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ABSTRACT 
 

This thesis presents a new framework called the “Dynamic Urban Crowd and Social 

Interaction Model (DUCSIM),” which is aimed at calculating crowd density and 

deciphering social networks in opportunistic environments. With the growing 

commonality of internet-linked electronic gadgets and the widespread influence of online 

social networks, an enormous digital trail has been created. The digital traces based on 

human mobility and the increased usage of wireless communication systems such as 3G, 

4G, and 5G form a rich database to be analyzed. 

 

These digital traces offer a unique way of modelling the crowd patterns within different 

contexts, like spontaneous assemblies in public spaces and planned scenarios, as in the 

case of mega-events. The study focuses on the challenge of opportunistic crowd 

gatherings, where people congregate for different reasons without planning; they manifest 

their motions dynamically and unexpectedly. The analysis of human behaviour in modern, 

developed cities requires that these gatherings occur in malls, road junctions, and flash 

mobs. 

 

Macroscopic crowd density analysis based on data from MOBILE towers serves as the 

first stage in outlining the DUCSIM framework. The Median-of-Median (M-o-M) method 

is adopted for robustness as this analysis involves daily and weekly raw crowd count 

thresholds. Crowd densities are ranked in quartiles to show varying degrees of crowd 

distribution. Through the macroscopic analysis, the framework progresses to cumulative 

crowd mobility analysis. Crowd movement dynamics are measured by changing signals 

from MOBILE towers and formulating a crowd’s density map to forecast its subsequent 

motions. 

 

It examines the micro-analysis of individual movement and interpersonal relations on a 

smaller scale. It includes assigning people to MOBILE towers and forming social 

interaction graphs that infer and update social relationships. 

 

The most important part of DUCSIM lies in its ability to dynamically learn and adapt to 
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create a novel representation model to suit the newly detected pattern. This flexibility 

helps to ensure the relevancy of the framework, which must be continually updated. 

 

Custom predictive modelling combines with historical data that encompasses the 

thesis. The framework uses previous crowd densities and movement data to discover 

trends and predict upcoming crowd dynamics, thus improving urban planning efficiency, 

emergency response, or smart cities. 

 

The DUCSIM framework provides a comprehensive, flexible and forecasting method of 

understanding and controlling urban crowd phenomena. A modern form of data analysis 

involving several data sources, supported by rigorous mathematics, makes this method 

unique for urban studies. Moreover, it gives impetus to the academic sphere and provides 

practical recommendations concerning the application of this methodology within modern 

city management and planning. 
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RESUMEN 
 

Esta tesis presenta un nuevo modelo llamado “Modelo dinámico de interacción social y 

multitud urbana (DUCSIM)”, que tiene como objetivo calcular la densidad de multitudes 

y descifrar las redes sociales en entornos oportunistas. Con la creciente similitud de los 

dispositivos electrónicos conectados a Internet y la influencia generalizada de las redes 

sociales en línea, se ha creado un enorme rastro digital. Las huellas digitales basadas en la 

movilidad humana y el mayor uso de sistemas de comunicación inalámbrica como 3G, 

4G y 5G forman una rica base de datos que puede analiarse. 

 

Estas huellas digitales ofrecen una forma única de modelar los patrones de multitud 

dentro de diferentes contextos, como asambleas espontáneas en espacios públicos y 

escenarios planificados, como en el caso de los megaeventos. El estudio se centra en el 

desafío de las reuniones multitudinarias oportunistas, donde las personas se congregan 

por diferentes motivos sin planificación; manifiestan sus movimientos de forma dinámica 

e inesperada. El análisis del comportamiento humano en las ciudades modernas y 

desarrolladas requiere que estas reuniones se produzcan en centros comerciales, cruces de 

carreteras y flash mobs. 

 

El análisis macroscópico de la densidad de multitudes basado en datos de las torres de 

telefonía móvil sirve como primera etapa para delinear el marco DUCSIM. Se adopta el 

método Median-of-Median (M-o-M) para mayor solidez, ya que este análisis implica 

umbrales de conteo bruto de multitudes diario y semanal. Las densidades de multitud se 

clasifican en cuartiles para mostrar distintos grados de distribución de la multitud. A 

través del análisis macroscópico, el marco avanza hacia el análisis de movilidad 

acumulativa de multitudes. La dinámica del movimiento de multitudes se mide 

cambiando las señales de las torres de telefonía movil y formulando un mapa de densidad 

de multitudes para pronosticar sus movimientos posteriores. 

 

Examina el microanálisis del movimiento individual y las relaciones interpersonales a 

menor escala. Incluye asignar personas a torres de telefonía móvil y formar gráficos de 

interacción social que infieren y actualizan las relaciones sociales. 
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La parte más importante de DUCSIM radica en su capacidad de aprender y adaptarse 

dinámicamente para crear un modelo de representación novedoso que se adapte al patrón 

recién detectado. Esta flexibilidad ayuda a garantizar la relevancia del marco, que debe 

actualizarse continuamente. 

 

El modelado predictivo personalizado se combina con datos históricos que engloban la 

tesis. El marco utiliza densidades de multitudes anteriores y datos de movimiento para 

descubrir tendencias y predecir dinámicas de multitudes futuras, mejorando así la 

eficiencia de la planificación urbana, la respuesta a emergencias o las ciudades 

inteligentes. 

 

El marco DUCSIM proporciona un método integral, flexible y de previsión para 

comprender y controlar los fenómenos de aglomeración urbana. Una forma moderna de 

análisis de datos que involucra varias fuentes de datos, respaldada por matemáticas 

rigurosas, hace que este método sea único para los estudios urbanos. Además, da impulso 

al ámbito académico y proporciona recomendaciones prácticas sobre la aplicación de esta 

metodología en la gestión y planificación de las ciudades modernas. 
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RESUM 
 

Aquesta tesi presenta un nou model anomenat "Dynamic Urban Crowd and Social 

Interaction Model (DUCSIM)", que té com a objectiu calcular la densitat de multituds i 

desxifrar xarxes socials en entorns oportunistes. Amb la creixent comú d'aparells 

electrònics enllaçats a Internet i la influència generalitzada de les xarxes socials en línia, 

s'ha creat un enorme rastre digital. Les traces digitals basades en la mobilitat humana i 

l'augment de l'ús de sistemes de comunicació sense fils com 3G, 4G i 5G formen una base 

de dades rica per ser analitzada. 

 

Aquestes traces digitals ofereixen una manera única de modelar els patrons de multituds 

en diferents contextos, com ara assemblees espontànies en espais públics i escenaris 

planificats, com en el cas dels megaesdeveniments. L'estudi se centra en el repte de les 

reunions multitudinàries oportunistes, on la gent es congrega per diferents motius sense 

planificació; manifesten els seus moviments de manera dinàmica i inesperada. L'anàlisi 

del comportament humà a les ciutats modernes i desenvolupades requereix que aquestes 

reunions es produeixin en centres comercials, cruïlles de carreteres i flash mobs. 

 

L'anàlisi macroscòpic de la densitat de multituds basada en dades de les torres de 

telefonía mòbil serveix com a primera etapa per descriure el marc DUCSIM. El mètode 

M-o-M s'adopta per a la robustesa, ja que aquesta anàlisi implica umbrals de recompte de 

multituds diaris i setmanals. Les densitats de multitud es classifiquen en quartils per 

mostrar diferents graus de distribució de multitud. Mitjançant l'anàlisi macroscòpic, el 

marc avança cap a l'anàlisi de la mobilitat acumulat de multituds. La dinàmica del 

moviment de la multitud es mesura canviant els senyals de les torres de telefonía mòbil i 

formulant un mapa de densitat de la multitud per preveure els seus moviments posteriors. 

 

Examina el microanàlisi del moviment individual i les relacions interpersonals a menor 

escala. Inclou assignar persones a torres de telefonía mòbil i formar gràfics d'interacció 

social que dedueixin i actualitzin les relacions socials. 

 

La part més important de DUCSIM està en la seua capacitat per aprendre i adaptar-se de 

manera dinàmica per crear un model de representació nou que s'adapte al patró 
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recentment detectat. Aquesta flexibilitat ajuda a garantir la rellevància del marc, que s'ha 

d'actualitzar contínuament. 

 

El modelatge predictiu personalitzat es combina amb les dades històriques que engloben 

la tesi. El marc utilitza dades de moviment i densitats de multitud anteriors per descobrir 

tendències i predir les properes dinàmiques de multituds, millorant així l'eficiència de la 

planificació urbana, la resposta d'emergència o les ciutats intel·ligents. 

 

El marc DUCSIM proporciona un mètode complet, flexible i de previsió per entendre i 

controlar els fenòmens d'aglomeracions urbanes. Una forma moderna d'anàlisi de dades 

que inclou diverses fonts de dades, amb el suport de matemàtiques rigoroses, fa que 

aquest mètode sigui únic per als estudis urbans. A més, dóna un impuls a l'àmbit acadèmic 

i ofereix recomanacions pràctiques sobre l'aplicació d'aquesta metodologia en la gestió i 

planificació de la ciutat moderna. 
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CHAPTER 1: INTRODUCTION 
 

 

Modern-day urban areas are diverse living systems with significant human dynamics 

determining short-term and future growth patterns. Understanding and controlling these 

processes is essential for effective urban planning, emergency management, and the long-

term success of smart city initiatives. 

 
1.1 Background and Motivation 

 

The trend in research on urban crowd dynamics has changed recently. Previously, 

qualitative research was used as the primary study method since no reliable computational 

techniques or rich big data sets were available [1]. However, using quantitative methods 

such as improved computational techniques is becoming a matter of concern with the 

rapidly increasing population in urban settings and promoting a green city [2]. Mobile 

communication and GPS tracking technology are advancements that allow the monitoring 

of crowd movements, hence the need for customized modelling methodologies [3]. This 

is the motivation of this study, given the need for informed decision-making in managing 

cities given the dynamics experienced in global urbanization [4]. 

 

1.1.1 The Emergence of Crowd Sensing in Urban Environments 
 

Crowd sensing is revolutionary for data gathering from urban areas using the built-in 

sensors in numerous interconnected machines. As such, this approach quickly became one 

of the core elements in planning and managing smart cities, making it possible to estimate 

the nature of urban areas' physical traits automatically. Crowd sensing utilizes AI 

techniques to process large amounts of data derived from urban sensing, leading to better 

informed and reactive urban management [11]. Crowdsensing finds major use in urban 

traffic management in estimating vehicular density and distribution. Understanding and 

managing traffic jams planes and improving urban mobility is critical. Therefore, crowd 

sensing determines the fastest and safest automobile routes by looking at information 
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collected from multiple locations, enhancing productivity and slashing traveling duration 

[6]. 

 

The mobile crowd-sensing system will improve traffic management and provide safe and 

efficient mobility across urban facilities [4].  Energy consumption, surveillance, safety, 

emergency preparedness, and so on are especially useful in crowded cities. [5,6] The 

traditional systems tend to deteriorate. Data is collected for driving style analysis and 

environmental details for traffic management and air improvement through vehicular 

crowd sensing (VCS) , targeting information from intelligent automobiles [5]. VCS 

innovations such as ROUTR propose a budget-aware, distributed strategy for enhancing 

VCS efficiency without central coordination. These innovations also increase the 

reachability of urban crowd sensing [7]. Figure 1-1 represents the flow of information and 

processes in crowd sensing within urban environments: 

 

 
Figure 1-1: Urban Environment Crowd Sensing Scenario 

 

• Urban Environment: Urban crowding may see many people participating in urban 

crowd sensing because many activities occur within urban centres. 
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• Smart Devices: An urban landscape uses smartphones and other devices like 

sensors. Such tools may help supervise different parameters of city development 

processes, such as urban flows, including transport situation assessment. 

• Data Collection: The data that feeds them is provided through these smart 

devices. Data is transferred from all devices or systems to one centralized system or 

database. Data transmission is done exactly and reliably. 

• Data Analysis: The concept then processes and analyses its data. Data analysis 

techniques are used to discover the significance of smart device data at this stage. 

• Insights: The last step is deriving insights for the analyzed data. Such observations 

and perceptions could aid decision-making in a city developed for enhanced public 

services and improved living standards. 

 

Urban crowd sensing involves key procedures such as sensor deployment, 

communication data handling, analysis, and decisions highlighted in the figure above. 

Smart cities and crowd sensing have become key technologies in smart city programs. A 

huge step in collecting and analysing urban data is its capacity to tap into a network of 

sensors sprawling across numerous linked devices. The city, however, should become 

more adaptive by using ICTs to achieve a smart environment. 

 

1.1.2 Accurate Crowd Density Estimation 
 

Application areas such as surveillance, traffic management, and public safety heavily rely 

on crowd estimation. Because crowd density is complex and important, many inventive 

techniques have been developed to improve the accuracy and dependability of those 

estimations. One strategy is the Selective Ensemble Deep Network Architecture, which 

aims to increase population census map densities and precision. Thus, this approach alters 

the balance of the density and counting loss weighting factor toward a better crowd 

estimate [8]. Another development incorporates RGB images and RSS signals from 

Unmanned Aerial Vehicles (UAVs). Hence, this coupling reaches a new record level of 

accuracy for understanding complex mob scenes [9]. Multi-task learning using depth 

information of a novel Crowd density estimation framework based on a Unified System. 

The technique acquires a further dimension, increasing its sensitivity toward crowd 

studies [10]. 
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Another edge computing application is crowd density estimation, which uses residual 

bottleneck blocks and dilated convolutional layers to achieve high accuracies with low 

computing/storage overheads suitable for real-time applications requiring minimum 

delays [11]. A multi-scale Feature Adaptation Network is proposed to take precise crowd 

counts with variable scales. The described method prevails over conventional crowd-

counting algorithms dealing with scales [12]. This demonstrates continual improvement 

toward perfecting crowd density estimates using advanced neural network models and 

modern tools, including robots (UAVs) and mobile devices based on edge computing. The 

studies above help understand the intricate urban crowd milieu and are pivotal to urban 

planning and security. 

 

1.2 Evolution of Opportunistic Sensing Technologies 
 

In the context of Cognitive Radio Networks and other wireless systems, opportunistic 

sensing technologies have achieved noteworthy efficiency, accuracy, and flexibility 

improvements by applying sampling techniques that use resources sparingly and 

adaptable. For instance, simple spectrum sensing employing DFT random sampling in 

conjunction with the Energy Detector model in CRSs provides an optimized ROC curve, 

minimal false alarm probability, and maximized signal-to-noise ratio [13]. Using Random 

Spectral Sampling instead of traditional Compressed Sensing (CS) in wide-band spectrum 

sensing is possible for compliance monitoring. This option can help simplify processes 

related to collecting data on compliance in broad-spectrum spaces [14]. Recent 

improvements have been in energy-efficient VLSI signal processing for wide-band 

spectrum sensing. For example, applying different multitap windows and fast Fourier 

transform (FFT) processing allows us to minimize spectral leakage and detection 

time. Spectral leakage on a channel-specific basis allows for exact wide-band observation 

under short sampling intervals, which is advantageous in cognitive radios. Extended 

opportunistic sensing is also applicable in smart cities where people-centric computing 

and communications are present; this will be through an application called 

“SmartCitizen.” The proposed approach includes time series analysis, opportunistic 

sensing, deep learning, and transfer learning, thus achieving an overall F1-score 

improvement of about 5.8% compared to the baseline [14][15]. Acceptance of such 

opportunistic sensing techniques is important while dealing with spectrum scarcity, 
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ensuring conformity, and improving versatility throughout several wireless 

services. These portray the contemporary communication model's beginning and reflect a 

people-cantered approach [16]. 

 

1.3 Heterogeneous Data Integration 
 

Heterogeneous data integration, a complex process merging diverse datasets, faces 

challenges due to the vast quantity, varying quality, and high data arrival speed in the era 

of big data. These complexities arise from multidimensionality, intertwinement, nonlinear 

dynamics, and inherent unpredictability of complex, uncertain, and high-dimensional 

data. Innovative approaches like GANs, with their generator and discriminator 

architecture, effectively handle data disparities, even in label less or structureless data 

[18]. The peak clustering algorithm excels in analysing data with numerous peaks, such 

as biological signals and high-throughput data. Clustering these peaks enhances the 

interpretation of underlying patterns and relationships [19]. The Heterogeneous Multi-

Layered Network (HMLN) model adeptly processes multi-dimensional data, which is 

vital in bioinformatics, where data originates from various biological layers or systems. 

HMLNs enable the seamless integration of diverse biological data, revealing the 

hierarchical nature of organismic systems [20]. Matrix factorization, random walks, 

knowledge graphs, and deep learning are pivotal in biological information integration. 

These approaches facilitate the discovery of new biological associations, obscure 

relationships, and trends within HMLNs [21]. Heterogeneous data integration finds 

applications in optimizing power grid effectiveness, gathering consumer behaviour, 

weather, and grid data [22], and aggregating wearable, medical, and genetic data in health 

and fitness. Advances in these techniques significantly contribute to handling the modern 

data deluge, benefiting diverse industries with informed decisions and effective problem-

solving mechanisms [23]. 

 

1.4 Computational Methods for Social Analysis 
 

New computational methods have revolutionized social studies, impacting mental health, 

finance, and behaviour through big data and advanced algorithms. Social media data 

analysis can uncover insights into mental health, detecting patterns in language usage and 

interactions that signal conditions like depression and anxiety, enabling early intervention 
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[23]. Reinforcement learning algorithms have transformed decision-making in finance, 

adapting strategies based on market data to optimize investment decisions, portfolio 

management, and risk assessment [24]. In behavioural and social impairments, including 

autism spectrum disorder (ASD), computer vision integrated with mobile technology 

captures behavioural patterns and social interactions, aiding objective assessment, early 

diagnosis, and personalized care support [25]. These computational methods provide new 

perspectives on analysing social activities and trends, harnessing big data trends, machine 

learning, and advanced algorithms [26]. They enhance understanding of social processes 

and positively affect diverse fields such as health, finance, and behavioural sciences [27]. 

 

1.5 Mobile Network  
 

A number of studies have looked into crowd density estimation and prediction through 

using mobile networks. A study was conducted using a sub-GHz WSN for crowd density 

estimation and the results proved that it had an excellent estimation performance [28].  

Another research has suggested lightweight density estimation network architectures like 

the GAEnet for highly accurate and real-time applications. Such solutions address the 

problem of excess parameters and redundant structures in conventional crowd-counting 

networks [29]. There have also been studies that use light Wi-fi signals from sparse 

infrastructure to estimate crowds with respect to privacy of individuals monitored via 

traditional network. This research has proposed the use of multifeatured convolution 

neural network (MFNet) technique for crowd density counting that incorporate several 

crowd data sources such as hog, lbp, and canny. This shows how the technologies used in 

these approaches can be applied in calculating the densities, designing better 

communication services, controlling traffic, and others [30]. 

 

Analysis of Mobile Network for Crowd density estimation and mobility, is based 

exclusively on logs data, which provides an efficient way of revealing population 

movement. However, this approach simply explores the fundamental characteristic of 

mobiles as devices that can communicate with neighbouring transmitters regardless of the 

brand (2G, 3G, 4G, 5G, and 6G), call making, SMS and other features. The size of data 

that is generated per hour is massive to handle, thus the purpose of this research is to 

explore more by using less data in number of parameters. Cellular phones constantly ping 

(communicate) with the cell towers in order to stay connected on a mobile network. The 
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position of the individual in a crowd, and even the direction towards which it is moving 

can be assessed by monitoring which mobile device towers they are connecting with, and 

determining how these connections develop during the course of time. This information is 

very important to understand the daily movement of people in a given region while they 

are going about their daily activities, conducting special events, and even evacuating in 

case of an emergency. It is a continuous and real time location source data since the 

system traces device’s interactions with cell tower; even in an idle mode.  

 

The proposed system estimates cumulative crowd densities and distinguishes among 

single individuals and grouped movements while assuming every person carries a phone. 

The data is of great importance to the town planners, the event managers, and emergency 

service providers as it offers insights towards creating appropriate and reliable schedules 

that lead to efficient traffic control, and improved and reliable urban infrastructure. It uses 

anonymous, aggregated data that is based on network connection and this helps to protect 

the individual’s privacy by giving a general picture of the dynamics in the population. For 

the thesis, the MOBILE network focuses on the number of Mobile Phone devices 

connected to the BSC. Figure 1-2 illustrates an overview of a MOBILE Network.  

 

 
Figure 1-2: Over view of Mobile Network  

Here is an illustrated overview of a basic MOBILE network: 
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• Red Dots (BTS - Base Transceiver Stations): These are the base stations 

distributed across the area, each with its coverage radius (indicated by the red 

circles). They are responsible for communicating directly with mobile stations 

(MS) within their range. 

• Blue Dots (MS - Mobile Stations): Represent mobile devices or users within the 

network. They connect to the network through the nearest BTS. 

• Green Dot (BSC - Base Station Controller): This controller manages several 

BTSs. It handles the set-up, frequency allocation, and handovers (when a mobile 

station moves from one BTS to another). 

• Yellow Dot (MSC - Mobile Switching Center): This is the central component of 

the network. It connects to the BSCs and manages the routing of calls and data 

and interfacing with other networks. 

• Dashed Lines: Indicate the communication links. The green dashed lines show 

the connection between the BTSs and the BSC, and the yellow dashed line 

represents the link from the BSC to the MSC. 

 

1.6 Statement of the Problem 
 

1.6.1 Defining Crowd Density Estimation Challenges 
 

Crowd estimation poses several intricate issues, especially when it has to do with 

changing environments. Accurate assessment for crowd formation is very difficult as it is 

spontaneous with an unexpected group action. Adding to the complexities is that data 

must be collected and analyzed within varied environmental contexts, from open spaces 

to indoor venues. Additionally, crowd dynamics can be affected by various unexpected 

developments such as sociological occasions, emergencies, and weather events, making 

real-time prediction even harder. 

 

1.6.2 Limitations of Existing Methodologies 
 

The existing techniques of crowd density analysis mostly depend on old-school 

approaches, which include CCTVs and person counts. However, these methods have a 

short range as well as limitations of scalability—these impediments in real-time 

processing, privacy problems, and demand for a large physical facility. Furthermore, the 
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existing traditional algorithmic ways might fail to utilize completely the vast range of 

heterogeneous data spectrum we have nowadays in this integrated digital world, giving 

rise to the gap between data possibility and its efficient usage for crowd analysis. 

 

1.6.3 Need for a New Algorithmic Approach 
 

For a new algorithmic paradigm to address the shortcomings of current 

methods. Therefore, The novel approach should combine diverse datasets such as 

MOBILET tower information, online activity on social networks, and other tracking 

information to provide a holistic and instantaneous picture of crowd behaviour. The 

software must also be flexible enough to fit different situations and adept at handling 

large volumes of data prevalent in cities. 

 

1.6.4 Challenges in Opportunistic Environments 
 

On the other hand, unplanned or opportunistic gathering situations are peculiar 

challenges. This encompasses fleeting gatherings with changing compositions, 

unstructured data on these events, and fast-moving crowds. For instance, such cases 

require flexible and strong systems to change rapidly to changing situations while making 

accurate estimations with no need for prior installation or extensive data-gathering 

campaigns. 

 

1.6.5 Role of Synthetic and Real-world Data 
 

Synthetic and real data represent an efficient approach to address these issues. Synthetic 

data allows the creation of crowds and different behaviour models in an artificial 

environment. It makes it possible to test algorithms on them and fine-tune them before 

real use of algorithms is possible when real-life data gathering would be impossible. On 

the one hand, facts obtained from cellular telephone records and the IoT or social 

networking sites reveal real-world information about crowd behaviouralU patterns and 

trends. The proposed algorithmic approach integrates various data sources that balance 

theoretical robustness with applied relevance to achieve precision and reliability of crowd 

density estimates in different and dynamic situations. 
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1.7 Research Objectives 
1.7.1 Primary Goal: Development of the DUCSIM Algorithm 
 

One main objective of this study pertains to the creation of the Dynamic Urban Crowd 

and Social Interaction Model (DUCSIM). This algorithm has been designed for this thesis 

to change how the crowd densities could be estimated within any diverse situation of 

chance. Aim for crafting an algorithm that will capture crowd motion's intricacies and 

adjust to the rapidly shifting cityscapes. DUCSIM will use advanced analytical 

procedures and data inputs for instantaneous, precise crowd behaviour and density. 

 

1.7.2 Objective 1: Validation with Synthetic Data 
 

The main goal is to validate the DUCSIM algorithm based on synthetic data. It entails 

developing virtual crowds and situations that emulate actual crowd behaviour. This 

validation process ensures that DUCSIM can provide reliable modelling and predicting of 

crowds’ behaviour in structured environments. This is an important step to evaluate the 

algorithm's effectiveness and modify it appropriately before it can be applied to real-life 

data to ensure the results are trustable and sustainable. 

 

 

1.7.3 1.3.3 Objective 2: Comparative Analysis with MOBILE Data 
 

The second goal considers implementing DUCSIM’s simulation efficiency with MOBILE 

(Global System for Mobile Communications) information. This is where different crowd 

density estimations from DUCSIM are compared to the data retrieved from the MOBILE 

towers. The main objective of this research is to evaluate the application’s performance in 

practical settings and its compliance with the extant information sources. This step is vital 

in establishing the algorithm's practical applicability and effectiveness in urban settings. 

 

1.7.4 Objective 3: Algorithm Generalization Using Multiple Data Sources 
 

This study aims to generalize the DUCSIM algorithm and its utilization in various 

datasets. Data from social media, IoT devices, and others should be integrated into 

MOBILE algorithms to increase the algorithm`s precision and flexibility. This objective 
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seeks to develop an all-encompassing framework that accommodates different data 

configurations, consequently rendering DUCSIM applicable for the studies of any city. 

 

1.7.5 Objective 4: Real-world Applications and Implications 
 

The last objective entails investigating and exhibiting actual field uses and impacts of the 

DUCSIM. Applying the model to simulate practical urban settings and scenarios to 

validate its efficiency and applicability in modern-day case studies, where it is used in 

urban planning and public safety, including event management. Hopefully, this study will 

show how DUCSIM can contribute to smarter city projects and help manage space within 

cities to make people safer and happier. This stage is key in presenting the real application 

and consequences of the research, signifying that it is more than a theoretical concept. 

 

1.8 Research Scope and Limitations 
1.8.1 Scope of the Study: Data Types and Sources 
 

The research incorporates different data sets and sources majoring in electronic trails 

emanating from metropolitan communities, such as crowd mobility and density inferred 

through the usage of mobile phones indicated by MOBILE Tower Data. Moreover, the 

study uses information retrieved from social media, which depicts a live scenario of 

crowds and sentiments of different groups. Additional data streams, such as IoT devices 

and online traffic, are also important. The goal is to integrate different data sources to 

gain an overview of the behaviour of crowds that is common in cities. 

 

1.8.2 Technological and Methodological Boundaries 
 

State-of-the-art technologies, data analysis, and crowd simulations constrain the 

research. The program operates on self-learning using modern data science algorithms 

and processes massive heterogeneous databases. Nevertheless, the analysis recognizes the 

limitations dictated by present technology capacity; this includes computational 

proficiency, information systems’ storage space, and analytical equipment capacity. In 

terms of methodology, the research follows accepted practices for information science; 

however, it is restricted by the existing knowledge and models in crowd movement 

analysis. 
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1.8.3 Geographical and Temporal Scope 
 

Research is mainly carried out in dense, populous urban areas, and the technological 

framework ensures ample information data. Nevertheless, this research does not focus on 

a specific city; hence, it may apply to different urban settings and cultures. As for 

temporality, the study is based on modern situations mirroring today’s cities’ reality and 

technologies. However, this temporal approach will give the study a current flavor that 

may render it irrelevant for future situations likely to involve new technology and social 

environment. 

 

1.8.4 Limitations in Data Availability and Quality 
 

The reliability and quality of the data used in this study are among the serious limitations 

of this research. Variations in data quality are brought about by inconsistent data 

collection means or approaches applied in different regions and platforms. Additionally, 

problems with data, such as a failure in technology or lack of information on some 

regions, would reduce the completeness of the analysis. The research also admits that the 

truthfulness of its results depends on the data quality and its representative nature. 

 

1.8.5 Ethical Considerations and Privacy Concerns 
 

This research abides by ethics that protect people's privacy regarding using their private 

information during the study. This study includes anonymization of data to hide the 

identity of particular people. Nonetheless, the work acknowledges that it is impossible to 

deanonymize high-resolution databases even through full deanonymization of data. On 

the other hand, this study examines moral concerns associated with crowd booking and its 

consequences regarding how people view fairness and trust. These factors determine how 

the research should be undertaken and the scope of use of specific data to maintain ethics 

and respect for privacy rights. 
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1.9 Methodological Framework and Innovations 
 

This part of the thesis discusses the theoretical basis for constructing and implementing 

the DUCSIM algorithm and how this study is unique compared to others in the field. 

 

Innovative Approach to Data Integration: This study's cornerstone is using various 

datasets to estimate the crowd densities correctly but accurately. DUCSIM is an unusual 

algorithm that combines information from cellular companies’ towers, social media 

networks, IoT devices, and numerous digital systems. The multi-source approach that 

integrates several types of data on crowd dynamics takes this understanding one step 

further. Algorithmic Development: Developing the DUCSIM algorithm constitutes a 

revolutionary methodologic step. The algorithm has been designed for high-speed 

processing of vast data using sophisticated computing procedures. It analyses and 

forecasts the behaviours of crowds through machine-learning models and statistics. It 

stands out as one of the most notable aspects of this algorithm in that it performs well in 

various urban set-ups and can be expanded to many locations. 

 

Synthetic Data Validation: Synthetic data also plays a role in algorithm validation as 

another innovation. The simulation creates the ideal environment and situation for testing 

and improving the algorithm under controlled circumstances. Firstly, this way makes 

DUCSIM more reliable before its use for real-world data. This is contrary to conventional 

crowd density estimation. Real-world Data Analysis: The thesis also raises a new bar 

regarding utilizing advanced algorithms on the actual data. Comparative analysis with 

MOBILE data gives an insight into the practicality of DUCSIM. The study also 

demonstrates that the algorithms can be effective in urban settings as they compare the 

algorithm-generated estimations and actual MOBILE data. 

 

Algorithm Generalization: Generalizing the DUCSIM algorithm across different data 

sources marks an essential methodological milestone. This is a useful approach since this 

algorithm is flexible enough to handle many forms of data and street systems. 

 

Ethical and Privacy Considerations: Another important element of the methodological 

framework is addressing ethical and privacy issues. The study employs strict measures for 

data anonymization and ethical practices to safeguard participants’ privacy and ensure 
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that these issues are sufficiently catered for. A careful approach to ethical data 

management provides a positive model for future research. 

 

Application and Societal Impact: Lastly, the approach goes beyond mere analysis to 

include the implementations of the algorithm’s DUCSIM and its societal 

implications. The practical aspect of this research is demonstrated by the fact that it 

covers all the implications of crowd density estimation for city planning and safety. This 

theoretical orientation comprises newly developed concepts concerning data 

harmonization, algorithm creation and verification, and application. This helps advance 

crowd density estimation and greatly contributes to urban studies data analyses. 

 

1.10 Expected Contributions to the Field 
 

This study will contribute to urban studies, data analysis, and crowd control. The 

contributions are diverse as they go beyond theories of practice. 

 

Advancement in Crowd Density Estimation Techniques: This research has contributed 

significantly to developing methods for estimating crowd density. Unlike most current 

single-data-source methods, the DUCSIM algorithm presents a modern solution for 

integrating various dataset types such as MOBILE information, social networking data, 

and Internet of Things sensors’ measurements. A methodological approach will allow 

researchers to create a model closer to reality. 

 

Methodological Innovations: There is a set of innovative methods, especially related to 

data processing and analysis, at different stages of the research process. Applying 

machine learning techniques and statistical models to manage huge and divergent data 

sets is one of the milestones made over the years. Furthermore, artificial data used to 

validate algorithms has improved the credibility and integrity of the results. 

 

Enhanced Predictive Capabilities: Another key contribution of DUCSIM is its predictive 

modelling capabilities. The algorithm offers vital means of forecasting crowd movements 

and densities, thereby being useful for planning and urban management, particularly 

because of developing a more efficient urban environment where issues of emergency 
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management response planning, events coordination, public space design, and others 

should incorporate these predicting features. 

 

Scalability and Adaptability of the Algorithm: Notably, the scalability and adaptability of 

the DUCSIM algorithm in various city contexts and types of data is an important 

breakthrough. Such flexibility provides room for the application of the algorithm in 

various urban set-ups, making it a useful tool for urban scholars and designers worldwide. 

 

Addressing Ethical and Privacy Concerns: Additionally, the study helps contribute to the 

domain by tackling ethics and privacy issues in analytics. The study establishes ethically 

acceptable means of using urban data through strict data anonymization practices and 

ethical guidelines.  

 

Practical Implications for Urban Management: These highlight critical contributions 

towards its practical application in urban management and planning. The computer 

program is vital as it offers the city planners, policymakers, and respondents to 

emergencies with genuine and latest details about the flow of the crowd. Contribution to 

Academic Discourse: The thesis adds to the scholarly debate by thoroughly investigating 

crowd density estimation. This work contributes to current research by expanding 

knowledge on urban dynamics and crowd-related phenomena, thus adding value to the 

academic understanding of these matters. Therefore, the expected contribution of this 

thesis is very broad, having several theoretical and applied consequences for urban 

management. The contributions will be long-lasting and provide a foundation for follow-

up work in urban studies and data analytics.  

 

1.11 Significance for Future Research 
 

A new method, “the DUCSIM algorithm,” is proposed in this thesis. It can be used for 

further research in many areas. Application of the algorithm in crowd density estimation 

is a basis for thorough studies in crowd behaviour and dynamics that involve various data 

sources and developed analytical methodologies. As such, this study can extend the scope 

of predictive modelling practices in urban planning, disaster management, and urban 

redevelopment initiatives, leading to better urban administration schemes. Future work 

must increase the algorithm’s flexibility, scalability, and agility to varying cities and 
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datasets. More research is required regarding the ethical use of data in urban locations 

with increased surveillance and information-gathering levels. The DUCSIM algorithm 

has a multidisciplinary feature, allowing multi-faceted research that bridges data mining, 

social behaviour, and urbanism. In the long run, it has smart city applications such as 

urban security, traffic control, and resource utilization. Moreover, it adds to urban studies’ 

theoretical frameworks and data analysis on human mobility in different urban 

conditions. Ultimately, the DUCSIM algorithm can form a reference framework 

supporting further data mining attempts within urban studies and planning. 

 

1.12 Thesis Structure and Contribution 
 

The highly systematic thesis examines the evolution and justification of the DUCSIM 

population estimation model in a dynamic distributed environment. They are made 

sequentially to ensure that the contents in each chapter are logical and relevant to what 

has come before and the whole research findings. 

 

Chapter 1 is the introductory chapter, forming a basis for the whole work. The study also 

lays down the research topic, the objectives it aims to resolve, and the relevant boundaries 

under urban studies and data analysis. 

 

Chapter 2 provides an extensive review of methods related to crowd density estimation, 

including various technologies already in use and other gaps that call for DUCSIM.  

 

Chapter 3: The technique of development and testing of the DUCSIM algorithm is 

disclosed, along with information on the data sources collected and analyzed. It outlines 

the method of validation of synthetic and observed data. 

 

Chapter 4 focuses on constructing the DUCSIM algorithm, which consists of design 

principles, theory bases, and computer simulations. It offers knowledge of data processing 

and crowd density calculation. 

 

Chapter 5 is on validations using synthetic datasets by comparing the performances of 

algorithms with real-time MOBILE data and measuring the precisions, accuracy, and 

robustness. 
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Chapter 6: the practical usage and implications of the DUCSIM model are highlighted, 

demonstrating its applicability to urban planning, security, and smart cities. The ethics of 

advanced data analytics in crowd surveillance is another issue addressed. 

 

Chapter 7 summarizes the main ideas, explains how our results contribute to urban data 

analytics and pedestrian density estimate, and suggests future investigations to improve 

DUCSIM’s potential uses in different urban situations. 

 

This thesis-based study extends the frontiers of urban data analytics and population 

estimations, adding new knowledge and implementation practicality concerning several 

urban contexts. 

 

1.13 Conclusion  
 

The chapter of introduction lays down an appropriate basis for examining use of 

connection logs with cell tower in estimating crowd density as well as other measures 

linked closely with it. This thesis will explore how mobile devices not only can be used to 

gather current geographical information but also continuous location data. Such 

information forms an integral part of development of the urban plan, traffic control as 

well as assisting in management of emergencies. Using anonymous and aggregated data 

ensures privacy for people; meanwhile, it gives valuable information about the urban 

system operation. In the following chapters, illustrate how analysis of mobile network 

data can contribute to better urban planning and governance, reinforcing the need for 

more comprehensive use of telecoms for public good. 
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CHAPTER 2: LITERATURE REVIEW 
 

Modern urban governance and safety hinge on crowd density estimation, including 

technology, sociology, and urban planning. The subsequent section briefly discusses its 

history, background, and the change from traditional to present technology. This provides 

the theoretical basis and important terminologies for creating a common ground or 

understanding of this area. We discuss technological changes in methodology by 

comparing old and new approaches in terms of improvement. Modern methods remain 

constantly challenged as they evolve with new challenges and techniques. The case 

studies demonstrate the use and reveal important implications. Other chapters discuss 

crowd sensing with opportunistic environment settings and utilize both synthetic and real-

world data, look at social network analysis with crowd sensing in mind, consider 

ubiquitous computing, and review existing models and algorithms. We have thus adopted 

a comprehensive approach to ensure that scholars and practitioners fully understand the 

topic in question. This brings together historical perspectives, underlying issues, and 

emerging issues, which help us understand this crucial topic. 

 

2.1.1 Overview of Crowd Density Estimation 
 

Safety in a crowd requires addressing factors such as occlusion, resolution, and varying 

lighting conditions [31]. Crowd density estimation has been significantly upgraded 

through convolutional neural networks with high-resolution density maps [32]. 

Crowdedness estimation is a fundamental aspect of subsections such as crowd counting, 

tracking, and behaviour recognition. Crowd counting estimates the number of people via 

either direct (number-based) or indirect (trait-based) means, necessary in crowd 

management and for ensuring the public’s safety [33]. Crowd tracking involves noting 

how people disperse over some time through counting. The procedure supports the 

management and detection of movement abnormalities. Crowd behaviour recognition 

determines and assesses crowd activities needed in various scenarios, such as managing 

events, responding to emergencies, and making proper decisions [34]. Problems 

associated with environmental conditions and the type of crowd result in challenges such 

as counting crowds, crowd density estimation, crowd tracking, and incident detection for 
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datasets like PETS 2009[36]. For example, performance evaluation compares bipartite 

graphs, adjacency matrices, and node-link diagrams on different suitability 

levels. Although improvement has occurred, obstacles like occlusions, low-resolution 

variation, and light still occur, calling for more advanced systems to enhance safety and 

security among many people [37, 38]. 

 

2.1.2 Historical Evolution  
 

Deep learning has revolutionized crowd counting and density estimation because of 

computer vision’s advancements. Previous work traditionally used representation-based 

approaches and regressions, but these were not flexible enough in particular cases, such 

as those requiring large crowds. This move to newer techniques represented a major leap 

forward for the industry. A breakthrough in 2017 gave rise to a stacked CNN that 

effectively learns the number of people for counting concurrently, together with 

estimating density map information. The method yielded fewer inaccurate counts than 

present-day best practices, indicating that precision is preferable when estimating density 

maps [40]. In 2019, another advance was made with the advent of TEDnet aimed at 

improving density estimation maps – one of the major challenges in the domain. Among 

others, TEDnet exceeds other models in number correctness and density map 

performance, proving it an effective model for different crowd number estimation 

situations. Some recent studies are directed at using DRL for crowd number estimation 

and adding elements from learning-driven reasoning. DRL can help improve MAE, an 

essential measure of crowd density’s accuracy. The evolution of this process represents 

modern crowd analysis methodologies that shift to adaptive and responsive models. 

Continued refinements show we are improving crowd counting and density estimation in 

preparation for new crowd behaviour analysis trends using deeper learning models. The 

field is still alive; hence, more groundbreaking can be made. 

 

2.1.3 Theoretical Foundations and Key Definitions 
 

Crowd counting is an important research topic in computer vision that can be used for 

traffic monitoring, urban planning, event management, and disaster preparation [38] 

[39]. Deep learning techniques have advanced crowd counting. In the past, counting 

heads in a congested area or an agile crowd was challenging [40]. Density estimation, an 
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extended version of counting, will help understand the general movement patterns of the 

crowds and zones prone to overcrowding, thus enabling efficient control of the 

crowds. These advancements are greatly related to Deep Learning Image Processing, 

indicating the importance of the resolution of source images. This leads to specific 

assessments for crowd density in high-resolution images [41, 42]. Several crowd-counting 

approaches have emerged: Deep Learning-Based Single Image Crowd Counting: Here, a 

new approach to estimating crowds’ numbers is used. In this novel method, these modern 

deep-learning models can extract difficult-to-understand details from one photograph 

[43]. Spatiotemporal Attention Convolutional Neural Network for Video Crowd 

Counting: Regarding the changing crowd information, it considers spatial and temporal 

dimensions, relying on attention mechanisms inside CNNs to classify different sizes and 

dynamics of crowds [43]. Crowd Counting Using DRL-Based Segmentation and RL-

Based Density Estimation: A combination of DRL for segmentation and RL for density 

estimation allows the selection of appropriate models or methods based on the complexity 

of scenes, image quality, and requirements of the particular implementation task [44]. 

Crowd analysis uses the latest algorithms, like encoder-decoder algorithms and attention 

modules, which are custom-made depending on different crowd analysis needs. The 

technique selection is based on issues like scene intricacy, information quality input, and 

particular use case necessities [45]. These improvements allow a better understanding of 

crowd psychology, which is useful for safe crowd control. 

 

2.1.4 Traditional Methods vs. Contemporary Approaches 
 

Traditional crowd counting and density estimation approach was based on manual 

technique. However, modern deep learning-based approaches have replaced these 

methods since they are slow, labour-intensive, and error-prone. Some present-day 

techniques, especially using CNNs, provide scalability, increased accuracy, and better 

performance. CNN-based algorithms are efficient in image processing, facilitating 

accurate calculation of a crowd count and a density-based representation derived from 

videographic or photographic information [44]. However, recent research has improved 

these CNN-based methods by using Bayesian crowd-counting losses that provide a 

probabilistic perspective on crowd estimation. Spatial resolution is improved by pixel 

modelling in density estimation, while real-time video data analysis gives information on 

the dynamics of people’s movements [45]. Some of these improvements are important in 
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scenarios like mass events for monitoring crowds to guarantee accuracy and efficacy, for 

instance, calculating capacities in public places or addressing public health issues 

[46]. Precise estimation of crowds and their densities is essential to efficient crowd 

management, disaster readiness, and town planning. This is a revolution to crowd 

counting, from manual techniques to deep learning approaches, which are still used today 

[47]. Today, these sophisticated computing techniques are more relevant in addressing 

societal issues. Research shows that new versions of these methods will improve their 

accuracy, practicality, and effectiveness in different fields. 

