
ranging from specific solutions to legitimation. In a research
setting, collaborative ties are also central to gathering valuable
research resources such as data, materials, and specialized
equipment. Using interpersonal networks is common practice
in science to access specific materials and research funding
(Mavris and Le Cam 2012).

The complex and diverse nature of medical innovation sug-
gests that personal networks are crucial for providing access
to complementary resources. For instance, some ties are criti-
cal for idea generation (Baer 2012) while others allow access
to specialized expertise to translate ideas into concrete applica-
tions. Similarly, access to funding or specialized equipment
might be as important as access to validation from stakehold-
ers to enable the development of an idea (Perry-Smith and
Mannucci 2017). Thus, collaborative practices and interper-
sonal ties might benefit biomedical scientists by providing ac-
cess to a range of tangible and intangible resources to translate
scientific knowledge into medical innovation.

3.Context and methods
3.1. Study context

The site of this study is the biomedical research community in
Spain, specifically scientists participating in the CIBER pro-
gram. This flagship initiative was launched by the Spanish
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Ministry of Health in 2006 to reduce the translational gap
across various biomedical specialties.1 Pivotal to the CIBER
program is enhancing research cooperation among scientists
in different research groups and institutional settings (i.e. in
universities, hospitals, public research organizations, firms,
etc.), working on related pathologies. Research groups are se-
lected through highly competitive open calls, focused on 12
areas of high priority for the Spanish National Health
System2: Bioengineering, Biomaterials and Nanomedicine
(BBN), Diabetes and Metabolic Associated Diseases (DEM),
Epidemiology and Public Health (ESP), Hepatic and Digestive
Diseases (EHD), Obesity and Nutrition (OBN), Mental
Health (SAM), Neurodegenerative Diseases (NED), Rare
Diseases (ER), Respiratory Diseases (ES), Cardiovascular
Diseases (CV), Oncology (ONC), and Fragility and Healthy
Aging (FES).

3.2. Sampling

We built a database using information available from the pub-
lic CIBER directories.3 This information allowed us to identify
our survey population which includes 5,325 biomedical scien-
tists (i.e. research group principal investigators, senior
researchers, and early career and doctoral researchers), plus
technicians and management support staff affiliated to the re-
search groups. Between March to May 2018, we conducted
nine interviews with CIBER scientific directors and research
group principal investigators which allowed a better under-
standing of the biomedical context and enabled more adapted
survey questions. Based on the information derived from the
interviews we constructed a comprehensive list of items to cap-
ture medical innovation activities, and obtain a fine-grained
perspective on the type of resources mobilized by biomedical
scientists to advance their research.

The resulting questionnaire was organized in sections re-
lated to the scientists’ networks. We adopted an ego-network
approach (Rodan and Galunic 2004; Cannella and McFadyen
2016) and invited respondents to name up to ten contacts
from outside their CIBER research group who were ‘particu-
larly important for the advancement of their research activities
during the period 2016–7’. Respondents were then asked to
answer a set of ‘name interpreter’ questions related to the con-
tacts listed (i.e. network diversity, tie strength). We also asked
respondents to indicate the specific resource(s) obtained from
each alter (i.e. tie content). The survey also asked about the
respondents’ sociodemographic characteristics (e.g. age, gen-
der, academic rank) and involvement in different types of
innovation-related activities.

The questionnaire was administered via an online platform
between June and September 2018. We received 1,616
responses, an overall response rate of 30.3%. Due to missing
values for some questions, the number of valid responses was
reduced to 1,146, an effective response rate of 21.5%, similar
to that achieved by other surveys of academic scientists
(D’Este and Patel 2007; Abreu and Grinevich 2013; Lawson
et al. 2019). Based on the valid responses, the average network
size was 3.63 and total number of network contacts reported
by respondents was 4,160. The distribution of respondents by
institutional affiliation was 27% from universities, 37.8%
from hospitals/health sector organizations, 16% from public
research organizations, 8.3% from non-profit organizations,
and 10.9% other (firms, public administration, international
organizations, associations). SPSS v.27 and Stata v.15 were
used for the data analysis.

