Índice general

Agradecimientos								
R	Resumen							
Ín	dice	general	xi					
G	losar	io	$\mathbf{x}\mathbf{v}$					
1	Inti	roducción	1					
	1.1	Motivación	2					
	1.2	Objetivos	4					
	1.3	Notación empleada	6					
	1.4	Estructura de la tesis	7					
2	Ant	ecedentes	9					
	2.1	Introducción	10					
	2.2	Orígenes	12					
	2.3	Descripción del modelo del quadrotor	14					
		2.3.1 Obtención del modelo completo	17					
		2.3.2 Simplificación del modelo	21					
		2.3.3 Sistema doble integrador	23					
	2.4	Esquema descentralizado de control	25					
	2.5	Criterios de desempeño	27					
	2.6	Estrategias de control aplicadas a quadrotors	28					
	2.7	Conclusiones	33					

3	Pla	taformas experimentales	35					
	3.1	Introducción	36					
	3.2	Consideraciones sobre el hardware	37					
	3.3	Consideraciones sobre el software	40					
	3.4	Sistema quadrotor	43					
	3.5	Descripción de las plataformas experimentales	45					
		3.5.1 Plataforma Hover 3DOF de Quanser	45					
		3.5.2 Plataforma Fl-Air	47					
	3.6	Conclusiones	50					
4	Diseño de un control robusto basado en estimación de per-							
	turl	oaciones	51					
	4.1	Introducción	52					
	4.2	Planteamiento del problema	53					
	4.3	Obtención de la estrategia de control	54					
	4.4	Implementación digital	55					
	4.5	Diseño del controlador	56					
	4.6	Diseño de un control robusto tolerante a fallos en los motores	57					
		$4.6.1$ Desarrollo de un observador de fallos en los motores $\ \ldots \ \ldots \ \ldots$	58					
		4.6.2	60					
	4.7	Diseño de un controlador robusto para maniobras de vuelo agresivas	62					
		4.7.1 Esquema de control optimo frente saturaciones de los motores	63					
		4.7.2 Consideraciones sobre el optimizador	66					
	4.8	Simulaciones	67					
		4.8.1 Ejemplo 1: Efecto de las incertidumbres en el modelo	67					
		4.8.2 Ejemplo 2: Desempeño del observador de fallos	71					
		4.8.3 Ejemplo 3: Efecto de las saturaciones en los motores $\dots \dots \dots$	74					
	4.9	Resultados experimentales	79					
		4.9.1 Experimento 1: Efecto del viento en el desempeño del vehículo	80					
		4.9.2 Experimento 2: Desempeño frente un fallo crítico en un motor	83					
		4.9.3 Experimento 3: Desempeño frente fuertes ráfagas de viento	87					
	4.10	Conclusiones	92					
5	Cor	ntrol PID basado en estimación de incertidumbres y per-						
	turl	oaciones	95					
	5.1	Introducción	96					
	5.2	Planteamiento del problema	97					
	5.3	Descripción de la estrategia de control	98					
	5.4	Equivalente 2-DOF PID	101					
	5.5	Diseño del controlador	104					
	5.6	Consideraciones para el sistema quadrotor	109					

	5.7	Simulaciones	0
		5.7.1 Ejemplo 1: Proceso de primer orden con retardo	0
		5.7.2 Ejemplo 2: Proceso de cuarto orden	2
		5.7.3 Ejemplo 3: Proceso de segundo orden inestable con retardo 11	4
	5.8	Resultados experimentales	6
	5.9	Conclusiones	0
6	\mathbf{Dis}	eño de controladores robustos frente a retardos variables	
	ур	erdidas de datos 12	1
	6.1	Introducción	2
	6.2	Planteamiento del problema	3
	6.3	Consideraciones sobre los retardos variables	5
		6.3.1 Obtención del retardo de un paquete	6
	6.4	Descripción de la estrategia de control	6
		6.4.1 Control por eventos	8
	6.5	Modelo en espacio de estados interconectado libre de retardos	9
	6.6	Análisis de estabilidad	8
	6.7	Diseño del controlador	2
		6.7.1 Descripción del algoritmo CCL	3
	6.8	Simulaciones	4
		6.8.1 Ejemplo 1: Proceso de segundo orden inestable	4
		6.8.2 Ejemplo 2: Proceso doble integrador	7
	6.9	Resultados experimentales	9
	6.10	Conclusiones	2
7	Cor	aclusiones y trabajos futuros 15	5
	7.1	Conclusiones	6
	7.2	Futuras lineas de trabajo	8
	7.3	Publicaciones	
Bi	iblio	grafía 16	1