 

2.1.5 Challenges and Advancements in Current Techniques 
 

The latest IoT and complex algorithms techniques have greatly improved crowd density 

estimation, crowd estimation, and steer/crowd but come with new problems. Crowd 

analysis has been modernized with an innovative model, making it more efficient and 

accurate. One innovative method utilizes a based system for estimating the crowd density 

as it gathers necessary data to project the crowd intensity. Using techniques such as the 

GRAY LEVEL CO-OCCURRENCE MATRIX improves the extraction of features and 

regression, enabling continuous data monitoring and analytics in dynamic crowd 

management situations [47]. Using Convolutional Neural Networks and computer vision, 

Crowd Density Estimation based on Auto-Encoders computes density maps through 

Gaussian filters. So far, the auto-encoder model has proven successful, better than the 

traditional MSE approach. They are very good at handling sophisticated visual data and 

producing precise space density representations. The Visual framework provides a new 

tool for dense crowds’ estimation without any physical device and uses CSI of Wi-Fi 

signals. It improves local data differentiation, enhancing crowd density estimate 

resolution at locations. It provides a reliable prediction of crowd density and displays 

migrating people, which is an effective aid in tracking movements indoors [48]. Crowd 

Density Estimation from Autonomous Drones Using Deep Learning employs deep 

learning frameworks and autonomous drone pictures for crowd density estimation. Such 

are complexity changes, scale, intensity variations, density changes, and height 

differences. Applying this strategy is appropriate when dealing with open-ended and non-

static scenarios, providing an opportunity for other studies on crowing behaviour. The 

advances show the possibility of using current technologies to analyse crowds. However, 

it is still challenging to obtain reliable camera platforms; occlusion and efficient pose 
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estimation are also among the existing hindrances. Further research and development 

would improve the accuracy and efficiency of crowd analysis and management systems 

[49]. 

 

2.2 Opportunistic Environments in Crowd Sensing 
 

Crowdsourcing is a new method for collecting information that utilizes the computing 

devices we have everywhere nowadays [50]. By definition, this idea encompasses the 

ability to network the capability of individual desktops for collecting, sorting, and sending 

information using devices such as smartphones, wireless wearable sensors, and moving 

car sensors as network nodes [51]. Crowdsourcing improves the relevancy and 

correctness of data on such parameters as road monitoring and environment [52, 53] in a 

vehicle sensor network. In particular, cloud-based mobile crowd-sensing systems collect 

sensory information from widely accessible mobile phones for numerous uses, including 

weather tracking, activity recognition, sensory cost minimization, and delivery efficiency 

maximizing, among others [54, 55]. Mobile sensing has a high potential across various 

areas, such as social networking, health care, environment monitoring, and road safety. 

For instance, wearable devices in healthcare track vital signs and send data via telehealth 

systems. At the same time, environmental monitoring indicates air quality measurements 

and noise levels. However, challenges must be overcome, such as protecting participant 

data confidentiality and sensor validity when new designs emerge. The future steps might 

involve optimizing data collection techniques and additional applications. Crowdsensing 

for opportunistic purposes as opposed to traditional means of collecting and using data 

[56, 57]. 

 

2.2.1 Defining Opportunistic Sensing Environments 
 

Opportunistic sensing uses autonomous mobile devices to get information in large-scale 

environments. The information spans through numerous sectors [58, 59]. These 

environments include various forms of data like monitoring office workers, using heat to 

understand temperature sensations, and even detecting poisonous substances in the air 

using mobile devices [59]. It has applications in smart cities, facilitating traffic 

management, environment monitoring, safe work, and increased productivity in the 

workplace. It helps collaborative spectrum sensing for opportunistic Access, improving 
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Network efficiency in Telecommunication [60]. Although the information was collected 

at several remote sites, data accuracy problems and noise are required for 

authenticity. Future studies will refine data gathering/analytics techniques that include 

application for urban planning and, for example, environmental surveillance. Researchers 

have been working on opportunistic sensing for over three years, a new step toward 

utilizing a large-scale sensor system for increasing intelligence, efficiency, and security 

[61]. 

 

2.2.2 The Role of Opportunistic Data Collection in Crowd Estimation 
 

Much benefit is gained in the crowd estimation processes within mobile crowdsensing 

and the Internet of Things (IoT) by deploying commonly available mobile devices and 

IoT sensors [62]. Opportunistic data collection in intelligent transportation generates 

current traffic information for wise decisions—mobile-based smart sensing technologies 

like infrastructure-assisted on-demand crowdsourcing gather contextualized accurate data 

from specific locations [63, 64]. The use of crowdsensing and mobile network 

functionalities promotes the dissemination of spatial information for enhanced situation 

awareness of critical incidents in traffic and traffic flow [65, 66]. Utilizing opportunistic 

sensors in real-time, traffic prediction in urban areas incorporates information from 

drivers and mobile phone users with other source data to support intelligent management 

of highways and construction sites [67, 68, 69]. Modern crowd-counting techniques can 

draw upon opportunistic data acquisition and IoT-enabled mobile devices to advance 

traffic and crowd monitoring in intelligent transportation and urban IoT systems. 

 

2.2.3 Technologies Enabling Opportunistic Sensing 
 

The concept of opportunistic sensing is relatively new and applies modern management 

methods for data acquisition in different environments. Fog-based semantic and energy-

efficient sensing management; Social opportunistic sensing of a smart city; Participatory 

and opportunistic mobile sensing for various applications [70]. A fog-based semantic 

approach for intelligent sensing network management improves energy efficiency by 

using fog computing to process data near sources, thus lowering the network’s traffic to 

better handle performance, analyse, and transmit data. Smart cities exploit social 

opportunistic sensing that generates massive information on urban dynamics, public 
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utilities, and behaviour, enabling urban plans, traffic management, and police work [71, 

72]. Mobile sensing can be participatory or opportunistic, with widespread use in 

environmental monitoring, health care, urban development, etc [73]. The opportunistic 

sensor is in line with the progress of communication networks, especially in the emerging 

6G system, where it offers increased power efficiency for devices, integrated social 

networking, and user-cantered mobile applications for enhanced data gathering and 

management, improving efficiency and timely in several tasks as [74][75]. 

 

2.2.4 Analysis of Data Quality and Reliability in Opportunistic Settings 
 

Data quality and reliability are crucial in opportunistic settings, i.e., network 

communications and sensor networking. Several studies address these challenges from 

different angles: Reliability Enhancement in Mobile Ad-hoc Networks: The selection of a 

forwarder with high path reliability, low routing load, and minimum distance to the 

destination makes RE-oR reliable [76]. The message's reliability is guaranteed, especially 

during the transitory-natured ad hoc networks. Opportunistic Citizen Science Data: 

Massive data on species distribution is generated by citizen science programs like 

eButterfly. It is important that any ad hoc data used can be confirmed as being both valid 

and accurate. Citizen science data is useful but may not reflect regional species richness 

precisely, hence the need for an extra testing procedure [77]. 

 

Reinforcement-Learning-Based Opportunistic Routing Protocol for UASNs: The ROEVA 

routing efficiently reduces power consumption and increases the reliable delivery of 

messages besides addressing uncovered path issues in an underwater acoustic network 

[78]. The reason for developing such protocols is because of underwater communication 

challenges like energy, delay, link quality, and depth information. Maritime Search and 

Rescue Wireless Sensor Networks: The opportunistically routed protocol with maritime 

SAR optimizations delivers low latency, affordable costs, and minimizes power 

expenditure. The problem focuses on maritime particulars, including low node power and 

mobility (very time-sensitive) [79]. Energy-Efficient Clustering and Cross-Layer-Based 

Opportunistic Routing Protocol for Wireless Sensor Network: CORP is a protocol that 

uses clustering, routing, and filtering techniques to improve data-gathering efficiency for 

wireless sensor networks. This enhances data accuracy while minimizing energy costs, 

making it sustainable and efficient. These studies show how difficult it can be to ensure 
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reliable data on different networks and applications in opportunistic scenarios. This field 

continues to grow to improve network reliability and security. 

 

2.2.5 Case Studies: Crowd Sensing in Opportunistic Environments 
 

Opportunistic networks have seen a new concept, namely, crowd sensing, emerge in 

pervasive computing and wireless networking. It uses the connectivity characteristics of 

personal digital devices such as smartphones and tablets to share and compile information 

across different environments [79]. This method multiplies the crowds’ collective power, 

resulting in a richer data source. Applications Spanning Domains: Indoor localization 

finds applications of crowd sensing using mobile phones to map locations and track 

movements, mainly in places with poor GPS. The tool is very useful for traffic data 

collection and allows the monitoring of traffic in urban areas in live mode from the 

gadgets of commuters and pedestrians involved. In IoT environments, crowd sensing 

improves the performance of connected devices [80]. 

 

Challenges in Crowd Sensing: The veracity of data should be the first thing to consider in 

a situation where there is more than one. Such data must be reliable and exhaustive since 

it comes from various sources [81]. Addressing data quality concerns, user participation, 

etc, are part of enhanced mobile crowd-sensing environments. Sophisticated methods of 

assessing data reliability using the experience and integrity of contributors, including 

voting-based trustworthiness models and game theory [82]. Future Prospects and 

Research Directions: Research seeks better sensors with efficiency, quality, precision, and 

scalability. These include sophisticated data validation methodologies, improved 

collection methods, and incentive-based reward structures encouraging active 

participation [83]. The technological developments include 5G and beyond. This provides 

better quality, up-to-date information [84-85]. Further reading: Opportunistic 

crowdsensing is a platform that combines information technology, data sciences, and 

massive engagements for large-scale crowd sensing. Nevertheless, dealing with basic 

issues should be a priority. 
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2.3 Advances in Synthetic and Real-world Data Utilization 
 

Opportunistic sensing is used for crowd estimation as it relies on synthetic, empirical, and 

real-world data, leading to higher precision in practice [86]. Synthetic Data for Enhanced 

Crowd Counting: It uses synthetic data to enhance real-world crowd counting. Trained by 

a segmentation network on synthetic data for distinguishing persons from the background, 

crowd counting networks become more fit in real crowd data and increase accuracy. 

Training on Synthetic Data for Pose Estimation: On CAD and mainly for training 

synthetic deep learning models to estimate poses. This helps reduce the process of 

creating data and makes it possible to deploy this model in the real world [87]. Challenges 

in Real-world Data Application: Using learning-based approaches on genuine data 

presents difficulties mainly because of the distribution discrepancies in synthesized and 

actual-world data features. As a result, innovations such as match normalization and 

nonlinear least squares fitting are proposed. These innovations introduce new loss 

functions for 3D object registration using actual measurements [88]. Synergistic Training 

Methodologies: New approaches include cross-training methods where large amounts of 

unlabelled monocular footage are combined with supervised learning from synthetic 

images. They are better than most conventional supervised techniques and can be 

practically useful [89]. Crowd counting and pose estimation combine to create an 

opportunistic crowd estimation scheme that is more accurate, efficient, and practical for 

real-life applications. The ongoing innovations in crowd analysis will lead to constant 

development as well [90]. 

 

2.3.1 Comparative Analysis: Synthetic Data in Opportunistic Contexts 
 

The comparison of synthetic data and actual data in opportunistic settings is fascinating. 

Recently, synthetic data has become a reliable data set that is easier to control in 

unpredictable opportunistic environments [91]. In this case, it outperforms controlled 

experimentation and modelling whereby unique circumstances that cannot be recreated in 

real life are simulated, assisting applications such as research and disaster management 

[92]. Overcoming Real-World Data Limitations: Synthetic data has no real-world 

constraints like privacy or resource restrictions and thus yields meaningful information 

about healthcare practices and town planning, among others. Enhancing Machine 

Learning Models: Artificial data plays a crucial role in machine learning, where 
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algorithms require massive and varied source sets to create solid future precursors, mainly 

in deep learning [93]. Challenges and Considerations: Nevertheless, the authenticity of 

artificial samples remains challenging, and data are hard to synthesize. 

 

It should be noted that these problems mean the need to correspond synthetic data to real-

life situations. Future Directions: GANs and better simulation methods could make 

synthetically generated data essential in many contexts [94]. Comparison of synthetic data 

within opportunist contexts can yield meaningful results for a data analyst and machine 

learning. 

 

2.3.2 Real-world Data Challenges in Opportunistic Environments 
 

Real-world data cannot be employed for opportunistic mobile sensing, as it is collected in 

an unstable manner across space and time. An advanced spatial indexing strategy like the 

Geohash-grid tree can support efficient querying and analysis in opportunistic sensing 

scenarios, exploiting the spatiotemporal behaviour of mobile sensor networks [95, 96]. 

Handling Streaming Data: Streaming data is common in many real-world applications, 

making it difficult to have a benchmark comparable to the actual data, thus highlighting 

the need for relevant benchmarks for measuring and improving the algorithmic 

performance regarding the management of streaming data [97, 98]. Addressing Real-

World Complexities: It is important to note that utilizing real-world data, especially in 

opportunistic settings, mandates sophisticated techniques and tools attuned to the variable 

quality of such data. This necessitates ongoing research and development. Space indexing 

algorithms and in-stream analytics are some methods devised despite real-world data 

problems, which are priceless information sources [99, 100]. 

 

2.3.3 Methodologies for Data Generation and Validation 
 

Several data collection and testing strategies used across various fields are useful in 

dealing with complicated issues. The automotive industry adopts randomized synthetic 

data generated using a modular parameter representation involving ranges and 

distributions. L2 and L3, satellite validation data, reveal good consistency but some 

uncertainty regarding ocean colours. For quality assurance purposes, standardized 

protocol validation is needed for next-generation sequencing in veterinary infection 
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biology [101-104]. Analysing photovoltaic-induced harmonic disturbances in low-voltage 

network safety utilizing measurement and simulation methodology. PLS-SEMs are used 

by composite-based predictive tools focusing on out-of-sample assessments and offering 

more sophisticated ways to facilitate empirical estimation [105]. These revolutionary 

advances in data sciences include self-driving cars, ecological exploration, and bio-

medicine. 

 

2.3.4 Successes and Limitations in Data Utilization 
 

This is because of individual considerations specific to different data utilization 

realms. Among many monitoring systems, they benefit the HPC System’s health and 

performance in operation [106]. Nevertheless, gaps in data collection limit their full 

power of use, urging us to identify and highlight a set of necessary elements for a 

functioning monitoring system [107]. There are limitations to its use in daily medical 

work. Healthcare’s financial alignment initiative is characterized by variable results that 

are influenced by resource allocation and customer engagement. Savings also depend on 

proper planning; hence, significant emphasis is placed on Medicare reform [108]. These 

illustrate how complex it is to use data, with certain pros and cons in various conditions, 

limits, and potentials of data to maximize its utility in different spheres of life. 

 

2.3.5 Future Trends in Data Acquisition and Analysis 
 

Several aspects of new technology in connection with enhanced methods facilitate data 

acquisition and analysis in such diverse areas as healthcare, physics, or rock 

engineering. Such mobile healthcare apps as HealthTracker allow patients to participate 

in managing their health through tracking, storing, and analysing data related to their 

well-being [109]. These apps promote engagement in patients’ health and enhance health 

outcomes using live feedback. Sophisticated data acquisition systems ensure that physics 

experiments make accurate and fast analyses of large quantities of data to allow for 

complicated research and data extraction [110]. Modern numerical modelling improves 

hydro-mechanical understanding of rock masses for tunnel and dam engineering in rock 

engineering [111]. Technological advancements underpin these trends through improved 

data collection and analysis of fields where real-time analytics, extracted signals, and 

numeric modelling flexibility are emphasized. 
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2.4 Social Network Analysis in Opportunistic Crowded Environments 
 

SNA is a highly applicable analytical technique that could be used to understand 

interactions among people in different disciplines. SNA has brought out the Asian 

Leadership Gap, which shows East Asians tend to have few circles of friendship, limiting 

their access to leadership [111]. The social network analysis (SNA) categorized user 

groups and their interactions as they influenced people’s perspectives about vaccines in 

social media debates [112-113]. SNA, when applied in virtual learning contexts, enhances 

the understanding of social development and growth among educational groups across 

different online channels. SNA emphasizes strong links within hacker communities for 

hacking ecosystems [114]. SNA supports recommendation system development in 

community-discovering work environments like CERN. SNA offers a new perspective on 

various societal aspects of leadership, public health, and digital learning, to mention a 

few. 

 

2.4.1 Fundamentals and Role of SNA in Opportunistic Settings 
 

In opportunistic situations, SNA aims to understand complicated structures and interlinks 

in dynamic social networks [115-116]. It reveals network structure characteristics and 

communication patterns in informal/opportunistic environments. The first function 

identifies core actors and influencers that understand network dynamics [117-118]. SNA 

shows the information passageways pointing at the health status of the given network 

[119]. 

 

Businesses use opportunistic SNA in consumer research, mapping disease transmission 

pathways and social determinants of health [120]. It provides information on community 

dynamics and resource sharing, thus informing urban planning. Data-related challenges 

such as volume and accuracy can be tackled using modern machine-learning techniques 

[121]. Opportunistic SNA is also a powerful analysis technique to understand complex 

sociological processes applicable to businesses, marketing, health issues, and urban 

planning. 
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2.4.2 Integrating SNA with Opportunistic Crowd Sensing 
 

Social Network Analysis (SNA) integrated with Opportunistic Crowdsensing (OCS) 

presents novel solutions for information acquisition and processing [122]. The SONATA 

protocol enhances crowdsensing platform credibility through dynamic vote-based 

trustworthiness analysis within a social network setting, ensuring data accuracy and 

authenticity [123]. Crowdsensing improves traffic management systems by enabling real-

time content distribution, enhancing response times, and optimizing urban mobility [124]. 

Diverse studies leverage social and user differences to enhance sensing quality and user 

engagement, recognizing the importance of user backgrounds and socio-cultural 

dimensions [125]. Incorporating SNA into OCS extends user profiles through social 

media platforms like Facebook, allowing for more targeted tasks and increased 

participation [126]. Social media platforms like Twitter facilitate public crowdsourcing of 

environmental events like heat waves, assessing society's response to environmental 

occurrences [127]. These applications demonstrate the potential of SNA and OCS in 

improving information reliability and urban planning, among others, highlighting the 

growing research interest in leveraging social networking dynamics for enhanced 

opportunistic crowdsensing capabilities. 

 

2.4.3 Case Studies and Applications 
 

Applying social network analysis in opportunistic networks provides solutions for various 

domains. Notable case studies include Professional Fraud Detection in Automobile 

Insurance: Through identifying loops in the networks’ structure, investigating potential 

collusion between parties’ interactions, and assisting researchers with fraud cases, SNA 

discovers fraud ringing in vehicle insurance [128]. Wireless Contacts, Facebook 

Friendships, and Interests: This paper investigates multi-dimensional, complex human 

interaction by tracing the social connections of all campus-wide Wi-Fi, personal profiles, 

friendships on Facebook, and interests. The result is a multi-layered social network, 

looking at how the interaction between social layers impacts human relationships [129] 

Information Flow in Disconnected Delay-Tolerant Networks: This paper uses a naive 

Bayesian model to counter proximity malware to stop infections via casual contact in 

dispersed areas. Malicious nodes causing untrue information and poisoning are also issues 

the model addresses [130]. Modelling Social Gauss-Markov Mobility for Opportunistic 
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Networks: Scientists present the HNGM mobility scheme, which combines a few societal 

attributes within a Gaussian-Markov model for the network of opportunity. HNGM 

results better than the conventional RWP methodology used in other network simulations 

because it faithfully reproduces real-world movement traits [131]. SNA has been 

deployed into opportunistic networks with various objectives, including fighting 

insurance fraud, spreading malware, understanding complex composition analysis, and 

interacting with physical and digital social dynamics to different challenges posed by 

such types of networks [132]. 

 

2.4.4 Ethical Considerations and Data Privacy in SNA 
 

Ethical considerations and privacy issues are paramount when employing Social Network 

Analysis (SNA) in learning analytics. Informed Consent and Privacy: Therefore, 

informed consent is vital for the confidentiality of student information. It is also important 

that students are properly told why, how wide, and for what purpose the data will be 

analyzed so that they participate voluntarily [133]. Anonymization and Data Protection: 

Finally, sensitive information has to be protected by removing all identifiers from 

collected data via SNA. It is important to set strong security barriers to prevent 

unauthorized access. Addressing Potential Biases: Knowledge of embedded biases within 

analytical instruments such as SNA should be important [134]. Therefore, to avoid faulty 

notions about their interactions with some students, it is essential to critically evaluate 

these biases arising from algorithms or using research processes. Holistic Decision 

Making: Other data and information sources should be used cautiously alongside SNA 

insights if you consider making round and rational decisions within a complex 

educational setting. Ethical Use and Responsible Interpretation: Ethical use goes beyond 

data acquisition, analysis, and interpretation. It also implies implementing positive actions 

that contribute to ensuring educational rights and the right to be free among students. 

SNA may be informative about educational settings, though SNA should strictly comply 

with ethical standards to avoid compromising student confidence for better instruction 

and academic advancement [135]. 
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2.4.5 Opportunities and Challenges in SNA for Opportunistic Environments 
 

Integrating modern multidimensional networks presents opportunities and challenges: 

Low Earth Orbit (LEO) Mega Satellite Constellations: The case of LEO mega satellite 

constellations makes it possible to achieve almost complete global coverage, particularly 

in underserved regions. They occupy niche roles in ground networks but are very fragile 

in case of a lack of communication synchronization between terrestrial and satellite 

systems [136]. Terahertz (THz) Bands for UAVs in 6G Ecosystem: Unmanned aerial 

vehicles will use terahertz bands for ultrahigh throughput communication, a breakthrough 

innovation to data transmission speeds in 6G environments. On the other hand, they 

imply signal range and power trade-offs in their design. Based on 6G New Radio: 6G 

NR-U wireless infrastructure, UAVs can increase coverage capabilities for different 

terrain types. Implementing regulatory and standardization requirements for smooth 

integration with existing cellular networks [137-138]. Blockchain Technology in 

Healthcare: While blockchain technology offers a solution for better health information 

management as well as medical care, it also has its challenges, such as issues with 

privacy, trustworthiness of data, and security threats. Tackling these challenges has been 

found pivotal for effective utilization of in healthcare [139]. However, developing a 

comprehensive system for addressing the multi-faceted issues related to this technology 

will require the participation of techno-political leaders and legislature to achieve success. 

 

2.5 The Role of Ubiquitous Computing in Opportunistic Crowd Sensing 
 

Ubiquitous Opportunistic crowd sensing also utilizes ubiquitous computing, which relies 

on mobile devices and edge computing resources for data capture and processing. Several 

innovative approaches and frameworks highlight the potential of this paradigm: 

CrowdSense@Place (CSP) Framework: Users’ visits can be tracked for each smartphone, 

and places can be accurately separated using this CSP framework. Through smartphone 

sensing, CSP provides environmental data, making it feasible for environment monitoring 

and classification [140]. Blockchain-Based Incentive Mechanism for Mobile Crowd 

Sensing: This approach brings into place a blockchain-based incentive scheme for mobile 

crowd sensing and edge-computer-aided networks. On data storage and credibility, it 

ensures that the data are true and secure, as well as establishes a decentralized reward 

system for contributors [141]. Honeybee-T Collaborative Mobile Crowd Computing 
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Framework: The work-stealing approach of Honeybee-T helps design efficient message 

exchanges between devices, considering both their dependencies and computational 

power requirements. This approach aids with the efficient and effective administration of 

large volumes of data flow from numerous devices in the context of mobile crowd 

sensing. As such, these studies and frameworks highlight a possibility that ubiquitous 

computing may find application in opportunistic crowd sensing for environmental 

monitoring and urban planning. The study shows emerging solutions concerning data 

integrity issues, storage requirements, processing efficiency, and participant payment 

schemes. 

 

2.5.1 Emergence of Ubiquitous Technologies in Opportunistic Settings 
 

Ubiquitous technologies are making significant inroads into various unpredictable 

environments, such as DTN and social media, with implications for diverse domains. 

Ubiquitous Technologies in Peer-to-Peer Content Sharing: Wireless technologies like Wi-

Fi Direct and NFC revolutionize content sharing in infrastructure-less settings [142]. This 

is particularly valuable in academia, enabling students to share diverse content among 

devices seamlessly. Adapting these technologies for educational purposes fosters 

individualized learning and research approaches in university settings [143]. Remote 

Work in the COVID-19 Pandemic: The COVID-19 pandemic has underscored the need 

for novel metrics to assess and enhance remote work effectiveness. 

 

Social media and pervasive technologies enable communication, collaboration, and 

productivity in remote work environments. Overcoming the unexpected challenges posed 

by the pandemic requires effective digital platforms for employee interaction and 

business continuity [144]. Challenges in Real-World Health Monitoring: Ubiquitous 

technologies are shaping the landscape of health monitoring, especially in complex real-

world scenarios. Customized health monitoring systems address the intricacies of daily 

life and diverse health contexts, emphasizing intelligent designs that cater to various 

settings and user needs in a comprehensive yet user-friendly manner [145]. Modelling 

Domestic Activities for Context-Sensitive Technologies: Research efforts are focused on 

understanding domestic activities to develop context-aware technologies aligned with 

users' needs. This research ensures that technologies seamlessly integrate into users' daily 

routines and home environments, enhancing their usability and effectiveness [146]. The 



34 
 

versatile applications of ubiquitous technologies in opportunistic contexts highlight their 

growing importance in facilitating collaboration in education, supporting remote work, 

improving healthcare monitoring, and creating context-aware domestic equipment. 

 

2.5.2 Impact of IoT and Mobile Devices on Opportunistic Crowd Sensing 
Opportunistic crowd sensing using mobiles has been expanded to mass and real-time data 

collection by integrating with the Internet of Things (IoT). This integrated environment 

leverages the ubiquity and connectivity of mobile devices to create efficient applications. 

Connected Cars and IoT: The collaboration between IoT and mobile devices is evidenced 

by connected cars. The cars receive updates via neighbouring sensors and add feedback to 

distant networks thanks to IoT connection. The sympathetic relationship between these 

bodies improves vehicle performance and transport reliability in general [147]. 

 

Efficient Task Allocation and Energy Consumption: Context-aware task allocations and 

artificial intelligence-based frameworks are used to enhance the capabilities of mobile 

crowdsourcing applications for better results. Context-sensitive processors make it 

possible to save energy by intelligently selecting work for non-functioning or distant 

devices. This refers to sophisticated systems in AI-enabled architecture geared towards 

resolving data security issues and optimized tasks [148]. Optimization of Multitask 

Assignment with Reinforcement Learning: Reinforcement learning is leveraged for the 

multi-action of assigning IoT devices in mobile crowdsourcing. They distribute various 

roles into IoT components to increase the performance and efficiency of data collection in 

networks [149]. The developments in IoT and the inclusion of mobile devices in 

opportunistic crowdsourcing provide possibilities for better data gathering, delegation of 

chores, and more information security. The technological advancement of this industry 

will persist as more devices go beyond simple stationary communication systems into 

everyday activities. 

 

2.5.3 Challenges in Ubiquitous Data Collection and Analysis 
 

Ubiquitous data collection and analysis, essential in modern technology, confront diverse 

challenges spanning different domains and applications. Heterogeneity of Data Sources: 

This involves the management, storage, and processing of data generated from different 

sources, such as smartphones IoT/IoS, among others [150]. However, integrating different 
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data types and formats into business intelligence (BI) applications is challenging. 

Accuracy and Reliability: Recording correct or reliable health data and government or 

public health statistics is vital for treating patients. Automatically detecting errors is 

critical because when it comes to data quality, errors result in confusing conclusions with 

consequent poor decisions [151]. Privacy and Security Concerns: The emergence of 

modern smart homes with advanced tech tools raises issues related to users’ security and 

personal information protection. Security of these devices and responsibilities relating to 

data collection and usage, such as self-management for chronic disease, are extremely 

important. Intergovernmental Relations: In this context, effective coordination among the 

different government levels must exist in federal systems. Information sharing and policy 

formulation of large-scale public projects is only possible through a consistent framework 

for intergovernmental relations.[152] Data Collection in Challenging Environments: 

Achieving connectivity to collect data, especially in remote or constrained areas, poses 

privacy concerns. Thus, this situation dictates that novel data collection procedures 

appropriate under varying environmental constraints must be found. 

 

Monitoring Large-Scale Events: It is difficult to monitor and analyse the crowd’s 

behaviour in events such as pilgrimage during Hajj. Data collection and analysis are 

important in activity recognition, group behaviour analysis, detection of stress among 

participants, and health monitoring of participants. To deal with those mentioned 

challenges, strategies must be aimed at improving the ways to collect data, ensuring its 

quality, addressing confidentiality and security issues, and developing more advanced 

analytical instruments [153]. A multi-faceted approach is required to fully exploit 

ubiquitous data collection and analysis with minimal risk and limitations. This will 

involve reviewing data collection methods, ensuring the data remains valid, and 

addressing safety and confidentiality issues. 

 

2.5.4 Future Directions and Innovations 
 

Cutting-edge technologies like RFID are poised to reshape the future of ubiquitous 

computing, altering our interactions with technology and daily life. Federated Learning 

and Edge Computing: FL and Edge computing integration in the UI and 6G network 

domain shows great potential. Besides this, FL allows modelling training in collaboration 

and sharing data privately between devices, thereby improving UX design. In tandem 
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with an advanced strategy dubbed “edge computing” that positions a few computing 

elements close to the network edge, it creates an effective yet distributed computational 

structure that substantially increases the efficacy of FL [154]. Technology and social 

media in Dementia Care: Dealing with Dementia: Dementia Care involves smartphones, 

tablets, or the Internet as health education means improving living standards and care 

[155]. Energy Optimization in Smart Cities: Sustainable solutions are necessary for green 

IoE-based applications in smart cities. Energy utilization efficiency influences these cities' 

transport, administration, and quality of life [156]. Context-Aware Security for Smart 

Homes: Context-Aware Security Mechanisms for innovative smart home security focus 

on cost-effectiveness and higher threat prevention and detection capabilities than 

conventional security systems. Apps for Linguistic Data [157]. Collection: Increasingly, 

smartphone apps such as Dialäkt Äpp and Voice Äpp are being employed for public 

involvement and survey work on language variation and evolution [158]. 5G Networks 

and Beyond: Due to the massive implementation of Smart Devices, there is a large market 

for 5G networks with greater capacity for bigger networks [159]. Such a high-capacity 

network enriched with improved operation characteristics would facilitate wireless 

communication services for numerous users. This illustrates the impact that ubiquitous 

devices have had on various industries. Technology evolves daily as an agent of 

healthcare, communication, energy management, and security. Its usefulness and 

applications will be incorporated into our daily routine. 

 

2.5.5 Case Studies: Ubiquitous Computing in Dynamic Environments 
 

Ubiquitous computing in dynamic environments is a rapidly evolving field with diverse 

applications and challenges. A3C-Based Real-Time Scheduler: An AA3C-based advanced 

scheduler for the Edge-Cloud under uncertainties. It is, therefore, an effective way of 

processing computationally intensive dynamic systems that require timely decision-

making. Framework for Human Behaviour Monitoring: Another research concentrates on 

tracking patients’ acts during ADLs. It promotes observing, supervisory, and evaluative 

practice in everyday activities. Such knowledge can improve patients’ care and provide 

elderly persons with chronic diseases [160]. 

 

Chaotic Maps-Based User Authentication Scheme: A new user authentication and 

privacy-preserved extended chaotic maps mechanism for distributed, pervasive, and 
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heterogeneous environments. The scheme offers DoS resistance and ensures data safety 

for users [161]. Denotational Mathematics for Home Hospitalization Support: Using 

Denotational Mathematics, researchers have created a program that generates medically 

appropriate contextual content for home hospitals. In particular, telemedicine must 

embrace this methodology to provide pertinent assistance with personal instructions for 

each individual’s household and health care requirements [162]. Context Information 

Interoperability: Literature-based solutions of the information interoperability in 

ubiquitous computing. It is critical in enhancing interoperable ubiquitous computing in 

disparate environments and contexts [163]. Ubiquitous computing case studies illustrate 

different uses in health care, patient tracking, cyber security, homes, hospitals, etc. This 

emphasizes the current trends regarding solutions to the issues using contemporary 

technology-based interventions. 

 

2.6 Existing Models and Algorithms for Opportunistic Crowd Density Estimation 
 

Opportunistic crowd density estimation has been evolving through different models and 

algorithms developed to address the unique challenges of estimating accurate crowd 

densities. Lightweight Dense Crowd Density Estimation Network: This approach 

involves presenting a more efficient and lighter convolution block engineered for crowd 

characteristic extraction. It provides an approach to dealing with efficiency in crowd 

density estimation by lowering the values of various networking and computing 

parameters. The model also employs spatial group normalization designed to deal with 

biases from variable crowd distribution, which is common in crowded areas [163]. 

 

Crowd Density Estimation using Imperfect Labels: This paper presents a system for 

creating imperfect labels using a deep learning model to measure the effect of label 

mistakes on crowd counting precision. This innovation shows that even if the crowd 

models are built using imperfect labels, they have strong resilience against annotation 

errors and can model as well as those trained with perfect labels [164]. DroneNet for 

Crowd Density Estimation using Drones: This work presents a new system called 

DroneNet that builds on Self-organised operational neural networks (Self-ONN) to 

estimate crowd density using drone data. This model has efficient learning capabilities 

and less computational complexity than conventional CNN-based models, increasing 

performance in drone-based crowd-monitoring applications [165]. 
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Parallel Multi-Size Receptive Fields and Stack Ensemble Meta-Learning: The approach 

utilizes a paralleled multi-size receptive fields unit model drawing on a noteworthy 

amount of the CNN layer features. The system can scale varying-sized elements of an 

object for any chosen plane within the framework. This approach is especially suitable for 

dynamic crowd settings that normally involve spatial and temporal deformations [166]. 

Attention-Based Capsule Network and Multi-Column CNN: This deep neural network 

contains two columns containing CNN and capsule network-based attention 

modules. This approach focuses on estimating crowd numbers by taking static or video 

images and appears promising in several benchmark datasets; hence, it could be 

applicable in crowd density estimation [167]. Such models and algorithms are important 

in various applications such as autonomous driving, visual surveillance, crowd control, 

public space planning, and increasing traffic warnings caused by crowd density. The 

current research and development continue to push the limits of accurately and efficiently 

estimating crowd densities using advanced computational techniques. 

 

2.6.1 Comparative Analysis of Algorithms 
 

The table in this section provides a complete synopsis of some algorithms and data for 

crowd density estimation, an indispensable element in comprehending crowd behaviour 

and control. It includes details on model names, data-specific features, types, associated 

constraints, and referenced resources. The table 2-1 contents shed light on key findings 

within this domain: 

• Model Names and Datasets: In most cases, the models are not accompanied by 

information on the data used for training or if another independent dataset is 

involved. 

• Type of Datasets: The most notable fact is that high use of visual sets, mainly 

pictures and videos, can be observed. These datasets mostly come from 

surveillance cameras or drones, demonstrating that visual data is important in 

estimating crowd density. 

• Limitations: Interestingly, the table demonstrates the endogenous shortcomings 

inherent in the models and datasets. These include a lack of effectiveness in dense 

crowds, the impact of annotation errors on the model accuracy, and the complex 

balance between model depth and inference time. 
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Table 2-1: Systematic Comparison of Crowd Models 

Model Name Dataset Name Type of 
Dataset Limitations References 

Parallel Multi-
Size Receptive 

Fields and Stack 
Ensemble Meta-

Learning 

Not specified Not 
specified 

Including most layer 
features in the 

prediction model 
negatively affects the 
prediction’s outcome. 

[163] 

DroneNet – Self 
ONN 

Benchmark 
crowd datasets 

containing 
images taken 
with drones 

Images taken 
with drones 

Deeper CNN models 
improve accuracy at 
the cost of increased 

inference time 

[164] 

Imperfect Labels Not specified Not 
specified 

Impact of annotation 
errors on the model 

accuracy 
[165] 

Lightweight 
Dense Crowd 

Density 
Estimation 
Network 

Not specified Not 
specified 

Efficient compression 
models [166] 

CSRNet ShanghaiTech 
dataset 

Images taken 
from 

surveillance 
cameras 

Limited performance in 
crowded scenes [168] 

MCNN ShanghaiTech 
dataset 

Images taken 
from 

surveillance 
cameras 

Limited performance in 
crowded scenes [169] 

SANet ShanghaiTech 
dataset 

Images taken 
from 

surveillance 
cameras 

Limited performance in 
crowded scenes [170] 

Generalized Loss 
Function Not specified Not 

specified 

The proposed loss 
function may not be 

optimal for all datasets 
[171] 

Learning to 
Count via 

Unbalanced 
Optimal 

Transport 

Not specified Not 
specified 

The proposed method 
may not be optimal for 

all datasets 
[172] 

HARNet Not specified Not 
specified 

Uneven crowd 
distribution may lead 
to inaccurate counting 

[173] 

Annotator Model Not specified Not 
specified 

Impact of annotation 
errors on the model 

accuracy 
[174] 



40 
 

Lookup-Table 
Recurrent 

Language Models 
Not specified Not 

specified 

Scaling up the size of 
RNN language models 

with only a constant 
increase in floating-

point operations 

[175] 

CascadeTabNet Not specified Not 
specified 

An end-to-end deep 
learning model that 

exploits the 
interdependence 

between the twin tasks 
of table detection and 

table structure 
recognition to segment 

out the table and 
column regions 

[176] 

LCDet Not specified Not 
specified 

Real-time crowd 
counting in 

surveillance videos 
[177] 

CrowdNet Not specified Not 
specified 

Real-time crowd 
counting in 

surveillance videos 
[178] 

 

 

2.6.2 Identifying Gaps and Potential Areas for Future Research 
 

1. Dataset Diversity and Representation: Many models such as “Parallel Multi-size 

Receptive fields and stack ensemble meta-learning,” “lightweight dense crowd density 

estimation network,” LCDnet,” “UEPNet,” “generalized loss function,” “learning to 

count via unbalanced optimal transport,” “HARNet The absence of data on this matter 

suggests there may be a lacuna in diverse and representational datasets employed 

herein. Such models must be tested with many data sets to establish their generalization 

properties (robustness) in different scenarios and environments 

 

2. Exploring the Impact of Imperfect Labels: Thus, the “Imperfect Labels” model was 

assessed on the DroneRGBT dataset comprising RGB and IR imaging pairs. The 

significance of this approach involves dealing with the influence of inaccurate 

annotations on the model’s reliability. However, there appears to be an opportunity to 

research which kind of imperfect data (label imprecision, noise, or missing values) would 

impact which specific crowd density estimation model. The field of research warrants 

further studies as resilient and exact models for imperfect data are essential even in most 

real-world situations. 
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3. Real-Time Analysis and Computational Efficiency: However, some models, such as 

“DroneNet” and one with “Self-ONN,” are necessary due to the need for lower 

computational complexity in real-time applications. However, achieving this balance 

between accuracy and computational speed is still unresolved. The “DroneNet” limitation 

mentions that deeper CNN models could improve accuracy at the expense of longer 

inference cycles. This issue is critical for real-time analysis, such as public safety 

monitoring and event management. 

 

4. Adaptability to Varied Environments: Although models such as MCNN, FCRN, SANet, 

and CSRNet performed moderately well concerning ShanghaiTech data set in most 

congested situations, they only captured sporadic events. The study shows an existing 

research gap concerning model development for crowding at different densities, 

especially in places where there are high volumes of pedestrian traffic. However, models 

must be flexible enough to accommodate varying crowd sizes and density levels. 

 

5. Ethical and Privacy Considerations: Crowd density estimation models pose ethical and 

privacy issues, particularly if implemented in public areas. However, the literature does 

not focus much on how these models handle privacy, consent, and other ethics concerning 

the use of surveillance data. However, research combining privacy-protecting methods 

and ethical considerations in creating and using such models should be undertaken. 

 

6. Long-Term and Large-Scale Deployments: Such evaluations are mostly limited to 

controlled or short-term stages. However, the performance of these models is not well 

understood in the long-term large-scale deployment of such devices. Such as knowing 

how they should be maintained, if they can easily change environments, and if they are 

durable for a long period. 

 

7. Comprehensive Evaluation Metrics: However, the existing assessment metrics, such as 

Mean Absolute Error (MAE) or Grid Average Mean Error (GAME), are limited, as they 

do not take into account other aspects important for comprehensive modelling, including 

adaptability, computational speed in real-time settings, and moral factors. 

 

The literature review reveals several gaps in crowd density estimation: diversity of 



42 
 

datasets, effects of imperfect labels, real-time analysis, computational efficiency, 

adjustment for different environments, legal and privacy issues, long-run performance, 

and broad performance measurements. Closing these gaps would yield more 

comprehensive, effective, and ethical models for crowd density estimates. 

 

2.7 Conclusion  
The literature review chapter encompasses various aspects around crowd density 

estimation ranging from conventional means to modern techniques using technology. It 

scrutinized the subtleties surrounding opportunistic environments in crowd sensing, the 

centrality of both artificial and genuine dataset, and the incorporation of social network 

analysis within these contexts. Ubiquitous computing was also highlighted in the chapter; 

IoT and mobile phones were identified as being vital components of opportunistic crowd 

sensing. It also offered a critical review of different models and algorithms, outlining their 

advantages and disadvantages under varying circumstances. This review presents 

different dimensions of the topic and establishes a platform for addressing subsequent 

issues that will be examined in the succeeding chapters and their recommendations. These 

insights form a basis towards improving crowd density estimation, as well as in predicting 

movements using mobile network data. 
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CHAPTER 3: THEORETICAL 
FRAMEWORK 

 

  

3.1 Conceptual Framework of the Study 
 

3.1.1 Definition and Scope of Opportunistic Environments 
 

Opportunistic settings exhibit rapid changes in which random crowds emerge suddenly 

without plans as they converge. Crowd density estimation varies from place to place since 

such environments may happen on busy city streets or at special locations (such as sports 

facilities or other special events) or even occur accidentally when a group of people 

unexpectedly gathers. It is important to recognize that using the term opportunistic in 

these contexts denotes the randomness and unpredictability of mass formation, which is 

quite hard to contemplate beforehand. Examples of opportunistic environments include 

urban areas with many people walking around. People flock to these busy urban centres, 

tourism places, marketplaces, and transport junctions [179]. They also exhibit varied 

patterns of crowd dynamics. For example, street performances, public protests, or social 

media viral might prompt a spontaneous gathering of crowds that vary in numbers and 

attributes. Such environments do not suit traditional crowd management techniques since 

they are typically unpredictable and spontaneous. 

 

Similarly, special event venues like stadiums, concert halls, and convention centres may 

turn into opportunistic places during unplanned meetings. For instance, the appearance of 

a celebrity in a surprising manner at a music show or a big sports victory can cause 

people to gather not only within but also outside the place. Such crowd control is 

conventional and will not be suitable for dynamic situations in different situations [180]. 

 

Adaptive crowd density estimation is the key challenge faced by opportunistic 

environments. These environments can hardly be monitored using conventional methods 

like manual counting or fixed sensors because they change rapidly. Instead, innovative 

approaches are required. These include real-time video analysis, mobile crowd-sourcing 
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apps, and machine learning algorithms. Such technologies can also quickly adapt in case 

of changes within people’s movement and formation, supplying reliable and current data 

concerning the size of groups and people’s activities and behaviour [181]. Opportunism 

requires a strategy of people’s density adjustment towards management success. Such a 

monitoring system enables officials and event planners to react swiftly to crowd-sourced 

problems and provide safety measures using the best management techniques. Using 

technology and data analytics, one can anticipate and manage unexpected assemblies of 

event attendants and other citizens, promoting safety during the event and improving 

public satisfaction. The opportunistic contexts refer to situations characterized by a high 

degree of uncertainty and sudden gatherings of crowds. Crowd density estimation in such 

an environment is demanding as it must be handled based on the nature of the situation 

with a highly adaptable crowd control strategy. To overcome such challenges in an 

opportunistic environment and ensure safety and satisfaction, adopting advanced 

technologies or data-driven solutions [182]. 

 

3.1.2 Role of Opportunistic Sensing in Crowd Density Estimation 
 

Opportunistic sensing constitutes an essential aspect of crowd density estimation that 

focuses on places where normal detection or lack of feasibility prevails. Using various 

data sources, including personal device statistics, social media activity, and digital trails, 

this approach provides quick updates on crowds' location, direction, and extent. It is an 

agile solution to the unpredictability of people in crowds. The WiCount system is an 

example of opportunistic sensing [183]. It uses Wi-Fi traffic data, easily available for 

estimating crowd density. With each passing second, it gathers communication packets 

sent out by nearby Wi-Fi access points and uses up-to-date machine learning classifiers 

with high precision to determine how many individuals have run into specific zones. The 

performance of WiCount is admirable since it can count 99 percent of persons within a 

crowd or people entering at different times. Such a technique is of immense significance 

during mass surveillance in public gatherings and places such as shopping malls and 

stadiums [184]. 