3.3. Indicators
3.3.1. Collaborative practices

Network diversity. Our name interpreter questions asked
about the professional domain of the respondents’ network
contacts. We considered the following categories: (i) basic sci-
entists; (ii) clinical scientists; (iii) medical practitioners,
patients, and patient associations; and (iv) technicians, man-
agement support staff, and other professional fields. Based on
the set of dyadic relationships in our data for which we have
information on the professional domain of network partners,
we found that most fall into the categories basic scientists
(41.57%) and clinical scientists (37.16%) (see Table 1).
However, our respondents also had ties to contacts in other
professional domains such as medical practitioners, patients,
and patient associations 6.53%, and technicians, management
support staff, and contacts from other professional fields
14.75%.4

Tie strength. Following prior research (e.g. Tortoriello and
Krackhardt 2010; Badir and O’Connor 2015), we consider
two attributes related to tie strength: contact frequency and tie
duration. Contact frequency was measured as average fre-
quency of communication with each contact where 1 ¼ ‘one
or several times per day’, 2 ¼ ‘one or several times per week’,
3 ¼ ‘one or several times per month’, and 4 ¼ ‘one or several
times per year’. Our dyad level data indicate that interaction is
sporadic—only 13% indicated contact ‘one or several times
per day’. Tie duration captures the length of time the respon-
dent and the contact had known each other. Levin, Walter
and Murnighan (2011, p. 924) point out that ‘almost anyone’s
life history will include an enormous number of interpersonal
connections: some fleeting, some transitory, and others long-
lasting’. The respondents were asked to indicate how long
they had collaborated with each of their listed contacts: 1 ¼
‘for 1 year’; 2 ¼ ‘between 1 and 3 years’; or 3 ¼ ‘more than
3 years’. The scores for tie duration show that most personal
contacts are old acquaintances: ‘more than 3 years’ ¼ 68.87%
compared with ‘for 1 year’ ¼ 6.27%. The patterns in Table 2
suggest an interesting mix of attributes; the prototypical per-
sonal network is composed of ‘old’ acquaintances consulted
‘sporadically’. We therefore created two dummies for the clus-
ter analysis: long duration ties and low frequency ties. The for-
mer represents contacts known to the respondent for more
than three years; the latter denotes whether the interaction
occurs ‘once or several times per year’.

Tie content. To capture the range of tangible and intangible
resources available from the scientist’s personal network, we
adapted the scale (see Appendix 1) developed by Cross and
Sproull (2004) which was validated by Levin, Walter and
Murnighan (2011) and Walter, Levin and Murnighan (2015).
It has been suggested that dyadic relationships can contribute

Table 1. Distribution of network contacts by professional domain

Professional domain Freq. Percent

Basic scientist 1,725 41.56
Clinical scientist 1,542 37.16
Medical practitioner, patient and patient

association
271 6.53

Technician and management support staff 612 14.75
Total 4,150 100.00

Note: Due to missing values for network diversity, the number of contacts
per professional domain (n¼ 4,150) remains below the total reported (i.e.
4,160).
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to the ‘receipt of useful knowledge’ along five dimensions: by
providing specific solutions to problems or technical advice
(problem-solving); by helping to define or re-frame a problem
(new focus and problem reformulation); by suggesting other
sources of information (people, archives, databases) not previ-
ously considered (referral); by validating plans and solutions
and bolstering confidence (validation); and by legitimating
ideas based on support from influential peers (credibility).
Based on the information derived from our interviews, we
added three more resources related to tangible assets: access to
data and materials (e.g., patient data, samples, materials); ac-
cess to techniques and equipment; and access to funding. Note
that the provision of resources is not mutually exclusive for a
given dyadic relationship: the same contact could provide up
to eight different resources. Our dyad level data show that
interactions with network contacts are related mostly to ‘prob-
lem-solving’ and ‘new focus and problem reformulation’
(63.51% and 61.94%, respectively) (see Table 3). Access to
‘techniques and equipment’ (42.21%) and ‘data and materials’
(40.59%) were also relatively frequent. This information
allowed us to construct eight variables for the proportion of
ties offering each of the eight resources to the focal
respondent.

3.3.2. Participation in medical innovation activities

Healthcare innovations can take multiple forms including new
treatments, improved diagnosis and prevention methods, and
new healthcare delivery protocols (Sung et al. 2003; Khoury
et al. 2007; Westfall, Mold and Fagnan 2007; Dougherty and
Conway 2008). The development of new treatments depends
on identifying new molecular targets for drug discoveries and
their translation from the lab to specific human clinical re-
search through clinical trials and observation studies (e.g.
drug discovery and development) (Pisano 1997). New meth-
ods of disease diagnosis and prevention are associated with
medical technologies such as new medical devices, equipment,
and tests for early-stage diagnosis (e.g. genetic testing)
(Hopkins 2006; Woelderink et al. 2006). Finally, medical
practice can be improved through the development and adop-
tion of new protocols for practitioners, patients, and the gen-
eral public (e.g. clinical guidelines, public health policies)
(Berwick 2003; Weisz et al. 2007; Adler and Kwon 2013).