 

The other innovative procedure uses deep learning sense of the radio wave in cellular 

communication. Deep learning models can estimate the crowd density and their motion 

pattern by analysing radio wave signals emitted by mobile phones and other wireless 
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equipment, thus avoiding camera monitoring. It solves camera-based privacy issues and is 

useful when visual surveillance has been deemed unworkable. The opportunistic sensing 

can include CSI measurements obtained by decoding the cellular network’s unencrypted 

sync. Individuals in the surrounding area reflect these signals transmitted by cellular 

eNodeB [185]. Crowd density estimation can be done quite accurately if you learn how 

the differences between CSIs are influenced by people passing by or walking 

around. This research shows great potential; it averages an accuracy of about 84% 

points. The method demonstrates an ability for CSI-based population sensing to estimate 

crowds. 

 

There are numerous advantages associated with opportunistic sensing. Firstly, it enhances 

data precision using multiple information sources and sophisticated data processing 

mechanisms. In most cases, they exceed traditional techniques to estimate finer figures of 

people in a crowd. Additionally, opportunistic sensing tackles privacy issues, an important 

point for people living in modern times and under constant threats of being monitored 

[186]. Less invasive techniques, such as radio wave sensing and Wi-Fi traffic analysis, 

could be applicable in an environment where privacy rights come first. Opportunistic 

sensing is also the last step that ensures timely response to incidents related to crowds, 

efficient events coordination, and improved public security. Opportunistic sensing is an 

advanced and adaptable way of measuring crowd density. This utilizes different 

information sources and modern technologies to overcome the limitations of traditional 

monitoring systems. Opportunistic sensing helps manage crowd dynamics by offering 

accuracy, addressing privacy issues, and providing real-time insights. 

 

3.1.3 Various Data Sources in Opportunistic Settings 
 

Data heterogeneity is often challenging when integrating different data sources in 

opportunistic settings. However, this analysis must be combined with findings from other 

data sources to enhance its precision and validity. This section combines different data 

sources like MOBILE data, Wi-Fi signals, and social media activities in the context of 

crowd density estimation. This research discusses the difficulties and risks of merging the 

different data streams and the approaches and algorithms required to integrate these data 

into a single, comprehensible set [187]. 
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The process uses Fisher information to evaluate the informativeness of each data source’s 

sources. This more sophisticated data fusion framework results in straightforward 

parameter estimates, sound tests, and confidence intervals in the setting of generalized 

linear models. In addition, dial selection as per the guidelines results in better estimations 

than other binary integration methods. An alternative way is to adopt an open-access 

system for merging different data sources to perform a safety-related analysis of 

drugs. This platform combines information from locations like ICSCRs, RWD, social 

network information, and literature. Each workspace contains data-intensive analyses 

developed, and the end user sets up “investigation scenarios” by drug-event combinations 

[188]. 

 

The data about sequences of viruses must be easily accessible and available for 

integration, which will most probably include data on the host's genetic structure and 

patient history to understand the disease mechanisms and its prevention strategies. While 

few host-pathogen integrated datasets exist until now, a number of them should be 

developed when additional knowledge on the disease emerges [189]. Recognizing where 

the common variants are temporally and spatially distributed and linking them to the 

phenotype reported in the literature could develop useful integrative surveillance 

mechanisms. Some strategies and algorithms can allow the integration of multiple data 

sources in an opportunistic setting. This way, such different data streams are combined to 

achieve more reliable analysis output. Considering the informativeness of the data sources 

and employing proper integration techniques will allow researchers to combine and 

analyse multi-source data to comprehend complicated processes, for instance, better 

crowd density approximation. 

 

3.1.4 Framework for Analysing and Interpreting Data 
 

A solid framework is instrumental in analysing and interpreting opportunistic data, 

especially in crowd density prediction and diverted crowds. Such a framework employs 

various data sources for data acquisition, including video feeds, cellular telephone signals, 

and social media. Secondly, this data is analyzed using methods borrowed from machine 

learning, computer vision, and signal processing. This aims to measure the crowd’s 

density and predict crowd behaviour to control the same where appropriate [190]. 
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Constructing a robust framework is important when opportunistic situations make data 

collection tough because of the unplanned nature and spontaneity at which crowds are 

formed. This framework comprises five steps: data collection, data preprocessing, feature 

engineering, modelling and analysis, and determining the significance of results in 

formulating informed policies on crowd management. The data collection involves 

getting information from several sources like CCTV, mobile calls, or data harvested from 

social media sites. This usually involves setting up sensors, cameras, data streams, etc., to 

collect appropriate information [191]. 

 

Having collected relevant data, pre-processing is key in ensuring that all the collated data 

is cleaned up and prepared to be considered before any critical analysis. In this stage, 

procedures include data fusion, noise reduction, and feature extraction to confirm that the 

info is appropriate for subsequent processing. Feature engineering is imperative in 

detecting and determining appropriate features among the data. These attributes form a 

basis for assessing crowd density, predicting crowd movement, and facilitating crowd 

diversion where necessary. Analysis of modelling follows in this case where techniques 

used in signal processing, machine learning, and computer vision on the data. 

 

Consequently, it is possible to construct models for crowd density estimation, crowd 

steering, and crowd mobility prediction. The last one is the assessment and analysis of the 

models and results. These models are stringently evaluated, and their outcomes are used 

interpretatively for making relevant decisions on issues relating to crowd management 

[192]. 

 

3.2 Theories of Crowd Dynamics in Opportunistic Environments 
 

3.2.1 Fundamental Theories Underpinning Crowd Behaviour 
 

Gustave Le Bon’s “theory of the crowd mind” is one classical theory concerning 

individuals in a crowd's behaviour. This theory suggests that individuals cease being 

unique as they are assimilated into the collective mind. The first perspective believes that 

crowd behaviour is mostly determined by the common consciousness and not by the 

individual identity of the persons in the crowd. However, many modern theories 

nowadays explain crowds' characteristics under different conditions. A modern theory is 
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“collective resilience in crowds” by John Drury. His theory is mainly concerned with the 

cooperative behaviour of crowds when faced with emergencies and the ability of such 

situations to stimulate self-organizing among crowds [193]. It notes the importance of 

social contact and communication between crowd people, which may result in mutual 

resistance and partnership during misfortune. Such theories should apply to 

opportunism’s highly variable and uncertain situations. It is important to understand the 

psychological and cognitive dimensions of human behaviour for predictive and 

managerial purposes during crowd behaviour forecasting for these situations. Several 

approaches have emerged to detect and predict crowd behaviour, including: 

 

• Cognitive deep learning frameworks integrated with Psychological Fuzzy 

Computational Models based upon theories such as Occupational Arousal Theory, 

Fuzzy set, Five Factor Model, and Visual Attention. Using these approaches, one 

can easily spot different crowd behaviours [194]. 

• Psychological perspectives on risk management in public-private partnerships 

(PPP), including psychometric advice and better ways to share risks. 

• Development of unmanned aerial systems based on drone technologies, artificial 

intelligence, and machine learning to help monitor and analyse crowd behaviours 

before, during, and after peaceful and non-peaceful events. 

• A crowd behaviour simulation model proposed under the information-gap theory 

considers curiosity an intrinsic motivator influencing individual and crowd 

behaviour [195]. 

Therefore, the multiplicity of these methods reveals the necessity to estimate people’s 

actions under different circumstances, such as opportunistic ones. By forecasting 

behaviours and management, considering psychological and cognitive aspects of crowd 

behaviour may help improve safety in crowd-related issues. 

 

3.2.2 Modelling Crowd Dynamics in Unstructured Environments 
 

Crowd dynamics are modelled in unstructured, opportunistic environments through 

different methodologies and models representing crowd behaviour. There are two main 

strategies, including those focusing on the behaviour of agents in a group as a set of 

microscopic objects (agent-based models) and treating multitudes as an averaged mass 

motion (fluid-dynamic models) [196]. However, these models will have to be flexible to 



49 
 

consider random gatherings of crowds, varying size composition of crowds, and quick 

changes in crowd density. Models for describing crowd dynamics have been recently 

developed. Using hyperbolic elliptical equations, one can give a formal description of the 

movements of a crowd moving [196]. It is a microscopic description of an individual’s 

behaviours and ascertains that the evacuation time from a bounded domain is finite and 

the model is well-posed. A second study suggests a two-dimensional kinetic model for 

disease contagion in crowds, considering the spatial spreading of diseases in confined 

areas with an average-sized population [197]. 

 

For automated driving in unstructured, dynamic environments, a learning-based model 

predictive trajectory planning controller solves the absence of prior knowledge in 

unstructured environments and introduces a risk map that maps density and motions’ 

obstacles and the road with risk occupancy [198]. The proposed controller bridges the gap 

between planning and control by learning the residual model uncertainty through 

Gaussian Process regression to improve the model's accuracy. The modelling of crowds in 

unorganized and random settings is a challenging area gaining significance as researchers 

attempt to create flexible models reflecting the fluctuating nature of crowd behaviour 

within those contexts [199]. 

 

3.2.3 Impact of Opportunistic Data on Crowd Dynamics 
 

Using opportunistic data such as mobile phone signals, social media activity, and sensor 

data has revolutionized how people understand crowd dynamics, especially in unplanned 

areas. Such information is invaluable for our appreciation of the collective dynamics of 

crowd behaviours, which are often considered unknown. In a nutshell, let us now examine 

the meaning of crowd data concerning crowd dynamics, the problematic aspects, and 

research perspectives on this subject [200]. 

 

Real-Time Data Collection: Real-time data collection becomes possible using 

opportunistic data sources, including mobile phone signals and social media 

activity. Unlike other data collection approaches, such as hand counts or static sensor-

based approaches, it involves real-time monitoring of crowd movements and 

behaviours. In addition, regarding rapid changes that may occur in a crowd, this real-time 

element will be very useful as it allows for monitoring such situations, thereby enhancing 
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public safety and effective crowd control management. Granularity of Data: Data is 

generated at an atomic level in personal devices such as smartphones [201]. Therefore, we 

can collect specific details of single activities or locations in the crowd. It enables better 

insight into crowd dynamics like density, movement patterns, preferences, and individual 

choices [202]. 

 

Identification of New Patterns and Behaviours: These opportunistic data can disclose 

hidden patterns of behaviour and trends that one cannot see through other data 

sources. Analysing digital data trails from people’s mobile phones and activities on social 

media allows researchers to understand why crowds act collectively as spontaneous 

gatherings and how viral trends and unforeseen happenings affect them [203]. Despite the 

evident advantages of leveraging opportunistic data for understanding crowd dynamics, 

several challenges need to be addressed: 

• Data Sparsity: There are regions and M-o-Ments in a case of opportunistic data 

that can be very short on data points. However, this may lead to gaps in 

knowledge about crowd behaviour and reduce the precision of crowd density 

estimates and behaviour forecasts [204]. 

• Data Noise: Any error in opportunist data, including wrongness and insignificant 

input, maybe a source of noise that will frustrate analysis efforts. The quality and 

reliability of insights drawn from the data depend on noise reduction and data 

cleaning techniques [205]. 

• Privacy Concerns: Privacy issues arise on an individual level due to the collection 

of personal data from mobile devices and social media. Striking a balance is 

essential while using opportunity data as it infringes individual privacy rights 

regarding research data collection [206, 207]. 

• The use of opportunistic data in studying crowd dynamics has been highlighted in 

several research papers, which discussed both the chances and obstacles 

connected with this approach. Crowd participation in mobile computing (MC), 

multimedia big data visualization techniques for a scale-free network in the 

smartphone, a hybrid multi-componential model framework for data-driven crowd 

dynamics, integrated fusion crowd simulation methods for big data smart cities, 

etc. [207]. 
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The opportunistic data has enabled us to perceive crowd behaviours in real-time with 

detailed descriptions. On the other hand, though, data sparse, noise, and privacy issues 

should be handled with great caution. The studies carried out in this area will create 

possibilities that will help with crowd control, security, and better knowledge concerning 

the group behaviour of humans in undifferentiated open spaces. 

 

3.2.4 Comparative Analysis of Models 
 

The extensive search results were unsuccessful in comparing the theories of crowd 

movements. Hence, based on current knowledge, this paper looks at some of the 

theoretical models used for modelling crowd behaviour and the extent to which they 

apply under opportunistic situations. Crowd dynamics theoretical models represent 

various options or approaches that vary in their specific features and purposes. This 

model is an essential tool providing the basis for predictive crowd behaviour used to 

monitor and control large groups. Here, we delve into three prominent categories of 

crowd dynamics models: social force, continuum, and agent-based models [208]. The 

social force model emphasizes the interaction of an individual with their surrounding 

within a crowd. The assumption is based on the idea that different kinds of social forces 

control the movement of people in a crowd. The need to get to a specific point, avoiding 

the collision of their movement with the crowds, and other factors determine the 

character's behaviour. Social force models are good at understanding how emergent 

crowds’ behaviours and macroscopic happenings can be easily understood, but they may 

exaggerate the complex decision-making process of each crowd member [209]. 

 

Unlike the continuum model, where a crowd is treated as a continuous fluid, partial 

differential equations describe their movement. These models especially suit studies of 

crowding phenomenon in open spaces and reveal information about crowd density 

parameters and flow structures. Despite that, it may be problematic for the continuum 

models to explain the impact of obstacles, structures, or other environmental factors that 

can greatly influence the behaviour of the crowds. The most diverse of the three is the so-

called agent-based model that simulates the activity of individuals in the crowd. This way, 

there is no limitation regarding behaviours, interactions, and decision-making processes 

that can be expressed. Unlike other approaches, agent-based models are good at 

describing how different crowds behave and have individual attributes that can be altered 
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to fit situations such as evacuation or public gatherings. They may also be 

computationally intensive and use large amounts of data for calibration and validation. 

The comparative analysis presented in the table 3-1 discusses the strength and limitation 

of several models in context to the proposed research context of opportunistic 

environment: 

 

Table 3-1: Crowd Density Models Comparison 

Model 
Type Key Features Purpose 

Applicability in 
Opportunistic 

Situations 
Limitations 

Social 
Force 

Models 

Focus on 
individual 

interactions 
within a 
crowd 

Understanding 
emergent crowd 
behaviours and 

macroscopic 
events 

Suitable for open, 
clear areas with 
straightforward 
movement goals 

May oversimplify 
complex individual 

decision-making 
processes 

Continuum 
Models 

Treat crowds 
as continuous 

fluid, use 
partial 

differential 
equations 

Suited for 
studying crowd 

dynamics in 
open spaces 

Effective in 
analysing crowd 
density and flow 

structures 

Struggle to account 
for environmental 

factors like 
obstacles, which 

can influence crowd 
behaviour 

Agent-
Based 

Models 

Simulate 
activities of 
individuals, 
no limits on 
behaviour 
expression 

Describe diverse 
crowd 

behaviours, 
adaptable to 

specific 
scenarios 

Ideal for complex 
situations with 
intricate social 
networks and 

decision-making, 
like evacuations 

Computationally 
intensive and 

require substantial 
data for calibration 

and validation 

 

Every model has its own merits and applies in particular circumstances. The social force 

mode can be applied when a crowd traverses an area free from crashes, collisions, and 

other encounters. There are more efficient continuum models for analysing the flow and 

density of crowds over large open spaces. Agent-based models with highly sophisticated 

individual-level simulations are more suitable for complex environments where 

individual behaviours, interactions, and decision-making play a significant role in crowd 

dynamics. While selecting the suitable model for a particular situation, especially in 

emergency evacuation, the choice must depend upon whether the model can represent 

these variables sufficiently and offer useful information for the specific case [210]. 

 

The choice of the appropriate model is dependent upon the nature of the situation in 

which it is applied in an opportunistic environment like an emergency evacuation or 
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unplanned events. For example, social force models could simulate individuals' 

movements in open, clear areas where the leading motive is getting there and not hitting 

other people. On the contrary, agent-based models might suit such situations as complex 

social networks, difficult decision-making, and various group behaviours, to mention but 

a few. Finally, in this chapter on the model theory, crowd comparison should consider 

each model’s capability in specific situations related to the features and needs of the 

crowd. The suitability of a given opportunistic environment requires that factors such as 

individual behaviours, group interactions, environmental variables, and the emergence of 

crowd properties be examined with care to identify the proper model of opportunity 

identification [211]. 

 

3.2.5 Application of Theories in Diverse Crowd Scenarios 
 

Crowd dynamic theories have a huge potential in developing practical crowd 

management strategies in different opportunistic environments to improve crowd 

management strategies, emergency response plans, and urban design policies. These 

theories are useful for explaining and acting on impromptu gatherings in urban spaces, 

spontaneous crowds of unexpected events, or emergencies. Theoretical ideas in real-life 

situations are integrated towards practical solutions for improving safety, proper 

allocation of resources, and urban planning [212]. 

 

Crowd dynamic theories are also used to develop a dynamic disturbance-propagation 

model predicting crowd panic behaviours. This model is based on fluid dynamic 

conservation laws and aims to depict how crowds move when disturbed. Firstly, this 

model provides a theoretical basis for understanding crowd panic, and secondly, it enables 

the conduct of Lyapunov-type analysis on the stability of crowds under disturbances. The 

crowd panic model allows urban planners and emergency responders to understand how 

panic crowd behaviours spread and develop effective measures for controlling crisis 

occurrence in reality [213]. 

 

Moreover, it can be applied to optimizing opportunities in traffic flow management. For 

example, there is a model that reallocates traffic by charging different prices for 

roads. The idea behind this approach is that drivers intend to use a cheap way with the 

least distance traveled. Optimization of road-based variable cost factors redirects people 
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to less busy routes, allowing traffic to be unlocked and mobility to be enhanced. The 

application of theories of crowd dynamics for traffic management shows how theory can 

be turned into specific plans for better city design and allocation of resources [214].  

 

Such examples illustrate the usefulness of the theories of crowd dynamics, as they may 

serve to deal with exploiting environments. By applying findings drawn from theoretical 

models, practitioners and policymakers can make the right decisions, have appropriate 

crowd-controlling mechanisms in place, and improve security measures. Finally, when 

theory is transferred to practice, authorities can better react to the diverse ways crowds act 

unpredictably in different circumstances. This, in turn, leads to improved crowd 

management, safety, and urban planning outcomes [215]. 

 

3.3 Principles of Synthetic Data Generation and Validation in Opportunistic 
Contexts 

 

3.3.1 Rationale for Using Synthetic Data in Opportunistic Environments 
The analysis, which underpins synthetic data for modelling crowd dynamics and 

opportunism, is provided here. There are varied reasons why artificial information would 

be useful in this case, which highlights its immense benefits. Secondly, synthetic data 

provides a controlled testing ground for models and algorithms whereby there can be 

limited or no actual-world data available [216]. These are opportunistic conditions that 

pose difficulty in data collection, thus making use of synthetic data useful for initiating 

exploratory work. In addition, synthetic data is a more ethical and privacy-friendly 

substitute for personal real-world data. Using artificial data will ensure it is done ethically 

without infringing privacy rights, yet researchers can still conduct relevant studies. This 

section will also discuss wider aspects of artificial data, such as the fact that it enables 

researchers to get an in-depth comprehension of intricate crowd processes without the 

restrictions of collecting real-world data.” Through it, researchers can run experiments on 

simulations that are impossible or unethical in real life but help them understand crowds’ 

behaviours in opportunistic settings [217]. 
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3.3.2 Methodologies for Creating Realistic Synthetic Data 
 

Synthetic data is created by combining various statistical models and algorithms. This 

makes the generated data as close to reality as possible. Such approaches may include 

Monte Carlo simulations, agent-based modelling, and other probabilistic models. This 

synthetically generated data can consider crowd size, movement patterns, and 

environmental variables to make them as real and applicable as possible.[217]  

 

Studies in many areas, like human analysis or medical informatics, discuss creating 

artificial data as a viable substitute for actual data collection. Synthetic data generation 

has already been applied to mitigate the problems associated with a lack of real patients’ 

data for use in machine learning-supported decision-making in medicine[218].  

 

Although many studies have addressed the issue of data-free model compression in the 

deep learning setting, it remains unresolved. Some free distillation procedures are 

susceptible to catastrophic forgetting and inconsistencies between synthetic and practical 

statistics. Recently, a framework has been proposed for data-free knowledge distillation 

that keeps an updated database of generated examples and imposes the constraint that 

each sampling strategy matches the real data distribution [219]. 

 

A study examined externally evaluating clustering documents via synthesized data for a 

different setting. The closeness measure was applied for each pair of measures. The value 

change of any measure while considering an increased or reduced number of generated 

clusters was used as an assessment tool for measuring the effectiveness of the respective 

measure [220]. 

 

3.3.3 Validating Synthetic Data Against Real-world Opportunistic Data 
 

The next important step will involve validating artificial data for authenticity, suitability, 

and relevance to research and decision-making purposes. In this regard, various ways and 

standards exist with which we can rely on artificial data as a sample of real data.  Another 

approach compares synthetic data with real data collected from opportunistic 

settings. Such a comparison enables scientists to examine whether or not there is an 

association between the two data sets. Using approaches like cross-validation, statistical 
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testing, and error analysis also helps measure the correctness and appropriateness of 

synthetic data [221]. 

 

The study ranked different methods for synthesizing health data based on their ability to 

support a particular analytic workload using a " utility " metric.” This study concluded 

that multivariate Hellinger distance is appropriate for evaluating various utility metrics as 

it best compares the actual and synthetic joint distributions expressed by a multivariate 

Gaussian copula model [222]. A flexible validation approach proved indispensable in 

evaluating synthetic solar irradiation data. The appreciation arises from varied utilization 

of artificial solar irradiance data with different emphases and necessities. This, therefore, 

requires a flexible validation approach for the data generated through the synthetic solar 

irradiance to be valid and applicable within varying circumstances [223]. 

 

Another study used machine learning algorithms that were developed and validated in 

predicting HIV infection in men who have sex with men. The models were evaluated 

using the measures of accuracy, precision, recall, F-measure, and AUC. As such, these 

measures ensured the researcher could completely justify that the machine learning 

models would work in practice [224]. These instances highlight the variety of ways and 

measures in which synthetic data can be verified using actual opportunistic datasets. The 

credibility of synthetic data as an analogy to real-world data should be established across 

various domains to allow researchers and practitioners to successfully apply synthetic 

data in conditions when the real-world counterparts are difficult or impossible to gather. 

 

3.3.4 Challenges and Solutions in Synthetic Data Generation 
 

Challenges and opportunities in the murky landscape of synthetic data creation. Creating 

artificial data that accurately depicts the complexities of opportunistic circumstances in 

real life is no easy feat, requiring extensive thought processes and ingenuity. Ensure the 

synthetic data is representative. The synthetic dataset should reflect authentic 

environment trends and represent the data collected in spontaneous environments 

[225]. This can be accomplished through an integrated process of consideration of the 

multi-scenario, multi-context nature of these settings. The other intricate problem 

involves attempting to describe the random behaviour of crowds; one of them is crowd 

dynamics. Human behaviour is highly dynamic and is affected by many variables, which 
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may cause it to change suddenly. Consequently, imitation of human actions that display 

variability in opportunity scenarios should encompass synthetic data [226].  

. 

Synthetic data generation should include all important factors affecting dynamic crowd 

movement. Examples of these variables will involve individuals' environment and 

physical or psychological abilities. Insufficient inclusion of these factors in the synthetic 

dataset may jeopardize the reliability and applicability of the synthesized data [227]. 

These problems have their respective solutions at their disposal. One way to explore this 

includes improving computational models for artificial data production. Researchers can 

try improving models' accuracy, leading to more realistic synthetic data. Alternatively, 

developing synthetic data generation algorithms represents a viable option [228]. This 

involves using complex algorithms considering several variables and their interactions, 

greatly enhancing synthetic data's quality and realism. The algorithms should be flexible 

for various opportunistic surroundings to remain relevant and universal [229]. 

 

Crowd dynamic experts and those familiar with different subject matter areas can 

contribute tremendously to genuine synthetic data by bringing relevant knowledge 

necessary for its developmental improvement. Combining computational models with 

human judgment is essential for closing this gap between artificial and observable data 

sets and generating reliable and relevant databases for research or decision-making 

purposes [230]. Therefore, it highlights the need for representativity, randomness, and all 

significant variables in explaining a phenomenon or observable event. The part examines 

advanced computation-based designs, improved algorithms, and expertise based on expert 

input. This aims to generate artificial information mimicking the dynamics of 

opportunistic environments and provide useful planning knowledge [231]. 

 

3.3.5 Synthetic Data in Algorithm Development and Testing 
 

Synthetic data is important in modelling and evaluating algorithms for crowd density 

estimation and behaviour predictability in opportunistic scenarios. Artificial data can be 

used at different levels for developing algorithms, from a first-stage idea to complete 

adjustment and tuning. For example, testing algorithms under different sets of controlled 

conditions and scenarios give more robust, accurate, and reliable algorithms before they 

are used in real-world situations [232]. The utility of synthetic data has been identified in 
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several applications such as simulation and prediction research, hypothesis testing, 

algorithm testing, epidemiology/public health researchers, healthcare IT system 

development, education, and training, releasing open datasets, and linking of data 

sets.[233] Firstly, it allows the creation of a realistic dataset without fear of breaching 

privacy. Furthermore, it quickens the development cycle, saving effort and cost while 

shortening the development process. 

 

On this note, synthetic data will help reduce the effort needed for data collection and 

labelling while working on computer vision tasks. Nonetheless, the artificial data must be 

realistic for practical purposes [234]. A decompose-wavelet algorithm was designed for 

seismic data processing; it was applied to synthetic and true data and proved better 

multiple attenuations similar to those in commercial programs. Moreover, a prediction 

model for scholarship receivers has been created in data mining using the kNN algorithm 

and SMOTE. The model’s accuracy, precision, recall, and F1 scores were remarkable, 

suggesting its ability to forecast future beneficiaries. [235, 236, 237] 

 

3.4 Theoretical Concept: Mobile Crowd Density Estimation  
 

A methodology to assess crowd density using telecommunication data through BTS is 

shown in the following figure 3-1. 

 
Figure 3-1: Conceptual Flow of Mobile Crowd Density Estimation  
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The raw data is generated and extracted through a network of strategically placed BTSs 

assigned sequential alphanumeric identifications. Alpha (A) is associated with the BTS 

units interacting with mobile devices in corresponding sectors: alpha, beta, and 

gamma. The combined effort of these sectors encompasses an overall supervision field, 

collecting necessary information critical to mobile movement analysis. The first step in 

analysis involves creating a heat map upon data attainment. This is a very direct way of 

showing the spatial distribution and the density of the population of the catchment area of 

the BTS. The study provides a preliminary insight into how crowds behave spatially and 

temporally. Incoming data continues, and the subsequent branching of the decision-

making flow occurs after visualization. When a new data set is added, it updates the 

existing database on ground reality. 

 

On the contrary, if no new data is available, a new data entry should be created, and this 

additional information should be added to the dataset. At this point, the core of the 

analysis is found in the clustering and classifying phase, where aggregate data is 

segregated according to defined criteria. This step is key because it divides the data into 

clusters that reflect different modes of crowd dynamics. Subsequently, each cluster 

undergoes a classification procedure to unravel the hidden patterns, possibly yielding 

valuable intelligence about behavioural trends and path movements over the specified 

areas, presenting marks the end of a theoretically built-up conceptual diagram. Data 

storytelling is depicted as carefully laid out data aggregated, clustered, and ranked on a 

dashboard that acts as a canvas. This dashboard, however, is more than just a data display; 

it is an interactive interface that allows meaningful information retrieval out of complex 

volumes. 

 

3.5 Mathematical Foundations of Crowd Density Estimation in Opportunistic 
Environments 

 

Complete algorithm of quartile classification of the crowd density analysis. In this regard, 

developing an algorithm based on all parameters necessary for effective urban crowd 

dynamics management is crucial. In this part of the chapter, an explanation of the 

mathematical constructs and principles informing the algorithm, particularly concerning 
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the quartile category classification and implementation in opportunistic environment are 

discussed. 

 

3.5.1 Initialization: Locations and Mobile Towers 
 

An initial stage per a city’s landscape is based on MOBILE towers and their 

positions. Assuming ‘n’ denotes all unique sites, then “MobileTowers (n)” designates the 

distribution of Mobile towers in such locations. First, the program plots every MOBILE 

tower and places it next to its geographic area where it is located. In the first stage, the 

algorithm involves a precise scenario where the urban terrain is expressed as MOBILE 

towers. This process is fundamental to the subsequent crowd density estimation and 

requires a rigorous mathematical approach, as presented below in table: 

 

Table 3-2: Nomenclatures 

n : Total number of distinct geographic locations in the city. 

L = {L1, L2, … , Ln} : Set representing distinct locations in the city. 

T = {T1, T2, … , Tn} : Set of MOBILE towers, where each Ti Corresponds to a MOBILE 

tower. 

f(Ti) : Function mapping MOBILE tower Ti to its location Lj. 

(xi, yi) : Geospatial coordinates of MOBILE tower Ti. 

D(Li) : Density of MOBILE towers at location Li. 

C(Ti, t) : Crowd count at MOBILE tower Ti At time t. 

A(Li) : Area of location Li. 

 

A. Mathematical Framework 

1 Geographical Mapping of MOBILE Towers: 

Function Definition: 

Define a mapping function f: T → L such that each MOBILE tower Ti is associated with a 

unique location Lj. 

For every T5 is located at a central square represented by L3, then f(T5) = L3. 
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Geospatial Coordinate Assignment: 

Assign geospatial coordinates (xi, yi) to each MOBILE tower Ti, denoting its precise 

physical location. 

 

2 Density Function for Mobile Towers: 

Density Calculation: The density of MOBILE towers in location Li Is given by: 

D(Li) =
∑  Tj∈Li  1

A(Li)
 

Eq: (3-1) 

Here, ∑Tj∈Li  1 counts the number of towers in Li, and A(Li) It is the area of that location. 

 

 

 

 

3 Time-Dependent Crowd Data Collection: 

Crowd Count Model: Model the crowd data collection at each tower as a time-dependent 

function: C(Ti, t) = crowd count at tower Ti At time t. This function is essential for 

analyzing temporal variations in crowd density. 

 

B. Diagrammatic Representation  

 

Representation of MOBILE Towers in figure 3-2: Each blue dot on the diagram 

symbolizes a MOBILE tower. These towers are distributed across a simulated 100 ×

100grid, representing different areas within a city. Location Identification: The 

annotations (e.g., L1/T1, L2/T2) provide a dual identification for each point, indicating 

both the location (L1, L2, … ) and the corresponding MOBILE tower (T1, T2, ...). This 

dual labelling is essential for understanding the specific placement of each tower within 

the urban layout. Geospatial Layout: The X and Y axes represent the geographical 

coordinates of the MOBILE towers. This kind of coordinate system brings the perception 

of the locations of various towers with each other on the city map and, thus, an 

understanding of the spatial distribution of those towers through the cities. Urban 

Planning Insights: One could also infer something about the city's urban planning through 

the distribution pattern of the towers. A large number of towers in a given place would 
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suggest it is a high-population density or commercial zone, whereas a few towers in 

another area could point to low occupation or residential areas. Strategic Importance for 

Crowd Density Estimation: This demonstrates that the location of Mobile towers is very 

important when calculating crowd densities in urban settings. Analysing these towers' 

locations could help determine areas for potential crowd gathering and crowd movement. 

 

 
Figure 3-2: Scenario Presentation of Distribution of Mobile Towers 

 

The diagram is key to the discussion in the thesis, especially since it connects the points 

where MOBILE towers are located and the crowd density data in managing cities and 

urban planning. 

 

C. Analytical Significance 

• The granularity of Analysis: This helps granularly analyse crowd dynamics in 

various urban settings because it is a precise mapping and density calculation 

undertaking. 

• Resource Allocation: Tower distribution helps strategically deploy resources 

for effective crowd management. 

• Dynamic Monitoring: Dynamic monitoring and forecasting of crowd 

movements becomes possible because of the temporal model C(Ti,t). 
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This part presents a complete mathematical and schematic foundation of the connection 

between MOBILE towers and urban regions. Such preparation is of great importance for 

fine-grained and evolving studies on crowd density. These are essential for successful 

urban planning as well as crowd management strategies. Using spatial mapping, density 

functions, and time-series-based data collection models provide an effective toolkit for 

handling urban crowd complexity. 

 

3.5.2 Crowd Count Arrays 
The ‘Ccount’ array is important for the crowd density estimate algorithm since it tracks 

the accumulated crowd information of each MOBILE tower hourly. This is made possible 

through these basic arrays on which comprehensive data about temporally changing 

crowd dynamics can be created. Intelligently, ‘Ccount’ arrays consider the crowd 

dynamics in different aspects. These matrixes or arrays are not simple repositories of 

information but sophisticated networks designed to reveal the subtle rhythms of urban 

motion. 

 

A. Mathematical Framework 

1 Advanced Array Structure: 

• Definition of Multidimensional Array: 

Let's define 'Ccount' as a four-dimensional array, represented mathematically as Ccount 

 i,j,k,l. 

• Where: 

 i corresponds to the MOBILE tower index (1 to n towers), 

 j represents the hour of the day (1 to 24 ), 

 k denotes the day of the week ( 1 to 7 ), and 

 l accounts for additional parameters like event types or weather conditions. 

• Data Entry Representation: 

 For each entry in the array, C count ti,j,k,l, indicates the crowd counts at the i-th 

tower during the j-th hour, on the k-th day, under the l-th condition. 

2 Comprehensive Data Collection Model: 

• Detailed Accumulation Process: 

• The crowd count data is gathered as per the following equation: 
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 Ccount i,j,k,l = � 
P

p=1

δp,i,j,k,l 

Eq: (3-2) 

• Here, δp,i,j,k,l Represents the presence (1) or absence ( 0 ) of an individual p in the 

vicinity of tower i during hour j, on day k, under condition l. 

• P denotes the total population under consideration. 

3 Statistical Analysis within Arrays: 

• Implementation of Statistical Measures: 

• Apply statistical functions within each segment of the array for a granular 

analysis: Mean 

(μ): μi,j,k,l =
1
H
∑h=1
H   

Eq: (3-3) 

Ccount  i,h,k,l 

 

• Standard Deviation  

(σ):σi,j,k,l = � 1
H − 1

∑h=1
H  �Ccounti,h,k,l − μi,j,k,l�

2
 

Eq:  (3-4) 

• H is the number of hours considered for each statistical calculation. 

 

B. Diagrammatic Presentation  

 

A three-dimensional surface plot illustrates in figure 3-3 (A & B) creates an effective and 

illustrative image picture of how population change occurred during specific times in a 

MOBILE tower. This plot depicts a cycle of 24 hours, where the X-axis describes each 

hour of the day. This is shown on the y-axis, where one can see the days of the week from 

Monday to Sunday. The vertical dimension of the plot is referred to as the Z-axis, and it 

shows the crowd count revealing increasing numbers of persons detected by MOBILE 

towers across different hours during a particular day. In particular, the peaks and troughs 

seen in the graph give important insights. Peaks were highlighted when most people were 
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around the tower at one point. Such instances are vital for urban planners and authorities 

because they often indicate a need for more attention or resources. 

 

On the contrary, the troughs, meaning where the surface goes down, embody the times of 

less-density crowds. Over time, analysis of such patterns may help understand the 

dynamics underlying daily and weekly city rhythms, thereby making informed decisions, 

including emergency preparedness and general urban planning. These variations are 

accented by a colour gradient, moving from cooler through warm colours, making the 

plot more than an operational device. 

  
(A)                                                                      (B) 

Figure 3-3: Synthetic Presentation of the Crowd Density 

 

‘Count’ is written in a much more advanced and complex manner that incorporates time 

dimension, variation based on location, and dependence on certain 

conditions. Sophisticated data structure with detailed mathematical modelling provides 

deeper analysis and forecasting needed in effective city governance. 

 

3.5.3 Threshold Arrays 
Threshold Arrays such as ‘Tdaily’ and ‘Tweekly’ determine baseline densities for all days 

under study. Daily and weekly crowd patterns are compared with these baselines to spot 

normal trends and exceptional conditions. 

 

A. Mathematical Framework 

1 Calculation of Daily Thresholds: 

'Tdaily' represents the median crowd count for each MOBILE tower, calculated daily. 
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Mathematically, for a MOBILE tower i, the daily threshold on day d is defined as: 

 

 T daily  i,d = median {  Ccount  i,1,d, C count  i,2,d, …, Ccount  i,H,d� 

Eq: (3-5) 

Where Ccount  i,h,d is the crowd count at tower i, hour h, on day d. 

 

 

2 Calculation of Weekly Thresholds: 

'Tweekly' is calculated as the median of the daily thresholds for each MOBILE tower over a 

week. 

For MOBILE tower i, the weekly threshold is defined as: 

T_weekly yi = median �T_dailyi,1, T_daily i,2, … , T_dailyi,D� 

Eq: (3-6) 

Here, D is the number of days in the week. 

 

B. Diagrammatic Presentation  

A week-long graph illustrated in figure 3-4 for daily and weekly thresholds of crowd 

numbers at MOBILE towers is depicted as follows. This diagram comprises lines 

representing the median crowd count (Daily Threshold) for a particular MOBILE tower 

on diverse days from Monday through Sunday. These lines depict how the crowd density 

changes from peak levels at every tower and when it dips into a trough that indicates 

lower crowd presence. In the diagram above, the dashed horizontal lines mark each 

tower's average weekly threshold values. Weekly thresholds are vital in determining 

general patterns and any unusual manifestations of crowd movements. For example, a 

major variation from such trendlines would imply abnormal behaviour in the crowd and 

call for additional monitoring or action. As such, this detailed visual illustration depicts 

temporal patterns of crowds in urban settings for planning purposes and successful crowd 

control. 
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Figure 3-4: Synthetic Presentation of Threshold Computation 

 

C. Analytical Significance 

• Baseline Establishment: These thresholds give the basis for distinguishing 

average crowd behaviour from abnormalities. 

• Anomaly Detection: Large variations away from the indicated levels indicate 

anomalies, allowing preventive crowd management as well as distribution of 

resources. 

• Temporal Trends Analysis: Temporal trends in crowd behaviour can be 

understood by observing threshold variations on different days and at various 

times. 

 

Baseline crowds’ densities, captured by ‘Tdaily’ and ‘Tweekly’ threshold arrays. The result of 

these calculations, coupled with the following analysis, is powerful in explaining crowd 

patterns and identifying the abnormalities. This makes the visual representation of these 

data more meaningful to urban planners and authorities working on the management of 

crowds. 

 

3.5.4 Quartile Arrays 
This analysis is based on quartile classifications. The arrays ‘Qdaily’ and ‘Qweekly’ contain 

classifications of the quartiles of the crowd count data for days and weeks. This division 

makes it possible to stratify crowd densities into low, medium, high, and high categories.  
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A. Mathematical Framework 

Crowd Counts Data Representation: 

Let C count  h,i represent the crowd counts at MOBILE tower i during hour h, with the 

dataset comprising hourly counts for each tower. 

 

Flattening and Quartile Calculation: 

The crowd counts are first flattened into a single array to apply quartile analysis across all 

towers and hours: 

 Count flattened =  flatten � C count h,i� 

Eq: (3-7) 

Quartiles are calculated on this flattened data: 

Q1 = 25 th percentile of Ccount  flattened  

Q2 = 50 th percentile (Median) of Ccount flattened  (Men  

Q3 = 75 th percentile of C count  flattened  

 

Quartile Classification: 

For each hourly crowd count, count  h,i at MOBILE tower i during hour h, the 

classification based on the calculated quartiles is as follows: 

If Count  h,i < Q1, then the classification is 'Least Crowded.' 

If Q1 ≤ Count  h,i < Q2, then the classification is 'Medium Crowded.' 

If Q2 ≤ Count  h,i < Q3, then the classification is 'Heavy Crowded.' 

If C count  h,i ≥ Q3, then the classification is 'Most Crowded.' 

 

B. Diagrammatic Representation 

The scatter plot of figures 3-5 and 3-6 presents a detailed graphical representation of the 

crowd density grading in every MOBILE. Crowd count, in hours, is plotted for each 

tower with one of the quartile-based labels distributed along the X-axis. Each point is 

coloured to depict its time of occurrence, thus facilitating comprehension of how crowd 

density fluctuates during various hours. Such a plot shows the patterns of crowd 

occurrences during certain hours and helps planners strategically manage the crowding of 

the various towers. For example, some towers are consistently classified as belonging to 

the “Most Crowded” category at particular hours of the day and may need more attention 

or even additional resources to ensure safety issues are addressed promptly. A plot 



69 
 

becomes the holistic device that helps understand urban crowds’ motions and provides 

urban planners and the authorities with a means of planning appropriate responses to 

them. 

 

 
Figure 3-5: Synthetic MOBILE Tower level Crowd Density Distribution 

  

 
Figure 3-6: Synthetic Presentation of Quartile Classification of Crowd 

 

C. Quartile Classification Scatter Plot 

• The scatter plot shows different quartiles of the hourly crowding in the 

MOBILE tower. 

• MOBILE towers (x axis), Classification to different categories (least 

crowded – most crowded). 
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• Color-coding each point to mark the hour of the day creates a time 

dimension. 

 

The hourly crowd data is classified into low, medium, heavy, and super-heavy 

densities. Applying this classification to the tower by an hour, it will be possible to 

classify each tower in any of the four tower’s density levels during a specific time 

frame. In this way, we get a detailed picture of the difference in crowd density between 

various towers and different times of the day for every tower. 

 

3.5.5 Time Tracking Variables 
Variables ‘hour’ and ‘day’ indicate the times their value occurred. The “hour” term 

embraces the daily/24-hour cycle and a week as “a day.” Hour’ and ‘day’ as time-tracking 

variables in a crowd density estimation context are critically important to appreciate the 

temporal aspects of the data. The variables allow us to look at the pattern of people across 

certain hours on a specific day or days of the week. 

 

A. Mathematical Framework 

Representation of Time Variables: 

Let hour ∈ {1,2, … ,24} represent the hours of the day, covering the entire 24-hour cycle. 

Let day ∈ {1,2, … ,7} denote the days of the week, addressing the weekly cycle. 

 

Temporal Data Matrix: 

Consider a matrix M where each element Md,h represents the crowd count data at hour h 

on day d. 

The matrix dimensions are 7 × 24, corresponding to the days of the week and hours of 

the day. 

 

B. Diagrammatic Representation  

A weekday heatmap illustread in figure 3-7 offers a graphical view of variations in crowd 

density across a normal week. A heatmap, where each cell represents a certain hour of a 

particular day whose color intensity indicates the crowd density. This visualization makes 

it easier to note trends like peak crowd hours and densest or least dense days. The same 

could be used; for instance, bright colors can point at rush hours or weekends, while dark 
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colors can refer to a night silence. Urban planners and authorities with information about 

these trends can better allocate resources, design the best crowd management strategies, 

and determine areas requiring additional infrastructure or improved safety measures. 

 

 
Figure 3-7: Synthetic Temporal Crowd Density Presentation 

 

3.5.6 Data Collection for Each Hour and Each Day 
During every hour of the day, ‘Ccount’ is collected by the algorithm. Currently, crowd 

size data signifies how the dynamics in the crowd density can be assessed in real-

time. ‘Ccount’ data for each hour per day are essential in crowd density analysis. This 

information constitutes a key point in determining the change in crowd density along 

different temporal periods with real-time purposes. 

 

A. Mathematical Framework 

Hourly and Daily Data Collection: 

Let Count cour,h, i  -  Represent the crowd count at MOBILE tower i during hour h on 

day d. 

The data collection spans a week, hence d ∈ {1,2, … ,7} and h ∈ {1,2, … ,24}. 