To capture this variety, we identified 14 medical innovation
activities (see Appendix 2). We asked respondents to report
the frequency of their involvement in each of these innovation

activities, in their research work during the period 2016–7.
Respondents were provided with a drop-down menu from
which they could choose between 0 and 10 times, or more
than 10 times. We conducted exploratory factor analysis using
principal component analysis for factor extraction and vari-
max as the rotation criterion.5 The results show that our
innovation-related activities can be categorized according to
five latent factors6 (see Appendix 2 for details) which account
for more than 65% of the total variance: clinical guidelines,
clinical trials, stakeholders’ advice, commercialization, and
patenting. Overall, 65.5% of our sample indicated having par-
ticipated at least once in stakeholders’ advice which was the
most frequent activity followed by clinical trials (19.38%),
clinical guidelines (17.23%), and patenting (11.99%).
Participation in commercialization activities was less frequent,
and reported by 3.87% of respondents.

3.4. Cluster analysis

We conducted a cluster analysis to identify groups of respond-
ents based on personal network attributes and involvement in
medical innovation. Cluster methods have been used in other
healthcare and innovation studies (Bierly and Chakrabarti
1996; Proksch et al. 2019) and in social network research
(Bensaou, Galunic and Jonczyk-Sédès 2014). From the 1,146
valid responses, the cluster analysis focused on the subset of
respondents who reported at least one tie with contacts out-
side their CIBER research group (n¼ 908). Their average net-
work size is 4.58, displaying an even distribution (i.e.
interquartile range from 3 to 6 network contacts). Since our
cluster variables are derived from the personal network, inter-
action with at least one network member was necessary to
compute the variables.7

The cluster variables account for network diversity (basic
scientists, clinical scientists, practitioners and patients, and
other), tie strength (long duration ties and low frequency ties),
tie content (problem-solving, new focus and problem reformu-
lation, referral, validation, legitimacy, data and materials,
techniques and equipment, and funding), and participation in
medical innovation activities (clinical guidelines, clinical trials,
patenting, and commercialization). We decided to exclude
stakeholders’ advice due to its limited discriminatory power: it
was the most frequent output for 83.5% of respondents. Since
cluster methods are sensitive to variables measured on

Table 2. Distribution of network contacts by contact frequency and tie

duration

Freq. Percent

Contact frequency
Once or several times per day 537 13.05
Once or several times per week 794 19.29
Once or several times per month 1,407 34.18
Once or several times per year 1,378 33.48
Total 4,116 100.00

Tie duration
More than 3 years ago 2,821 68.87
Between 1 and 3 years ago 1,018 24.85
Since 1 year ago 257 6.28
Total 4,096 100.00

Note: Due to missing values for tie strength, the number of observations for
contact frequency (n¼ 4,116) and tie duration (n¼ 4,096) remains below
the total reported (i.e. 4,160).

Table 3. Absolute and relative frequency of different resources provided

by network contacts

Freq. Percent

Intangible
resources

Problem-solving 2,663 63.51
New focus and problem

reformulation
2,597 61.94

Referral 1,779 42.43
Validation (plans, ideas and

solutions)
1,646 39.26

Legitimacy 1,720 41.02
Tangible

resources
Data and materials 1,702 40.59
Techniques and equipment 1,770 42.21
Funding 876 20.89

Note: Since each contact could provide between 1 and 7 resources, the total
number of resources reported (14,753) is higher than the total number of
contacts reported. Percentages refer to resources provided (at least once) by
respondents’ network contacts.
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different scales, all our variables are considered as propor-
tions. Note that we include total number of individuals in the
personal network (network size) to account for size effects.8

Appendix 3 provides the correlations for all the variables in-
cluded in the cluster analysis.

We adopted a mixed approach. We used the centroids
obtained using a hierarchical method to start a K-means algo-
rithm (Milligan and Sokol 1980). Several researchers recom-
mend the agglomerative Ward algorithm to determine the
initial seeds for a K-means (see Steinley and Brusco 2007 for a
comparison of different initialization procedures). We ran the
Ward method on a random subsample of cases using squared
Euclidean distances. The agglomeration schedule and the den-
drogram show plausible cluster solutions ranging between
three and four groups (see Appendix 4). Next, we performed
K-means, using the cluster centroids derived from the Ward
method as initial seeds. K-means is designed to partition N
objects, each having measurements on P variables into K clas-
ses (C1, C2 . . . CK), where CK is the set of nk objects in cluster
k, such that the within-cluster sum of the squares is minimized.
Each object is assigned to its closest centroid, and the cent-
roids in each cluster are recomputed until the process stabilizes
(Steinley 2006). The three-cluster solution provides the most
apparent and interpretable outcome.