 

Data Representation: 

A three-dimensional matrix M is used to represent this data: 

Md,h,i =  Ccount d,h,i 

Eq: (3-8) 
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Where the dimensions of matrix M are determined by the number of days, hours, and 

towers. 

 

B. Diagrammatic Presentation  

A three-dimensional graph illustrated in figure 3-8 shows hourly crowd counts at each 

MOBILE tower for one week. The days of the week are captured on the X-axis, and the 

Z-axis denotes the crowd count. The crowd counts for various towers every day, and their 

hour is indicated by each line in the plot respectively. 

 
Figure 3-8: Synthetic Presentation of Hourly Crowd Density 

 

A 3D plot comprehensively and vividly represents the crowd’s density around MOBILEs 

during the week. The plot has each line showcasing the hourly counts of the crowd per a 

specific MOBILE tower so that the changes in crowd density over various days and hours 

are visible. Fluctuations in the line indicate high and low traffic hours for every 

tower. Such pattern identification lets one observe an upward trend on certain days, 

including rush hours and special events with many people. This analysis of the patterns 

provides an advantage to city planners and the related authorities in terms of proper 

optimization of resource distribution along with strategies for crowd control that vary 

with the time/place where this high crowd density occurs. 
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3.5.7 Calculating Daily and Weekly Threshold Values (Median-of-Median) 
Daily and weekly thresholds should be calculated in crowd density analysis through the 

Median-of-Medians method to create credible standards. This technique offers a stronger 

measure of central tendency than other methods that do not adequately account for 

variability and outlier information. The Median-of-Medians procedure obtains the robust 

threshold for data sets containing outliers or skewed distribution. This way entails coming 

up with an arithmetic mean involving the median of the medians as a central point. 

 

A. Detailed Calculation for Daily Thresholds: 

For daily thresholds, the process is as follows: 

First, for each hour h of day d, calculate the median crowd count across all towers, 

denoted as Md,h. 

Md,h = median ��Countd,h,1, Ccountd,h,2, … , countd,h,n�� 

Eq: (3-9) 

 

Then, for each day d, compute the threshold T_daily  d,h as the median of these hourly 

medians up to hour h. 

T_daily d,h = median ��Md,1, Md,2, … , Md,h�� 

Eq: (3-10) 

 

Weekly Threshold Calculation: 

For weekly thresholds, the method involves aggregating daily medians: 

Calculate the median for each hour h across different days. 

Mweekly,h = median ��M1,h, M2,h, … , M7,h�� 

Eq: (3-11) 

The weekly threshold for each hour h is then: 

T_weekly h = Mweekly,h 

Eq: (3-12) 

B. Diagrammatic Presentation  

These threshold values are represented in figure 3-9 in a complex line plot. They occur 

for daily thresholds and are shown consecutively as time goes on during one day. A 

separate line that shows weekly thresholds indicates an overall chart for one week. 
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Figure 3-9:  Synthetic Presentation of Median-of-Median Thresholds 

 

The enhanced line plot provides a sophisticated visualization of the threshold values 

computed using the Median-of-Medians technique. The line thresholds daily demonstrate 

how the central value of crowd counts changes along the daily days in a usual crowd 

pattern to minimize the effect on outliers. The trendline for weekly thresholds is more 

general and means the typical trend of crowd density per hour throughout the week. The 

adjusted way of determining thresholds provides a better understanding of mob behaviour 

and helps plan for unforeseen events like terrorist attacks on the capital city. 

 

3.5.8 Quartile Classification for Crowd Density (With Threshold) 
The algorithm classifies each 'Ccount' entry into quartiles based on the distribution of 

crowd counts. The crowd density is then categorized into quartiles (Q1, Q2 [median], Q3, 

Q4), corresponding to density levels (Low, Medium, High, and Very High). This 

classification is relative to the corresponding threshold ('Tdaily' or 'Tweekly') to ascertain if 

the crowd count exceeds these thresholds. 

 

Each crowd count entry is denoted as Ccount (Ti, h, d), for a specific MOBILE tower Ti, 

hour h, and day d, are classified into quartiles. These quartiles are derived based on the 

statistical distribution of crowd counts. Mathematically, the quartiles Q1, Q2, Q3, and Q4 

are calculated using the empirical distribution function FCcount , where Q2 is the median. 

The quartiles correspond to density levels: Low, Medium, High, and Very High. 
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The quartile classification is formulated as follows: 

⎩
⎪
⎨

⎪
⎧ Low  if Ccount (Ti, h, d) ≤ FCcount 

−1 (0.25)
 Medium  if FCcount 

−1 (0.25) < Ccount (Ti, h, d) ≤ FCcount 
−1 (0.5)

 High  if FCcount 
−1 (0.5) < Ccount (Ti, h, d) ≤ FCcount 

−1 (0.75)
 Very High  if Ccount (Ti, h, d) > FCcount 

−1 (0.75)

 

Eq: (3-13) 

 

This classification is relative to the corresponding thresholds, Tdaily  or Tweekly , to 

ascertain if the crowd count exceeds these thresholds. 

 

A. Storing Quartile Classifications 

Quartile classifications are stored in 'Qdaily' and 'Qweekly' for future reference and analysis. 

Quartile classifications are systematically stored in matrices. Qdaily  and Qweekly  for 

subsequent analysis and reference. This storage facilitates the tracking of crowd density 

trends over time. 

 

B. Mapping Crowd Density for Prediction 

A mapping of crowd density versus threshold values is derived using’ historical ‘Ccount’ 

data and quartile classification. It is useful in estimating future crowds’ densities and 

distributions. Predictive mapping uses historical crowd count data as well as quartile 

classifications. This mapping is denoted as Mdensity (Ccount , Qk), correlates crowd density 

levels with threshold values, forming the basis for future crowd density predictions. 

 

C. Crowd Steering and Management 

The algorithm's predictions and classes go into forming the steering strategies for efficient 

crow control during peak hours or when major crowds gather, especially at places with 

many visitors. Crowd management strategies also involve planning how to steer or direct 

people based on the algorithm’s predictions and classification of individuals. Dynamic 

crowd control becomes very critical at times of high traffic volumes and when large-scale 

events are taking place because it greatly enhances security and effectiveness. These 

mathematical expressions unequivocally define this quartile classification process. 
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D. Diagrammatic Presentation  

The infographic illustrates in figure 3-10 about the Quartile Classification for Crowd 

Density in an urban environment. It includes various elements such as a graph showing 

the distribution of crowd counts with quartiles, a matrix representation of 'Qdaily' and 

'Qweekly,' a flowchart for predictive mapping, and a diagram for crowd steering and 

management strategies. This visual representation should aid in understanding the 

classification process and its application in urban planning and crowd management. 

 

 
Figure 3-10: A Preview of Crowd Density || Source: Conceptually AI-Generated 

 

3.6 Social Network Mobility Process  
3.6.1 Individual Tracking 
Each individual's connection to MOBILE towers is tracked hourly. This granular data 

collection is crucial for understanding individual mobility within the urban space. The 

process involves monitoring each individual's interactions with MOBILE towers within 
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an urban space. These interactions are logged hourly, allowing for a detailed 

understanding of mobility patterns. 

 

 

• Individual-Tower Interaction 

Let I(t, u, Ti) Represent the interaction of individual u with the MOBILE tower. Ti At 

time t. 

�1  if individual u is connected to a tower Ti at time t
0  otherwise 

 

 

• Hourly Data Collection: 

For each hour h of the day, the individual-tower interactions are aggregated to form a 

matrix representation, Mu,h. 

Mu,h = [I(h, u, T1), I(h, u, T2), … , I(h, u, Tn)] 

Eq: (3-14) 

Here, Tn Represents the total number of MOBILE towers in the observed area. 

 

• Mobility Pattern Analysis: 

Over a period P, the individual mobility pattern MP(u, P) is determined by analyzing the 

sequence of matrices. Mu,h. 

MP(u, P) = �Mu,h1 , Mu,h2 , … , Mu,h∣P� 

Eq: (3-15) 

This sequence captures the Spatio-temporal mobility pattern of individual u across 

different hours and locations. 

 

The granularity of the data collection allows for detailed modelling of individual mobility 

presented in figure 3-11. Time-series analysis and spatial modelling can identify 

individual movement trends and patterns. Statistical methods such as Markov chains or 

clustering algorithms may be employed to analyse these patterns. 
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Figure 3-11: Conceptual Individual Mobility Pattern 

 

3.6.2 Location Mapping 
Every MOBILE tower is mapped to a specific location in the city, enabling a detailed 

analysis of movement patterns relative to geographical points. Location Mapping is 

pivotal in understanding the spatial dynamics of urban mobility. It involves assigning 

every MOBILE tower to a precise geographical coordinate within the city. This mapping 

facilitates the analysis of movement patterns about specific geographical points. 

 

A. Geographical Coordinates: 

Each MOBILE tower, denoted as Ti, is associated with a set of geographical coordinates 

(xi, yi) Representing its location. 

Ti ↔ (xi, yi) 

Eq: (3-16) 

Here, xi and yi Are the latitude and longitude coordinates, respectively, which precisely 

locate Ti On the urban map. 

 

B. Spatial Mapping Function: 

A function f: T → ℝ2 is defined to map each tower to its corresponding geographical 

point. 



79 
 

f(Ti) = (xi, yi) 

Eq: (3-17) 

This function f translates the set of all towers T into a two-dimensional real space ℝ2 , 

effectively creating a spatial representation of the MOBILE network within the city. 

 

3. Individual Movement Pattern Analysis: 

With the spatial mapping established, individual movement patterns can be analyzed 

regarding their geographic trajectory. For an individual u moving across towers 

{Ti1, Ti2, … , Tik} over time, their movement trajectory Γu It is represented as: 

 

Γu = {f(Ti1), f(Ti2), … , f(Tik)} 

Eq: (3-18) 

This trajectory is illustrated in figure 3-12 which provides a geographic path of individual 

u 's movement within the urban space. 

 

 
Figure 3-12: Conceptual Representation of Individual Mobility Pattern 
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3.6.3 Analysis of Urban Dynamics 
Aggregating these individual trajectories across the population yields insights into urban 

mobility dynamics. Statistical spatial analysis tools like heat maps or spatial clustering 

can identify high-traffic areas, movement trends, and potential urban bottlenecks. 

 

3.6.4 Mobility Pattern Analysis 
Individual movement profiles are created based on their hourly connections to MOBILE 

towers. This data is used to trace movement paths throughout the day, providing insights 

into individual mobility patterns within the city. Mobility Pattern Analysis involves 

constructing individual movement profiles from hourly connections to MOBILE towers. 

This process involves tracking and analysing the sequential connection data of individuals 

to various MOBILE towers throughout the day. 

 

• Hourly Connection Data: 

Let C(u, Ti, h) denote the connection of individual u to the MOBILE tower Ti During hour 

h. 

�1  if u is connected to Ti at hour h
0  otherwise 

 

 

• Construction of Movement Profiles: 

The movement profile for an individual u over a day (comprising H hours) is represented 

as a sequence of connections: 

MP(u) = {C(u, T1, 1), C(u, T2, 1), … , C(u, Tn, H)} 

Eq: (3-19) 

Here, Tn Denotes the total number of MOBILE towers in the observation area. 

 

• Path Tracing: 

For each individual u, a path of movement P(u) is traced using the sequence of their 

hourly connections. 

P(u) = {Ti1, Ti2, … , Tik} 

Eq: (3-20) 

where Tij It is the MOBILE tower to which u is connected at the j-th hour. 
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3.6.5 Analysis of Mobility Patterns 
Statistical analysis is applied to MP(u) to discern patterns in an individual's mobility. 

Techniques such as time-series analysis, clustering, and sequence pattern mining can be 

utilized to identify regular routes, frequent locations, and temporal trends in individual 

mobility. 

 

• City-Wide Mobility Insights:  

Aggregating individual movement profiles across a population offers a comprehensive 

view of urban mobility patterns. This aggregated data can be analyzed to understand peak 

movement hours, popular routes, and spatial distribution of population movement within 

the city. 

 

3.6.6 Identifying Groups and Relationships 
 

3.6.6.1 Group Identification 
Groups of individuals connected to the same MOBILE tower simultaneously are 

identified the illustration presented in figure 3-13. This grouping helps in understanding 

collective movement patterns. 

 

Let G(t, Ti) Be the group of individuals connected to the MOBILE tower. Ti At time t. 

G(t, Ti) = {u ∣ I(t, u, Ti) = 1} 

Eq: (3-21) 

Here, I(t, u, Ti) Is the indicator function defined previously representing whether 

individual u is connected to the tower Ti At time t. 
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Figure 3-13: Conceptual Presentation of Group Identification Connected to MOBILE 

Tower 

 

3.6.7 Relationship Inference 
Figure 3-14 illustrates the social ties are inferred for groups that consistently appear 

together across various locations over time. These ties are classified as 'social' for 

frequent groupings and 'random' for sporadic occurrences. 

 

• Social Ties Definition: 

Define a social tie S(u, v) between two individuals u and v based on their cooccurrences 

in groups across various locations over time. 

S(u, v) = � 
t,Ti

1{u,v∈G(t,Ti)} 

Eq: (3-22) 

Where 1 is the indicator function that equals 1 when u and v are both in group G(t, Ti), 

and 0 otherwise. 

 

• Classification of Ties: 

Social: If S(u, v) exceeds a certain threshold. 

Random: If S(u, v) is below that threshold. 
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Figure 3-14: Conceptual Presentation of Individual Social Ties 

 

3.6.8 Time and Location Analysis for Relationships 
The duration and frequency of time spent together at the same MOBILE tower locations 

are analyzed to strengthen the inference of social ties. 

 

• Duration and Frequency Analysis: 

Analyse the total duration D(u, v) and frequency F(u, v) of co-occurrences of u and v at 

the same locations. 

D(u, v) = � 
t,Ti

 Δt ⋅ 1{u,v∈G(t,Ti)}

F(u, v) = � 
Ti

 1{∃t:u,v∈G(t,Ti)}

 

Eq: (3-23) 

Here, Δt is the duration of each time interval. 

 

3.6.9 Integration with Crowd Density Analysis 
This individual and group movement data is integrated with the crowd density analysis 

from the algorithm's first part. This integration is key to understanding how individual 

and group movements contribute to crowd dynamics. 

 

Integrate individual and group movement data M(u, t) and G(t, Ti) with crowd density 

C(Ti, t). 
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C(Ti, t) = |G(t, Ti)| 

Eq: (3-24) 

C(Ti, t) represents the number of individuals at the tower Ti At time t, reflecting crowd 

density. 

 

3.6.10 Predictive Modelling for Social Dynamics and Crowd Movement 
Historical data on individual movements and inferred social ties are used to build 

predictive models. These models can forecast crowd movements and social dynamics 

under various scenarios. 

 

3.6.10.1 Historical Data Utilization: 
Use historical data on individual movements and social ties to build predictive models. 

 

P(Yfuture ∣ Xhistorical ) 

 

Eq: (3-25) 

Where Yfuture  represents future crowd movements and social dynamics, and 

Xhistorical  includes historical movement data and inferred social ties. 

 

3.7 Conclusion 
The conceptual framework chapter provides a detailed mathematical exposition of an 

algorithm for analysing crowd density and individual mobility patterns in opportunistic 

urban environments. The algorithm combines quartile-based crowd density analysis with 

granular tracking of individual movements and social ties, offering a robust framework 

for understanding and managing urban crowd dynamics. The mathematical formulations 

and principles detailed here are pivotal for implementing effective crowd management 

and urban planning strategies, especially in dynamic and unpredictable urban settings. 
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CHAPTER 4: PROPOSED 
METHODOLOGY 

 

Urban mobility and social dynamics are increasingly complex, requiring us to examine 

how people and collectives relate in a city’s MOBILE environment at a granular 

level. The approach here will involve minutely tracing both group and individual 

movements, inferring the social networks, and linking these findings to emerging city 

structures and trends. Our approach centres around high-level detailing of connections 

between each person and a specific MOBILE tower. This is done through hourly tracking 

of people’s contacts with these towers to have a spatial-temporal representation 

concerning urban mobility. All activities are minutely recorded, which forms a strong 

basis for future analysis. 

 

In the centre of the concept of 'Individual-Tower Interaction,' represented mathematically 

as I(t, u, Ti), which indicates whether an individual u is connected to a specific tower Ti 

At a given time t. This forms the basis for constructing hourly matrices. M(u, h� 

individual-tower interactions are pivotal in discerning individual mobility patterns over a 

given period. The proposed technique then moves further and identifies clusters of people 

simultaneously associated with similar MOBILE towers. However, this part of the 

research sheds some light on the movement patterns as a group and constitutes the 

beginning of our social network analysis. 

 

The research uses advanced inference algorithms to deduce the latent social structure 

within these movements based on direct observations and measurements. It is based on 

the assumption that social relations can be deduced from how often, frequently, and 

consistently different groups within several MOBILE towers coalesce over time. Using 

some defined thresholds, these relationships are referred to as social for frequent 

interactions while random for lesser cases. The analysis, of course, includes assessing the 

time and regularity of such communications. We, therefore, seek to strengthen the 

inference of social ties by using the information on how long callers interacted with each 

other at each of the MOBILE tower locations where they were. The proposed method 
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includes crowd density analysis that combines personal and group motion information 

with the aggregated MOBILE network-based crowd density measures. This fusion is 

necessary for depicting an entire picture of urban movement and social process dynamics. 

Developing a predictive model is where methodology peaks. Using historical trends of 

individual movement and inferred social linkages, these models predict how crowds will 

move and interact in a host of hypothetical situations. Based on advanced statistical 

techniques and machine learning procedures, the models focus on the intricacy and 

diversity of urban social networks. 

 

A systematic and data-oriented research methodology is used to learn more about 

MOBILE's complicated fabric surrounding urban mobilities and social relations. The 

foundation is based on intensive data collection, a strict analytic approach, and a 

sophisticated predicting model that penetrates subtle processes in the city lifestyle. The 

subsequent sections of this chapter talk about the methodology, the proposed algorithm, 

and the data for this study at the granular level. 

 

4.1 Proposed Framework  
The depicted framework in figure 4-1 outlines an integrated system for monitoring and 

predicting crowd dynamics using many data sources. It harnesses information from 

mobile devices, Wi-Fi networks, and vehicular networks alongside geospatial data from 

social networks. The system processes this data to compute crowd density, assess 

mobility patterns, and evaluate social connections, ultimately visualizing its predictions 

and assessments through a sophisticated dashboard. 
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Figure 4-1: Proposed Framework 

A network of multiple interacting components in terms of assessing the crowd approach is 

depicted on the diagram. It collects data from mobile phones, Wi-Fi routers, vehicle 

networks, and social networks for comprehensive crowd analysis. Baseline and 

benchmark threshold computation enable the system to analyse. The analysis of 

cumulative crowd density enables one to determine mobility behaviour in groups and on 

personal levels. The analysis also includes a study of social networks to detect social and 

chaotic communication relations between people. At the same time, a multi-model 

cumulative crowd prediction model is based on a mobile tower block to improve its 

reliability. These analytical processes generate outputs in a visualization dashboard, 

enabling users to understand the presented information and conclusions better. Each 

module will be discussed in detail, showing their algorithms and methodologies for data 

extraction, processing, and presentation. A critical analysis of this framework and its 

practical application, including its effectiveness in understanding and management of 

crowd dynamics at various levels, will be carried out on a detailed basis. 

 

4.2 Data Collection and Sources 
 

The analytical approach starts by looking at crowd density, which gradually leads to other 

factors influencing crowd steering, such as the directional behaviour of individuals and 

groups, movement patterns among the crowds, and eventually social and random 
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ties. This hierarchal approach is necessary for viewing city development processes on 

scales ranging from global to local. 

 

Crowd density analysis is the subject matter of discussion here. During this phase, the 

concentrations of people are being measured in particular urban regions at various 

times. Such analysis is crucial to locating areas with a high concentration of people and 

comprehending trends associated with aggregation within cities. This phase relies heavily 

on data drawn from MOBILE tower records indicating the population demography as it 

varies with the network coverage. Therefore, the research focuses on crowd steering 

analysis after that. In this case, we strive to understand how crowds move and dissipate in 

urban areas, such as examining the movement of people in terms of where they usually go 

and finding the most common paths and bottlenecks. Complementing vehicular trip data 

and wi-fi network information with Mobile data sheds light on the intricacies of crowd 

movement and paints a broader picture of urban mobility. 

 

This section explores mobility patterns at both individual and group levels. Such fine-

grained analysis is very important to understand the subtle intricacies of urban 

mobility. Analysing specific paths and clusters reveals how people roam about the city, 

talk to one another, and come together into certain groups. In this phase, social media 

provides an important source, especially data from Twitter and Instagram, offering a 

valuable contextualized dimension to behavioural studies. 

 

The proposed research examines how social and random ties are crafted in these mobility 

patterns. This refers to determining how frequently individuals or groups interact in 

different locations and periods. This study seeks to identify social ties, suggestive of 

sustained and relevant links, versus random ties, which encompass casual and random 

meetings. Such analysis provides the basis for studying the social texture of urban 

mobility and the interaction of people in city settings. The study follows a layered 

approach that begins by analysing the crowd density before narrowing it down to 

behavioural and psychological assessments in an urban setting. The study integrates 

diversified data sources that provide a holistic and deep insight into how people move 

around, interact socially, and are connected through technology when living in a city. 
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4.3 Synthetic Data Generation 
 

The creation of synthetic data in this research serves a crucial purpose: to validate and 

benchmark against a first-time, unpublished real-world MOBILE dataset from Nashik 

City, India. Given this dataset's novelty and unique characteristics, synthetic data is a vital 

tool for comparison and validation. This approach is especially important considering the 

absence of publicly available data to serve as a benchmark. 

 

4.3.1 Generation Process of Cumulative Count Synthetic Data 
The creation of synthetic data in this research serves a crucial purpose: validation and 

cross-checking using newly generated, primary MOBILE measurements acquired from a 

location in Nashik City, India, for the very time. Synthetic data is an important 

benchmark in assessing this new and distinct dataset. To that end, it is particularly 

significant because there are no appropriate data for comparison in general. The 

conceptual diagram figure 4-2 illustrates the stages of data generation.  

 

 
Figure 4-2: Conceptual Diagram of Synthetic Data for Cumulative Crowd Count 

 

1. Parameter Definition and Simulation Rules: 

Parameters such as the number of regions, sites per region, and the time intervals for data 

collection are defined, mirroring those in the real-world data. Simulation rules are 

established to ensure that the synthetic data replicates the real-world data's structure and 

behaviour while maintaining individual privacy. 
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2. Data Generation: 

Various MOBILE tower sites in Nashik are used to generate data through Python 

scripts. As mentioned, the script generates data points including region, sub-region, 

Pincode, siteids, latitude, longitude, time, etc. These characteristics have been introduced 

in such a manner as to correspond with the actual-world table’s entries for purposes of 

cross-comparison and analysis. 

 

• Data Characteristic Analysis: 

The initial analysis involves a deep dive into the real-world data to understand its key 

attributes. 

Let Dreal  represent the real-world dataset. The attributes such as region (R), site ID (S), 

and time (T) are analyzed for their statistical properties like mean (μ), standard deviation 

(σ), and range ( [min, max] ). 

 

• Parameter and Rule Definition: 

Parameters are set based on the analysis of Dreal . These include the number of regions. 

(Nr), sites per region (Ns), and the duration for data collection (Nt). 

Define a function Fparam (Nr, Ns, Nt) That sets up the framework for synthetic data 

generation. 

 

3 Synthetic Data Generation Algorithm: 

Employing Python for implementation, the synthetic data generation is guided by a 

function Gsynth  that creates data points based on the defined parameters. 

Gsynth �Fparam � → Dsynth  

Eq: (4-1) 

where Dsynth  is the synthetic dataset. 

 

4 Validation and Refinement: 

The synthetic dataset Dsynth  is statistically compared with Dreal  to validate its accuracy. 

Refinement function Rfine �Dsynth , Dreal � iteratively adjusts Dsynth  to enhance its 

congruence with Dreal . 
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• Nomenclature and Data Representation: 

The synthetic dataset, denoted as Dsynth , comprises several attributes, each representing a 

key aspect of the MOBILE data presented in Table 4-1: 

 
Table 4-1: Nomenclature 

Regions (R): Represented as Ri Where i ranges from 1 to Nr, indicating different geographical 

areas. 

Site IDs (S): Denoted as Sj For each site within a region, where j ranges from 1 to Ns. 

Time (T): Time stamps are represented as Tk, ranging over Nt Intervals. 

Latitude (λ) and Longitude (ϕ): Each site is assigned a geolocation coordinate. �λj,ϕj�. 

Reference Count (Cref) and Current Count (Ccur) : Representing the baseline and observed 

connectivity at each site and time interval. 

 

The structured tabular representation helps systematically organize the synthetic data, 

ensuring that each aspect of the data is clearly defined and accessible for analysis. 

Detailed Data presented in Table 4-2 Format of Dsynth  

 

Table 4-2: Synthetic Dataset Nomenclatures 

Symbol Description 

Ri Region identifier, where i = 1,2, … , Nr 

Sj Site ID within a region, where j = 1,2, … , Ns 

Tk Timestamp, where k = 1,2, … , Nt (e.g., hourly intervals) 

λj Latitude coordinate of site Sj 

ϕj Longitude coordination of site Sj 

Cref�Ri, Sj, Tk� Reference count at region Ri, site Sj, and time Tk 

Ccur�Ri, Sj, Tk� The current count at the region Ri, site Sj, and time Tk 
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Each row in the table 4-3 represents a specific element or attribute in the synthetic 

dataset, described using mathematical symbols. 

 

Table 4-3: Synthetic Dataset Overview 

Region Site  

ID 

Time Latitude Longitude Reference Count Current Count 

R S T λ ϕ Cref  Ccur  

R1 S1 T1 λ1 ϕ1 Cref (R1, S1, T1) Ccur (R1, S1, T1) 

R1 S2 T2 λ2 ϕ2 Cref (R1, S2, T2) Ccur(R1, S2, T2) 

… … … … … … … 

 

This nomenclature and data representation format provides a structured and 

mathematically grounded approach to synthetic data generation in the context of 

MOBILE network analysis. 

 

• Synthetic Cumulative Crowd Data Algorithm  

Creating synthetic data of MOBILE tower logs is a fundamental prerequisite for various 

analytical and modelling purposes. The following Algorithm 4-1 presents a methodical 

approach to generating such data, encapsulating a range of attributes from geographical 

coordinates to network connectivity details. This algorithmic design is crucial for 

simulating realistic urban telecommunications scenarios in a controlled, privacy-

compliant manner. 

 

Algorithm 4-1: Generation of Synthetic MOBILE Tower Log Data 

 
Input Parameters: 
Nregions : Number of regions, denoted as num_regions in the code. 
Nsites  : Number of sites (MOBILE towers) per region, denoted as num_sites_per_region. 
Nhours  : Number of hours to simulate data for, denoted as num_hours. 
Pstart  : The starting pincode for the regions is denoted as start_pincode. 
 
Output: 
A DataFrame D containing the synthetic MOBILE tower log data. 
 
Algorithm Steps: 
Initialization: 

• Create an empty DataFrame D with columns: 
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'Region,' 'SubRegion,' 'Pincode,' 'SiteIDs,' 'Latitude,' 'Longitude,' 'Time,’ 'Ref_Count’, 
'Current_Count' 
 
Data Generation: 
For each region r in �1,2, … , Nregions � : 
    For each site s in {1,2, … , Nsites } : 
         For each hour h in {0,1, … , Nhours − 1} : 
                Create a data row with the following values: 
                 'Region' = 'Region ' +r 
                 'SubRegion' = 'SubRegion' +s 
                  'Pincode' = Pstart + r 
                  'SiteIDs' = 'SiteID' +s 
                  'Latitude' = Random value within [19.5,20.5] 
                  'Longitude' = Random value within [73.5,74.5] 
                  'Time' = Formatted hour h 
                  'Ref_Count' = Random integer within [1000,10000] 
                  'Current_Count' = Random integer within [1000,10000] 
Append row to DataFrame D. 
Return: 
Return the DataFrame D containing the generated synthetic data. 
 
End of Algorithm 
 
 

The algorithm discussed creates proper, reliable, accurate MOBILE tower log data. It is 

an effective tool for researchers in simulating diverse scenarios across different regions 

and varying times to analyse MOBILE network behaviour. This algorithm is very flexible 

and profound; hence, it provides a good basis for research on urban planning, network 

optimization, and telecom strategy conforming to privacy law, respecting privacy and 

user rights. 

 

4.3.2 Generation of Individual Mobility Scenario 
 

A synthetic dataset is provided under the reference.  Dsynth , which replicates an 

individual’s movement over various MOBILE towers over 24 hours. In this process 

records for numerous people who visit different MOBILE towers during their various 

time intervals in the day. The simulation represents urban street mobility and links to 

MOBILE towers.  

 

The conceptual flow diagram figure 4-4 is presents a data processing algorithm with 

simulation models. First, the parameters are initialized and then a data list is 
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created. After that, places and areas are determined resulting in a process of repetition for 

data input. This loop involves picking up one site, creation of new data record, before 

updating an existing site. This appends the new data to the present list. Once the loop has 

been concluded, the collected data is compiled in the form of a DataFrame that serves to 

be an output of the entire process. This is a stepwise protocol of how one may 

simulate/track data across different spaces and times possibly adopted in computational 

model for diverse applications including crowd simulation and network traffic analysis. 

 

 
Figure 4-3:  Synthetic Individual Mobility Scenario Dataset 
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A. Mathematical Formulation: 

Individuals: 

Let I = {i1, i2, … , in} Represent the set of individuals, where n is the total number of 

individuals in the simulation. 

MOBILE Towers (Site IDs): 

Let S = {s1, s2, … , sm} Denote the set of MOBILE towers, where m is the total number of 

sites. 

Time Intervals: 

Time is discretized into hourly intervals, T = {t1, t2, … , t24}, representing each hour of 

the day. 

Location Coordinates: 

Each MOBILE tower sj ∈ S is associated with a geographic coordinate, represented as 

(𝑙𝑙𝑙𝑙𝑙𝑙i, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖). 

Data Record: 

Each data record for an individual i at time t is denoted as: 

 D(i, t) = {R, SubR, P, Si, lat (λi), lon (ϕi), t, Cref , Dnext , TS, TD, V, Vavg , Tavg , ST, TT, ID} 

Eq: (4-2) 

The table 4-4 present the sample of dataset with nomenclatures and example values for an 
overview of individual mobility data from Mobile Towers.  

Table 4-4: Nomenclature Presentation of Synthetic Dataset 

Dataset Attribute Symbolic Representation Example Symbolic Values 

Region Ri R1, R2, … 

SubRegion SubRi SubR1, SubR2, … 

Pincode P P1, P2, … 

Site IDs Si S1, S2, … 

Latitude λi λ1, λ2, … 

Longitude ϕi ϕ1,ϕ2, … 

Time Ti T1, T2, … 

Reference Count Crefi Cref1 , Cref2 , … 

Destination Dnexti Dnext1 , Dnext2 , … 

Travel Spots TSi TS1, TS2, … 

Total Distance TDi TD1, TD2, … 
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Vehicle Vi TT1, TT2, … 

Average Velocity Vavgi V1, V2, … 

Average Travel Time Tavgi Vavg1 , Vavg2 , … 

Start Time STi Tavg1 , Tavg2 , … 

Traverse Time TTi ST1, ST2, … 

ID IDi T2, … 

 

B. Synthetic Individual Mobility Data Generation Algorithm  

 

The need to correctly estimate the movements and contacts of individuals within the city 

context is essential of mobility studies and urban mobility. A method for constructing a 

complete synthetic dataset using different events at different MOBILE sites, referring to 

the general situation with an ordinary street movement, is presented below in Algorithm 

4-2. 

 

Algorithm 4-2: Generation of Detailed Synthetic Data for Individual 

Movements 

Input Parameters: 
         Nind : Number of individuals, represented as num_individuals. 
         Nsites  : Number of MOBILE tower sites, num_sites. 
         Nhours : Number of hours for simulation, num_hours. 
         Pstart : Starting pincode, start_pincode. 
Output: 
        A DataFrame D containing detailed synthetic data of individual movements. 
Algorithm Steps: 
     Initialization: 
Create an empty list of data for storing data records. 
Define site IDs S = �s1, s2, … , sNsites �. 
Define regions R = �r1, r2, … , rNsites � And subregions SubR. 
     Data Generation Loop: 
      For each individual i in the set {1,2, … , Nind } : 
       Initial Site Selection: 
       Set the initial site scurrent  by randomly selecting from the set of sites  
        S = �s1, s2, … , sNsites �. 
        Hourly Iteration: 
        For each hour h in the set {0,1, … , Nhours − 1} : 
              Next Site Selection: 
              Select the next site snext  randomly from S, ensuring snext ≠ scurrent . 
                           
                          Record Creation: 
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              Construct a record row with the following attributes: 
              Region (R): Randomly chosen from the predefined set of regions. 
              SubRegion ( SubR ): Randomly chosen corresponding to R. 
              Pincode (P): Derived as Pstart + region index. 
              Current Site (Scur ) : Set as scurrent . 
              Latitude (λ): Generated randomly within a specified range. 
              Longitude (ϕ): Generated randomly within a specified range. 
              Time ( T ): Set as the current hour h in the format 'HH:MM: SS.' 
              Reference Count (Cref ) : Random integer within a specified range. 
              Destination (Dnext ) : Set as snext . 
              Travel Spots (TS): Random integer within a specified range. 
              Total Distance (TD): Random integer within a specified range. 
              Vehicle (V): Randomly chosen from a predefined set of vehicle types. 
              Average Velocity �Vavg � : Random integer within a specified range. 
              Travel Time �Tavg � : Computed based on TD and Vavg . 
              Start Time (ST): Randomly chosen from the set of all possible start times. 
              Traverse Time (TT): Computed based on Tavg And ST. 
              ID (ID): Unique identifier constructed for each row. 
               
              Data Appending: 
              Append row to the data collection data. 
              Site Update: 
              Update scurrent  to snext  for the next iteration. 
End of Loop 
 
Create DataFrame: 
       Convert data list to a DataFrame D. 
Return: 
Return the DataFrame D. 
End of Algorithm 
 

The algorithm was carefully developed to manufacture an artificial dataset imitating city 

movement, MOBILE antennas, etc. Its role is crucial in urban studies and 

telecommunications research, providing data on individuals’ mobility and allowing 

diverse studies. The depth and flexibility make the algorithm applicable to many studies, 

including those that involve virtual datasets lacking in the realness of specific data. 

 

C. Validation and Refinement 

To confirm that the synthesis data can imitate crucial structure and distribution, the real-

world dataset is rigorously compared with it. Synthetic data is adjusted as needed to 

conform with the spatiotemporal characteristics of actual data. 
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4.3.3 Utility of Synthetic Data in Crowd Density Estimation 
• Benchmarking and Validation: A synthetic dataset acts as a reference point, which 

allows for analysis and comparison of the credibility of real-world data. It is also 

crucial to note that in the real world, the data provided has never been previously 

published or externally validated. 

• Model Testing and Simulation: These models can be tested using the synthetic 

dataset before being applied to the real data. This stage enables one to identify 

possible challenges that may be evident when estimating more refined crowd 

density estimates. 

• Risk Mitigation: Synthetics can handle fewer risks in the initial stage of the 

model-building process when proper handling protocols have not yet been 

defined. 

• Scenario Analysis: This synthetic data also helps create and understand scenarios 

that would be impossible to get using actual data to enrich our understanding of 

crowd dynamics in other situations. 

 

This research thus confirms that the synthetic data created using the same Nashik 

MOBILE environment as the original data has shown that the analysis is more robust 

because it will have the power to detect different crowd density trends and movement 

patterns in the city’s environment. 

 

4.4 MOBILE Data Collection 
 

Using real-life MOBILE (Global System for Mobile Communications) is crucial in a 

holistic investigation into the telecommunication dynamics in urban areas. The third part 

of this chapter explores how to obtain direct MOBILE data by extracting it from tower 

logs. Briefly, this data is nothing but a little picture representing a wider dataset that gives 

an irreplaceable understanding of how urban citizens communicate and how they load the 

network and migrate from one point to another. The validity and precision of this 

information are unparalleled in any world-class study on telecommunications. 

 

Detailed MOBILE data from the tower logs covering mobile communication activity in 

different city areas. The dataset provides comprehensive details, such as dates, site IDs 
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(for different MOBILE towers), signal strength indicators, and connectivity counts. Key 

aspects of the data collection include: 

 

The Figure 4-4 shows the MOBILE network, the location of the towers, and data flow is 

crucial. The diagram will visually represent the data collection sources, demonstrating a 

visual link between the raw data and reality. The scheme below illustrates an intricate 

communications network for evaluating population density using mobile- phone data 

analysis. The framework is called a ‘Telecommunications network’ and comprises several 

appropriately located MOBILE towers, which are provided with stations and 

controllers. Icons serve as symbols for these towers and correspond to selected data points 

representing a human population within a specific locational area. 

 

 
Figure 4-4: MOBILE Data Collection Conceptual Diagram 

 

The green man indicates that the person within the network’s coverage area carries a 

mobile phone, and the red man means he does not have one. The green figures represent 

the possible data sources from which they can collect data. For example, they can gather 

information from mobile phones that are usually carried around by a person and actively 

connect to the MOBILE towers. Red human icons illustrate the figures of persons who do 

not carry mobile phones 
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Key components of the diagram are labelled for clarity: 

• L1: They refer to particular locations for this network’s grids. 

• System 1 simply means how many MOBILE towers each network can host. 

• Station 1: It has the base station identification number that is typical for the MNO 

network. 

• Controller 1: They represent the controllers connected to each MOBILE tower, 

whose primary function is sending and receiving messages through the mobile 

phones. 

 

The complicated design for this diagram indicates the relationship of each Mobile tower 

and network from where data is sent from a single mobile to the core system 

controller. The main function of this controller is to gather information regarding 

connections made by every tower for use in measuring crowd density indicators within 

the stipulated area under review. It includes GPS, a feature in every base station, making 

data local and time-specific. GPS-based crowd movement data and call detail records 

provide much insight into how crowds move and their density. 

 

By showing urban density analysis of telecommunication network that utilizes MOBILE 

technology as a basis of this study and generates useful results. With such a network, 

researchers can quantitatively measure the crowd's density and identify mobility trends 

and strategies suitable for urban planning and management. The compact diagram 

summarizes the network's technical complexities, showing how data flows and analytical 

procedures for urban telecommunication studies. 

 

4.4.1 MOBILE Data Details 
Data on communication patterns was collected from a wide range of urban samples at 

certain points in time, thus allowing for a temporal perspective for the dataset. The 

MOBILE dataset presented in table 4-5 provides an overall picture covering many 

locations that show what is happening in the networks and users. Markets The dataset 

taken from the actual MOBILE tower log is essential to comprehend the movements in 

mobile communication in certain cities and regions. The list of attributes that come with 

its definition is vital to telecoms research, especially in the design and implementation of 

optimal networks and in modelling customer behaviour. 
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Table 4-5: Mathematical Presentation of MOBILE Dataset 

Column 
Header 

Symbolic 
Notation Example Data 

Local Area 

Code (LAC) 
 

L L1 − 156, L2 − 156 

Telecom 

Provider 
 

T T1 − "AIRCEL, "T2 − "AIRCEL" 

Site Identifier SID 
SID1 − "ACTV-MAHNASNAS0109", 
SID2 − 

"ACTV-MAHNASNAS 0150" 
 

Site Name SName  
SName1 − " JATRA", SName2 − " 
ADGAON" 

Latitude λ λ1 − 20.0262, λ2 − 20.0335 
Longitude ϕ ϕ1 − 73.8424,ϕ2 − 73.8637 
Region R R1 − "REGION8, R2 − "REGION9" 
Taluka Ta Ta1 − " NASIK" Ta2 − " NIPHAD" 

Sub Route SR 

SR1 represents 
"ADGAON_RASBIHARI" 
SR2 also represents 
"ADGAON_RASBIHARI" 

Highway Route HR HR1 represents "DHULE_ROUTE" 
HR2 also represents "DHULE_ROUTE." 

Reference 

Count 
 

Cref  Cref1 − 699, Cref2 − 822 

Start Time ST ST1 − 1442167200, ST2 − 1442167200 

Date and Time DT 
DT1 −  n13 − 09 − 201523: 30", DT2 − 

 113 − 09 − 201523: 30" 
 

Current Count Ccur Cctu1 − 477, Ccur2 − 797 
 

Mathematical nomenclature is used here to portray this elaborate description of the 

MOBILE dataset to illustrate how accurate real-world telecommunications datasets can 

be used in scholarly activities. This organization of the datasets into spatial, 

chronological, and network-specific elements greatly benefits the theory builders dealing 

with mobile communications and urban studies. 

 

Data Integrity and Privacy: Ethical research dictates that data quality should be 

maintained while users’ privacy and data integrity are also assured. Hence, the research is 
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carried out with synthetic data, and the real-world MOBILE data from India is taken in a 

cumulative format and not at an individual level.  

 

Collecting MOBILE data from tower logs becomes critical in disclosing the complex 

aspects of urban telecommunication. This data set will serve as an analytical base and 

offer opportunities for predictive modelling and network optimization. Integrating it into 

a research thesis for telecommunication and urban studies gives credibility to the research 

by making it applicable to real-world conditions and enhances its standards. 

 

4.5 Data Preprocessing Techniques 
 

4.5.1 Data Distribution Assessment: 
A statistical exploration is conducted to understand the nature of the dataset. This can be 

mathematically represented by examining the M-o-Ments of the dataset: 

 

Mean 

 (μ): μ = 1
N
∑i=1
N  xi 

Eq: (4-3) 

Variance  

(σ2):σ2 =
1
N
∑i=1
N  (xi − μ)2 

Eq: (4-4) 

Skewness and Kurtosis are also considered to understand the asymmetry and tailedness of 

the distribution. 

 

4.5.2 Spatio-Temporal Analysis 
Outliers in space and time are identified using methods that consider both spatial location 

and temporal occurrence: 

• Spatial Analysis: Identify spatial outliers by calculating the spatial median and 

interquartile range (IQR) for latitude (λ) and longitude (ϕ) coordinates. 

• Temporal Analysis: Detect temporal outliers by assessing the time series data 

points (T) for significant deviations from a moving average or other temporal 

trendlines. 
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4.5.3 Outlier Identification 
Outliers are identified based on their deviation from the expected distribution without 

normalizing the data, as normalization could distort the real-time context. 

Mathematically, outliers can be detected when a data point x satisfies the condition: |x −

μ| > k ⋅ σ, where k is a threshold value based on the desired sensitivity of the outlier 

detection. 

 

4.5.4 Non-Normalization Justification 
The proposed algorithm operates on data without normalization. (xraw) To preserve the 

real-time nature: 

 

xraw : The raw data point is collected from the source. 

xnorm : This research does not use A normalized data point to avoid loss of real-time 

sensitivity. 

 

4.5.5 Algorithmic Adaptation to Raw Data 
The algorithm is mathematically adapted to handle raw data, ensuring that decisions are 

made based on the most current and contextually relevant information: 

The decision function D(xraw ) is thus designed to operate on xraw instead of xnorm . 

 

The rationale is that the research emphasizes the raw state of data, which preserves the 

authenticity of real-time responsiveness. The mathematical formulation behind every 

preprocessing stage demonstrates a commitment to empirical precision and is tuned to the 

data's real-time dynamics. This approach reinforces the ability of the research to provide 

meaningful and directive insights in a reactive environment. 