4. Results
4.1. Cluster identification

Our cluster analysis approach identified three distinct scientist
profiles: Cluster 1—36% of the cases (n¼ 327); Cluster 2—
42.3% of the cases (n¼ 384); and Cluster 3—21.7% of the
cases (n¼ 197). Table 4 presents the cluster centroids for the
19 variables describing the three network properties and the
four medical innovation activities, for the archetypal biomedi-
cal scientist in each cluster across all the variables analyzed.
To assess whether the distribution of collaborative practices
and involvement in innovation differed significantly across
clusters, we ran Kruskal–Wallis tests and post hoc compari-
sons using the Bonferroni correction (see Appendix 5), which
adjusts the alpha level for multiple comparisons and so
reduces Type I error (wrong rejection of the null hypothesis).
We found that over 60% of the pairwise comparisons were
significant at the 5% level. Therefore, the clusters show clear
differences in terms of personal network attributes and medi-
cal innovation activities. However, some attributes apply simi-
larly to all three profiles (e.g. ‘referral’ and ‘validation’).

4.2. Cluster discussion

To add meaning and improve interpretation of these emerging
clusters, we characterized them based on the previously de-
scribed key attributes. We labeled the clusters downstream-
oriented scientists (C1), upstream-oriented scientists (C2), and
brokering scientists (C3). Figure 1a–d depicts the main differ-
ences and similarities among the three clusters.

Cluster 1: Downstream-oriented scientists. This cluster
includes 327 individuals, mostly scientists involved in innova-
tions related to clinical practice since the most frequent medi-
cal innovation activities are clinical guidelines (29.8%) and
clinical trials (28%). The scientists in this cluster have the
highest proportion of clinical scientists in their personal net-
works (77%) and the lowest proportion of basic scientists
(12.6%). In terms of tie strength, most contacts are old

acquaintances (74.5% of long-lasting ties), and their interac-
tion frequency is quite low (for 34% of the contacts, respond-
ents meet ‘one or several times per year’). This suggests that
downstream oriented scientists rely on long-lasting connec-
tions whom they consult selectively. The resources accessed in-
clude new focus and problem reformulation (19.6%). Also,
14.1% of ties provide access to patients, samples, data, and/or
materials. Demographic information from the questionnaire
shows that the respondents in this cluster are primarily affili-
ated to hospitals (45.6%), with only 10.1% affiliated to public
research organizations, confirming that these scientists are
linked closely to clinical practice.

Cluster 2: Upstream-oriented scientists. For the 384
upstream-oriented scientists in Cluster 2, the most frequent in-
novation activity is patenting applications (17.3%). The mem-
bers of this cluster have the highest level of participation in
commercialization (4.5%). Few are involved in formulating
clinical guidelines or participating in clinical trials; rather, they
focus on invention and early-stage prototypes with commer-
cial potential. Their networks include mostly basic scientists
(78.2%). Most ties are long-lasting (66.3%) and are consulted
infrequently (for 34.6%, ‘one or several times per year’).
These upstream-oriented scientists use their networks for
problem-solving (21%) and problem reformulation (20.2%),
while access to facilities, methodologies, analysis techniques
and/or equipment are important tangible resources (14.4%).
Overall, the results indicate that upstream-oriented scientists
are more likely to conduct research that leads to discoveries
and inventions with a commercial potential (i.e. patenting, li-
censing) than scientists in the other two clusters. In fact, this
cluster includes the largest proportion of scientists affiliated to
a university (37.5%) or a public research organization (20%),
suggesting an orientation toward scientific discovery rather
than clinical practice.

Cluster 3: Brokering scientists. The 197 scientists in this
cluster display the most balanced distribution in terms of par-
ticipation in all types of innovation activities: clinical trials
24.1%, clinical guidelines 15.7%, patenting 10%, and com-
mercialization 3.5%. Compared with downstream and up-
stream scientists, their network ties are more evenly balanced
between basic and clinical scientists and include in their net-
works the largest proportion of medical practitioners and
patients (17%). Also, they have links with technicians, man-
agement staff, and individuals in other professional fields
(56.7%), and tend to rely on well-established ties (62%).
Compared with the members of the other two clusters they
consult personal ties more often: only 20.2% of their contacts
are ‘low frequency ties’. They also show similar levels of access
to a range of resources through personal interactions. Finally,
brokering scientists are mainly embedded in hospitals
(46.2%), following a distribution of institutional affiliations
similar to downstream-oriented scientists.