 

4.6 Evolution of Threshold Algorithm 
 

4.6.1 Threshold Algorithm 1: Threshold Computation 
 

The Threshold Algorithm 4-3 proposed aims to understand crowd flows within a city 

during the day, taking into account data obtained from the MOBILE towers. Dynamic 

calculation of hourly thresholds based on counties explains city population shifts over 

time. There is a need to develop the infrastructure of data generation. Therefore, it entails 
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setting up a series of MOBILE towers in the town that shall supply cumulative count data 

at certain periods. ‘n’ denotes the total number of locations or MOBILE towers, while 

‘Ccount(n)’ refers to the crowd counts. The algorithm continuously stores the total count 

from any MOBILE tower every hour. The threshold is calculated using these counts to 

determine which should be used for that particular hour. To compute the threshold for a 

specific hour ‘h,’ the cumulative crowd count in other hours starting from 1st hour to hn 

determined, and the median of this calculation will be considered for h. This process is 

repeated every hour until there are 24 thresholds, and everyone corresponds to the median 

of all crowds counted so far. 

 

A. Diagrammatic Presentation  

The algorithm’s workflow figure 4-5 involves initialization, which includes setting up the 

number of MOBILE towers and data structure to store the accumulated crowds. The 'Data 

Collection' phase is a more complex state involving a series of nested steps: go through 

every hour of the day and proceed with each MOBILE tower to make updates and store 

the crowd counts. First, this step entails important information that is essential for more 

analysis. The algorithm shifts to its “calculate threshold” state upon data gathering. It then 

calculates the medians of cumulative crowd counts for every hour, thus setting 

thresholds. It is an important step that helps to comprehend variations in crowd density at 

different times. Finally, the algorithm arrives at the ‘final output’ phase, upon which it 

proceeds to produce a 24-element array of thresholds, one value per hour. The result of 

the algorithm is that this array hints at an hour’s crowd flow at MOBILE towers. The 

directionality of the diagram is vertical in alignment with the algorithm's sequential 

nature, making it easier to comprehend the processes from initialization to final output. 
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Figure 4-5: Workflow Diagram Threshold Algorithm 

 

 

 



106 
 

B. Mathematical Representation 

The mathematical formulation of the algorithm can be expressed as follows: 

Let C = [C1, C2, … , Cn] Represent the array of cumulative crowd counts, where Ci Is the 

count at hour i, and n is the total number of hours (24). 

The threshold value for hour h is calculated using the median function: 

T(h) = median (C[1], C[2], … , C[h]) 

Eq: (4-5) 

where h ranges from 1 to 24. 

 

The Algorithm 4-3 follows up on MOBILE tower crowding within 24 hours. It first 

instantiates data structures for holding cumulative counts by a tower, subsequently 

records hourly data, computes median-based threshold values, produces arrays with 

thresholds hour-wise, and hence gives an image of hourly crowd behaviour patterns. 

 

Algorithm 4-3: Threshold Computation 

Step 1: Initialization 
Let n be the total number of MOBILE tower locations. 
Define MobileTowers (n) to represent the n MOBILE towers. 
Initialize Ccount = [0,0, … ,0] as an array of length n to store cumulative crowd counts 
from each tower. 
Define T as an array of length 24 to store threshold values for each hour. 
 
Step 2: Data Collection for Each Hour 
For each hour h from 1 to 24 : 
       For each tower i from 1 to n : 
            Update Ccount [i] with the current crowd count from MOBILE tower i at hour h. 
            Store the updated Ccount values. 
Step 3: Calculating the Threshold Values 
For each hour h from 1 to 24 : 
       Let Ch be a subset of Ccount containing crowd counts from hour 1 to hour h. 
       Calculate T(h) as: 

T(h) = median (Ch) 
       Store T(h) in the array T. 
Step 4: Final Output 
         Array [T] will have a total of 24 threshold values 
 

Algorithm 4-3 establishes an hourly threshold value set derived from the accumulated 

crowd counts fetched from the MOBILE towers. The threshold of crowd density is 

evaluated every hour on these 24 points, and the average of all is considered the median 

value. It is the groundwork for the larger picture presented in algorithm 4, which goes 
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into a detailed discussion on crowd patterns. Building on Algorithm 3; transitioning to 

Algorithm 4. Algorithm 3 was crucial in highlighting hourly crowd dynamics, but 

Algorithm 4 will go a step further as it seeks to incorporate daily and weekly 

variations. Using a 2D array C_” count” [d][h]” helps us appreciate crowd counts 

variations on an hourly basis as well as a daily level basis. In this regard, computing both 

“Tdaily” [d][h] and “Tweekly” [h] thresholds enable a multilayered approach to crowd 

dynamics analysis and response on multiple time scales. Such an integrative strategy 

makes the tracking, predicting, and response system of crowd flows within cities more 

rigorous. 

 

4.6.2 Threshold Algorithm 2: Daily & Weekly Threshold Array  
 The algorithm for computation of daily or weekly threshold and data from the MOBILE 

tower is used by algorithms. The updated algorithm for daily or weekly threshold 

calculation analyses city crowd activities. To determine daily or weekly thresholds, the 

algorithm “The Updated Algorithm for Daily or Week " is structured to compute daily and 

weekly average thresholds and hourly trends. This algorithm determines dynamic 

median-based thresholds every hour that provide the basis for understanding movement's 

spatial distribution with temporal development. 

 

A. Mathematical Representation 

Daily Threshold Calculation 

Tdaily [d][h] = median (Ccount [d][1], Ccount [d][2], … , Ccount [d][h])
 where d = 1,2, … ,7 and h = 1,2, … ,24. 

 

Eq: (4-6) 

Weekly Threshold Calculation 

Tweekly [h] = median (Ccount [1][h], Ccount [2][h], … , Ccount [7][h]) 

Eq: (4-7) 

where h = 1,2, … ,24. 

 

Example Data Presentation of expected outcome of the algorithm computation is 

presented in table 4-6 for 24 hours and table 4-7 for weekly thresholds.  
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Table 4-6: Daily Threshold Values Preview 

Hour Tdaily (1h) Tdaily (2h) Tdaily (3h) … Tdaily (24h) 
1 25 - - … - 
2 - 30 - … - 
3 - - 35 … - 
… … … … … … 
24 - - - … 55 

 

Table 4-7: Weekly Threshold Values Preview 

Hour Tweekly (1h) Tweekly (2h) Tweekly (3h) … Tweekly (24h) 

1 26 - - … - 

2 - 31 - … - 

3 - - 36 … - 

… … … … … … 

24 - - - … 57 

 

B. Diagrammatic Presentation  

 

The “Algorithm for Daily and Weekly Threshold Calculations” with flow diagram in 

figure 4-6 is a powerful technology that studies city crowds with information from 

MOBILE towers. Cumulative crowd counts are summarized into appropriate hourly 

thresholds for every day cumulatively per week. The algorithm 4-4 is unique because it 

produces highly detailed data daily and larger-scale weekly trends, which are crucial 

aspects of urban planning, distributing resources accordingly, and revealing patterns in 

population movements. Such thorough analysis is necessary in modern urban settings due 

to the dual-layered approach it employs to study crowd dynamics. 
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Figure 4-6: Flow Diagram for Daily and weekly Threshold Computation 

 

A systematic representation of the algorithm 4-4 gives full insight into how it will analyse 

crowd behaviour daily and over one week. 

 

 

 

 

 

 

 



110 
 

Algorithm 4-4: Threshold Computation For Daily & Weekly 

Step 1: Initialization 
Let n be the total number of MOBILE tower locations. 
Define MobileTowers (n) to represent the n MOBILE towers. 
Initialize a 2D array. Ccount [d][h] to store cumulative crowd counts, where d is the day 
index (1 to 7 for a week), and h is the hour index ( 1 to 24 for a day). 
Define a 2D array. Tdaily [d][h] to store daily threshold values. 
Define an array Tweekly [h] to store weekly threshold values. 
 
Step 2: Data Collection for Each Hour and Each Day 
For each day d in {1,2, … ,7} : 
      For each hour h in {1,2, … ,24} : 
             Collect Ccount [d][h], the cumulative crowd count at each MOBILE tower for the 
current hour and day. 
 
Step 3: Calculating Daily Threshold Values 
For each day d in {1,2, … ,7} : 
      For each hour h in {1,2, … ,24} : 
            Calculate the threshold for the current day and hour as: 
                        Tdaily [d][h] = median (Ccount [d][1], Ccount [d][2], … , Ccount [d][h]) 
 
Step 4: Calculating Weekly Threshold Values 
For each hour h in {1,2, … ,24} : 
      Create an array weekly_counts [h] to store the Ccount  for hour h across all days of the 
week. 
     For each day d in {1,2, … ,7} : 
                       Append Ccount [d][h] to weekly_counts [h]. 
           Calculate the weekly threshold for hour h as: 

Tweekly [h] = median ( weekly_counts [h]) 
 
Step 5: Storing and Updating Threshold Values 
Store each calculated Tdaily [d][h] in the 2D array Tdaily . 
Store each calculated Tweekly [h] in the array Tweekly . 
 
 

At the end of a week. T daily, the daily threshold levels for every hour will be included in 

this file revealing detailed information on daily crowd movements. Tweekly. Weekly 

median hour-by-hour thresholds for a weekly view of the weekly pattern. The algorithm 

has a step-by-step mathematical structure that allows it to be presented as a thorough tool 

used to analyse a crowd’s behaviour daily or weekly. 

 

Algorithm 4-4 offers a thorough framework for studying crowd behaviour within daily 

and weekly periods. The method for determining these threshold values, “Tdaily” [d][h] 

and “Tweekly” [h], has a refined procedure for dealing with the details of temporal crowd 
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patterns in the MOBILE tower location. Its power is based on distinguishing different 

crowd densities, creating good prerequisites for more complicated studies. This leads to 

the next algorithm (Algorithm 4-5) that adds a ‘Median-of-Medians’ statistical layer to 

improve our comprehension of crowd movements. To further enhance the analysis, this 

technique examines the average of the crowd's daily norms and the median of such 

averages over multiple days. It gives a more uniform and reliable threshold, which factors 

in daily fluctuations but removes outliers. The evolution of such a strategy in analytical 

technique for a better crowd behaviour monitoring and prediction system is complex 

urban environments. 

 

4.6.3 Threshold Algorithm 3: Median-of-Median Threshold Computation  
 

The algorithm 4-5 has been proposed to determine the hour-by-hour medians and one 

combined median-of-median for all 24 hours. It then computes a median threshold from 

the cumulative hourly crowds-counts the flow diagram is presented in figure 4-7. It 

gradually calculates the median of each value up to an hour, producing an evolving image 

of the threshold changes over the day. The example representation is shown in table 4-8 

for a better understanding of expected threshold modelling. This is the most important 

aspect of this research as the focus of the research is to present a stable method of crowd 

density estimation with logs and spatiotemporal meta data from Mobile Tower. Median of 

Median approach is expected to maintain consistence in the threshold values and when 

classifications are applied not location will be left out as outlier. Let’s say at 00:00 hours 

some x location is in outlier but the same location at 05:00 hours may not be in outliers. 

In order to keep these unforeseen situations a steady approach is proposed.  
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Table 4-8: Median-of-Median Threshold Computation 

Hour 
Hourly 
Median 
(Ccount) 

Median Median-of-Median 

Thourly(1h) T1h Tm_1 = {T1h} TM−o−M_1 = {T1h} 
Thourly(2h) T2h Tm_2 = {T1h, T2h} TM−o−M_2 = �T1h, Tm_2� 
Thourly(3h) T3h Tm_3 = {T1h, T2h, T3h} TM−o−M_3 = �T1h, Tm_2, Tm_3 � 

Thourly(4h) T4h Tm_4 = {T1h, T2h, T3h, T4h} 
TM−o−M_4
= �T1h, Tm_2, Tm_3, Tm_4 � 

… … … … 

Thourly(24h) T24h Tm_24
= {T1h, T2h, T3h, T4h … T24} 

TM−o−M_24
= �T1h, Tm_2, Tm_3, Tm_4 … , T24 � 

  

A. Mathematical Representation 

 

1 Daily Median Thresholds: 

For each day d (where d = 1,2, … ,7 ), the daily median threshold, denoted as Tmd, is 

calculated from the hourly median values of that day. 

The expression for the daily median threshold on day d is: 

Tmd = median ��Thourly 1 , Thourly 2 , … , Thourly 24�� 

Eq: (4-8) 

Here, Thourly h Represents the median crowd count at hour h of day d. 

2 Median-of-Median Thresholds (Weekly): 

The Median-of-Median (M-o-M) threshold for each day d is the median of all daily 

median thresholds up to that day. 

The expression for the M-o-M threshold on day d is: 

TM−o−Md = median ��Tm1 , Tm2 , … , Tmd�� 

Eq: (4-9) 

The median-of-median (M-o-M) is a vital instrument for urban analysis. Daily and 

weekly dynamics within the crowd are unveiled by refining this hourly data derived from 

one of thousands of MOBILE towers. These snapshots are then integrated into a week 

that presents vital information for urban planning and research. 
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B. Diagrammatic Presentation  

 
Figure 4-7: Flow Diagram for Median-of-Median Threshold Algorithm 
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Algorithm 4-5 present the sequential steps for computing the Median of Median threshold 

algorithm.  

 

Algorithm 4-5: Median-Of-Median Threshold Computation 

Step 1: Initialization 
Define the number of days (D) and hours (H) in the observation period. Typically, D = 7 
(days) and H = 24 (hours). 
Initialize a 2D array. Chourly [D][H] to store the hourly crowd counts for each day and 
hour. 
 
Step 2: Daily Median Calculation: 
For each day d in {1,2, … , D} : 
        Tmd It is calculated as the median of hourly counts for day d. 

Tmd = median ��Chourly [d][1], Chourly [d][2], … , Chourly [d][H]�� 
 
Step 3: Weekly Median-of-Median Calculation: 
Initialize an array TM−o−M[D] to store the median-of-median thresholds. 
         For each day d in {1,2, … , D} : 
                Calculate TM−o−Md as the median of the array Tm[1: d]. 

TM−o−Md = median ��Tm1 , Tm2 , … , Tmd�� 
Step 4 : Output: 
The algorithm outputs the array TM−o−M, which contains the median-of-median 
thresholds for each day of the week. 
 
End of Algorithm 
 

The M-o-M algorithm 4-5 is simple yet profound, and at the same time, that is what 

makes it easy to model high volume of data that will be collected from thousands of 

mobile towers in an urban infrastructure. A weekly and monthly threshold in crowd 

pattern analysis unveils urban rhythms. It is more than just data. It is how cities unfold 

themselves in hours and days, revealing their sophisticated rhythms. 

 

4.7 Validation Median Vs. Average  
In crowd density estimation using MOBILE tower data (Ccount), the choice between using 

the median or the average (mean) of threshold levels has significant implications. Both 

statistically and logically, there are reasons why the median is often preferred over the 

average for such data. Here's a comparative analysis: 
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4.7.1 Mathematical and Statistical Perspective 
 

1. Outlier Sensitivity: 

Average: The average (mean) is sensitive to outliers or extreme values. In the context of 

Ccount, an unusually high count (perhaps due to a special event) can skew the average, 

making it unrepresentative of typical crowd conditions. 

 

Assume we have a set of daily crowd counts for a week from a MOBILE tower: ' [100, 

110,105,1500,115,120,130]′. The value ' 1500′ It is an outlier, likely due to a special 

event. 

 

Average Calculation: 

 Average =
100 + 110 + 105 + 1500 + 115 + 120 + 130

7
≈ 311.4 

 

Median: The median is more robust against outliers. It represents the middle value in a 

sorted list of numbers and is less affected by extreme values. This quality makes the 

median a more reliable indicator of 'typical' crowd density, especially in environments 

where outliers are common. 

 

Median Calculation:  

Sorted Data: ' [100,105,110,115,120,130,1500] ' 

Median (middle value): '115' 

 

The median ( ' 115∘ ) is more representative of typical data than the average ( '311.4'), 

skewed by the outlier. 

 

2. Skewed Data: 

• Average: When the data distribution is skewed (not symmetric), the 

average can be misleading. For instance, the average might suggest higher 

crowd density than commonly experienced in areas with typically low 

crowd counts but occasional spikes. 



116 
 

• Median: The median is not affected by how the data is skewed. It 

effectively splits the dataset into two halves, offering a more accurate 

reflection of the central tendency in skewed distributions. 

Consider a scenario with weekly 'Ccount ' values skewed by low regular counts and 

occasional high peaks: ' [80,85,90,95,1000,105,110] '. 

 

The ' 1000 ' count would disproportionately influence the average, whereas the median 

would still reflect the more typical range of data. 

 

4.7.2 Diagrammatic Comparison of Median vs Mean  
 

Figure 4-8 illustrates how an outlier affects calculating the mean and median in a crowd 

count for one week. On the fourth day, there is a remarkable increase in the number of 

participants, unlike on the other days. This outlier causes the mean to shift significantly 

upward, as it now becomes 311.43 instead of the original medium reading of 115.0, which 

is almost untouched by this outlier. This emphasizes mean’s weakness towards extreme 

values in comparison with median as a central tendency indicator when outliers are 

present. 

 

 
Figure 4-8: Mean Vs. Median Conceptual Comparison 
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4.7.3 Logical and Practical Perspective 
 

1. Representative Value: In practical scenarios, city planners and managers are 

often more concerned with typical, day-to-day crowd levels rather than occasional 

extremes. The median provides a more accurate reflection of this 'typical' crowd 

density. 

 

2. Stability Over Time: The median tends to be more stable over time, especially in 

the face of sporadic spikes or drops in crowd density. This stability is crucial for 

making long-term plans and assessments. 

 

3. Predictive Analysis: When using historical data to predict future conditions, a 

measure less sensitive to extreme variations (like the median) can provide more 

reliable forecasts. This is particularly relevant for consistent crowd management 

and resource allocation. 

 

Mathematically and logically, the median of threshold levels offers a more robust and 

representative measure for crowd density estimation using MOBILE tower data. It 

provides a more reliable baseline for understanding typical crowd conditions, is less 

affected by data irregularities, and offers greater stability for predictive analysis and 

planning. While the average can still be useful for understanding overall trends, its 

susceptibility to outliers and skewed distributions can be limiting in the nuanced context 

of urban crowd dynamics. 
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4.8 Evolution of Proposed DUCSIM Crowd Density Algorithm 
 

4.8.1 Proposed Algorithm 1: Quartile Classification for Crowd Density 
 

A more detailed approach is the Comprehensive Algorithm (Quartile Classifications) for 

Crowd Density Assessment as an instrument of Urban Crowd Management. Quartile 

classification for analysing population dynamics daily and weekly using the MOBILE 

cell tower data. Moreover, this algorithm 4-6 utilizes the median threshold, classifies 

quartiles’ patterns, and enables prediction and planning. The strategy is especially 

applicable to urban planners and authorities to achieve an effective distribution of 

resources as well as secure public safety. 
 

A. Mathematical Presentation 

To present the mathematical aspects of the Comprehensive Algorithm for Crowd Density 

Analysis with Quartile Classifications in a more detailed format, we'll delve deeper into 

the equations and statistical concepts used: 

 

1 Initialization and Data Structure: 

Let n be the total number of MOBILE towers. 

Define Ccount [d][h] as a 2D array to store cumulative crowd counts from each MOBILE 

tower, where d is the day (1 to 7 ) and h is the hour (1 to 24). 

 

2 Daily and Weekly Threshold Calculations: 

Daily Threshold: For each day d and hour h, 

Tdaily [d][h] = median ({Ccount [d][1], Ccount [d][2], … , Ccount [d][h]}) 

Eq: (4-10) 

Weekly Threshold: For each hour h, 

Tweekly [h] = median ({Ccount [1][h], Ccount [2][h], … , Ccount [7][h]}) 

Eq: (4-11) 
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3 Quartile Calculation and Classification: 

For each array of counts (either daily or weekly), calculate quartiles Q1, Q2 (median), Q3, 

and Q4 to classify crowd density. Quartiles are calculated using standard statistical 

methods, where: 

 

Q1 is the median of the lower half of the data (excluding the median if an odd 

number of data points). 

Q2 is the median of the data set. 

Q3 is the median of the upper half of the data. 

 

Crowd density classification for a given count x is done as follows: 

If x < Q1, classify as 'Low'. 

If Q1 ≤ x < Q2, classify as 'Medium.' 

If Q2 ≤ x < Q3, classify as 'High.' 

If x ≥ Q3, classify as 'Very High'. 

 

The meticulous mathematical format constitutes a sound basis for the statistically 

substantiated algorithm. The technique enables the measurement of crowd density and 

prediction, which is critical in predictive urban management and planning. Including 

quartile analysis deepens comprehension of crowd dynamics and thus makes the approach 

more practical. 

 

B. Diagrammatic Presentation  

A process flow of crowd management through data analytics is demonstrated in the 

Figure 4-9 commencing from variable initialization and array creation. It adopts a 

systematic procedure based on data retrieval for the day and hour, threshold 

determination per day and week, as well as categorizing data as quartiles. It utilizes 

historical data for predictive mapping and crowd way finding; this methodology is 

proposed to enable intelligent management and direction of groups or masses within the 

society. The given flow is indicative of a systematic plan for making data-oriented 

decisions regarding crowd control cases. 
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Figure 4-9: Flow Diagram of Comprehensive Algorithm for Crowd Density 

Analysis 
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Algorithm 4-6: Multivariate Crowd Density Analytical Framework (CD_AF) 

Step 1: Initialization 
Initialize the number of MOBILE towers, n. 
Set up arrays: 
       Ccount [d][h]: 2D array to store crowd counts from each MOBILE tower for each hour 
h and day d. 
       Tdaily [d][h] and Tweekly [h]: Arrays for daily and weekly threshold values. 
      Qdaily [d][h] and Qweekly [h]: Arrays for storing quartile classifications. 
 
Step 2: Data Collection 
For each day d and each hour h : 
      Collect and update the crowd count Ccount [d][h]. 
 
Step 3: Calculating Daily Threshold Values 
For each day d and each hour h : 
       Compute the daily threshold Tdaily [d][h] as the median of Ccount [d][1] to 
Ccount [d][h]. 
 
Step 4: Calculating Weekly Threshold Values 
For each hour h : 
      Aggregate crowd counts for hour h across all days. 
      Calculate the weekly threshold. Tweekly [h] as the median of these aggregated counts. 
 
Step 5: Quartile Classification for Crowd Density 
For each Ccount  entry (hourly and daily): 
       Classify into quartiles based on the distribution of crowd counts. 
       Use quartiles Q1, Q2, Q3, Q4 to categorize crowd density as Low, Medium, High, and 
Very High. 
       Apply this classification relative to Tdaily  or Tweekly  to determine the density level. 
 
Step 6: Storing Quartile Classifications 
Save the quartile classifications in Qdaily  and Qweekly . 
 
Step 7: Mapping Crowd Density for Prediction 
Utilize historical Ccount  data and quartile classifications to establish a predictive mapping 
for future crowd densities. 
 
Step 8: Crowd Steering and Management 
Use predictions and classifications to develop strategies for managing crowds, especially 
during peak times or events. 
 
 

The algorithm 4-6 uses statistical analysis and data-driven insights to understand and 

manage town crowd behaviour. The method utilizes median and quartile calculations to 

systematically categorize and forecast crowd density, which is essential for effective town 
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planning and crowd control. A basic structure for an overall approach to crowd density 

analysis is algorithm 4-6. It commences with the initialization stage involving allocating 

memory space for crowd count arrays/data structures, threshold values, and quartile 

classifications. It continues with data collecting, determination of the daily and weekly 

thresholds, and categorizing crowd densities into quartiles. These quartile classifications 

accumulate, and historical data is used to predict future crowd density and an ordered 

manner of seeing and labelling people as they come together. 

 

Algorithm 4-7 proposed in next section is a natural extension of Algorithm 4-6, shifting 

from reactive analysis to active crowd control. Algorithm 4-6 looks into the collection and 

analysis of data, whereas Algorithm 4-7 uses historical data along with quartile groupings 

to arrive at optimal measures for guiding and managing crowds. The tool presents step-

by-step actions, i.e., resource allocation and control of crowds in different situations, such 

as during rush hours or unique occasions. Essentially, Algorithm 4-7 builds on Algorithm 

6 to develop and utilize the knowledge gained to purposefully direct the crowd’s 

behaviour and improve crowd-focused procedures, thereby increasing the effectiveness 

and efficiency of crowd management. 

 

4.8.2 Proposed Algorithm 2: Historical Threshold-Based Crowd Density 
Classification 

 

Algorithm 4-7 is a next-generation algorithm that builds on what was established by 

algorithm 4-6. This is an advanced process of crowd steering and controlling. Algorithm 7 

helps improve the decision-making process by utilizing historical crowd data, quartile 

classifications, and predictive modelling to achieve timeliness and relevance in the 

decision-making process. It facilitates resource allocation and crowd control on-site at 

peak hours and when many people are on-site, for instance, during major events. The 

above algorithm links data analysis with on-ground crowd-control measures in diverse 

situations, improving crowd management's safety, orderliness, and coordination across 

any environment. This characteristic makes it an excellent instrument for guaranteeing the 

crowd's security and contentment. 
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A. Median Calculation 

For each hour t, compute the median of 'Ref_Count' values. Let RefCounts be the  t Set of 

'Ref_Count' values for hour t. The median Mt It is defined as: 

 

Mt = median (  RefCounts  t) 

Eq: (4-12) 

• Initial Classification 

Classify each 'Current_Count ' Ct,i at hour t as 'Above Median' or 'Below Median' based 

on comparison with Mt : 

 

 Initial Class t,i = �
 "Above Median"  if Ct,i ≥ Mt
 "Below Median"  if Ct,i < Mt

 

Eq: (4-13) 

 

• Quartile-Based Further Classification 

For each classification ('Above Median' and 'Below Median'), determine the quartiles 

within that subset for hour t. Denote the first and third quartiles of 'Current_Count ' 

within each classification as Q1t, class  and Q3t, class  respectively. Then, classify each Ct,i 

As: 

 

 Final Class t,i = �
 "Low"  if Ct,i < Q1t, class 
 "Medium"  if Q1t, class ≤ Ct,i < Q3t, class 
 "High"  if Ct,i ≥ Q3t, class 

 

Eq: (4-14) 

Where, 

Final Class tt,i Is the final classification of 'Current_Count' at hour t and instance i. 

Q1t, class  and Q3t, class  are the quartile thresholds calculated for each subset of data 

('Above Median' or 'Below Median') for each hour. 

 

B. Diagrammatic Presentation  

The flow diagram in figure 4-10 shows how hourly data records are analysed. Starting 

from the initialization stage, it analyses an hour’s record with the help of a median 

calculation for the corresponding hour. An initial classification follows to find out 
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whether a particular entry value is higher or lower than the mean. According to these 

categories are established, quartiles are calculated using the records higher or lower than 

the median, resulting in a finer classification of data. This data analysis sequence ends up 

in the finalization step which is the last one in the whole process.  

 
Figure 4-10: Flow of Historical Threshold-Based Crowd Density Classification 
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Algorithm 4-7: Proactive Crowd Management Paradigm (PCMP) 

Inputs: 
Data: A set of records, each containing 'Time,' 'Ref_Count,' and 'Current_Count.' 
Hours: A set of distinct hours in the dataset. 

Process: 
For Each Hour: 
       t ∈ Hours 
       Extract all records for hour t from Data. 
       Calculate the median of 'Ref_Count' for hour t, denoted as Mt. 
Initial Classification Function: 
       ClassifyInitial �Ct,i, Mt� → "Above Median" or "Below Median" 
Quartile-Based Further Classification Function: 
        ClassifyQuartiles �Ct,i, Q1t, class , Q3t, class � → "Low", "Medium", "High" 

Main Algorithm: 
For each record i at hour t : 
       Perform initial classification: 
       InitialClass  t,i = ClassifyInitial �Ct,i, Mt� 
       Calculate quartiles Q1t, class  and Q3t, class  for the classified group. 
       Perform further classification: 
       FinalClass  t,i = ClassifyQuartiles �Ct,i, Q1t, class , Q3t, class � 

Outputs: 
A classification for each record in Data, indicating 'Low,' 'Medium,' or 'High' 
crowd density within the 'Above Median' or 'Below Median' groups. 

 
 

Algorithm 4-7 is a breakthrough in the theory of crowd management. It follows algorithm 

4-6 based on full-density analyses of a crowd. Algorithm 4-7 extends this analysis by 

including historical data, QUARTILES, and predictive modelling that can be used in real-

time to guide and control dense crowd scenes. It provides decision-makers with the right 

equipment for the allocation of resources and crowd management to ensure effective 

response during peak times/special events. 

 

The next is Algorithm 4-8 is an upgraded version of algorithm 4-7 and is meant for 

categorization and control of crowd density. On the other hand, algorithm 4-8 is a 

straightforward approach that classifies individuals based on threshold levels. It puts the 

dataset to hours, calculates the hourly median thresholds, classifies the data points to 

“above threshold” or “below threshold” for each hour, and performs the quartile 

classification on the whole dataset.  Algorithm 4-8 enables fast decision support based on 

data, making crowd control simpler to enhance public safety and satisfaction. 
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4.8.3 Proposed Algorithm 3: Crowd Density Classification with Median Threshold 
 

The Crowd Density Classification and Threshold Computation Algorithm analyses and 

categorizes data based on crowd counts obtained from MOBILE tower records. Its 

primary function is to calculate hourly median thresholds of crowd density and 

subsequently classify each record based on these thresholds. The algorithm utilizes 

quartile-based classification to categorize crowd density into distinct levels. It is 

particularly useful for urban planning, event management, and scenarios where 

understanding crowd patterns is crucial for decision-making. 

 

A. Mathematical Presentation  

• Initialization (Grouping Data by Hour): 

Let 𝒟𝒟 represent the dataset, where each record r ∈ 𝒟𝒟 has the attribute 'Hour.' (hr) and 

'Current_Count' (cr). 

Define 𝒟𝒟grouped  as a set of subsets of 𝒟𝒟, where each subset corresponds to a unique hour: 

𝒟𝒟grouped = {𝒟𝒟h ∣ 𝒟𝒟h = {r ∈ 𝒟𝒟 ∣ hr = h}, h ∈  Hours } 

Eq: (4-15) 

• Compute Hourly Median Thresholds: 

For each group 𝒟𝒟h in 𝒟𝒟grouped  : 

Calculate the median threshold. Th, which is the median of 'Current_Count' values in 𝒟𝒟h : 

Th = median ({cr ∣ r ∈ 𝒟𝒟h}) 

Eq: (4-16) 

Th is the threshold value for hour h. 

 

• Categorization of Counts (Above/Below Threshold): 

For the categorization based on threshold comparison, the algorithm processes each 

record r in the dataset 𝒟𝒟. The key steps are as follows: 

 

Threshold Comparison for Each Record: 

Let cr Denote the 'Current_Count' for a record r. 

Let hr Be the 'Hour' attribute of the record r. 

Each record r is associated with a threshold. Thr, which is the median 
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'Current_Count' for the hour hr It is computed previously. 

For each record r, the algorithm compares. cr with Thr : 

 Category (r) = � "Above Threshold"  if cr > Thr
 "Below Threshold"  otherwise 

 

Eq: (4-17) 

This step categorizes each record as 'Above Threshold' or 'Below Threshold' based on 

whether its count exceeds the median for its respective hour. 

 

• Quartile Classification: 

This module of the algorithm involves classifying each record into quartiles based on the 

overall distribution of 'Current_Count' in the dataset: 

1 Determination of Quartile Thresholds: 

Calculate the quartile thresholds Q1, Q2, Q3 for the 'Current_Count' values across all 

records in 𝒟𝒟. 

These thresholds are computed using the quartile function: 

Q1, Q2, Q3 = quartiles ({cr ∣ r ∈ 𝒟𝒟}) 

Eq: (4-18) 

Q1 is the lower quartile, Q2 is the median, and Q3 is the upper quartile of the 

'Current_Count' distribution. 

 

2 Classification into Quartiles: 

Each record r is then classified into a quartile category based on cr : 

 QuartileClass (r) = �

 "Low"  if cr ≤ Q1
 "Medium"  if Q1 < cr ≤ Q2
 "High"  if Q2 < cr ≤ Q3
 "Very High"  if cr > Q3

 

Eq: (4-19) 

This classification assigns each record a label ('Low,' 'Medium,' 'High,' 'Very High') based 

on how its 'Current_Count' compares to the overall distribution of counts in the dataset. 

 

 

 

 

 



128 
 

B. Diagrammatic Presentation  

Figure 4-11 diagram explains a data analysis process which uses a dataset formed up by 

hours for calculating the median count per hour after each record is labelled either high 

over the median threshold or not (quartiles). The procedure ends with exports of the 

categorised and classified results together with calculated thresholds are presented in 

results. 

 

 
Figure 4-11: Crowd Density Classification with Median Threshold 
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Algorithm 4-8: Streamlined Crowd Density Taxonomy (SCDT) (Median Threshold) 

Inputs: 
𝒟𝒟 : Dataset containing records with fields 'Hour,' 'Current_Count,' and other 
relevant information. 
H : Set of unique hours in 𝒟𝒟. 

Outputs: 
ℛ Resultant dataset with classifications and computed thresholds. 

Procedure: 
1 Initialization: 

    Let 𝒟𝒟grouped  be a dataset grouped by 'Hour' from 𝒟𝒟. 
2 Compute Hourly Median Thresholds: 

    For each hour h ∈ H : 
         Compute Median  h as the median 'Current_Count' for hour h in 𝒟𝒟. 
         Store Median  h in a collection 𝒯𝒯. 

3 Categorization of Counts: 
     For each record r in 𝒟𝒟 : 
     Determine if 'Current_Count' in r is above or below the Median hour of r in 𝒯𝒯. 
     Label r as 'Above Threshold' or 'Below Threshold' based on the comparison. 

4 Quartile Classification: 
     Compute overall quartiles Q1, Q2, Q3 for 'Current_Count' in 𝒟𝒟. 
     For each record r in 𝒟𝒟 : 
         Classify 'Current_Count' in r into quartiles based on Q1, Q2, Q3. 
         Label r with the corresponding quartile classification. 

5 Compilation of Results: 
         Combine the categorized and classified data along with computed thresholds 
into ℛ. 

6 Export to CSV: 
Export ℛ and 𝒯𝒯 to separate CSV files. 

End of Algorithm 
 
 

This algorithm 4-8 efficiently processes MOBILE tower data to provide insights into 

crowd density patterns. Classifying data into quartiles and computing hourly median 

thresholds offers a structured approach to understanding and predicting crowd 

behaviours. The algorithm's output can enhance crowd management strategies, improving 

safety, resource allocation, and overall crowd control measures. Its application is valuable 

in various contexts where crowd dynamics are critical. Threshold-based categorization of 

simple crowd density classifications dominated in Algorithm 4-8. 

 

On the contrary, Algorithm 4-9 goes far ahead by looking at personal mobility patterns 

and social interaction dynamics in crowds. It applies a 24-hour movement profile on each 

person based on mobilities via MOBILE tower connections. With these profiles, one can 

cluster people into groups and subsequently estimate the strength of the ties among them. 
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Algorithm 4-9 utilizes time and place analysis to determine how long a group stayed 

together and how often it reunited. Lastly, it utilizes predictive modelling to forecast 

upcoming mobility and social interactions. The shift reflects a shift from simple 

threshold-oriented classification to deeper insight into the mechanisms of crowd action. 

 

4.8.4 Proposed Algorithm 4:  Social Mobility of Crowd – Individual & Group  
 

This algorithm 4-9 delves into the intricate study of individual mobility and social 

connections within an urban setting, leveraging MOBILE tower data to track personal 

trajectories and social interactions. Mapping each person's hourly connection to specific 

MOBILE towers constructs a detailed tapestry of movement patterns. The algorithm 4-9 

further discerns social ties and random associations among individuals, offering a 

nuanced perspective on how personal paths intersect in the bustling urban environment. 

 

A. Mathematical Presentation of the Algorithm 

The algorithm for analysing individual mobility patterns and social/random ties using 

MOBILE tower data integrates several mathematical and statistical concepts. Here's a 

more detailed breakdown: 

 

1 Data Structure and Collection: 

Let n be the total number of individuals tracked. 

Let Tid[i][h] denote the MOBILE tower ID that individual i (where i = 1,2, … , n ) is 

connected to at hour h (where h = 1,2, … ,24 ). 

Each MOBILE tower is mapped to a specific location in the city. 

 

2 Mobility Pattern Analysis: 

Construct a mobility matrix Mprofile  of size n × 24, where each entry Mprofile [i][h] 

represents the location of individual i at hour h. 

The mobility profile for each individual, Mprofile [i] is a sequence showing the MOBILE 

tower connections over the day. 
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3 Group Identification and Relationship Inference: 

For each hour h, identify groups Gh of individuals who are connected to the same 

MOBILE tower. This forms a collection of sets �Gh
1 , Gh

2, … � For each hour. 

Define a social tie strength metric. Stie [G] for each group G, which quantifies the 

frequency and consistency of the group's members being at the same location. 

Increase Stie [G] for groups frequently appearing together across multiple hours/days. 

 

Classify relationships within each group 𝐆𝐆 : 

If Stie [G] exceeds a predefined threshold, classified as 'social.' 

Otherwise, classify as 'random'. 

 

4 Time and Location Analysis for Relationships: 

Analyse the duration DG and frequency FG Of encounters within each group G to further 

validate the strength of inferred social ties. 

 

5 Integration with Crowd Density Analysis: 

Combine individual movement data with crowd density metrics to understand the impact 

of individual and group behaviour on overall crowd dynamics. 

 

The algorithm leverages MOBILE tower data to analyse individual mobility patterns and 

social ties in urban environments. It tracks individual locations over time, identifies 

groups based on shared locations, and classifies relationships as 'social' or 'random.' 

 

B. Diagrammatic Presentation  

Figure 4-12 illustrates the flow how the data was analyzed. A set of samples classified 

according to time, is taken to estimate the median frequency for each hour after which 

they are labelled above or below this median threshold to finally categorize them under 

quartiles. Finally, the categorized and classified data as well as calculated thresholds are 

exported into separate CSV files to be used in other applications or analyses. 
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Figure 4-12: Social Mobility of Crowd – Individual & Group 
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Algorithm 4-9: Individual and Social Dynamics Integration (ISDI) 

Step 1: Input 
Let n be the number of individuals. 
Let H be the number of hours in the analysis period, typically 24. 
 
Tid[i][h] : MOBILE tower ID that individual i (where i = 1,2, … , n ) is connected to at 
hour h (where h = 1,2, … , H ). 
 
Compute Hourly Median Thresholds: 
       For each hour h ∈ H : 

 Compute Median  h as the median of 'Current_Count' for hour h in 𝒟𝒟. 
  Store Median  h in a collection 𝒯𝒯. 

 
Step 2: Process 
Formulate a data matrix D of size n × H where each entry D[i][h] = Tid[i][h]. 
 
Mobility Pattern Analysis 
Define Mprofile [i] as a vector representing the sequence of MOBILE tower connections 
for each individual i over H hours. 
      Mprofile [i] = (D[i][1], D[i][2], … , D[i][H]). 
 
Group Identification: 
For each hour h, identify groups Gh using: 
        Gh = ⋃i=1

n  {i ∣ D[i][h] = k}, for each tower ID k. 
 
Relationship Classification: 
Define Stie [G] as a function measuring the social tie strength within group G, calculated 
as: 
Stic [G] = ∑h=1

H  ωh × Ind (G, h), where ωh is a weighting factor for hour h, and Ind (G, h) 
is an indicator function that is 1 if G meets at hour h, 0 otherwise. 

Ind (G, h) = �1  if group G meets at hour h,
0  otherwise. 

 
Time and Location Analysis: 
Analyse DG and FG where DG is the total duration and FG The frequency of encounters for 
group G. 
 
Predictive Modelling: 
Utilize Mprofile  and Stic  in a predictive model, 𝒫𝒫 to forecast future dynamics. 
𝒫𝒫�Mprofile , Stic � → Forecast of future movements and interactions. 
 
Step 3: Output 
Mobility profiles MProfile. . 
Group dynamics and social tie strengths Gh and Stie [G]. 
Predictive models for future mobility and social interaction patterns. 
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This detailed algorithm presentation underscores the algorithm's capacity to unravel 

complex urban dynamics by tracking individual movements and inferring social ties. By 

synthesizing granular MOBILE data into meaningful patterns and relationships, the 

algorithm offers profound insights into individual mobility and social interactions within 

urban environments. This approach is invaluable for urban planning and social research, 

providing a data-driven foundation for understanding and shaping the fabric of city life. 

 

Algorithm 4-9 went a long way to help understand individual movement habits within 

crowds and how people interacted socially. On the other hand, such details are integrated 

into microscopic crowd density analysis in Algorithm 4-10. By taking advantage of 

mobile phone data from MOBILE towers and counting and tracking individuals, it is 

possible to analyse how crowds move in cities. Predictive modelling, F (C, M), is 

introduced in Algorithm 4-10 to enable the prediction of future crowd dynamics and their 

impact on society. This transition reflects the evolution of looking at the crowd behaviour 

in isolation but towards an integrative and predictive approach, which helps improve 

urban crowd management practices. 

 

4.8.5 Proposed Algorithm 5: Integrated Model for Urban Crowd Dynamics and 
Social Interaction Analysis 

 

The Algorithm 4-10 presented here is an amalgamation of Algorithms 4-8 and 4-9 , which 

integrate as one framework computing the crowd density and the crowd mobility in both 

group and individual manners. The Algorithm 4-10 is further presented below in detail. 

The "Dynamic Urban Crowd and Social Interaction Model" (DUCSIM) stands at the 

forefront of urban analytics, offering a dual-layered approach to deciphering the 

complexities of city life. Harnessing MOBILE tower data, DUCSIM delves into the 

macroscopic world of crowd density analysis alongside the microscopic realm of 

individual mobility and social interactions. This innovative model illuminates the intricate 

dance between individual behaviours and collective crowd dynamics, painting a 

comprehensive picture of urban social fabric. 
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A. Mathematical Presentation of DUCSIM 

 

• Part One: Macroscopic Crowd Density Analysis 

 

• Location and MOBILE Tower Representation: 

Define L = {L1, L2, … , Ln} As the set of city locations. 

Define T = {T1, T2, … , Tn} As the set of corresponding MOBILE towers. 

 

• Crowd Count and Threshold Calculation: 

Let C(t, h, d) denote the crowd count at tower t, hour h, and day d. 

Daily Threshold Calculation: 

 

Tdaily (d, h) = median ({C(t, 1, d), C(t, 2, d), … , C(t, h, d)}) for all t ∈
T

 

Eq: (4-20) 

Weekly Threshold Calculation: 

Tweekly (h) = median ({C(t, h, 1), C(t, h, 2), … , C(t, h, 7)}) for all t ∈ T 

Eq: (4-21) 

• Quartile Classification: 

Define quartiles Q1, Q2, Q3, Q4 based on the distribution of C(t, h, d). 

Classification of C(t, h, d) is determined by its relation to these quartiles. 

 

• Part Two: Microscopic Individual Mobility and Social Interaction Analysis 

 

• Individual Tracking and Mobility Patterns: 

Define a mapping function M: M: P × H × D → T, where P is the set of individuals, H is 

the set of hours, D is the set of days, and T is the set of towers. 

M(p, h, d) maps individual p to a MOBILE tower t at hour h on day d. 

 

• Social and Random Relationship Inference: 

Define a similarity measure S: S: P × P × H × D → ℝ. 
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S(p1, p2, h, d) quantifies the closeness of individuals based on shared locations and time. 

Aggregate S over time to deduce social ties and random encounters. 

 

• Integration with Crowd Density Analysis: 

Correlate individual mobility data M(p, h, d) with macroscopic crowd density data 

C(t, h, d). 

 

• Predictive Modelling and Applications 

Develop predictive models based on historical data: ℱ(C, M) → Predictions, where ℱ is 

the forecasting function. 