5. Discussion
5.1. Biomedical scientists’ collaborative practices

This article focuses on three network attributes to understand
how scientists mobilize tangible and intangible resources
through their interpersonal connections: network diversity, tie
strength, and tie content. While the first refers to nodal prop-
erties based on the heterogeneity of network partners, the sec-
ond and third refer to the dyadic properties of the personal
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Table 4. Clusters centroids (averages) for three profiles identified

Downstream (C1)

n¼327

Upstream (C2)

n¼384

Brokering (C3)

n¼197

H statistic P-value Pairwise comparisons

Network size 0.429 0.414 0.316 21.290 0.000 C1 6¼ C3, C2 6¼ C3

Network diversity
Basic alters 0.126 0.782 0.150 659.177 0.000 C1 6¼ C2, C2 6¼ C3

Clinical alters 0.770 0.142 0.105 624.124 0.000 C1 6¼ C2, C1 6¼ C3

Practitioners and patients 0.048 0.027 0.175 46.990 0.000 C1 6¼ C3, C2 6¼ C3

Others 0.056 0.049 0.570 439.635 0.000 C1 6¼ C3, C2 6¼ C3

Tie strength
Contact frequencya

Low frequency ties 0.344 0.346 0.202 33.939 0.000 C1 6¼ C3, C2 6¼ C3

Tie durationa

Long duration ties 0.745 0.663 0.620 16.484 0.000 C1 6¼ C2, C1 6¼ C3

Tie content
Problem-solving 0.172 0.210 0.190 19.685 0.000 C1 6¼ C2, C2 6¼ C3

Problem reform. 0.196 0.202 0.170 15.672 0.000 C1 6¼ C3, C2 6¼ C3

Referral 0.116 0.109 0.118 0.904 0.636 –
Validation 0.099 0.093 0.100 1.885 0.390 –
Credibility 0.112 0.101 0.088 8.704 0.018 C1 6¼ C3

Data and materials 0.147 0.095 0.141 31.194 0.000 C1 6¼ C2, C1 6¼ C3

Techniques and equip. 0.103 0.144 0.124 17.867 0.000 C1 6¼ C2

Funding 0.057 0.046 0.070 6.674 0.036 C1 6¼ C2

Medical innovationa

Clinical guidelines 0.298 0.073 0.157 124.719 0.000 C1 6¼ C2, C1 6¼ C3, C2 6¼ C3

Clinical trials 0.280 0.094 0.241 78.815 0.000 C1 6¼ C2, C2 6¼ C3

Patenting 0.070 0.173 0.100 12.541 0.002 C1 6¼ C2

Commercialization 0.033 0.045 0.035 0.426 0.808 –

Kruskal–Wallis test including post hoc pairwise comparisons (n¼ 908).
a Note that for these variables, we do not include the remaining categories: contact frequency (i.e. high frequency ties), tie duration (i.e. short duration

ties), and medical innovation (i.e. no involvement in any medical innovation activity and stakeholders’ advice).

Figure 1. Cluster differences in medical innovation activities and network attributes. (a) Medical innovation; (b) network composition; (c) tie strength; and

(d) tie content.
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network. We argue that network diversity and tie content cap-
ture the distinct pockets of tangible and intangible resources,
enhancing opportunities for resource complementarity and re-
combination. We suggest also that tie strength provides
insights into the closeness of the relationship enabling knowl-
edge exchange.

Our study identifies diverse collaborative practice profiles
in the context of translational research, based on scientists’
personal networks. On the one hand, high network diversity
reflects research practices characterized by active collabora-
tion with a range of academic and non-academic partners
such as medical practitioners and patients or patient repre-
sentatives who are potential research beneficiaries (Llopis
and D’Este 2016). We found that high network diversity is
linked to strong ties –that is, long-standing contacts who are
consulted frequently. This resonates with discussion in net-
work theory on the advantages of diversity combined with
cohesion (e.g. tie strength). In this view, the benefits of high
network diversity are enhanced by strong ties which enable
cooperation and exploitation of different expertise and ac-
cess to a range of resources (Reagans and McEvily 2003;
Rost 2011; Clement, Shipilov and Galunic 2018; Bone et al.,
2020). This supports the idea of resource complementarity
facilitated by network diversity made actionable through the
presence of strong ties (Ter Wal et al. 2016).

In contrast, scientists with homogeneous personal networks
display connections with rather different dyadic properties. In
this case, scientists rely on sporadic interactions with long-
lasting ties which are maintained with little input of time or
energy (Leana and van Buren 1999). These are described as
weak ties, and provide novel insights and critical tangible
resources. Network research suggests that while the low level
of network diversity provides fewer opportunities for resource
complementarity, it favors information processing and tie con-
tent triangulation between weak and strong ties (Ter Wal
et al. 2016).

Our cluster analysis shows also that the distinct collabora-
tive practice profiles differ in their orientation to innovation.
Downstream-oriented scientists have highly homogeneous net-
works, interact mostly with clinical scientists, work in clinical
settings, and tend to be involved in generating clinically ori-
ented results. Upstream-oriented scientists also have homoge-
neous networks that include mainly basic scientists, and
typically, conduct research in non-clinical settings and pro-
duce inventions with significant commercial potential.
Brokering scientists have highly heterogeneous networks and
are more involved in a wide range of medical innovation activ-
ities. In terms of tie content, all three collaborative profiles dis-
play the capacity to mobilize similar ranges of resources with
a predominant focus on ‘problem-solving’ and ‘new focus and
problem reformulation’. However, they differ in their capacity
to or preferences for access to other resources: access to ‘data
and materials’ is important for downstream-oriented scien-
tists, and ‘techniques and equipment’ are prominent among
upstream-oriented scientists, while brokering scientists assign
similar importance to these resources. Finally, it could be ar-
gued that the distinct medical innovation engagement patterns
to an extent reflect the opportunities for translation of re-
search results into applications that is provided by the institu-
tional context. Nearly 50% of downstream-oriented scientists
are affiliated to hospitals and so are more hands-on regarding
innovations in research practices (e.g. clinical guidelines),
while almost 60% of upstream-oriented scientists work in

universities or public research organizations, and are linked to
more codified and fundamental research activities (i.e. patents,
licensing).

Our study has some practical limitations. First, the survey
population comprises researchers from a single country partic-
ipating in a biomedical networking program. Although the
CIBER program is at the heart of Spain’s efforts to support
translational research and includes several distinct biomedical
domains and organizational environments, we cannot rule out
that our results might be driven in part by the context. Second,
our cross-sectional survey compares a range of biomedical sci-
entists’ collaborative practices but does not allow strong
claims about the specificities of these practices for a particular
medical specialty. Third, although the method used to capture
personal networks is a well-established method in social net-
work research (Borgatti, Brass and Halgin 2014), and allows
access to fine details on personal networks, secondary data
would test the robustness of our findings. Fourth, the survey
respondents were asked to identify a subset of 10 relevant con-
tacts from their entire personal network. Although average
network size was around four contacts, and only 8% of
respondents reported ties to 10 contacts, this methodological
choice might overlook some meaningful dyadic interactions.

5.2. Implications for evaluation

The analysis in this article shows that the patterns of collabo-
ration that emerge in connection with a translational research
program vary. An ego-network approach has provided the
conceptual and empirical grounds to identify such variety. The
existence of varied patterns of collaboration suggests that the
outcomes of translational research programs will be contin-
gent on the type of networks they trigger or encourage. It fol-
lows that the evaluation of such programs would benefit from
approaches that consider the (collaborative) processes through
which knowledge and innovation are generated. Further,
translational research policies similar to the ones addressed in
this article are aimed specifically at changing the way research
is conducted through the advancement of collaborative re-
search across different types of participants. This calls for eval-
uations that focus on how the research is conducted.

Several studies encourage process-focused research evalua-
tion approaches (Spaapen and van Drooge 2011; Reale et al.
2018), including those for the specific case of translational re-
search evaluation (Molas-Gallart et al. 2016). This has led to
the development of evaluation techniques such as the
Diversity Approach to Research Evaluation (Bone et al. 2020)
which provides a quantitative approximation of research team
diversity and how much this diversity is bridged through ac-
tive collaboration. The social network analysis tools deployed
in this article could be applied also to ex-post research evalua-
tion of translational research initiatives. They would provide
empirical data on the social micro-foundations of research
practices, and enable assessment of the extent to which policy
interventions to support translational research are reflected in
how biomedical scientists conduct research, and the specific
patterns of engagement among diverse researcher and medical
communities aimed at.

The findings of our cluster analysis show that an ego-
network approach accounts for different forms of research
conducted within a translational research initiative, suggesting
critical network-related features underlying collaborative
practices. Therefore, compared with a more conventional
output-based approach which requires a single set of
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measurable and comparable indicators of translational re-
search ‘output’, our approach advocates for a granular under-
standing of the translational research process.