 

B. Diagrammatic Presentation  

A basic DUCSIM algorithm is shown in figure 4-13 the flow diagram that starts from 

initialization to different analysis on macroscopic crowd density, microscopic individual 

movement and interaction. These analyses are combined to form predictive models that 

predict future crowd behaviour and social interactions, which then produce outputs like 

crowd density metrics, mobility profiles for individual people, and predictive models. 
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Figure 4-13: Basic DUCSIM Algorithm 
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Algorithm 4-10: Dynamic Urban Crowd and Social Interaction Model 

(DUCSIM) 

Input 
1 MOBILE Tower Data: 

T = {T1, T2, … , Tn} : Set of MOBILE towers in the city. 
L = {L1, L2, … , Ln} : Corresponding set of city locations. 
 

2 Crowd Counts Data: 
C(t, h, d): Crowd count at tower t, hour h, and day d. 
 

3 Individual Tracking Data: 
M(p, h, d): Mapping of individuals p to MOBILE towers t at specific times. 
 
Process 

1 Macroscopic Crowd Density Analysis: 
Calculate daily and weekly thresholds: 
Tdaily (d, h) = median {C(t, 1, d), … , C(t, h, d)} for each t. 
Tweekly (h) = median {C(t, h, 1), … , C(t, h, 7)} for each t. 
Perform quartile classification based on C(t, h, d) distributions. 
 

2 Microscopic Individual Mobility and Social Interaction Analysis: 
Analyse individual mobility patterns through M(p, h, d). 
Infer social ties and relationships using a similarity measure S(p1, p2, h, d). 
 

3 Integration and Predictive Modelling: 
Integrate individual mobility data with macroscopic crowd density data. 
Develop predictive models ℱ(C, M) to forecast future crowd dynamics and social 
interactions. 
Output 

1 Crowd Density Metrics: 
Daily and weekly threshold values: Tdaily  and TWeekly. . 
Quartile classifications for crowd densities. 
 

2 Individual Mobility Profiles: 
Movement patterns and social interaction data for each individual. 
 

3 Predictive Models: 
Models capable of predicting future urban crowd dynamics and social behaviour patterns. 
 
 

DUCSIM Algorithm 4-10 effectively synthesizes detailed urban data into actionable 

insights, offering a multi-dimensional view of urban dynamics. This algorithm is 

particularly valuable for understanding the interplay between large-scale crowd 

movements and the nuanced patterns of individual behaviour, making it a powerful tool 

for urban planning and sociological studies. DUCSIM emerges as a groundbreaking tool 
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in urban planning and sociological research, adept at forecasting and interpreting the 

multifaceted nature of urban crowds. Its predictive capabilities, rooted in a blend of 

detailed crowd density data and nuanced social interaction patterns, provide invaluable 

insights for city planners, emergency responders, and policymakers. The model's ability 

to intertwine macroscopic trends with microscopic human interactions marks a significant 

leap in our understanding of urban ecosystems, paving the way for more responsive and 

intelligent city management strategies. 

 

Algorithm 4-10 marked improvement in crowd management as it combined a 

microscopic approach of individual mobility patterns with macroscopic crowd density 

analysis and allowed the prediction of behavioural movement. Next comes Algorithm 4-

11 which becomes a significant advancement when considering cumulative crowd 

movement analysis, density forecasting, and refined prediction modelling. However, this 

enhanced approach goes beyond that to better understand crowd dynamics, track 

movement over time, and forecast future density variations, inferring evolving social 

association and enabling proactive steering of crowds. Algorithm 4-11 stresses model 

revision and an ongoing feedback loop approach to continuous improvement with a wide 

range of outputs for urban crowd control and planning. These achievements allow 

decision-makers to lead crowds in movement, allocate resources to better effect, and 

provide improved security. 

 

4.8.6 Proposed Algorithm 6: DUCSIM Algorithm with Self-Learning Module  
 

The Algorithm 4-11 is Enhanced Dynamic Urban Crowd and Social Interaction Model 

(DUCSIM) represents a groundbreaking advancement in urban analytics. Merging 

sophisticated mathematical algorithms with real-world MOBILE data offers a 

multifaceted approach to understanding urban crowd dynamics and the intricacies of 

social interactions. This innovative model is a testament to the power of integrating 

macroscopic and microscopic analyses to unravel the complex tapestry of urban crowd 

mobility. 
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A. Mathematical Presentation of Enhanced DUCSIM 

The Enhanced DUCSIM Algorithm 4-11 is a comprehensive model combining complex 

mathematical techniques to analyse urban crowd dynamics and individual social 

interactions. This granular presentation focuses on detailed mathematical equations and 

formulations. 

 

• Mathematical Definitions and Data Structure 

City Locations and MOBILE Towers: 

Define locations as L = {L1, L2, … , Ln}. 

MOBILE towers are represented as T = {T1, T2, … , Tn}. 

 

Crowd Count Function: 

Let Craw : T × H × D → ℕ be the function where Craw (Ti, h, d) gives the crowd count at 

the tower Ti, hour h, and day d. 

 

• Threshold Calculations 

Daily Threshold: 

Tdaily (d, h) = median ({Craw (Ti, 1, d), … , Craw (Ti, h, d)})∀Ti ∈ T 

Eq: (4-22) 

Weekly Threshold: 

Tweekly (h) = median ({Craw (Ti, h, 1), … , Craw (Ti, h, 7)})∀Ti ∈ T 

Eq: (4-23) 

• Cumulative Crowd Mobility Analysis 

Crowd Movement Dynamics Function: 

Define CM: T × T × H × D → ℝ where CM�Ti, Tj, h, d� quantifies the crowd movement 

from Ti to Tj During hour h on day d. 

Mobility Matrix: Mh,d = �mij� where mij = CM�Ti, Tj, h, d�. 

 

Density Estimation and Movement Prediction: 

Density Estimation: 

 Dest (Ti, h, d) = ∑j mij − ∑j mji 

Eq: (4-24) 
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Movement Prediction Model: 

 Fmobility �Mh,d� → Mh+1,d 

Eq: (4-25) 

. 

• Individual Mobility and Social Interaction Analysis 

Individual Mapping Function: 

Define M: P × H × D → T to map individuals to MOBILE towers. 

 

Social Interaction Analyses: 

Social Interaction Matrix : Sh,d = �spq�  

where spq Measures interaction strength between p and q. 

Update Function: Supdated = Fsocial �Sh,d, M, h, d�. 

 

• Predictive Modelling 

Historical Data Utilization: 

Use historical crowd data Craw  and threshold values Tdaily , Tweekly  for predictive 

modelling. 

Predictive Function: 

Pfuture (h + 1, d) = Fpredict �Tcurrent , Fpattern (H)� 

Eq: (4-26) 

Directional Prediction Model: 

Dfuture (h + 1, d) = Fdirection (CMcurrent , CMhistorical ) 

Eq: (4-27) 

• Model Refinement and Feedback Loop: 

1 Feedback Mechanism: 

Define a feedback function Ffeedback  that evaluates the accuracy of predictions. 

The function compares predicted outcomes with actual observed data. 

 

2 Prediction Accuracy Measurement: 

Let Ppredicted (h, d) be the predicted crowd dynamics (density, movement patterns) for hour 

h and day d. 

Let Pactual (h, d) represent the actual observed data for the same. 
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Define an accuracy metric Acc (h, d) to measure how closely. Ppredicted  aligns with Pactual  : 

Acc (h, d) = function �Ppredicted (h, d), Pactual (h, d)� 

Eq: (4-28) 

This function could be based on statistical measures like mean squared error, correlation 

coefficients, or other relevant metrics. 

 

3 Model Parameter Adjustment: 

Based on Acc (h, d), adjust the model's internal parameters to improve future predictions. 

Define a parameter update function. Fupdate  that modifies the model parameters based on 

the feedback: 

New Parameters = Fupdate ( Current Parameters, Acc (h, d)) 

This update function involves recalibrating thresholds, adjusting weights in predictive 

algorithms, or modifying the criteria used in social tie analysis. 

 

• Iterative Process: 

Implement this as an iterative process, where after each prediction and subsequent 

observation, Ffeedback  and Fupdate  are applied to refine the model. 

 

The Enhanced DUCSIM algorithm leverages complex mathematical formulations to 

provide a multi-faceted analysis of urban crowd dynamics and individual social 

interactions. Its depth in both macroscopic and microscopic analysis positions it as a 

potent tool for urban planning and sociological research, enabling comprehensive 

understanding and prediction of urban crowd behaviour. 

 

B. Diagrammatic Presentations  

 

Figure 4-14 presents the flow chart signifies an organized procedure of launching points 

as well as Mobile stations, performs macro-based crowd density assessment, accumulated 

crowd movement and moves on to with respect to microscopic mobility and inter-

personal interactions. This combines various analyses including those based on historical 

data and predictive modelling to make improvements in different models and anticipate 

crowd movements resulting in outputting crowd density metrics, mobility profiles, and 

predictive insights. 
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Figure 4-14: Enhanced DUCSIM with Cumulative Crowd Mobility Analysis 
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The Enhanced DUCSIM Algorithm 4-11 is designed for advanced urban crowd dynamics 

and social interaction analysis, integrates intricate mathematical methodologies to analyse 

crowd patterns and individual behaviours using MOBILE tower data. 

 

Algorithm 4-11: Comprehensive Mobility and Social Interaction Model with 

Enhanced DUCSIM 

Input 
1 Locations and MOBILE Towers: 

                  Locations : L = {L1, L2, … , Ln}. 
                  MOBILE Towers: T = {T1, T2, … , Tn}. 

2 Crowd Counts Data: 
                   Raw Crowd Count: Craw (Ti, h, d) for each tower Ti, hour h, and day d. 
 
Process 

1 Macroscopic Crowd Density Analysis: 
                     Daily Threshold Calculation: 

Tdaily (d, h) = median {Craw (Ti, 1, d), … , Craw (Ti, h, d)}∀Ti ∈ T 
 
                      Weekly Threshold Calculation: 

Tweekly (h) = median {Craw (Ti, h, 1), … , Craw (Ti, h, 7)}∀Ti ∈ T 
 
                       Quartile Classification based on Craw (Ti, h, d) distributions. 
 

2 Cumulative Crowd Mobility Analysis: 
                    Crowd Movement Dynamics: CM�Ti, Tj, h, d� indicating crowd movement 
from Ti to Tj During hour h on day d. 
                    Mobility Matrix: Mh,d = �mij� where mij = CM�Ti, Tj, h, d�. 
                    Density Estimation and Movement Prediction: 
                    Density Estimation : Dest (Ti, h, d) = ∑j mij − ∑j mji. 
                    Movement Prediction Model: Fmobility �Mh,d� → Mh+1,d. 
 

3 Microscopic Individual Mobility and Social Interaction Analysis: 
                   Individual Movement and Social Dynamics: M(p, h, d) → Ti. 
                   Social Interaction Matrix: Sh,d = �spq� where spq Measures interaction 
strength between individuals p and q. 
                   Inference of Social and Random Relationships: 
                   Social Matrix Update: Supdated = Fsocial �Sh,d, M, h, d�. 
 

4 Predictive Modelling and Applications: 
                  Historical Data Utilization and Custom Predictive Modelling. 
                  Crowd Steering and Movement Direction Prediction: Dfuture (h + 1, d) = 
Fdirection (CMcurrent , CMhistorical ). 
                  Model Refinement and Feedback Loop. 
 
Output 
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1. Crowd Density Metrics: Calculated daily and weekly thresholds and quartile 
classifications. 

2. Mobility Profiles: Individual movement patterns and social interaction data. 
3. Predictive Insights: Forecasts of future crowd dynamics and social interactions. 

 
 

The Enhanced DUCSIM algorithm, with its comprehensive mathematical foundation, 

offers a profound capability to analyse and predict complex urban crowd dynamics and 

social interactions. Meticulously processing MOBILE data provides actionable insights 

for effective urban planning and sociological research. 

 

However, building on the complexity of Algorithm 4-11, Algorithm 4-12 constitutes 

another milestone for crowd analyses and control systems. Cumulative crowd mobility 

analysis, predictive modelling, and social interaction analysis were all built into algorithm 

4-11 and offered a holistic view of urban crowd dynamics. Algorithm 4-12, on the other 

hand, provides for dynamic self-learning and adapting along with tailored predictive 

modelling that takes crowd management a step above exactness and adaptability. In this 

case, it uses emerging crowd data to update model parameters in real-time, thus 

increasing its adaptability to the dynamic environment. In addition, Algorithm 4-12 draws 

on past information to develop the predictor functions that will enhance future predictions 

of crowd behaviour and society relations. This transformation from Algorithm 4-11 to 

Algorithm 4-12 marks a shift from static (analysis) to dynamic self-improving algorithms, 

helping the decision-makers with up-to-date information (in the current situation in the 

city) and evolving crowd control techniques so that the town can be safer. 

 

4.8.7 Proposed Algorithm 7: Dynamic Urban Crowd and Social Interaction Model 
(DUCSIM) With Median of Median Threshold 

 

DUCSIM’s next Algorithm 4-12 that analyses and forecasts urban crowds' dynamic 

behaviour and social relationships. DUCSIM uses MOBILE tower data, timestamping, 

and crowd history to plot comprehensive movement and urban socio patterns. The 

proposed model is complex, considering macroscopic crowd density statistics, 

accumulated crowd mobility dynamics, and microscopic analysis of individual actions 

and social linkages. Dynamic self-learning and adaptive predictive modelling enhanced 

DUCSIM, allowing a comprehensive understanding of urban crowd behaviour necessary 

for planning event management and ensuring public safety strategies. 
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A. Mathematical Presentation 

 

• Macroscopic Crowd Density Analysis 

This stage entails the assessment of population distribution in various zones over 

time. It calculates the raw crowd count at each MOBILE tower and uses a Median-of-

Medians (M-o-M) approach to establish daily and weekly crowd density thresholds, 

and are presented as: 

 

Raw Crowd Count: Craw (Ti, h, d) for each tower Ti, hour h, and day d. 

Daily Threshold:  

Tdaily (d, h) = M − o − M ({Craw (Ti, 1, d), … , Craw (Ti, h, d)}) 

Eq: (4-29) 

Weekly Threshold: 

 Tweekly (h) = M − o − M ({Craw (Ti, h, 1), … , Craw (Ti, h, 7)}) 

Eq: (4-30) 

• Cumulative Crowd Mobility Analysis 

This module is about understanding crowd dynamics for the movements from one place 

to another at various times. It builds a mobility matrix that estimates the net flow of 

people from one BTS to another, defining a function for tracking the movement. 

 

Crowd Movement Function: CM �Ti, Tj, h, d�. 

Mobility Matrix: 

 M(h,d) = �mij� 

Eq: (4-31) 

where mij represents the movement from Ti to Tj. 

 

Estimated Density: Dest (Ti, h, d). 

 

• Microscopic Individual Mobility and Social Interaction Analysis 

The next stage involves movement analysis as well as interaction in social matters. It 

monitors people’s moves between towers, thereby developing an interaction matrix 

constantly updated according to changing social relationships. 
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Individual Movements: M(p, h, d) → Ti. 

Social Interaction Matrix :  

S(h,d) = �spq� 

Eq: (4-32) 

Updated Social Matrix: SUpdated.  

 

• Dynamic Self-Learning and Adaptation 

The model adjusts in this stage by incorporating the newly obtained information into its 

parameters for more accurate projections. 

 

Update Function: 

 Fupdate �Craw , M(h,d), S(h,d)� → New Parameters. 

Eq: (4-33) 
5 Custom Predictive Modelling 

 

In this last step, the historical record is fused into a special predicting function to aid in 

projecting the future crowd dynamics and people interaction. 

 

Predictive Function: 

 Pfuture (h + 1, d) = Fpredict �Tcurrent , Fpattern (H)� 

Eq: (4-34) 

Collectively, these modules form a complete urban crowd dynamics analysis and 

prediction system. 

 

B. Diagrammatic Presentation  

Figure 4-15 illustrates of an entire procedure of determining crowd dynamics analysis and 

prediction is from Mobile tower data initiation, timeline, as well as previous crowds 

data. Beginning with macroscopic density analysis of a group of people to 

microscopically analyzing their movements and interactions. The algorithm 4-12 learns 

from prior counts and makes customized predictive models. This system produces the 

prediction of future crowd dynamics and social interactions. 
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Figure 4-15:  Adaptive Learning and Customized Predictive Analytics With DUCSIM-
TM-o-M 
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Algorithm 4-12: Adaptive Learning and Customized Predictive Analytics With 
DUCSIM-TM-o-M 

Input 
     MOBILE Tower Data: 𝒯𝒯 = {T1, T2, … , Tn} 
     Time and Day: h ∈ Hours, d ∈ Days 
     Historical Crowd Data Matrix: 𝐇𝐇 
 
Process 

1 Macroscopic Crowd Density Analysis: 
                 Compute Raw Crowd Count Craw (Ti, h, d) for each tower Ti, hour h, and day d. 
                 Calculate Daily Threshold using M-o-M:  
                          Tdaily (d, h) =   M − o − M ({Craw (Ti, 1, d), … , Craw (Ti, h, d)}). 
                 Calculate Weekly Threshold using M-o-M:  
                        Tweekly (h) = M − o − M ({Craw (Ti, h, 1), … , Craw (Ti, h, 7)}). 
                 Classify Crowd Density into Quartiles Q1, Q2, Q3, Q4 based on Craw . 
 

2 Cumulative Crowd Mobility Analysis: 
             Define Crowd Movement Function CM �Ti, Tj, h, d�. 
             Construct Mobility Matrix 𝐌𝐌h,d = �mij� where mij Is the movement from Ti to Tj. 
             Estimate Density Dest (Ti, h, d) as the net flow of crowds. 
 

3 Microscopic Individual Mobility and Social Interaction Analysis: 
    Track Individual Movements M(p, h, d) → Ti. 
    Construct a Social Interaction Matrix 𝐒𝐒h,d = �spq�. 
    Update the Social Matrix to reflect evolving ties. 𝐒𝐒updated . 
 

4 Dynamic Self-Learning and Adaptation: 
    Update model parameters: Fupdate �Craw ,𝐌𝐌h,d, 𝐒𝐒h,d� → New Parameters. 
 

5 Custom Predictive Modelling: 
    Integrate Historical Data 𝐇𝐇. 
    Apply Predictive Function: Pfuture (h + 1, d) = Fpredict �Tcurrent , Fpattern (𝐇𝐇)�. 
 
Output 
Predictions for Future Crowd Dynamics and Social Interactions 
 
 

DUCSIM’s advanced Algorithm 4-12 is an important development in terms of urban 

dynamics and the modelling of social interactions. The complexity of data analysis, the 

movement tracker, and the predictive approach give a deeper understanding of crowd 

behaviour and social networking in urban areas. This ability to adjust to real-time data 

enhances the model's performance and improves prediction capability, offering a 

dependable model for crowd control in urban areas. The application of smart technology 
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might facilitate city planning, reduce crowd movement, and thus make the towns more 

responsible. 

 

4.9 Evolution stages of DUCSIM Algorithm  
To present the evolution of the Enhanced DUCSIM algorithm in a more comprehensive 

and structured manner, a table format can effectively highlight the progression and key 

additions at each stage. This format facilitates a clear understanding of how the algorithm 

has been refined and expanded. 

 

4.9.1 Algorithm 4-6: Multivariate Crowd Density Analytical Framework (CD_AF) 
Formulation: Algorithm 4-6 established the groundwork for a comprehensive crowd 

density analysis, CD_AF. It incorporated both temporal threshold calculations. 

�Tdaily , Tweekly � And quartile classification mechanisms (Q1, Q2, Q3, Q4), thus offering a 

multidimensional perspective of crowd dynamics. The mathematical representation can 

be expressed as: 

CDAF = f�Tdaily , Tweekly , Q� 

Eq: (4-35) 

where Q represents quartile-based categorization. 

 

4.9.2 Algorithm 4-7: Proactive Crowd Management Paradigm (PCMP) 
Advancement: Extending Algorithm 4-6 to Algorithm 4-7 signified a paradigm shift to 

proactive crowd management, labeled PCMP. This algorithm integrated historical data 

(H) and quartile classifications (Q) into a real-time decision-making matrix. The 

functional representation is: 

 

PCMP = g(H, Q) → Real-Time Decisions 

Eq: (4-36) 

 where g is the decision-making function based on historical and quartile data. 

 

4.9.3 Algorithm 4-8: Streamlined Crowd Density Taxonomy (SCDT) (Median 
Threshold) 

Simplification: Algorithm 4-8 refined the crowd density classification process, focusing 

on hourly median thresholds (Tmedian  ). This simplification, termed SCDT, facilitated 
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rapid categorization of crowd densities, essential for immediate applications. The 

formulaic expression is:  

SCDT = h(Tmedian ) → Density Categories 

Eq: (4-37) 

where h represents the classification function based on median thresholds. 

4.9.4 Algorithm 4-9: Individual and Social Dynamics Integration (ISDI) 
Extension: Algorithm 4-9 introduced the integration of individual mobility patterns (M), 

group identification (G), and social tie strength (S_tie) metrics. This extension, ISDI, 

enhanced predictive modelling capabilities for future crowd behaviour, thereby improving 

the granularity of analysis. The mathematical formulation is: 

ISDI = P(M, G, Stie) → Behavioural Forecast 

Eq: (4-38) 

4.9.5 Algorithm 4-10: Dynamic Urban Crowd and Social Interaction Model 
(DUCSIM) 

Integration: Algorithm 4-10 seamlessly blended individual mobility patterns (M) with 

macroscopic crowd density analysis (C_raw, T_median), forming the DUCSIM 

framework. This integration facilitated more comprehensive and precise urban crowd 

dynamic predictions. The representational equation is:  

DUCSIM = P(M, Craw, Tmedian  ) → Urban Forecast 

Eq: (4-39) 

4.9.6 Algorithm 4-11: Comprehensive Mobility and Social Interaction Model with 
Enhanced DUCSIM (CMSIM-EDUCSIM) 

 

Enhancement: Algorithm Xl elevated the analysis framework by incorporating cumulative 

crowd mobility (CM) and dynamic social interaction (S_dyn). Termed CMSIM, this 

advanced predictive modelling approach offered proactive crowd management solutions 

and dynamic insights. Its functional representation is:  

CMSIM = P�Craw, CM, Sdyn� → Dynamic Forecast 

Eq: (4-40) 

4.9.7 Algorithm 4-12: Adaptive Learning and Customized Predictive Analytics 
(ALCPA) With DUCSIM-TM-o-M 

 

Evolution: Representing a significant leap, Algorithm 4-12 introduced a dynamic, self-

learning mechanism (A) with real-time parameter updates (U) under the banner of 
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ALCPA. This paradigm shift enabled the adaptation of models in response to evolving 

data, thus enhancing accuracy. The mathematical expression is: 

 

ALCPA = Pc custom (Craw, A, U, H) → Real-Time Insights 

Eq: (4-41) 

Sequential development presented in the table 4-9 indicates a transformation process that 

starts with basic crowd density investigation and leads to sophisticated crowd 

management systems. These improvements will address the requirement for precise 

measures of urban crowd control, highlighting the need for immediate adjustments, 

personalized analysis of people's behaviours, and forecasting how best to handle the 

urban population dynamics. 

 

Table 4-9: Summary of Evolution Stages of  DUCSIM Algorithm 

Stage Focus Area Enhancements and Key Additions 

I. Introduction Objective Setting 

- Expanded scope for analyzing urban 
dynamics. 

- Adaptation to various data sources: WiFi, 
vehicular networks, and ride-sharing data. 

II. Data 
Integration and 
Preprocessing 

Data Handling 

- Integration of diverse urban data sources. 
- Standardization of data formats. 

- Alignment of spatial and temporal data for 
consistency. 

III. Macroscopic 
Urban Dynamics 

Analysis 
Spatial Analysis 

- Definition of spatial nodes based on data 
sources. 

- Activity count and threshold computation 
using the median-of-medians. 

- Quartile-based classification for varying 
urban density areas. 

IV. Cumulative 
Mobility Analysis 

Mobility Flow 
Dynamics 

- The mobility flow function between nodes is 
introduced. 

- Construction of flow matrix for movement 
and density estimation. 

- Implementation of predictive algorithms for 
mobility patterns. 

V. Microscopic 
Individual and 

Group Behaviour 
Analysis 

Individual & 
Group Dynamics 

- Analysis of individual/group movement 
patterns (specific to ride-sharing data). 

- In-depth study of social interactions and 
mobility behaviours. 

 

This table showcases the step-by-step enhancements made to the DUCSIM algorithm. 

Each stage marks a significant development, from broadening its objective scope to the 

intricate analysis of individual and group behaviour within urban spaces. The evolution 
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reflects the model's increasing sophistication in handling diverse data sources, enhancing 

spatial analysis capabilities, and deepening the understanding of urban mobility and social 

dynamics. This progression highlights the algorithm's adaptability and growth and 

underscores its potential as a comprehensive tool for urban planners and researchers. 

 

4.10 Proposed Algorithm 6: Real-Time Crowd Density and Mobility Prediction 
(Opportunistic Environment) 

 

Different from the previous crowd analysis algorithms, this algorithm departs from some 

specific points. The new and improved version of this algorithm goes against the flow of 

its predecessors with more emphasis on real-time activity counts for particular nodes 

during specific times and not on historical crowd data derived from cell towers. Such a 

shift reflects the need for proper response in realistic situations that characterize evolving 

crowds. The “threshold” function (f_thresh) compares the current activity count to M-o-

Ms Medians (T_M-o-M (g,t)). The algorithm has an additional thresholding mechanism 

that allows it to adjust its predictions by assessing the real-time level of activities against 

predefined levels. This type of flexibility plays an important role, especially when it 

comes to crowd dynamics that are constantly changing and, therefore, require quick 

adaptation on the part of the algorithm. 

 

The algorithm creates a prediction model (D pred (g, t+1)) built on several attributes such as 

the mean of historical values (Dhist(g) ̅), current values of activity count (Dreal (g,t)) and 

some The predictive model incorporates weighted coefficients (wact, whist, and wthresh), 

enabling tuning of the model’s sensitivity to different circumstances and creating 

customized predictions for a particular case. The suggested algorithm is different because 

it targets the live data using a threshold function and the weighted predictive 

approach. The innovation enables it to project dynamic and adaptable crowd density, thus 

providing vital assistance in traffic management systems, emergency evacuation plans, or 

organizing events. Unlike the historical empirical approaches, this innovation provides 

the option of more accurate crowd control in dynamic circumstances. 

 

The novel approach to predict urban crowd density and movement patterns. This model 

integrates real-time activity data with historical crowd density records, utilizing a 

Median-of-Median threshold. The methodology hinges on correlating current activities 
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with past trends to forecast future crowd dynamics, providing a valuable urban planning 

and management tool. This section delineates the construction of an innovative model 

designed to forecast urban crowd densities. The model ingeniously synthesizes real-time 

activity measures with historical density patterns, employing the Median-of-Medians (M-

o-M) threshold as a pivotal determinant. 

 

[1]. Mathematical Presentations  

Defining Key Variables: 

Represent the real-time activity count at node g and time t as Araw (g, t). 

Historical crowd density at node g and time t is denoted by Dhist (g, t). 

The M-o-M threshold for node g at time t is expressed as TM−o−M(g, t). 

Future crowd density predictions are indicated by Dpred (g, t + 1). 

 

Threshold Function 

The analytical cornerstone of our model is the binary threshold function, designated as 

fthresh . This function is crucial for interpreting the current activity data concerning 

established thresholds. The function is defined mathematically as follows: 

 

fthresh (Araw (g, t), TM-o-M (g, t)) = �1  if Araw (g, t) > TM−o−M(g, t)
0  otherwise 

 

Eq: (4-42) 

 Araw (g, t) represents the observed activity count at a given node g and time t, while 

TM−o−M(g, t) stands for the Median-of-Medians threshold applicable to that node and 

time. The function outputs a value of 1 if the current activity count surpasses the 

threshold, indicating a higher crowd density state. Conversely, a value of O is returned if 

the activity count falls below the threshold, signifying a lower-density state. 

 

This binary threshold function is pivotal in the proposed model, serving as a fundamental 

determinant in the subsequent predictive analysis. It allows for a nuanced differentiation 

of crowd density states based on real-time urban activity data, thus enhancing the 

precision of our predictive modelling. 

• Model Formulation: 

The predictive model is articulated as follows: 
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Dpred (g, t + 1) = wact ⋅ Araw (g, t) + whist ⋅ Dhist (g)���������� + wthresh 

fthresh (Araw (g, t), TM-o-M (g, t))
 

Eq: (4-43) 

In this equation, wact , whist , and wthresh  represent the weights assigned to current activity, 

the average of historical density, and the threshold function, respectively. 

 

[2]. Diagrammatic Presentation  

 

This figure 4-16 indicates the procedure for forecasting crowd density involving the 

commencement of input initiation and then threshold assessment. Where the data crosses 

a specific threshold, a predictor model uses raw data, weighted data, and historical data 

and then predicts crowd density; however, where the data does not exceed a specific 

threshold, crowd density is assumed as zero. Then the result of either the developed 

model or setting it to null results is served as the predicted crowd density. 

 

 
Figure 4-16: Crowd Density and Movement Prediction 

 

Data Procurement: Aggregate data for Araw (g, t), TM−o−M(g, t), and Dhist (g, t). 

Threshold Determination: Implement fthresh  to compare current activity with the M-o-M 

threshold. Model Execution: Employ the formulated equation to estimate Dpred (g, t + 1). 

Accuracy Evaluation: Examine the model's precision, adjusting weights as necessary. 
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Algorithm 4-13: Advanced DUCSIM Integrative Predictive Model (ADIPM) 

Inputs 
1 Real-Time Activity Count: 

     Araw (g, t) : Activity count at node g and time t. 
2 Historical Crowd Density: 

     Dhist (g, t) : Historical density at node g and time t. 
3 Median-of-Medians (M-o-M) Threshold: 

    TM−o−M(g, t) : Threshold value for node g at time t. 
Process 

1 Threshold Function (fthresh ) : 
     Defined as fthresh (Araw (g, t), TM−o−M(g, t)) = 

�1  if Araw (g, t) > TM−o−M(g, t)
0  otherwise 

. 
2 Model Formulation: 

    The predictive model is expressed as: 
    Dpred (g, t + 1) = wact ⋅ Araw (g, t) + whist ⋅ Dhist (g)���������� + wthresh .     
fthresh (Araw (g, t), TM−o−M(g, t)), 

where wact , whist , wthresh  are weights assigned to current activity, average historical 
density, and the threshold function, respectively. 
Output 

Future Crowd Density Prediction: 
Dpred (g, t + 1) : The predicted crowd density at node g for the next interval (t + 1). 
 
 

The predictive model, which is integrated with the Algorithm, has results discussed along 

with the results of Algorithm 14, which has demonstrated promising results in forecasting 

urban crowd density, highlighting its potential in smart city applications. The model 

offers a nuanced understanding of crowd behaviour by effectively blending historical data 

with current urban dynamics. This innovation paves the way for more informed urban 

decision-making, potentially enhancing the efficiency of city management and emergency 

response strategies. The developed predictive model is a crucial advancement in 

understanding and anticipating the complexities of urban crowd movements. Integrating 

current activity data with historical trends and threshold assessments offers insightful 

foresight into urban crowd behaviours, which is instrumental for strategic urban planning 

and management. The model's refinement and empirical validation will further its 

applicability across urban settings. 
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4.11 Proposed Algorithm 7: Self-Learning Crowd Density Estimation Algorithm 
with Median-of-Median Threshold (Integrated Version) 

 

The Algorithm 4-14 effectively sorts and evaluates information to forecast future crowd 

densities depending on previous patterns and actual numbers. It uses sophisticated 

statistical techniques such as M-o-M thresholding, count binning, and quartiles. The 

algorithm can adopt different data trends, therefore making forecasts. Therefore, such a 

tool will be helpful in urban planning and governance. 
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Figure 4-17: Flow of Self-Learning Crowd Density Estimation Algorithm with Median-
of-Median Threshold (Integrated Version) 
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Algorithm 4-14: Self-Learning Crowd Density Estimation Algorithm with Median-
of-Median Threshold (Integrated Version) 

Inputs: 
D: Dataset containing records with fields 'Hour,' 'Current_Count,' and other 
relevant information. 
H: Set of unique hours in D. 

Outputs: 
R: Resultant dataset with classifications, computed thresholds, and predictions. 

Procedure: 
1 Initialization: 

    Let Dgrouped  be a dataset grouped by 'Hour' from D. 
2 Compute Hourly Median Thresholds and Median-of-Medians (M-o-M) 

Thresholds: 
    For each hour h ∈ H : 
    Compute Median_h as the median of 'Current_Count' for hour h in Dgrouped . 
    Store Median h in a collection T. 
    Compute M-o-M_Threshold as the median of the hourly medians in T. 

3 Categorization of Counts Based on M-o-M Threshold: 
    For each record r in D : 
     Determine if 'Current_Count' in r is above or below the M-o-M_Threshold. 
     Label r as 'Above Threshold' or 'Below Threshold' based on the comparison. 

4 Quartile Classification: 
    Compute overall quartiles Q1, Q2, Q3 for 'Current_Count' in D. 
    For each record r in D : 
       Classify 'Current_Count' in r into quartiles based on Q1, Q2, Q3. 
       Label r with the corresponding quartile classification. 

5 Prediction Model: 
       Define weights wact , whist , wthresh  for current activity, historical density, and 
threshold function. 
      For each record r in D, apply the prediction model: 
Dpred (r) = wact ⋅ Current_Count (r) + whist ⋅ Reference_Count (r) + wthresh ⋅
fthresh ( Current_Count (r), M-o-M_Threshold ) where fthresh (x, y) = 1 if x > y 
else 0 . 

6 Compilation of Results: 
     Combine the categorized and classified data along with computed thresholds 
and predictions into R. 

7 Export to CSV: 
Export R and T to separate CSV files. 

 
End of Algorithm 
 
 

The Algorithm 4-14 combines complicated statistical calculations with a predictive model 

and provides accurate crowd-density forecasting. It provides an organized procedure for 

processing the hourly crowds through categorizing counts and using a definite prediction 
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model, making it possible to develop a holistic approach to forecasting crowd 

behaviour. It is adaptable and accurate, thus making it a sturdy framework that can be 

used for crowd analysis with future crowd density estimation in different cases. 

 

4.12 Algorithm 8: Heterogeneous Opportunistic DUCSIM with Enhanced Crowd 
Density Analysis 

 

The Enhanced DUCSIM Algorithm 4-15 is a sophisticated tool designed to analyze and 

predict the complexities of urban dynamics. It harnesses diverse data sources such as 

WiFi networks, vehicular traffic, ride-sharing activities, and social media interactions, 

encapsulating the pulse of urban life. By integrating these data streams, represented 

mathematically as D(g, t), the algorithm creates a multi-dimensional snapshot of urban 

activity. It delves into macroscopic analyses of crowd density and movement patterns and 

microscopic examinations of social interactions, synthesizing these insights into 

predictive models. Enhanced DUCSIM stands at the forefront of urban analysis, offering 

a comprehensive lens to view and interpret the intricate web of urban dynamics. The 

figure 4-18 illustrates the flow of the algorithm execution.   
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Figure 4-18: Flow of Heterogeneous Opportunistic DUCSIM with Enhanced 

Crowd Density Analysis 
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Algorithm 4-15: Heterogeneous Crowd Density Analysis - DUCSIM 

INPUT 
Data Sources 

1 WiFi Networks: 
Let W(g, t) represent the data from WiFi networks, indicating user connections at location 
g at time t. 
W(g, t) could be a count or a more complex measurement based on WiFi network usage. 
 

2 Vehicular Networks: 
Let V(g, t) denote traffic and vehicular flow data at location g at time t. 
V(g, t) might include metrics like vehicle count, average speed, or flow rate. 
 

3 Ride-Sharing Platforms: 
Define R(g, t) as the data representing ride-sharing trips starting or ending at location g at 
time t. 
R(g, t) could be a count of trips or other relevant measurements like trip duration. 
 

4 Social Media (Geo-Tagged Tweets): 
Use T(g, t) to represent the number of geotagged tweets from location g at time t. 
Direct count of tweets. 
 

5 Sentiment Analysis and Keyword Density: 
Let S(g, t) represent the aggregate sentiment score from tweets at location g at time t. 
Define K(g, t, keyword) as the density of specific keywords in tweets at location g at time 
t. 
 
Integrating Data Sources: 
The data from these sources can be integrated to create a comprehensive urban dynamics 
dataset: 
Integrated Data Representation: 
D(g, t) = {W(g, t), V(g, t), R(g, t), T(g, t), S(g, t), K(g, t, keyword )}. 
D(g, t) represents a multi-dimensional data point for location g at time t, incorporating 
various aspects of urban dynamics. 
 
PROCESS:  

1 Data Integration and Standardization 
Integration Function: 
Integrate (W, V, R, T, S, K) where W, V, R, T, S, K represent data from WiFi, vehicular 
networks, ride-sharing, tweets, sentiment, and keyword density, respectively. 
Alignment of Data: 
Align spatial (g) and temporal (t) data across all sources. 
 

2 Macroscopic Urban Dynamics and Crowd Density Estimation 
Spatial Nodes Definition: 
Define nodes N = {n1, n2, … , nm} Based on integrated data locations. 
Activity Count Function: 
Araw (g, t) : Compute total activity for each node g at time t. 
Crowd Density Estimation: 

  TM−o−M(g, t) = median {Araw (g, t1), … , Araw (g, tn)}.  
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Quartile Classification: 
Determine quartiles Q1, Q2, Q3, Q4 based on Araw (g, t) distribution. 
 

3 Cumulative Mobility and Density Flow Analysis 
Flow Functions: 
CM(g1, g2, t) = Function representing movement and density flow from g1 to g2 at time 
t. 
Flow Matrix Construction: 
Mt = �mij� where mij = CM�gi, gj, t� for nodes gi, gj. 
 

4 Microscopic Social Media and Interaction Analysis 
Behaviour Analysis Function: 
Analyze behaviours using ride-sharing and social media data. 
Interaction and Sentiment Matrices: 
Construct matrices I and S for social interactions and sentiment. 

5 Advanced Predictive Modelling 
Predictive Function: 
Purban (g, t + 1) = Fpredict �Mt, TM-o-M , Tsentiment , Kdensity �. 
This function predicts urban dynamics for the next time interval. 
 
OUTPUT 
Predictions of Urban Dynamics 

1 Crowd Density Prediction: 
Dpredicted (g, t) : Represents the predicted crowd density at location g and time t. 
Calculated using the predictive function from the algorithm: 
Dpredicted (g, t) = Purban (g, t). 
 

2 Mobility Pattern Prediction: 
Mpredicted (g1, g2, t) : Denotes the predicted mobility flow from the location g1 to g2 at 
time t. 
Derived from the mobility and density flow analysis within the algorithm. 
 

3 Social Interaction Prediction: 
Spredicted (g, t) : Indicates predicted social interaction patterns at location g and time t. 
Based on the analysis of interaction and sentiment matrices. 
 
VISUALIZATION  
           Define a set of functions V that transform the predictions into visualizable data. 
       For: Vdensity �Dpredicted �, Vmobility �Mpredicted �, and Vsocial �Spredicted � It could be 
functions to visualize respective predictions. 
 
 

The Enhanced DUCSIM algorithm culminates in a powerful predictive model capable of 

forecasting urban dynamics with a novel level of precision and depth. It offers predictions 

on crowd density by transforming complex urban data into actionable insights. 

�Dpredicted (g, t)�, mobility patterns �Mpredicted (g1, g2, t)�, and social interactions 
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�Spredicted (g, t) ). These predictions, visualized through a series of functions V, provide 

invaluable guidance for urban planning and sociological studies. Enhanced DUCSIM, 

with its advanced analytical capabilities and comprehensive approach, represents a 

significant stride in understanding and shaping the future of urban landscapes. It's not just 

an algorithm; it's a blueprint for smarter, more responsive city management. 

 

4.13 Comparison & Validation of DUCSIM Algorithm 
 

Comparing and validating the Enhanced DUCSIM algorithm with the three prominent 

crowd models presented in table 4-10 - Social Force Models, Continuum Models, and 

Agent-Based Models - involves assessing each model's methodology, applicability, and 

effectiveness in various scenarios. This comparison is crucial in a scientific context to 

understand the strengths and limitations of DUCSIM concerning established models.  

 

Table 4-10: Comparision & Validation of DUCSIM Algorithm 

Feature/Model Enhanced 
DUCSIM 

Social Force 
Models 

Continuum 
Models 

Agent-Based 
Models 

Core Concept 

Integrates 
macroscopic 
crowd density 
analysis with 
microscopic 
individual and 
social interaction 
analysis. 

It focuses on 
individual 
behaviours 
influenced by 
psychological 
and physical 
'social forces.' 

Treats crowds as 
continuous 
flows, akin to 
fluids, with less 
emphasis on 
individual 
behaviour. 

Simulates crowds 
through the 
interactions of 
autonomous 
agents with 
decision-making 
capabilities. 

Data 
Utilization 

It uses real-world 
MOBILE tower 
data for tracking 
individual 
movements and 
interactions. 

Does not 
typically 
incorporate 
real-world 
tracking data. 

Generally 
abstracts from 
real-world data, 
focusing on 
crowd flow 
patterns. 

It can use various 
data types but 
emphasizes the 
rules and 
behaviours 
assigned to 
agents. 

Analytical 
Approach 

Employs 
sophisticated 
mathematical 
and statistical 
methods for 
dynamic analysis 
and prediction. 

Utilizes 
mathematical 
models to 
simulate forces 
affecting 
individual 
movement. 

Applies 
principles of 
fluid dynamics 
to model crowd 
movements. 

It uses complex 
algorithms to 
simulate 
individual 
behaviours and 
interactions. 

Strengths 
- Comprehensive 
urban dynamics 
analysis. - Real-

- Effective in 
simulating 
immediate 

- Efficient for 
large-scale, high-
density crowd 

- Highly 
adaptable to 
various scenarios 
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world data 
integration. 
- Detailed 
individual and 
social pattern 
analysis. 

behavioural 
responses 
- Good for 
evacuation and 
emergency 
scenarios. 

analysis. 
- Useful where 
individual 
behaviours are 
less 
distinguishable. 

- Capable of 
simulating 
diverse 
behaviours and 
interactions. 

Limitations 

- Requires 
extensive data 
processing. 
- Potentially less 
focused on 
immediate 
psychological 
responses. 

- Less focused 
on 
macroscopic 
crowd 
dynamics. 
- May not 
account for the 
broader urban 
context. 

- Lacks 
individual 
granularity. 
- Not ideal for 
scenarios 
requiring 
detailed 
behavioural 
analysis. 

- Can be 
computationally 
intensive. 
- Model accuracy 
depends on the 
rules and 
behaviours 
assigned. 

Ideal 
Applications 

- Urban planning 
and sociological 
studies. 
-Comprehensive 
crowd dynamics 
analysis. 

- Emergency 
response 
planning. 
- Situations 
requiring 
behavioural 
analysis under 
stress. 

- Large events 
with high-
density crowds. 
- Situations 
where crowd 
behaviour 
resembles fluid 
flow. 

- Studies 
requiring detailed 
behavioural 
simulations. 
- Scenarios with 
complex 
individual 
interactions. 

 

This comparative table illustrates that while each model has specific strengths and 

applications, the Enhanced DUCSIM offers a more holistic and data-driven approach, 

making it particularly suitable for urban analysis requiring macroscopic and microscopic 

insights. Social Force and Continuum Models provide valuable perspectives for specific 

crowd behaviours and fluid-like movements. In contrast, Agent-Based Models excel in 

scenarios demanding detailed behavioural simulations and individual interactions. The 

choice of model should align with the specific needs and goals of the study or application 

in question. 

 

4.14 Conclusion  
In the concluding section of the proposed methodology chapter, the evolutionary arc of 

the algorithm suite, spanning from the foundational DUCSIM to the advanced Enhanced 

DUCSIM Predictive Analysis Framework (EDPAF), is succinctly summarized. This 

progression encapsulates a strategic development trajectory, beginning with fundamental 

crowd density analysis and advancing towards sophisticated predictive modelling. The 

initial algorithms established the groundwork in crowd dynamics, focusing on basic 

counting and data collection methodologies. Subsequent iterations expanded these 
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capabilities, incorporating elements such as MOBILE tower-based data, quartile 

classifications, and historical data integration, enhancing predictive accuracy. 

 

A notable advancement is observed with Algorithm 4-6, which introduced a 

comprehensive approach to crowd density analysis, integrating daily and weekly 

thresholds and quartile classifications. This framework evolved further with Algorithm 4-

7, transitioning towards active crowd management through real-time historical and 

quartile data decision-making. Continuing this trajectory, Algorithms 4-8 to 4-9 brought 

methodological enhancements. These included streamlined density classifications, 

integrating individual mobility patterns with macroscopic analyses, and incorporating 

cumulative crowd mobility and dynamic social interactions into the predictive models. 

The Enhanced DUCSIM Predictive Analysis Framework (EDPAF) represents the 

culmination of this evolutionary process. This advanced algorithm integrates the strengths 

of its predecessors and introduces dynamic, self-learning mechanisms with real-time 

parameter adaptations. It represents a significant stride in crowd management 

technologies, aiming for heightened precision and adaptability in urban crowd dynamics. 

The proposed algorithms demonstrate a comprehensive and progressive approach toward 

understanding and managing urban crowd dynamics. Each step in this evolution marks a 

technological enhancement and reflects a commitment to improving the efficacy and 

responsiveness of crowd management systems in complex urban settings. 
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CHAPTER 5: CUMULATIVE CROWD 
DENSITY RESULT  

 

The chapter empirically examines cumulative crowd density using simulated and real-

world data from MOBILE towers. This chapter critically examines characteristics and 

evaluates the results using various data resources. A multimodal approach is emphasized, 

which plays a key role in portraying the intricate features in the dynamics of an urban 

crowd. This starts with a comprehensive analysis of the data. In this stage or process, the 

researcher examines the distribution, variation, and inherent pattern in the data through 

their effects on the study results. As a matter of great importance in the assessment, 

eliminating outliers is considered paramount.] Statistics aside, in real-life crowd tracking, 

an outlier is not a statistical fluke but rather a very important scenario like a singularly 

dense gathering or peculiar flows. Concerning those outliers, a strategy is designed to 

handle them in such a way that brings no bias during the evaluation process to conserve 

the authenticity of the results. After the datum analysis, emphasis shifts to applying the 

multi-modal method in calculating the cumulative crowd density. This technique fuses 

different data sources and analytic forms, utilizing their combined power to comprehend 

how a crowd moves and behaves. Simulation data aids in validating and improving 

algorithms in controlled conditions, while actual urban crowd behaviour can be estimated 

with real-world MOBILE tower data used in India. 

 

The results of the comprehensive analysis are carefully examined. This covers the 

effectiveness of the applied algorithms and approaches and what it means to do in light of 

the results obtained. It examines how these findings may improve urban designs, public 

security, and smart city programs. The chapter takes into account possible constraints and 

recommends possibilities for further investigation to provide a comprehensive review of 

the conducted study. This chapter seeks to provide an unambiguous illustration of the 

findings, providing insights into the complexities of crowd movements and behaviour, 

thus advancing the urban crowd management models. 
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5.1 Synthetic Data Details  
 

Developing reliable and authentic datasets is an important factor in the developing 

domain of crowd density estimation. This analysis is based on a carefully designed 

synthetic data set, which imitates the nuances of Mobile tower logs and related 

metadata. This constitutes the starting point in designing and testing highly reliable 

automatic estimation systems that yield quality results. Crowd density estimation has 

varied uses, including urban planning, traffic control, emergency response, and event 

coordination. Reliable data is critical in helping people properly analyze and predict 

human congregation patterns. 

 

On the other hand, using actual MOBILE data also involves many issues, such as privacy 

problems, and it is too complicated just based on pure information analysis. To bypass 

these barriers, synthetic data sets became an imperative instrument. It allows researchers 

to train their methodologies in a safe space. The table 5-1 below presents the dataset with 

index notations and a preview.  The designed synthetic dataset reflects diverse aspects of 

actual world data, including regionalization for different areas, locations, sites, and 

timestamps, as well as crowd density estimates. Each record within the dataset is a 

composite of the following attributes: r_i, s_i, p_i, id_i, lat_i, long_i, t_i, ref_i, curr_i, and 

float_i. The characteristics have been merged to show the movement of crowds as if they 

were being tracked by a set of MOBILEs spread around different locations.  

 

Table 5-1: Real World MOBILE Dataset Example Preview 

Region SubRegion Pincode SitelD Latitude Longitude Time 
Ref 

Count 

Current 

Count 

Floating 

Count 

r1 s1 p1 id1 lat  1 long  1 t1 ref1 curr  1 float  1 

r2 s2 p2 id2 lat  2 long  2 t2 ref f2 curr  2 float  2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

ri si pi idi lat  i long  i ti refi curr  i float  i 

 

This dataset is created to develop a scenario where the robustness and accuracy of crowd 

density estimation algorithms are validated. This makes it possible for researchers to 
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introduce several scenes that cut across variations associated with time, distribution 

patterns, and even density changes – critical factors when conducting these 

estimates. Data is formulated systematically, similar to the records in MOBILE towers, 

while ensuring that no private or secret information concerning individuals is exposed, 

thus protecting their integrity and identity. The subsequent section presents an overall 

description of the dataset's structure, details on how it is formed, and what implications it 

has concerning modelling models intended to estimate crowds’ density. Consequently, 

such a dataset is hoped to support the verification process toward hypothesis/algorithms 

with a view toward innovation and actual implementations. 

 

5.2 Nature of Dataset  
A dataset is integral and realistic in computational data analysis for the credibility of any 

following conclusions. The presented dataset was algorithmically constructed to embody 

the messiness and stochasticity characteristic of actual data, particularly regarding crowd 

density measurements based on MOBILE tower logs. Contrary to manually invented 

datasets with defined distributions, this synthetically crafted one is unconcerned with 

presupposed statistically fixed parameters. The absence of such restraints ensures some 

uncertainty and natural variance, making detecting the inherent pattern complex yet 

important. The nature of the dataset is computed by applying descriptive statistical 

analysis, and distribution functions are applied as mentioned below:  

 

5.2.1 Descriptive Statistics:  
The descriptive statis table presented in table 5-2 explains the dataset comprises 6000 

records resembling MOBILE tower logs aiming at estimating crowd density. The report 

consists of ten distinct regimes as provided under the ‘Region‘ column and further 

subdivided into 50 regimes in general. The high degree of geographic segmentation 

permits comprehensive investigations into people's movement patterns within different 

places. Data for this study also cover numerous postal codes, spanning 422001 – 422050, 

providing an additional local perspective. The dataset also provides around 250 distinct 

SiteIDs, symbolizing different data-gathering locations like MOBILE towers. This is 

crucial because it will form a basis for spatial analysis in crowd density studies. The 

dataset also offers exact geographic coordinates, while the latitudes vary from 19.80932 

to 20.21041, and the longitudes vary between 73.50958 and 73.96233. These coordinates 

are important in mapping the space and crowd movement/density dynamics. The temporal 
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aspect of the dataset is captured through two columns: 'Time' and 'TimeNumeric.' These 

data are collected in twenty-four unique hourly segments of time. TimeNumeric shows 

time in a numeric shape. An average of 690 and a standard deviation of 415,3658 from 

between zero and thirteen hundred eighty. This range provides an overall time distribution 

of the data. The dataset also includes critical measures of crowd density: 'Ref_Count,' 

'Current_Count,' and 'Floating_Count.' An average of 4511.023 and a standard deviation 

1447.026 indicate ‘Ref_Count’ as the benchmarked crowd level. It has an average of 

6739.734 and a standard deviation of 2570.006; this means that in a current count, it 

changes relatively much (real-time crowd density). Knowing about conventional and 

exceptional crowd densities in different places and times makes it vital. 

 

Table 5-2: Descriptive Statistics For Synthetic Dataset 

Dataset Data Type 
Non-Null 

Count 
Mean 

Std 

Deviation 
Min Max 

Unique 

Count 

Region Object 6000 - - - - 10 

SubRegion Object 6000 - - - - 50 

Pincode Int64 6000 - - 422001 422050 - 

SiteIDs Object 6000 - - - - 250 

Latitude Float64 6000 - - 19.80932 20.21041 - 

Longitude Float64 6000       - - 73.50958 73.96233 - 

Time Object (Hr) 6000 - - - - 24 

TimeNumeric Int64 6000 690 415.3658 0 1380 - 

Ref_Count Int64 6000 4511.023 1447.026 2000 6999 - 

Current_Count Int64 6000 6739.734 2570.006 1988 13881 - 

 

The comprehensive nature of the dataset’s geographic, temporal, and density-related 

characteristics renders it an effective instrument for precise estimation in crowd density 

research. It applies a structured methodology for replicating empirical data, making it 

suitable for designing and validating prediction algorithms relevant to the crowd’s 

denseness investigations. 

 

5.3 Data Distribution  
To learn about the nature of the dataset, we can see the kernel density distribution in the 

picture below—the Histogram of the ‘Ref_Count’ variable in figure 5-1 (A). The 

distribution seems uniform when we look at the bar heights at different value ranges. This 
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indicates a relatively low variation in the crowd densities’ reference counts across the 

dataset, with none consistently higher than the rest. 

 

Figure 5-1 (B) is illustrated in the “Current-Count” histogram on the right. It is right-

skewed with a peak that implies a modal value on the lower end of the scale. To the right 

are the long tails showing occasional high current count occurrences. Skew may indicate 

periods with higher and lower crowd density than average. 

 

 
                         (A)                                                                              (B) 

Figure 5-1: Data Distribution for Reference_Count & Current_Count 
 

The figure 5-2 below is the scatter plot, whereby colour and symbols symbolize one of 

ten regions for each site’s latitude and longitude. Clustering of the points implies a wide 

representation of the data collection locations within certain regions, whereas some others 

do not feature such clusters. Site diversification is essential in analysing the patterns of 

crowd density since it shows that the data set included various urban densities covering 

likely different environments like commercial, residential, or industrial. 
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Figure 5-2: Geographical Distribution of MOBILE Tower Sites 
 

These plots show that the design of the dataset was intended to include a broad range of 

people per square meter (density) as well as geographical locations, a condition that 

provides appropriate tests against crowd density modelling using typical or actual data. 

 

5.4 Median Threshold: Reference Count & Current Count 
Based on the box plot figure 5-3, (A) the median value of the reference count lies around 

4500, the middle line of the respective box. In addition, the width of the box – the interval 

between 4000 and 5000, depicts the inner middle quarter of the numbers. These whiskers 

are about 2000 – 7000, denoting most non-outlier data. There seems to be no one point 

outside whiskers, implying a relative constancy of reference without excessive swings. 

The boxplot Figure 5-3 (B) for the Current Count shows a larger median towards the 

neighbourhood of 7000, which is also greater than the reference count. The reference 

count is narrower, with a range similar to about 6000 and 8000 in its middle 50%, 

revealing a larger distribution for the interquartile range. Whiskers reach around 2000 and 

above 13999, signifying an increased range of data and, hence, a higher variance in the 

current count. Such patterns may indicate a day having higher crowds, e.g., during certain 

hours or at specific events like festivals and parades. 
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                 ( A)                                                                       (B) 

Figure 5-3: Median Threshold Distribution for Reference_Count & Current_Count 
 

5.5 Time Series of Current Count  
 

Figure 5-4 presents the Crowd density does change over the time series plot of the 

Current Count at certain times of the day. Accordingly, the graph reveals the count's 

constant rise and fall, implying rushes during the day at some points or 

occurrences. Some dips are apparent, especially at around 3,9,21, which may mirror the 

average nighttime timeslots. The apex of eight, ten, and sixteen suggest possible times of 

the day with the largest masses. 

 

 
Figure 5-4: Temporal Distribution of Current_Count 
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The plots indicate that the dataset captures variations in crowd density both over time and 

across different metrics (Reference vs Current Count). The Reference Count remains 

relatively stable, whereas the Current Count has greater variability and higher peaks, 

which are crucial for understanding crowd dynamics. The temporal analysis indicates that 

the density fluctuates throughout the day, which could be valuable for planning crowd 

management and infrastructure usage. 

 

5.6 Grouped Histogram  
 

The histograms figure 5-5 below for 'Ref_Count' and 'Current_Count' suggest distinct 

distributions of crowd density measurements. 'Ref_Count' shows a relatively uniform 

distribution across its range, with counts evenly distributed, indicating a consistent 

baseline of crowd density measurements across various sites or times. The 

'Current_Count' displays a right-skewed distribution with a concentration of values at the 

lower end and a tail extending towards higher values, which signals that while most of the 

crowd density measurements are lower, there are occasional spikes that could correspond 

to specific events or peak crowd times. 

 

The latitude distribution is multimodal, indicating several peaks where data points are 

concentrated, which reflects multiple hotspots of geographic activity within the dataset as 

the dataset is created to mimic a world dataset from Nashik, the district in India, and is 

focused on a range of 60-90 km in and around the city. The longitude distribution shows 

multiple peaks, suggesting a non-uniform spatial distribution of the sites within the data, 

and this is because the dataset is spread sparingly in some locations to cover the highways 

and railways from about 90km away from the city's centre.  

 

Scatter plots across 'Ref_Count' and 'Current_Count' reveal a linear pattern, indicating a 

strong positive correlation; higher reference counts tend to be associated with higher 

current counts. This relationship suggests that areas or times with historically high crowd 

densities will likely maintain these levels in real-time measurements. 

 

When 'Latitude' and 'Longitude' are plotted against 'Ref_Count' and 'Current_Count,' no 

discernible pattern indicates any correlation. This lack of a clear trend suggests that crowd 

density counts are not strongly influenced by the specific latitude or longitude of the sites 
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within the dataset's range. The scatter plot between 'Latitude' and 'Longitude' reveals a 

dispersed pattern with some clustering, indicating that sites are spread across various 

geographic locations, with some areas having a higher concentration. The dataset is 

expected to be concentrated in the city's centre and spared in the outer circle of the city.  

 

 
Figure 5-5: Paired Distribution for Key Data Columns 
 

The nature of the dataset, as portrayed by the pair plot, indicates variability in crowd 

density with certain geographic clustering of data collection points. The strong correlation 

between the reference and current crowd counts a predictable pattern as this data set is 

created to replicate the real-world data set from Kumbh Mela, 2015 1  , which was a 

 
1 https://a-lavanya.medium.com/crowd-steering-during-massive-gatherings-and-in-daily-life-with-cell-
tower-pings-54c3612874ae 
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massive crowd gathering of 100 million people in the city of Nashik, Maharashtra, India 

over the period of 40 days, that can be leveraged for further crowd density analysis and 

modelling. 

 

5.7 Outlier Computation   
 

Detecting outliers in the crowd density and crowd count prediction is paramount for 

building trustworthy predictive models. In addition, outliers could signify an increase in 

the crowds, which cannot be explained through some unexpected event. These outliers in 

crowd density estimation can represent anomalies such as festivals, concerts, 

emergencies, or machine errors. These outlier understandings are important for several 

reasons. They may be alerted for unusual and atypical behaviour that needs 

reinforcement, like extra security or medical services when in crowds. 

 

Moreover, outliers can largely distort predictions in model development, thus causing 

overfitting or underfitting, which may be corrected when properly handled. Identifying 

and understanding abnormal observations helps data scientists improve their models to fit 

the outliers or keep attention to normal situations for forecasting purposes. Therefore, 

outlier detection in crowd density data helps improve surveillance systems and enhances 

urban planning and other related aspects, including infrastructure improvements, as it 

highlights areas or times in which crowd behaviours deviate from the expected ones. This 

improves public services' and organizers' readiness and incident response policies, 

making crowd control and safe operations easy. Table 5-3 systematically identifies outlier 

locations and transitions, to understand the dynamics of crowd movement and distribution 

and make decisions about ordinary and emergent conditions. The table below illustrates 

the number of outliers based on hour, i.e., time.  
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Table 5-3: Spatio-Temporal Outlier Distribution 

Hour 1 3 9 11 12 13 14 16 17 19 21 22 

Number of 

Outliers per 

Location   

 (areas covering 

about 5km of 

radius) 

5 2 2 2 1 1 1 1 1 1 4 4 

 

The figure 5-6 below illustrates hourly outlier detection across two statistical measures. 

The mean threshold method, shown in dark red, consistently identifies a higher number of 

outliers across all hours, ranging from just over 100 to nearly 125 (Sites = Micro location 

of MOBILE towers located at every half km in urban area) per hour. The median 

threshold approach, represented in light blue, detects fewer outliers, staying close to 100 

for most hours. This contrast indicates that the mean threshold is more sensitive to 

extreme values, possibly due to its susceptibility to skewness in the data. 

 

 
Figure 5-6: Mean Vs. Median Threshold Outliers 
The figure 5-7 shows vertical lines represent outlier counts for different subregions across 

each hour. The plot shows consistent outliers across all subregions throughout the day, 

with occasional spikes. i.e., SubRegion 50 shows a notable peak around 11:00, suggesting 

an abnormal increase in crowd density at that hour. This granularity reveals the specific 

subregions and hours where outlier counts are particularly pronounced, which signals 

unusual crowd activity or data anomalies in those areas. 
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Figure 5-7: Spatio Temporal Outlier Distribution at Micro level 
 

Analysis of outliers in the dataset throws light on aberrational crowd density across varied 

sub-regions and time intervals. These outliers are important for improving crowd 

management systems because they identify areas and periods different from normal 

practices. Understanding these deviations will enable better adjustment of predictive 

models, improving emergency preparedness and handling unexpected large crowd surges 

for public safety while allocating enough resources simultaneously. 

 

5.8 Threshold Results  
 

The first step in real-time crowd density estimation without benchmark data is 

establishing the threshold values. Threshold measures play key roles in recognizing 

abnormalities with reference points within which values are deemed acceptable. It is 

quantitative; it allows for issuing alerts, hence quick management of people-based crowd 

phenomena. 

 

5.8.1 Threshold Algorithm 1 Results  
 

The CCDF Figure 5-8 illustrates the complementary cumulative distribution function 

(CCDF) of threshold values for 'Ref_Count' and 'Current_Count'. The CCDF for the 

'Current_Count' threshold (blue line) descends sharply, indicating a rapid drop-off in the 

frequency of higher threshold values. Most threshold values are concentrated in the lower 

range, with nearly all values falling below 200,000. The 'Ref_Count' threshold (orange 

line) shows a more gradual descent, reflecting a more even distribution across a broader 
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range of threshold values, with none exceeding 600,000. This suggests that 

'Current_Count' has a tighter clustering of threshold values while 'Ref_Count' spans a 

wider range. 

 

 
Figure 5-8: Ref_Count Vs Current_Count Threshold Comparisons 
 

The figure 5-9 ( A-J) below for each subplot represents a section with sum counts of 

current_count which shows the distribution of crowd over hours and every region, thus 

providing indications of the level changes in the population during a single day. As an 

illustration, there are rises and falls of crowd density within region number one, which 

could match rush hour periods or event times and have different characteristics for 

distinct regions. Remarkably, Region 6 is observed to have a hump, signifying that there 

was an incident or an anomaly in the crowd distribution. 
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

  

(G) (H) 

  

(I) (J) 
 

Figure 5-9: Current_Count Crowd Density Presentation Region Wise 
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The figure 5-10 below is the total number of people in all the regions per hour daily. The 

number of people is steadier, but not much so. The count values vary between 1.49 

million and 1.73 million people, not one hour showing a dramatic change from that band, 

meaning fairly steady flow and crowd density is not high. 

 

 
Figure 5-10: Temporal Distribution of Crowd Density 
 

The assessment of crowd density using different thresholds and by-hours distributions in 

different regions has offered an understanding of crowd motions. This has emphasized the 

need to develop rigid thresholds to enable effective real-time crowd density estimates, 

which will benefit proactive crowd management and crisis preparation. The fact that total 

crowd density was consistent between hours and regional differences indicates the need 

for a localized monitor to deal with specific challenges in every region. 

 

5.9 Median Vs. Mean Results  
 

Crowd density is measured using median values because these values tend not to be 

skewed by extreme outliers that might influence mean values. The robustness of medians 

in measures of typical crowd conditions makes it hard to trigger a threshold-based system 

for anything that is truly abnormal and not mere outliers. Therefore, crowd monitoring is 

more precise with median-based thresholds. The figure 5-11 below illustrates the 
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comparison between the mean and median threshold values shown with an hourly 

variation while the medians are constant. This orange line is referred to as a mean 

threshold, which is rather unstable, showing significant ups and downs, the last observed 

at night. 

 
Figure 5-11: Comparison of Mean vs Median Threshold 
 

The figure 5-12 below represents the range for median and mean crowd density 

thresholds in different subregions. Compared to the minimum and maximum values of the 

first thresholds (red), the latter exhibit fewer oscillations between their limits, falling 

close to a smaller area. The median thresholds, marked in blue, show comparatively 

narrow variations, with their respective maxima rising much above the medians. In this 

context, such conduct reflects the median’s resistance towards outliers as an apt threshold 

standard of crowd density. 
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Figure 5-12: Min-Max Comparison Mean Vs. Median 
 

Comparison between median and mean thresholds at different sub-regions and time 

frames reveals that the median is more useful in estimating mean crowd density. It gives a 

stable and less variable measurement that suits well with real-time applications, in which 

sharp changes caused by exceptional happenings are distinctly distinguished from typical 

changes. A median threshold's stable nature means it is the more trustworthy metric for 

managing crowd control systems; they must be strong enough towards data anomalies not 

to raise false warnings and respond adequately to real crowd density changes. 

 

5.9.1 Threshold – Median & Median-Of-Median  
 

Median Threshold plays a critical role in modelling for highly accurate determination of 

crowd density. It forms the basis for distinguishing ordinary crowd behaviours from 

extraordinary incidences. It is an objective yardstick against distortion through abnormal 

information points. It should be consistent enough to guarantee reliable real-time analysis 

and forecasting. The Median of Median Threshold comes up as a more improved strategy 

that further enhances the strength of the median approach. This approach involves 

averaging multiple median values of different data sets or specific periods that capture the 
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essence of crowd dynamics in enhancing the model prediction capability of managing 

crowd density for improved precision. 

 

The figure 5-13 shows the current count's difference between the hourly median-of-

median. The hourly median levels, which differ significantly, signify variable counts for 

various hours. The median of the median line, on the other hand, tends to be much 

smoother, which means that it exhibits less sensitivity to short-run changes, hence 

capturing more reliable information on data trends over time. 

 

 
Figure 5-13: Comparison of Threshold Median vs Median-of-Median for Current_Count 
 

The reference count Figure 5-14 displays the hourly median values for reference counts, 

and their fluctuations indicate the different reference counts for various hours. In contrast, 

the median line's median shows a flatter pattern, reflecting lesser responsiveness to 

changing fluctuations in the general data trend. 
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Figure 5-14: Comparison of Threshold Median vs Median-of-Median for Reference 
Count 
 

While plot hourly medians can show some changes regarding immediate short-term 

trends, both prove that hourly medians vary a lot, and thus there are big changes in 

general. The median of medians, however, presents a better, if more stable, index, able to 

smooth over any short-term fluctuations, showing what lies behind the general 

trend. Thus, median-of-median is an appropriate metric for analyses inclined towards 

comprehending general tendencies and weeding out spurious deviations. 

 

5.10 Retrospective Crowd Density Results  
 

The retrospective crowd density analysis provides an overview of what is typically 

observed in different regional settings over time. The method relies on previously 

collected data for assessing crowd behaviour, fluctuations in densities, and temporal 

trends. Retrospective analysis of parameters such as reference, current, and floating 

counts can reveal information on peak density periods, spatial patterns, and events that 

may lead to crowd density fluctuations. These analyses provide useful information that 

can be used to develop better future crowd management strategies, improve public safety, 

and allocate resources in anticipation of occurrences and gatherings. With that, building 

on the predictive models and creating strategic plans relevant to urban and event 

management is easier. 
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5.10.1 Crowd Overview Heatmap  
A heat map figure 5-15 shows current population densities for each area at a specific 

hour. The darker shade of blue denotes the areas with higher crowding, and the lighter 

one represents those with a lower population density. For some instances, the peak 

crowds within certain areas seem to occur during certain instances, which might be rush 

hours or events. However, in other areas, a similar distribution pattern is less 

consistent. However, the area designated as “Region 1” shows a high population in almost 

all periods as opposed to the rest of the region, suggesting that this is where people 

mostly gather. 

 

 
Figure 5-15: Heatmap Crowd Density Distribution Time vs Region 
 

5.10.2 Crowd Assessment – Granular Level  
 

The following set of plots named figure 5-16 to Figure 5-25 display the crowd density 

statistics in different sub–regions under each covering region. They track three key daily 

metrics: Ref_Count, Current_Count, and Floating_Count. The temporal characteristics 

differ in subregions; however, some demonstrate sharp peaks that might indicate rush 
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hours or event-directed crowds, whereas others express uniform daily counts. In each sub-

region, the Current_Count may reach their peaks at particular points, implying that there 

could be repeating periods of congestion and events that attract many persons during such 

instances.  

 

A. Crowd Desnity Distribution Resgion 1  

The distribution of crowd density in figure 5-16 (SubR-1 to SubR-5) across the sub-

regions is also very much time based. In contrast to Reference Count and the less lumpy 

Floating Count, "Current Count" characteristically demonstrates spiky peaks suggesting 

strong levels of activity. These millimeter-high humps may signify particular hours or 

parts of a day when huge volumes mass together--or hives out suddenly--in response to 

work schedules or social functions. But the other figures indicate that people were about 

evenly distributed throughout the day. Understanding these patterns is essential for 

effective crowd management, infrastructure planning and service provision in each sub-

region. 

  

SubR-1 SubR-2 

  

SubR-3 SubR-4 
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SubR-5  

Figure 5-16: Crowd Density Metrics – Regions 1 (Sum_Count Vs Hours) 
 

B. Crowd Density Distribution Region 2  

The line graphs in figure 5-17 for SubRegions 6 through 10 illustrate the hourly crowd 

density with three measures: Current Count, Reference Count and Floating 

Count. Current Count for SubRegion 6 has very pronounced peaks, especially during the 

early hours and at the end of the day. SubRegion 7's Current Count is similarly  

fluctuating with great jumps in numbers, showing that crowd movement can 

vary. SubRegion 8 shows a clear peak around the 18th hour in Current Count, while 

Reference and Floating Counts are still relatively stable. And SubRegion 9 comes to a 

nearly identical conclusion, with an especially jarring peak in Current Count at just past 

the twentieth hour. Lastly, Current Count in SubRegion 10 rises sharply about two hours 

after noon. In general, the Current Count shows more frequent and higher values than do 

others. Generally speaking, this hints at times of concentrated activity within a given 

interval. 

 

  
SubR-6 SubR-7 
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SubR-8 SubR-9 

 

 

SubR-10  

Figure 5-17: Crowd Density Metrics – Region 2 (Sum_Count Vs Hours) 
 

[3]. Crowd Density Distribution Region 3  

These data visualized in figure 5-18 for SubRegions 11 through 15 illuminate the 

fluctuation in crowd density over time of day; represented by numbers looking at Current 

Count, Reference Count and Floating Count. The Current Count also shows a clear peak 

at the end of the day in SubRegion 11, demonstrating that crowd activity surges later. The 

middle of the day shows a huge jump in Current Counting for SubRegion 12, while 

Reference and Floating examples remain more stable. The late evening Current Count is 

especially remarkable in SubRegion 13. According to the Current Count, a mid-day peak 

and another in the late afternoon. Finally, SubRegion 15 shows a strong upward spike in 

the Early Hours with another distinct increase towards late evening. In these sub-regions 

the Current Count fluctuates wider than either the Reference or Floating Counts, 

demarcating causations of crowding in time. 
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SubR-11 SubR-12 

  

SubR-13 SubR-14 

 

 

SubR-15  

Figure 5-18: Crowd Density Metrics – Region 3 (Sum_Count Vs Hours) 
 

[4]. Crowd Density Distribution Region 4 

 

The figures below show the fluctuation in crowd counts by hour for SubRegions 16 

through 20. Within these subregions, numbers vary noticeably over the course of a 

day. For each subregion, three types of counts are compared: Current Count, Reference 

Count and Floating Count. In particular, Current Counts peak at specific hours. It is 

speculated that this may be due to routine arrival and departure from work or 

transformation stations. The Reference Counts, stable indicators of historical 
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baseline. Floating Counts, which would seem to be lowest in all sub-regions and could 

represent a short term or less stable segment of the population. There are also differences 

in the peak times and amounts of counts between subregions, which represents unique 

distribution and movement patterns within each area. This data shows us just how 

dynamic crowd movement and density can be. For urban planning, resource 

allocationsand understanding human behaviour in these areas this could become very 

important information. 

 

  
SubR-16 SubR-17 

  
SubR-18 SubR-19 

 

 

SubR-20  
Figure 5-19: Crowd Density Metrics – Regions 4 (Sum_Count Vs Hours) 

 

[5]. Crowd Density Distribution Region 5  

 

The addition crowd count graphs for SubRegions 21 through 25 continue to show the 

hourly fluctuation in density of population. The Current Count stresses large peaks 
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and troughs, which could be representative of a standard day's activities, such as 

getting to work or playing. Reference counts, probably representing an historical 

average, show less pronounced variations. A relatively stable pattern is indicated over 

time. Still the lowest are Floating Counts, signaling perhaps a subset of society that is 

sporadic or mobile. Different subregions have different temporal patterns; some with 

sudden jumps upward or downward at particular hours. These patterns are of 

enormous importance in deciphering the features of temporal crowd dynamics which 

can help optimize management, on a subregional level at least and also permit more 

efficient traffic planning as well as better emergency response preparation within any 

given national or cultural locality. 

 

  
SubR-21 SubR-22 

  

SubR-23 SubR-24 

 

 

SubR-25  

Figure 5-20: Crowd Density Metrics – Regions 5 (Sum_Count Vs Hours) 
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[6]. Crowd Density Distribution Region 6  

SubRegions 26 through 30 A series of graphs showing crowd counts by the hour breaks 

down efficiently into three separate groups with clear patterns of fluctuation for Current, 

Reference and Floating Counts. The current counts vary widely, with some of the swells 

during certain hours perhaps representing logically those which subserve indeed have 

often taken place but up to date time even if they are just about things that happen every 

day or by gathering groups. Crowd density is most commonly represented through 

reference counts, which show more steady trends. These could be representative of a 

normalized or enough crowd density range based on historical data. Suggesting a degree 

of uncertainty or unexpectedness and chance (it's not the same people every time), 

Floating Counts fell without exception in all sub-regions. These figures show how 

swirling the crowd flows and where it crawls--information of great value for both urban 

administration and event planning, not to mention design saving effort digging streets like 

rabbit burrows. 

 

  
SubR-26 SubR-27 

  
SubR-28 SubR-29 
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SubR-30  

Figure 5-21: Crowd Density Metrics – Regions 6 (Sum_Count Vs Hours) 
 

[7]. Crowd Density Distribution Region 7  

 

The graphs for SubRegions 31 through 35 depict the hourly crowd counts, 

showcasing the variations within each category: Count, reference count and floating 

count. Current Count shows a pattern oscillating daily, with peak surges probably 

coming during rush hours or other times of high activity. The troughs might represent 

slower days or quieter dead time. The Reference Count shows a more stable pattern, 

and seems to represent an average or expected count based on past surveillance. The 

Floating Count, consistently lower than any of the others indicates a portion of society 

that is always fluctuating and in flux. These across-the-board patterns within the 

subregions could reflect very different types of socioeconomic activity and migration 

flows unique to each area that can be helpful in planning and managing operations. 

  

SubR-31 SubR-32 
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SubR-33 SubR-34 

 

 

SubR-35  

Figure 5-22: Crowd Density Metrics – Regions 7 (Sum_Count Vs Hours) 
 

[8]. Crowd Density Distribution Region 8  

Hourly fluctuations in crowd density are shown by data from SubRegions 36 to 40. There 

is a different pattern for Current Counts peaking in each subregion, perhaps due to local 

events or rush hours. Reference Counts trace out more of a stable trend line--probably an 

average expectation based on historical data. League Floats are the most inconstant, being 

obviously a fluid or occidental population subgroup. These variations in counts are of 

course important for understanding the nature of crowd dynamics, and can help plan 

municipal services, emergency response or event organization. 

  

SubR-36 SubR-37 
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SubR-38 SubR-39 

 

 

SubR-40  

Figure 5-23: Crowd Density Metrics – Regions 8 (Sum_Count Vs Hours) 

 

 

[9]. Crowd Density Distribution Region 9  

The crowd count graphs for SubRegions 41 to 45 show significant diurnal 

fluctuations. Each subregion has sharp peaks on the Current Counts graph which may 

correspond to certain incidents, or max activity times. And troughs seem probably related 

with quieter periods of time. A relatively steady pattern in Reference Counts implies an 

average at a stable level throughout history. Floating Counts are smaller and more 

volatile, implying that they perhaps record a temporary or mobile portion of the 

population. These patterns reflect relatively local activities and can help predict and 

respond to crowd-related demand in these areas. 
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SubR-41 SubR-42 

  
SubR-43 SubR-44 

 

 

SubR-45  

Figure 5-24: Crowd Density Metrics – Regions 9 (Sum_Count Vs Hours) 
 

[10]. Crowd Density Distribution Region 10  

Counts per hour across subregions (current, reference and floating) are shown in these 

line graphs. There are also some noticeable changes, and currents for instance peak at 

certain hours. This could point to trends or patterns of activity in the future. For 

example, in SubRegion 41 a prominent peak exceeding the current count of more than 

4500 is reached. The floating and reference counts vary to only quite an extent across 

one day. However, SubRegion 50 is more purely regular in the entire region. The 

lowest overall values remain within a narrow range-not over thirty thousand. These 
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maps illustrate the temporal nature of such counts, displaying both similarity and 

difference among different subregions on any given day. 

 

  

SubR-46 SubR-47 

  
SubR-48 SubR-49 

 

 

SubR-50  

Figure 5-25: Crowd Density Metrics – Regions 10 (Sum_Count Vs Hours) 
 

The data over time shows rather great variations in activity patterns. Reality is such that 

there are currently very frequent peak spikes; whereas when I as well have looked at 

reference and floating counts, they do show greater continuity throughout the day up until 

this point. 
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5.11 Cumulative Distribution – All Regions  
 

The figure 5-27 present a summarized graphical representation of ‘Current Count’ data 

for several regions. Similarly, each Histogram shows the extent to which crowd sizes are 

alike in each area and has the tallest bars corresponding to the most common 

counts. These distributions most likely correspond to a certain area of typical crowd 

density within each region. In some areas, there is a tight dispersion, which means that the 

crowd size remained constant or similar for most of the period, while other areas had 

broader spreads, implying higher variation in the number of crowds in those 

locations. Such a pattern illustrates how specific events associated with a certain place 

determine the typical movement of people in a given area. 

 

 
Figure 5-26: Cumulative Distribution for Crowd Density All Regions 

 

Analysis of crowd density metrics using various visualization techniques shows varied 

patterns of crowd distribution in different parts and hours. Inference from this information 
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shows an important fluctuation in population density and intensity. Such findings have 

crucial informative value for improving crowd control policies and understanding space-

time crowd dynamic processes. 

 

 

5.12 Algorithm 6: Multivariate Crowd Density Analytical Framework (CD_AF) 
Results 

 

The primary goal of this research is to utilize the Historical Threshold Crowd Density 

Classification methodology. First, it seeks to capitalize on the normally overlooked power 

of historical data in providing an additional dimension to contemporary crowd ratings 

beyond the surface meaning. The figure 5-28 shows that algorithm analyses the historical 

data to discover the hidden patterns and trends of crowd density, which is not obvious in 

real-time data. The method adopted aligns to improve predictive precision regarding 

urban planning and crowd control measures. Urban Planners and authorities can use this 

information to plan by making informed decisions to predict future challenges and 

implement preventive measures. 

 

 
Figure 5-27: Class Diagram Algorithm 6 

 

5.12.1 Threshold Current_Count  
 

The maximum median reference count is observed between the ninth and eighteenth hour, 

with values exceeding 4800. The median reference count dips noticeably around the 8th 

and 16th hours, falling below 4300. The data show that there is a daily fluctuation of 

reference counts with peaks of activity. 

 

5.12.1.1 Distribution of Current_Count  
The figure 5-29 presents medians estimated at approximately 6,000 to 9,000, with a 

change based on hourly intervals. As the day ends, more sporadic spikes of outliers can be 
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noted. There is variation in the various hourly count numbers, as indicated in respective 

IQRs. 

 
Figure 5-28: Current Count vs Hour Distribution 

 

5.12.2 Crowd Classification  
 

CCDF plots in figure 5-30 (A to J) depict the probability of classifying a region with 

particular or higher values. The higher the crowd classification code, the higher the crowd 

density. The graphs depict downward movements, indicating fewer highly dense 

areas. The CCDF value is 0.2, at a ‘high’ level; this means that out of all the observations, 

20% are high and above. Different slopes and sizes of steps demonstrate that crowd 

densities vary between regions. 
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(A) (B) 

  
( C) (D) 

  

(E) (F) 
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(G) (H) 

  

(I) (J) 

 
Figure 5-29: CCDF for Crowd Classification vs Region 

 

5.12.3 Crowd Density Heatmaps 
Faceted heat maps show in figure 5-31 (A to J) shows the distribution of crowd density 

classifications such as High, low, and medium at different hours in multiple areas. The 

intensity of the color in each heatmap cell correlates with the classification frequency: 

darker shades indicate higher occurrences. Dark-blue cells indicate occasions with higher 

‘High’ cases, implying high crowd concentration. On the other hand, light cells denote 

low counts compared to yellowish ones that portray minimum crowding. Every subplot 

represents one particular region, facilitating crowd density trends in regions.  
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(A) (B) 

  
( C) ( D) 

  
( E) (F) 
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(G) (H) 

  
( I) ( J) 

 
Figure 5-30: Classification Distribution Time vs Region 

 

Analysing hourly reference counts, current counts’ distribution, and classification 

heatmap explicitly shows each region's density. The peaks, in many cases, their median 

were high. This indicated that in some instances, the density may increase with the 

varying fluctuations within the existing range of values of the present count. The 

classification heatmaps with constant high-density events occurred separately in each 

region as their temporal patterns. This portrays a complex network between issues, 

resulting in varied crowd behaviour depending on time and place. 
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5.13 Algorithm 7: Proactive Crowd Management Paradigm (PCMP) Results  
The class diagram in figure 5-22 shows classifying crowd density results using a dataset 

containing ‘Time,’ ‘Ref_Count,’ and ‘Current_Count’ as records. The algorithm processes 

these data within every hour, distinguishing the records as either “Above Median” or 

“ The subsequent step involves another quadratic categorization where all records are 

finally allocated under ‘Low,’ ‘Medium,’ and ‘High’ categories of crowd density. The 

methodological approach presents a thorough analysis of crowd dynamics focusing on 

temporal changes of spatial variability over different periods. 

 

 
Figure 5-31: Class Diagram Algorithm 7 

 

5.13.1 Historical Threshold  
The figure 5-32 shows the hourly thresholds of the median crowd count during the 

twenty-four hours. Median crowd count changes over time, peaking at an average of 

about 4,800 minutes before hour 5 and showing significant valleys going down to about 

4,200 people between hours 9 and 10. The figure also shows varying crowds since there 

are other significant peaks around 10 hours, between 15 hours, and after 20 hours. 
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Figure 5-32: Threshold Median - Reference Count 

 

5.13.2 Crowd Density Classification  
The figure 5-34 displays the current count's complementary cumulative distribution 

function (CCDF) for three classifications: Low, Medium, and High. CCDF indicates that 

the higher count drops for all three classes with the current value increase. Approximately 

ninety-five percent of the ‘low’ classifications have a count of less than two thousand; 

above fourteen thousand is the count for most in the ‘high’ classification. This means 

there are many different values for crowd counts, and the three classifications are distant. 
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Figure 5-33: Crowd Classification Distribution 

The hourly median crowd count chart reveals wide fluctuations in crowd density, ranging 

from as high as approximately 4,800 to less than 4,200 on varying occasions. The CCDF 

chart complements this by showing the probability distribution of crowd counts across 

three classifications: Low, Medium, and High. ‘Low’ mainly encompasses counts below 

2000 while ‘High’ extends to more than 14,000, thus depicting distinct crowd density 

categories. The proposed algorithm effectively captures the changing spatiotemporal 

fluctuations in crowd density. 
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5.14 Algorithm 8: Results of Streamlined Crowd Density Taxonomy (SCDT) 
(Median Threshold) 

 

The figure 5-35 presents the class diagram for the implementations of crowd data D, on 

which the sophisticated algorithm is applied involving the records containing ‘Hour’ and 

‘Current_Count.’ It begins with partitioning the dataset into different hours. After that, 

median thresholds are calculated for these hours, forming a threshold for every entry and 

further classified as ‘above threshold’ or ‘below threshold.’ It also does a quartile ordering 

of ‘Current_Count’ values, placing records into corresponding quartiles. These categories 

and classifications are integrated with the thresholds calculated. Below is a class diagram 

illustrating the implementation structure of the algorithm.  

 

 
Figure 5-34: Class Diagram for Algorithm 8 

 

5.14.1 Median Threshold Results  
The figure 5-36 illustrates the median threshold values over the course of a day. A single 

point on the graph represents the median ‘Current_count’ for every hour and sheds light 

on the changes in these counts over time. This mirrors the daily trends within the data, 

like hourly peaks and troughs. Varying features in the plot signify that the dataset records 

various activities and events during different hours (days). 
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Figure 5-35: Threshold Median Current Counts 

 

5.14.2 Crowd Density Distribution  
The figure 5-37 illustrates the CCDF presentation of two-level classification  

Above Median: The CDF corresponding to crowds’ count over the threshold. The sharper 

drop in this line shows that high crowds occurred less frequently. 

Below Median: Shows the CCDF for crowd counts under the median cutoff value. This 

curve has a slower slope, signifying an increased evenness of lower crowd counts. 

 
Figure 5-36: CCDF Threshold Crowd Density Classification 
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5.14.3 Crowd Density Granular Distribution  
CCDF plot in figure 5-38 depicts an elaborate description of the crowdedness, 

highlighting the features in diverse categories. The blue curve shows that the number of 

people is greater than the median and, therefore, classified as ‘High Density.’ It reveals 

how often high crowd counts happen in this particular density range. The Cyan curve 

shows counts above the median threshold classified as ‘Very high density.’ The “Medium 

Density” graph counts with values less than the median beneath the Median Threshold 

Curve. The curve illustrates a greater level of consistency in the distribution of crowd 

counts, which implies that medium-density occurrences were more evenly 

distributed. The Orange Curve represents the count; though they are under the median 

level, they still exist in ‘High Density.’ It shows a sharp difference against the higher-

than-average low-density numbers, depicting disparities in crowd density beyond mere 

average levels. 

 

 
Figure 5-37: Granular Level Crowd Density Classification 

The algorithm for processing the dataset and an extensive study of the crowd’s density 

pattern have been made. The analysis showed that by grouping the data into hourly 

increments and the thresholds with median, there is a clear distinction of the temporal 

change in crowd density because the counts were categorized as either above or below 

these average threshold values. The application of quartile classifications improved the 

comprehension, as revealed on the CCDF plots, depicting the dispersal of crowd densities 

among different levels and periods. Adopting this robust process helped to get a multi-
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faceted interpretation of the data, essential when making informed decisions about urban 

planning traffic flow, among others. 