Notes

1. The Institute of Health Carlos III: Consolider programme, CIBER

actions. BOE 94, April 19, 2007: 17366–17372. https://www.boe.

es/diario_boe/txt.php?id=BOE-A-2007-8264.
2. In September 2021, a 13th research platform was added: Infectious

Diseases (INFEC).
3. https://www.ciberisciii.es/en.
4. The low proportion of ties with these communities is not surprising;

the survey was not aimed at capturing whether scientists had con-

nections with medical practitioners, patients, or patient associations

but rather which contacts had been critical for scientists’ research.
5. A Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy

(KMO ¼ 0.806) and Bartlett’s test of sphericity (P < 0.001) indi-

cated that the data were suitable for latent structure detection.

6. Factor 1 explained 29.3% of the total variance and comprised de-

velopment of guidelines for clinical practitioners and patients (clini-

cal guidelines). Factor 2—outputs related to clinical trials (clinical

trials)—13.79% of the variance; Factor 3—stakeholder consulting

and advice (stakeholders’ advice)—8.3% of the variance; Factor

4—commercial application of patents (commercialization)—7.71%

of the variance; and Factor 5—inventions and patent applications

(patenting)—6.22% of the variance.
7. The 238 respondents who reported no network contacts include a

very low proportion of research group principal investigators and

senior scientists (�10%).

8. The original scale takes values from 1 to 10; we adapted it

to range between 0 and 1 so that all our variables have the same

scale.
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Appendix 1 Survey items capturing tie content

Appendix 2 Exploratory factor analysis of
medical innovation outputs (PCA used as extraction method—varimax rotation)

Tie content Type of resource

Provided information and advice to solve specific problems that I found in my research Problem solving
Provided a new focus to develop my research Problem reformulation
Pointed me towards people and/or information sources that are relevant to my research Referral
Helped me to improve my ability and confidence to explain and defend the scientific interest of my research Validation
Made my research credible to third parties Credibility
Provided access to patients, samples, data, and/or materials Data and materials
Provided access to facilities, methodologies, analysis techniques, and/or equipment Techniques and equipment
Provided access to funding to develop my research Funding

Clinical

guidelines

Clinical

trials

Stakeholders’

advice

Commercialization Patenting

Development of treatment guidelines for patients 0.834 0.059 0.202 0.004 0.028
Development of guidelines or prevention protocols aimed at the

general population
0.809 0.158 0.080 0.140 0.039

Development of clinical practice guidelines or protocols for clinical
professionals

0.666 0.273 0.340 �0.102 0.132

Clinical trials phase I, II, III, or IV for new techniques and/or tools for
diagnosis, prognosis, and response to treatments

0.121 0.832 0.243 0.017 0.088

Clinical trials phase I, II, III, or IV for drugs and substances for
therapeutic use

0.135 0.804 0.219 �0.017 0.113

Design or execution of clinical trials for the repositioning of drugs 0.459 0.571 �0.044 0.088 0.040
Consulting and advice to patients, public administrations, or other

non-academic actors
0.145 0.067 0.807 0.075 �0.013

Participation in observatories and/or groups of experts for the
development of policies and action plans

0.343 0.181 0.711 �0.005 0.089

Collaboration agreements with companies, administrations,
foundations, or associations of patients

0.038 0.312 0.602 0.246 0.160

Patents for which royalties derived from commercial exploitation
have been received

0.008 0.026 0.099 0.830 �0.073

Granting of licenses derived from your patents �0.003 0.030 0.121 0.771 0.320
Participation in companies originated from your research (spin-off) 0.130 �0.004 �0.010 0.520 0.404
Application for patents for medicines and substances for therapeutic

use
0.069 0.045 0.009 0.085 0.826

Patent application for new techniques and/or tools for diagnosis,
prognosis, and response to treatment

0.027 0.156 0.140 0.152 0.680

Note: Factor loadings > 0.500 are printed in bold. Factor 1 (clinical guidelines): 29.3% of the total variance; Factor 2 (clinical trials): 13.79%; Factor 3
(stakeholders’ advice): 8.3%; Factor 4 (commercialization): 7.71% of the variance; and Factor 5 (patenting): 6.22%.
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Appendix 3 Correlation matrix (n ¼ 908)

1 2 3 4 5 6 7 8 9 10

1 Network size –
2 Basic alters 0.53** –
3 Clinical alters 0.55** �0.18** –
4 Practitioners and patients 0.20** �0.13** �0.02 –
5 Others 0.28** �0.15** �0.07* 0.03 –
6 Low frequency ties 0.56** 0.37** 0.35** 0.01 0.03 –
7 Long duration ties 0.77** 0.37** 0.50** 0.12** 0.18** 0.41** –
8 Problem-solving 0.74** 0.47** 0.40** 0.09* 0.14** 0.32** 0.62** –
9 Problem reform. 0.75** 0.47** 0.45** 0.07* 0.08* 0.38** 0.65** 0.72** –
10 Referral 0.58** 0.24** 0.41** 0.09* 0.16** 0.23** 0.52** 0.59** 0.63** –
11 Validation 0.54** 0.20** 0.39** 0.13** 0.13** 0.26** 0.46** 0.56** 0.61** 0.66**
12 Credibility 0.56** 0.24** 0.41** 0.07* 0.10** 0.26** 0.50** 0.56** 0.61** 0.67**
13 Data and materials 0.62** 0.18** 0.48** 0.26** 0.12** 0.34** 0.46** 0.45** 0.48** 0.50**
14 Techniques and equip. 0.63** 0.43** 0.29** 0.06 0.14** 0.34** 0.47** 0.58** 0.56** 0.53**
15 Funding 0.45** 0.17** 0.30** 0.07* 0.16** 0.24** 0.43** 0.38** 0.42** 0.52**
16 Clinical guidelines 0.01 �0.16** 0.17** 0.04 0.00 �0.06 0.09** 0.03 0.04 0.11**
17 Clinical trials 0.06 �0.14** 0.17** 0.09** 0.02 �0.09** 0.12** 0.07* 0.07* 0.08*
18 Patenting 0.03 0.02 �0.02 0.01 0.05 �0.02 0.07* 0.02 0.02 �0.03
19 Commercialization 0.10** 0.00 0.05 0.09** 0.08* �0.01 0.10** 0.04 0.06 0.05

11 12 13 14 15 16 17 18 19

11 Validation –
12 Credibility 0.76** –
13 Data and materials 0.48** 0.48** –
14 Techniques and equip. 0.53** 0.54** 0.51** –
15 Funding 0.44** 0.52** 0.44** 0.47** –
16 Clinical guidelines 0.10** 0.10** 0.05 0.00 0.03 –
17 Clinical trials 0.09** 0.07* 0.08* 0.03 0.08* 0.49** –
18 Patenting �0.02 0.00 �0.01 �0.01 0.03 0.15** 0.17** –
19 Commercialization �0.01 0.06 0.05 0.03 0.08* 0.11** 0.11** 0.37** –

* P< 0.05.
** P< 0.01.
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Appendix 4 Dendrogram (using ward’s linkage)
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Appendix 5 Kruskal–Wallis post hoc tests values (Bonferroni correction) (n ¼ 908)

Variables Test Statistic P-value Variables Test Statistic P-value

Network size Tie strength
C3–C2 91.800 0.000 Low frequency ties
C3–C1 101.209 0.000 C3–C1 116.337 0.000
C2–C1 9.409 1.000 C3–C2 121.696 0.000

Network diversity C1–C2 �5.359 1.000
Basic scientists Long duration ties

C1–C3 �16.068 1.000 C3–C2 12.903 1.000
C1–C2 �449.080 0.000 C3–C1 78.962 0.002
C3–C2 433.012 0.000 C2–C1 66.060 0.002

Clinical scientists Tie content
C3–C2 38.809 0.249 Problem solving
C3–C1 465.568 0.000 C1–C3 �20.465 1.000
C2–C1 426.759 0.000 C1–C2 �84.254 0.000

Practitioners and patients C3–C2 63.789 0.016
C2–C1 30.401 0.063 Problem reform.
C2–C3 �104.939 0.000 C3–C1 59.596 0.035
C1–C3 �74.538 0.000 C3–C2 90.885 0.000

Others C1–C2 �31.290 0.337
C2–C1 11.411 1.000 Credibility
C2–C3 �385.985 0.000 C3–C2 40.515 0.216
C1–C3 �374.574 0.000 C3–C1 65.882 0.013

Medical innovation C2–C1 25.366 0.569
Clinical guidelines Data and materials

C2–C3 �64.237 0.002 C2–C3 �38.471 0.269
C2–C1 176.637 0.000 C2–C1 108.217 0.000
C3–C1 112.399 0.000 C3–C1 69.745 0.008

Clinical trials Techniques and
equip.

C2–C3 �101.600 0.000 C1–C3 �27.353 0.731
C2–C1 138.657 0.000 C1–C2 �81.277 0.000
C3–C1 37.057 0.165 C3–C2 53.924 0.054

Patenting Funding
C1–C3 �21.894 0.567 C2–C3 �23.589 0.808
C1–C2 �49.072 0.001 C2–C1 47.329 0.029
C3–C2 27.178 0.280 C3–C1 23.740 0.840
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