 

5.15 Conclusion  
The chapter investigates various synthetic data sets for crowd density estimation to 

replicate real needs related to these growing fields. The created dataset, carefully 

elaborated to imitate authentic MOBILE information, is one of the main sources used to 

evaluate crowd density estimation algorithms. This dataset has complex attributes and 

structures that facilitate comprehensive testing of algorithms in various circumstances, 

making it an important tool in advancing methodologies in crowd density 

estimation. These findings contribute to guiding actionable implementation processes that 

can potentially transform urban planning, traffic management, and emergency responses 

in an opportunistic environment. 
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CHAPTER 6: ALGORITHM 14: 
INTEGRATED CROWD DENSITY 
ESTIMATION (SYNTHETIC VS REAL 
MOBILE)  

 

6.1 Real-World MOBILE Data Details  
 

A crucial project was implemented in 2015, where over one hundred million pilgrims 

were expected during the Kumbh Mela in Nashik, India. I was also allowed to use 

MOBILE tower log-meta data from eight telecom companies, of which I was the sole 

innovator. This was a joint project with MIT’s Kumbhathon, Nashik Municipal 

Corporation, and the TRAI that would use the data to prevent possible stampedes and 

ensure public security. We used latitude, longitude reference count and current count data 

from every telecom site as a basis for this crowd management analysis. This is the first 

time that data is being used after 2015. An understanding agreement was discussed to 

preserve the data for at least a few years. 

 

By 2023, out of 8 telecom operators, only Airtel and BSNL companies are strong in the 

market until now. Reliance (CDMA + MOBILE) was closed, and later, Reliance Jio was 

launched as a fresh start. Vodafone and Idea Telecoms are merged, and a new company is 

formed Vi, Tata (CDMA + MOBILE) is closed for good, Uninor, which was later turned 

into Telenor, is closed for good and the last telecom Aircel is also closed for good. Thus, 

the dataset is no longer in violation of any sort. The full data set consists of 1 full day 

reference taken randomly in June 2015 and later from July to Sept 5 days with + 12 hours 

each before and later are collected from the most important days of Kumbh Mela. For this 

research, only 24 hours of data from one of the most crowded data sources is considered. 

The choice of considering only 24 hours of data is to have macro and micro 

understanding of real-world MOBILE tower connection log-meta data in context to 

crowd density estimation and prediction.  Here is the comprehensive summary table 6-1 

that integrates the key metrics from the MOBILE data set used for the Kumbh Mela 

project: 
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Table 6-1: Real World MOBILE Data Metrics 

Metric Value 

Current Count (Mean) 1084.41 

Current Count (Std Dev) 2436.88 
Current Count (Min) 0 
Current Count (25%) 339 
Current Count (Median) 569 
Current Count (75%) 1149 
Current Count (Max) 61058 
DateTime (Unique) 13-09-2015 01:00 
Latitude & Longitude (Count) 851 
Reference Count (Mean) 1433.81 
Reference Count (Std Dev) 1084.92 
Reference Count (Min) 0 
Reference Count (25%) 568 
Reference Count (Median) 1182 
Reference Count (75%) 2142 
Reference Count (Max) 4878 
Site ID (Count) 1514 
Telecom (Count) 8 
Telecom (Top Subscription) AIRTEL 
 

6.2 Input Data Format 
The table 6-2 presents the input dataset is structured as a collection of data points, each 
capturing specific information related to a telecom site. Below is the tabular 
representation of the dataset: 

Table 6-2: Real-World MOBILE Data Presentation 

Data Point Latitude (Li) Longitude (Loi) Reference Count (Ri) Current Count 
1 L1 Lo1 R1 C1 
2 L2 Lo2 R2 C2 
3 L3 Lo3 R3 C3 

⋮ ⋮ ⋮ ⋮ ⋮ 
N − 1 LN−1 LoN−1 RN−1 CN−1 

N LN LoN RN CN 
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Description: 

• Data Point: Each row in the table represents a unique data point corresponding to 
a telecom site. 

• Latitude (Li) : The latitude of the site's geographical location. 

• Longitude (Loi) : The longitude of the site's geographical location. 

• Reference Count (Ri) : The reference count associated with the site provides a 
reference metric. 

• Current Count (Ci) : The current count represents the site's crowd density during a 
specific observation. 

 

6.3 Descriptive Analysis (Real MOBILE Data)  
 

Figure 6-1 presents the Distribution of Reference Count: It would seem that the 

distribution of Reference Count is multi-modal in several peaks, like in the normal 

crowds of different types of sites and events located on the territory of the Kumbh Mela. 

 
Figure 6-1: Reference Count Distribution Real MOBILE Dataset 

The figure 6-2 illustrates the Distribution of Current counts: A right-skewed histogram 

indicates that most telecom sites have lower current counts while others have high current 

counts. The dataset is mostly collected from routes, highways, and the actual riverside 

areas where the crowd is expected. However, apart from the Kumbh area, the highly 

crowded location is the city's local crowd who communicate around.  
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Figure 6-2: Distribution of Current_Count Real MOBILE Dataset 

The figure 6-3 illustrates the Distribution of Floating Count: Like the Current Count, the 

histogram on the right side of the figure is strongly right-skewed, implying that many 

areas have low floats, which may be due to some of the transient population. These are 

mainly the people passing by the city or who have entered the city, completed their rituals 

at the riverside, and left the city the same day. Floating crowd allows us to map the 

steering of the crowd within the given location and across the city.  

 
Figure 6-3: Floating Count Distribution of Real MOBILE Dataset 

Figure 6-4 illustrates the Local Geospatial Distribution of Sites: A scatter plot of the 

latitudes and longitudes of the telecom points, which also helps to draw the order to 

reveal clusters that could indicate regions of high population densities or popular places 
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within the Kumbh Mela. This local geospatial distribution helps mark the paths of crowds 

entering the city and collecting in the center.  

 

 
Figure 6-4: Geo Spatial Distribution Real MOBILE dataset 

The figure 6-5 below Pairplot with Clusters: The complex plot comprises many subplots 

that pair and compare certain parameters such as time, number of records, reference 

count, and geospatial data. Different colored clusters indicate that data points sharing 

common features have been arranged to reveal trends in crowd dynamics. 
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Figure 6-5: Paired Cluster Distribution Real MOBILE Dataset 

 

6.4 Outliers (Real MOBILE) 
 

The figure 6-6 illustrates the Boxplot “Hourly Outliers by Location,” which describes the 

distribution of current counts declared by MOBILE towers across the day. The boxes 

represent the IQR, while the markers point out the outliers. Two outliers are noted: 

Always Outliers in red, possibly persistent high-traffic spots, and Never Outliers in Black, 

potentially occasional outliers, happening elsewhere at a different hour. The presence of 

some outliers shows that specific places and times recorded unusually high crowd 

congestion levels and call for special management solutions. This is the first point where 
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this research felt important; when only crowd density was applied in real-time analysis, 

there were different areas apart from the Kumbh spot, which would show red in the 

heatmap. 

 

The most expected areas are kept under surveillance when surge crowds enter the city via 

buses and trains. There is the resident crowd of the city who has to commute to the office 

or elsewhere. When the main roads were blocked only for the Kumbh pilgrims, the 

residents took inner routes and alleys running between and connecting several residential 

areas, and those areas were shown traffic jams. That is when all the crowd density 

monitoring algorithms failed as they would normalize the data or pick up the average 

number. When the dataset is skewed to the right or left in the real world, how can a 

normal distribution be expected to do justice? The same was true with many high and low 

peak fluctuations, taking an average value as the threshold and giving bias classification. 

That is how the median and median-of-median concepts were brought into the picture for 

more reliability on the density classification.  

 
Figure 6-6: Hourly Outlier Distribution (Real MOBILE) 

 

6.5 Algorithm 14: Insights & Comparison (Synthetic vs Real MOBILE) 
 

Figure 6-7 the class diagram, that is a process of breaking down the data set through 

several parameters. First, the algorithm calculates median thresholds every hour before 

determining a median-of-medians threshold. These counts are categorized according to 
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this M-o-M threshold and subdivided into quarters. The prediction model employs current 

activity weights, historical density weight, and threshold comparison for expected 

counts. All this information is collected and exported to a CSV file, giving one an 

analytical overview of the collected data for informed decisions. 

 

 
Figure 6-7: Algorithm 14 Class Diagram 

 

6.6 Median-of-Median Threshold (Synthetic vs Real)  
 

Figure 6-8 presents that a great difference is seen in the threshold values of synthetic and 

real MOBILE data, as displayed by the box plots. The threshold of the synthetic data is 

narrowly clustered into a lower interquartile range, showcasing less variation and possibly 

fewer elaborate patterns in data. However, the thresholds of the real MOBILE data’s 

values are much lower but with a wider band spread that implies great variety, showing a 

complex dataset. The variance observed across real-world data may yield more 

meaningful inputs into prediction analyses since such data is likely better to reflect actual 

behaviour patterns than controlled research. The same argument holds true about outliers 

as part of real-world data, but these could be extreme ones, which are equally important 

for testing analytical methods. 
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Figure 6-8: Median Threshold Comparison - Synthetic vs Real MOBILE 

 

6.7 Classification (Synthetic vs Real MOBILE)   
 

Figure 6-9 and Figure 6-10 presents a Synthetic and real MOBILE graph showing the 

relation of ‘Ref_Count’ versus ‘Current_Count’ within Quartiles. In the synthetic data, 

there is a straight line in which closely clustered points reveal the connection of reference 

and present counts. However, the real MOBILE data appears randomly distributed, 

especially in higher quartiles, demonstrating variability and potential underlying 

complications. The true MOBILE data spread indicates various cases and offers more 

substantial benefits in predicting models and trend analysis. It is worth noting that there 

are large variations in ‘Current_Count’ in the highest quartile of the real MOBILE data 

for similar ‘Ref_Count’ values as can be expected. 
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Figure 6-9: Crowd Density Classification Comparison - Synthetic vs Real MOBILE 

 
Figure 6-10: Density Distribution (Synthetic vs Real) 

 

6.8 Datasets (Synthetic vs Real)  
 

CCDF plots from Figure 6-11 ((A), (B) (C) and (D)) compare ‘Ref_Count’ vs. 

‘Current_Count,’ ‘Floating Count vs. ‘Prediction,’ and ‘Real MOBILE dataset vs. 

Synthetic MOBILE Dataset.’ Synthetic data demonstrates a steeper fall in the CCDF 
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curve, reflecting higher values within smaller intervals. On the other hand, the graph of 

real MOBILE data gives rise to a less steep tendency that implies more dispersed points 

scattered at different ranges of values. A real MOBILE dataset that covers a broader 

extent of counts and predictions is likely to depict real-world variability and, as such, 

gives better results in analysis where a total understanding of data phenomenon across 

different scenarios, including the uncommon ones, must be considered. 

 

  
(A) (B) 

  

( C) (D) 

 
Figure 6-11: Data Counts & Prediction Comparison - Synthetic vs Real MOBILE 

 

6.9 Conclusion 
Kumbh Mela in Nashik provided vital information regarding crowd management and 

dynamics. The project identified crowd density patterns and possible congestion points by 

looking at various metrics, including reference count, current count, and geospatial 

distribution. Such made it possible to distinguish ordinary crowd behaviour from outliers, 

allowing for effective crowd control techniques. Thus, these innovations indicate that 

telecom data can be utilized to manage major functions during high-profile activities and 

improve public security. 
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CHAPTER 7: INDIVIDUAL AND GROUP 
MOBILITY RESULTS  

 

7.1 Individual Mobility Dataset  
 

The next research stage is to identify individual and group mobility patterns in the given 

crowd. For this section of the result, the dataset structure in table 7-1 has been changed 

from cumulative counts to Individual mobility traces. The nature and structure of the data 

are discussed in this section.  The dataset summary indicates 1,200 entries with 50 unique 

individuals and 10 unique sites. The most frequently occurring individual in the records is 

'Individual 1', and the most common site is 'SiteID 2'. 

 
Table 7-1: Individual Dataset Summary 

Stats IndividualID Time SiteID 

count 1200 1200 1200 

unique 50 24 10 

top Individual 1 00:00:00 SiteID 2 

freq 24 50 133 
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7.2 Data Distribution  
 

The figure 7-1 exhibits uniform distribution, meaning every one out of 50 individuals has 

24 records in this dataset. This means that the data covers a full 24-hour period for every 

individual, which is perfect for investigating daily mobility regimes. 

 

 

 
Figure 7-1: Distribution of records per Individual ID 

 

The figure 7-2 shows that visitors were distributed among the sites fairly. SiteID 2 

showed the highest count at more than 120 visits, while siteID 1 had only close to 

100. This shows that variations exist in the popularity of the sites, but the difference is not 

very great on the different sites. 

 

 
Figure 7-2: Distribution of Visits per SiteID 
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7.3 Structure of Data  
 

This dataset presented in table 7-2 consists of several records, each uniquely identifying 

an individual position at a specific time. The data is organized into three primary 

columns: The unique ID of the individual, ‘time’ referring to the time when their locality 

was recorded, and the site ID. This entails distinct site connectivity for each row and 

paints a complete picture of movements between sites across time. 

 
Table 7-2: Individual Mobility Data Strucutre 

Index Notation Time SiteID 

1 IndividualID_1 Time_1 SiteID_1 

2 IndividualID_2 Time_2 SiteID_2 

3 IndividualID_3 Time_3 SiteID_3 

      ...          ...     ...   ... 

       n IndividualID_n Time_n SiteID_n 

 

The input dataset contains an extensive history log of individual movements that their 

specific identifier codes have tagged and time stamps as observed in subsequent site 

visitations. Due to this structured and uniform format, it becomes possible to analyze the 

mobility patterns of population movements over time and predict future location trends 

using historical information. 

 

7.4 Algorithm 9: Individual and Social Dynamics Integration (ISDI) 
 

The results obtained by implementing the algorithm diagrammatically presented in Figure 

7-4 through the algorithm is analyzed in detail by providing insights into the patterns of 

mobility and social relations among persons. First, it involves investigating mobility 

profiles showing vital information regarding movement trends and most sought-after 

destinations for the analysis duration. The processes through which groups emerge are 

then analyzed, highlighting their effect on developing socio-cultural and spatial ties. The 

predictive models also used for forecasting future mobilities and social interactions are 

evaluated critically, demonstrating their applicability for disclosing complicated human 

behaviour. Such a complete analysis reveals more about social dynamics, thus providing 

avenues for future works in urban planning or social network analysis. 
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Figure 7-3: Class Diagram for Algorithm 9 

 

7.4.1 Threshold – Median  
 

Figure 7-4 depicts the median half-hour readouts of MOBILE cell towers throughout a 

day/24-hour period. Some significant spikes appear at various points and exceed 5.5, 

which may indicate times of increased movements or gathering. However, the largest 

trough appears to dip below 4.5, portraying a low linkage or activity timeframe. Such data 

display considerable variation; sometimes, certain hours stay close to five. This can result 

from the subjects' daily activities and movement patterns, such as beginning or ending a 

work day or nighttime rest. 

 

 
Figure 7-4: Hourly Median Threshold 

 

7.4.2 Individual Network Connection 
The figures 7-5 show a network diagram in which the most important links among people 

are represented according to their joint visiting of sites. Nodes represent individuals, 

while edges show that many people made many visits between themselves. The network 
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layout seems to have been a relatively interconnected group, with the visits made by some 

of its members being identical, as shown by a multiplicity of links connecting the 

members of this network layout. 

 

 
Figure 7-5: Simplified Individual Network Connects 

7.4.3 Individual & Group Visit 
 

The  Figure 7-6 for “Individual 1” regarding the frequency of accessing the various 

sites. On the graph, the x-axis shows the site IDs, while the y-axis corresponds with the 

frequency of visits. “Individual 1” seems to have visited SiteID 1, SiteID 4, SiteID 10, 

and SiteID 5 thrice a piece. Sites ID 8 and ID 9 have received a single visit each. 
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Figure 7-6: Frequency of Visits to each Sites 

 

7.4.4 Prediction Model  
 

With successfully tracked each individual’s connection to different MOBILE towers 

during the 24 hours to outline their general route through space. This computed the hourly 

median thresholds of power law distributions for tower connections and used this as a 

baseline for normal movement behaviour within the dataset. A complete analysis of 

individual spatial-temporal patterns was undertaken using the constructed data matrix D 

and the mobility profiles M_” profile” [i]. Based on the profile, the prediction model is 

built, and the Figure  7-7 below illustrates the predicted mobility pattern. 
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Figure 7-7: Predictive Model forecast over 24 Hours 

 

Clusters G_h, formed by intersections in common locations during certain times, could be 

identified and deduced. Since these groups were formed in real physical spaces through 

common tower connections, they likely reflected shared social ties or group behaviours. It 

was possible to estimate the strength of social connection among various groups based on 

“Site[i].” This took into account the dynamic character of socioeconomic linkages. The 

temporal/spatial analysis provided useful information regarding how long and how often 

members of each group, G, came together to ascertain social solidarity and the nature of 

interactions within that group. The study used predictive modelling, which incorporated 

mobility profiles and the strength of the social ties, to predict future mobilities and their 

interactions. This predictive ability might be helpful for issues of urban development, 

road control, and healthcare in advance, especially by providing estimates about future 

demands on infrastructure and servicing. The analysis described the mobility patterns and 

group dynamics and created a model on which forecasting of subsequent behaviours 

would be based. Decision makers can use this framework to assist them with resource 

planning and allocation, while researchers can use it further to understand human 

movement patterns and social structure patterns. 
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7.5 Algorithm 10: Dynamic Urban Crowd and Social Interaction Model 
(DUCSIM) 

 

A dual analysis approach uses MOBILE tower data, crowd counts, and individual 

tracking data to examine urban dynamics in this research. The class diagram figure 7-8 

shows the implementation steps of Macroscopic investigation is into crowd density, using 

daily and weekly thresholds and quadrants. On the other hand, microscopic analysis 

focuses on micro-level mobility and interpersonal practices among individuals. This 

combines the two approaches, allowing one to develop predictive models for future urban 

crowd dynamics and social behaviour patterns. The implementation class diagram is 

illustrated below:  

 

 
Figure 7-8: Class Diagram Algorithm 10 

These findings offer a comprehensive perspective on urban mobility and urban 

rhythms. The daily average and weekly thresholds were also determined as crowd density 

measurements, along with creating a quartile classification. They also mapped individual 

mobility profiles that reveal people’s movement patterns and social networks. The 

predictive models formulated from the amalgamated mass of data can correctly forecast 

future urban crowds and social relations. 
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7.5.1 Hourly Crowd Density Thresholds  
Figure 7-9 presents the Median crowd counts exhibit variations across the day and 

considerable spikes at some points. This suggests that there are occasions when populace 

intensity exceeds normal and could play a vital role in urban planning and resource 

distribution. 

 

 
Figure 7-9: Hourly Crowd Thresholds 

 

7.5.2 Crowd Count Heatmap  
This heatmap showed in figure 7-10 is about where and when crowds were counted in 

specific places on certain days. Crowd counts tend to be higher during some hours, 

implying the time of highest activities.  SiteID 3 displays greater counts, especially during 

the 8th and 15th hours, pointing to a hot spot. 
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Figure 7-10: Crowd Density Heatmap SitID vs Hours 

 

7.5.3 Social Ties Network  
The complex network diagram figure 7-11 shows a high density of such social ties, with 

some people being central and connected to many others. The complicated nature of 

society’s relations and the possibility of broad circulation in the network have led to this 

complex issue. 
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Figure 7-11: Complex Network Connection of Individuals 

 

7.5.4 Simplified Social Ties Network  
Figure 7-12 presents the individuals have different levels of connectivity in a simplified 

network chart. They have several links to people who seem like important players in 

social bonding and information diffusion. 
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Figure 7-12: Social Ties in Opportunistic Environment 

 

A mixed approach of MOBILE tower and person tracking is used in the analysis to reveal 

trends in crowd behaviour and social interactions. Heat maps and threshold plots 

represent a macroscopic understanding of crowd density, while the inner details of social 

ties are depicted in the network diagrams. These results drawn from complicated datasets 

emphasize the capability for predictions that can help city dynamics and the management 

of crowds in the urban planning domain and social structure understanding. 
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7.6 Algorithm 11: Comprehensive Mobility and Social Interaction Model with 
Enhanced DUCSIM 

 

The class diagram figure 7-13 presents crowd dynamics from macroscopic and 

microscopic perspectives concerning crowd density and group or individual movement 

patterns in crowds. This algorithm uses an hourly movements data set across MOBILE 

towers, calculating crowd densities, movement thresholds setting, and group behaviour 

clustering for discovering intricate individual and collective movements’ patterns 

engineered. The class diagram for the implementation details is illustrated in Figure.  

 

 
Figure 7-13: Class Diagram Algorithm 11 

 

7.6.1 Median Thresholds Across Sites by Hour 
 

The figure 7-14 below depicts the corresponding medians of the crowd counts of all these 

sites achieved for every minute. In this context, peaks in the plot signify particular hours 

of high medians of crowds, indicative of high movement or active hours of the day. On 

the other hand, troughs imply low points such as off-peaks. It can also serve as an 

indicator for forecasting sit congestions and resource planning. 
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Figure 7-14: Median Threshold Across SitID vs Hours 

 

7.6.2 Heatmap of Density Estimation at Sites by Hour 
 

The Figure 7-15 represents the net density estimates of people in one day at different 

MOBILE towers. Higher and lower densities are represented by warm and cool colours, 

respectively. This means there was a high influx of eight units at SiteID 2 in the second 

hour, which probably indicated a peak period for that site. 

 

 
Figure 7-15: Crowd Density Estimation 
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7.6.3 Macroscopic Crowd Density by Site and Hour 
 

Visual representation in figure 7-16 of the unprocessed crowd numbers for every GM's 

basepoint through one day. A peak appears on each line for every site, and another trough 

indicates ups and downs in the number of visitors. Peak values in the sites suggest a 

higher level of activity. This might be because of traffic or other local attractions. 

 

 
Figure 7-16: Macroscopic Crowd Density Distribution 

 

7.6.4 Density Scatter Plot for Group Mobility Analysis 
 

Figure 7-17 present that some people tend to occupy specific spots during different times 

of the day, as depicted in the density scatter plot. The dark area shows the highest density 

levels of men in one cluster zone during various hours. As such, Cluster 2 could be a 

gathering of people passing through in the middle of the day, indicating a similar routine 

or destination. 
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Figure 7-17: Group Mobility Density Distribution 

 

7.6.5 Density Scatter Plot for Individual Mobility Patterns 
 

This scatter graph figure 7-18 illustrates the travels of select people at various 

locations. For every individual, points denote the spreads representing the frequency of 

visits or the amount of time spent at various places. This could include an individual’s 

points being closely located on-site ID3 for an evening, signaling a regular activity or 

habit. 

 

 
Figure 7-18: Crowd Density Scatter Plot 
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7.6.6 Prediction of Crowd Mobility  
Heat map showing figure 7-19 the predicted numbers of persons moving from each 

FromSite to each ToSite in the coming hour. Darker patterns represent large populations, 

whereas lighter patterns signify reduced populations. Additionally, the intensity of the 

selected colors denotes a larger amount of predicted movement. A cell will be darker on, 

for example, a certain FromSite-ToSite intersection if the prediction says more people 

will travel from that site to that site in the coming hour. It outlines merely the movement 

that can be used for traffic management and resource allocation. 

 
Figure 7-19: Prediction Crowd Movement Next Hour 

 

Mobility behavioural traits were observed individually and in groups with varying crowd 

densities depending on sites and time. Density scatter plots showcase how heavily 

populated some places are. These insights are important for improving city crowd 

management, planning infrastructure development that considers people’s movement 

complications, and the utility of data-driven methodologies. 

 

 

 



241 
 

7.7 Algorithm 12: Adaptive Learning and Customized Predictive Analytics With 
DUCSIM-TM-o-M 

 

The purpose of this study is to analyse the tower-based data for MOBILE for determining 

patterns of crowd movement and individual mobility patterns and to have an in-depth 

look at the issues raised by this study. Using sophisticated data management methods 

based on raw mob data (crowd count), we compose mobility matrices and get into mobile 

telephone connections (GSC Data). The method includes investigating macroscopic 

crowd density, micro mobility for individual behaviour, and dynamic predictive 

modelling. The results shed light on how people respond to certain situations and provide 

important input into issues such as traffic flow planning, urban planning, and other 

critical areas in the urban environment. Such a multi-faceted approach captures present 

dynamics and predicts future changes, delivering holistic data-driven decision aid in 

urban environments. The implementation class diagram is illustrated is figure 7-20.  

 

 
Figure 7-20: Class Diagram Algorithm 12 

 

7.7.1 Median of Median Crowd Count Per Hour 
 

The figure 7-21 illustrates the medians of median crowd counts per hour for each site on a 

cumulative basis overtime during the whole event (cumulatively). Interestingly, there’s an 

evident spike at night, probably indicating a commensurable occurrence or community’s 

assembly time frame that could demonstrate the community's behaviour regarding 

temporal patterns. 
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Figure 7-21: Median of Median Crowd Count Per Hour 

 

7.7.2 Crowd Count Distribution 
 

The Figure 7-22 shows variations in the number of people among various MOBILE tower 

installations over one day. These variations show different rhythms of movement and 

concentration in certain parts of the area depending on time. These include instances 

where SiteID 1 and SiteID 10 have noticeable peaks in crowd count, implying places of 

heavy movement and high traffic activities, respectively. 

 

 
Figure 7-22: Crowd Count Distribution 
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7.7.3 Social Interaction  
 

The bar chart in figure 7-23represents the number of social visits in different locations 

with significantly high social visitation counts for Site ID 5 and Site ID 9. This may 

suggest that these sites play an important role as either social meeting points or the 

reflection of interpersonal relations among residents of those communities served by 

these sites. 

 
Figure 7-23: Number of Social Interaction 

 

7.7.4 Individual Strong Connections with Notations  
 

The network diagram shows in figure 7-24 presents the complex network of strong social 

links. Line thickness denotes the intensity of communications. This shows a highly 

networked community with some very important nodes acting as communication centers 

for the people of that environment. Prominent clusters and example individuals such as 

P3 P17 are connected strongly over the spatiotemporal opportunistic environment.  
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Figure 7-24: Individual Strong Connections with Notations 

 

The plot analysis helps gain information on movement and social interaction patterns 

observed in MOBILE tower-based human mobilities. 

 

7.7.5 Prediction for the Next Hour  
The figure 7-25 describes an expected crowd density depending on time. These 

predictions can provide a basis for efficient crowd management, deployment of 

emergency services, and load-balancing networks for a telecommunication firm. In 

particular, the key hours that change predicted crowd count may serve as rush hours or 

even dismissal, which can help urban planning and management strategies. 
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Figure 7-25: Prediction for the Next Hour 

 

7.8 Conclusion  
Analysis of MOBILE tower data gave a thorough understanding of crowding activity and 

personal movement trajectories. The research applied a structured manner to look at 

macroscopic Crowd Density Analysis, compute the raw count of crowds by days and per 

week based on the method of M-o-Ments, and classify crowds' density by quartiles. Thus, 

a mobility matrix was built for towers in Cumulative Crowd Mobility Analysis, indicating 

movements towards and away from them, giving net flows and resulting in net density 

estimation. The study of Microscopic Individual Mobility and Social Interaction Analysis 

shed some light on the movement patterns at the micro level to build up a Social 

Interaction Matrix. Self-learning models with dynamic elements that updated the model 

parameters to adjust to newly emerged data structures were developed. Lastly, Custom 

Predictive Modelling was used, which utilized previous information to predict how the 

crowd will behave in terms of both group movement and social interaction for the next 

few hours/days. This complex approach not only captured existing crowd dynamics but 

also served as the foundation for predicting future patterns and events. 

 

Work presnted in this chapter has been published as patent no.[1 and 2]. A conference 

paper is published given in my publication list [1]. 
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CHAPTER 8: HETEROGENEOUS 
OPPORTUNISTIC ENVIRONMENT 
RESULT  

 

The algorithm’s activity diagram in Figure 8-1 provides an all-encompassing simulation 

of the urban dynamics, combining data from traffic, ride-sharing, WiFi systems, and 

social interactions—a multi-dimensional approach to estimate crowd density, mobilities, 

and social interactions in an urban area. The algorithm uses sophisticated predictive 

modelling to forecast urban dynamics in the coming years, which can be beneficial for 

formulating urban planning and management. This provides a holistic insight into the 

city’s dynamics, which is critical in supporting smart city development and governance. 

 

 
Figure 8-1: Activity Diagram 

 

8.1 Input / Simulation Parameters  
Simulations were done using a broad set of sources of urban dynamics data for various 

places throughout a certain time frame. Key parameters include: 

• Number of Locations: Simulation of data in different locations. 
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• Time Frame: Each simulation stage reflected how changes in urban dynamics 

would occur over time. 

• Data Sources: The experiment utilized information from various sources such as 

WiFi, vehicle movements, taxi data sharing, tweet messages, sentiment analysis, 

and keyword counts, among many others. 

 

The table 8-1 presents the Input and Simulation parameters those were used for 
implementation of the algorithm.  

Table 8-1: Input / Simulation Parameters - Heterogeneous Networks 

Parameter Value Unit 

Number of Locations 5 Locations 

Time Frame Start 2023-11-21 22:50:39.328073 Date/Time 
Time Frame End 2023-11-22 21:50:39.328073 Date/Time 
Number of Time Points 24 Time Points 
Location 3.0 Average Count/Score 
WiFi 50.558333 Average Count/Score 
Vehicular 25.783333 Average Count/Score 
RideSharing 16.391667 Average Count/Score 
Tweets 101.783333 Average Count/Score 
Sentiment 0.043373 Average Count/Score 
traffic 5.116667 Average Count/Score 
event 5.15 Average Count/Score 
weather 4.825 Average Count/Score 
 

8.2 Crowd Density  
The figure 8-2 shows urban area density levels of five different cities, each bar labelled 

according to its particular density. Downtown, Suburbs, Industrial area, Residential, and 

Commercial; apparently, none of the locations show any noticeable difference in crowd 

densities. This means that activity or population was spread evenly throughout these 

urban areas. While the actual specific values for the “crowd density” do not appear on the 

chart, they usually appear along the y-axis, sometimes representing people by numbers, 

and hence, a place with a large number of people reflected by the x-coordinate is either 

busy or a place to spend in groups. 
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Figure 8-2: Heterogeneous Crowd Density Distribution 

8.3 Density Flow Metrics 
 

Figure 8-3 represented in a heatmap as their average flows between these five 

locations. Darker colors represent high flows, while light colors show low or negligible 

flows in each cell. The flow from Location 3 to Location 2 equals 57.2 and represents an 

important movement or interaction between Location 3 and Location 2. On the contrary, 

the flow from Position 4 to Position 3 is among the low rates (at 41.4), illustrating 

insignificant movement in the opposite direction. The heatmap depicts the volume of 

flows (traffic, commuter movements, or other flows) in the given areas. 
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Figure 8-3: Density Flow Matrics 

 

8.4 Rideshare Interactions  
 

The figure 8-4 illustrates the median of 402 interactions for each location. There are 

differences in riding-sharing activities among locations, and Location 5 shows relatively 

more active participation than average. 

 
Figure 8-4: Rideshare Interaction Distribution vs Location 
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8.5 Twitter Interaction  
 

Figure 8-5 shows the interaction counts on the map in the median of 2531 

tweets. Interaction levels between locations show fairly consistent, while all locational 

sites indicate high tweet interactions almost above the median. 

 
Figure 8-5: Tweet Interaction Distribution vs Location 

 

8.6 Sentiment Distribution  
 

The following figure 8-6 shows the sentiment distribution by place, with a median 

sentiment of 0.4. Generally speaking, most locations have positive sentiment, except 

Location 4, whose average sentiment line is placed marginally below the median line. 
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Figure 8-6: Social Media Sentiment Distribution vs Location 

 

8.7 Prediction Distribution  
 

Differences in predicted plots illustrate in figure 8-7 various forecasts for an urban 

activity that is dynamic and thus unstable on its predicted plots. This is because the time 

series presentation has been there for years; it enables us to observe fluctuations like 

peaks, troughs, and trends over time. Such changes in migrations, occurrences, and other 

processes could be anticipated from future displacements which are to happen in relevant 

destinations. 
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Figure 8-7: Urban Dynamics Prediction Over Time 

 

8.8 Conclusion  
 

The simulation collects data from various urban dynamics, representing and forecasting 

complex city patterns. The analyzed crowds were found in different sections of towns, 

and these groups exhibited a considerable rate of carpooling, among other activities on 

social networks. There seemed to be generally favourable social media sentiment, 

although there was some variation according to location. Ebbs and flows of urban activity 

were predicted over time using predictive modelling, suggesting that every site has its 

distinct rhythm, perhaps due to some local events, traffic, or population density. The sum 

totality of these insights leads to a delicate grasp of urban behaviour needed for the 

competent formulation of urban planning.  

 

Work presented in this chapter is been published as patent [ 3 and 4 ] 
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CHAPTER 9: ALGORITHM 6: 
APPLICATION:  SMART CITY CROWD 
MANAGEMENT USING MOBILE DATA 
ANALYSIS 

 

9.1 Introduction  
Due to rapid urbanization, smart cities have come to portray the future ideal of smart city 

governance in contemporary society. However, managing crowd densities remains a 

crucial problem these sprawling new urban centers pose. Crowds (characterized by 

number, density, and behaviour) significantly impact urban resources and infrastructure 

[238]. Crowd densities may result in congestion of traffic, strain on the public transport 

system, raise accident rates, and even hamper emergency response services. On the 

contrary, idle grounds signify avenues that could have been developed into opportunities 

by businesses and other community engagements [239-242]. This worsens, especially 

during major events like public holidays, peaks, or busy city areas. Poor crowd 

management also results in discomfort, reduces security, and lowers the quality of urban 

life. Hence, knowledge of how the crowds behave and prediction of these are required in 

having proper city governance, safety, and better urban experiences, among others. 

 

9.2 Objective 
Crowd management uses Mobile data, which is focused on providing live data for 

decision-making in urban areas. MOBILE data is highly pervasive and constantly 

produced, and therefore, it presents an extensive repository for identifying the movement 

and pattern of settlements in various city sectors. From this analysis, city planners and 

other authorities will see why and where many people gather, allowing them to know 

which places are densely populated and how to control such crowds. This approach can 

be important because it may help change reactive city management approaches into 

proactive ones. This ensures that planners can predict potential crowd-related matters that 

may arise, thus streamlining the transport system and guaranteeing public safety 

measures. With that said real-time crowd information can be pivotal during emergencies 
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like natural disasters or public health disasters in directing resources toward making 

effective containment and evacuating strategies. 

 

9.3 Overview of Approach 
Managing crowd density in smart cities entails an algorithmically controlled system that 

leverages geographic information systems and MOBILE data. The initiation phase starts 

by setting up the initial number of MOBILE towers and data arrays for crowd counts, 

daily and weekly threshold levels, and quartile classifications. Crowd counts obtained 

from each MOBILE tower yield fine-grained information regarding people distributed in 

various parts of the city according to the daytime. After that, the algorithm computes the 

limit values for the day and week and uses them as benchmarks for the population density 

in the area. The thresholds, however, play a crucial role in differentiating between peak 

and normal crowds in terms of time or spatial contexts. Quartile classification of crowd 

density is the subsequent significant stage. We can label them low, medium, high, and 

very high through quartile categorization of the crowd data. This categorization gives 

defined stratification regarding crowd density and directs efficient crowd control 

measures in the different categories. Models based on historical information about crowds 

and a classification made by quartiles. Such models allow city officers to predict and plan 

for changing the density of crowds so that there are enough resources available in case 

there is a need to respond to any possible crowd-specific issue. Applying a structured 

approach utilizing MOBILE data in smart cities could greatly boost their ability to control 

crowds, thus translating into more secure, effective, and liveable metropolitan regions. 

  

9.4 Methodology 
 

9.4.1 Data Simulation 
A simulation of MOBILE data was performed to develop a realistically functional model 

for controlling crowds in smart cities. The simulated environment provides a safe place to 

understand how the design can be applied when analyzing crowd density. The key 

parameters of the simulation included: 

• Number of MOBILE Towers: In this particular case, certain MOBILE towers 

were set up at different points in the urban environment. The number of mobiles in 

each section was an estimate of the crowds in the surrounding area. 
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• Days and Hours: A simulated week was used in this exercise, with crowd density 

fluctuating on each day and hour. It involved all working days (including 

weekends), which accounted for the usual upsurges of urban traffic and population 

density distributions. 

• Crowd Counts: Each MOBILE tower showed hours-by-hour crowd counts on a 

simulated data set. These counts occurred in a realistic manner of an urban 

population for any specific day. 

The figure 9-1 is created to illustrate comprehensive overview of urban mobility patterns 

implementation, giving the basis for future analysis and population control policies. 

 

 
Figure 9-1: Flow of Application - Crowd Density Estimation 
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9.4.2 Results and Discussion  
This section delves into the empirical findings from the smart city crowd management 

system. By meticulously analyzing real-world MOBILE data, we uncover the intricate 

patterns of urban crowd movement. The ensuing results encapsulate the ebb and flow of 

city life, translating raw data into actionable insights. 

 

A. Daily Threshold Trends for All Towers  

Figure 9-2 line graph maps the thresholds of crowd density for one week. The observation 

shows an interesting trend regarding these thresholds that separate the various crowd 

density grades. For instance, the first-hour threshold on day zero moves up as high as 

hour eighteen on day 6. This could be due to a weekly occurrence or just the local. 

 

 
Figure 9-2: Daily Threshold Trends for All Towers 

 

B. Quartile Classifications for Day 0  

 Figure 9-3 illustrates on a closer look at a particular day, the heatmap indicates varying 

crowds of people at different towers. For example, Tower 0 has elevated density 

(indicated by a vibrant color) at about 8 am - the usual traffic jam between jobs. On the 

other hand, Tower 4 has lower density values during the day, probably showing a 

residential or less populated zone. 
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Figure 9-3: Quartile Classifications for Day 0 

 

C. Average Quartile Classifications for the Week  

In Figure 9-4 the Heatmap shows the overall picture of crowd distributions for 1 week 

period and shows urban dynamics on a global scale. A recurring trend with high median 

values in the afternoon (Mid-day hours; 12 pm – 2 pm) might be attributed to lunchtime 

habits. The observed pattern shows that lower quartiles recorded in the early hours 

increase towards the end of the day, which is characteristic of many cities where 

populations move to and from work. 

 
Figure 9-4: Average Quartile Classifications for the Week 
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D. Predicted Quartile Classifications for Day 7 

Figure 9-5 presents the model predicting the crowd densities for future days, which is 

useful for proactive planning. As stipulated by the model, Tower 2 may be highly dense 

with people from as early as 5 p.m. The likely scenario may involve evening social 

activities or the typical ending of a workday. Such a prediction can help develop traffic 

control policies and schedule public transport. 

 

 
Figure 9-5: Predicted Quartile Classifications for Day 7 

The urban dynamics synthesized from MOBILE towers provide a bird’s-eye and granular 

view of urban dynamics. Rather than being retrograde and retrospective, these analyses, 

with predictive character, contribute to the modernization and forward-looking vision of 

the smart city plans. 

 

9.5 Applications and Implications  
The analysis provided by this smart city crowd management system can be seamlessly 

integrated into various facets of urban planning and management, offering substantial 

benefits in several key areas: 

 

• Event Planning: Its use is greatly beneficial in large-scale events. Organizers 

should look for crowd patterns and restructure their schedules, layout, and 



259 
 

logistics to guarantee easy movement and high security. For example, concerning 

festival or concert arrangements, providing services such as security and first aid 

can be deployed based on forecasted crowd densities. 

• Traffic Regulation: This is useful information that traffic authorities can use in 

directing and controlling vehicle flows. The analysis of crowd predictive 

behaviour can provide vital input in choosing traffic light patterns for the traffic 

system, closure of selected roads, and scheduling the public transport 

system. Adopting this proactive stance can help minimize traffic jams, crash 

possibilities, and total road security. 

• Emergency Response: Real-time crowd data is needed during emergencies like 

natural disasters and security threats. This information can assist emergency 

services in planning evacuation, allocation of resources, and finding relatively less 

congested routes for faster response time. 

 

9.6 Future Prospects 
The potential for integrating this system with other smart city technologies presents 

exciting prospects for urban development: 

• Smart Infrastructure Integration: The system will be linked with the smart 

infrastructure of intelligent lighting and IoT-enabled devices that will enable 

dynamism of resource adjustment according to information about crowd 

density. In this case, a few examples of how streetlights can be optimized 

concerning energy efficiency and safety, such as streetlight dimming dependent on 

pedestrian traffic. 

• Data-Driven Urban Design: Over time, information about crowds can influence 

the creation of facilities for public use, such as shopping centers and traffic 

lines. The approach creates cities that operate efficiently and continuously adapt to 

people's changing needs and behavioural patterns. 

• Enhanced Citizen Engagement: Integrating such technology into mobile apps and 

public portals lets citizens be equipped with live alerts to decide their movements 

within these cities. 
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9.7 Conclusion 
This crowd management system is one of the major steps towards improving the smart 

city model. It goes beyond reactive models to deliver a proactive data-centric model for 

effective urban administration. The system will help optimize daily commutes and 

improve emergency safety for the city’s operations. Thus, it makes smart cities more 

reliable, efficient, and centered on citizens, which is what a smart city should be about, 

preparing for future smart technology integration. 
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CHAPTER 10: CONCLUSION 
 

The development and application of Enhanced DUCSIM is a significant leap in urban 

dynamics studies. This powerful instrument uses different communication Networks like 

(Mobile, WiFi. Li-Fi networks), environments like (cars and ride-sharing) Social Media 

Networks like (Facebook, Instagram and Twitter among others) to fully understand how 

the city functions. The urban dynamic analysis offers a key advantage in supporting urban 

planning, sociological studies, and smart city initiatives. 

 

10.1 Summary of Findings 
 

DUCSIM, is an improved predictive algorithm to understand urban dynamics at more 

detail. The system of crowd density projection and movement provides great accuracy by 

using up-to-date data of urban activity, combined with the pattern of historical events. The 

workflow of the algorithm is divided into several key phases: data collection and 

cleaning, threshold analysis, model application to the data and rigorously evaluated. At 

first, DUCSIM gets updated crowd data from the city in terms of numbers (A_raw(gt)) 

and past crowns’ population density (D_hist(gt)). Normalization and structured of this 

data takes place during the Preprocessing phase is vital to ensure consistency and quality 

in further analyses. 

 

Median-of-Medians (M-o-M) threshold, TM-o-M(gt), forms the basis for DUCSIM’s 

threshold analysis, comparing current activity levels against priorly set parameters, which 

marks the first phase in recognising variations in crowd population. Once threshold 

analysis becomes complete and necessary, DUCSIM enters into its application phase in 

which it applies a predictive model that enables forecasting of future crowding level, i.e., 

Dpred (gt+1), incorporating the actual activities, historical data, as per threshold analysis It 

entails a smart algorithm which gives a reliable weight to each piece of information for it 

to produce the best forecasting. 

 

The DUCSIM is an efficient, sophisticated instrument which can estimate how the urban 

crowd flows around or through streets as well as density of crowd in such street sections 

at certain time range intervals. The algorithm of this highly complex system is based on 
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actual urban activity during various periods, pre-processed beforehand for data 

normalization and structuring. This M-o-M threshold analysis is crucial in determining if 

recent activities are higher than what was set as the baselines to forecast the future change 

of density for crowds. This provides its predictive accuracy which happens to be done 

through systematic balancing of current and historical data plus thresholds 

results. DUCSIM improves with iterative fine-tuning, hence its evolution is always 

applicable to different city scenarios. Despite the lack of specific numeric values and 

exact accuracy measurements mentioned in the cited paragraphs, the design of DUCSIM 

was intended to overcome data diversity and large volumes by using scalable computing 

architectures and techniques for merging data. DUCSIM assumes the role of a complex 

computer model that is indispensable in smart city administration, reemphasizes its 

flexibility, and indicates its suitability for evolving smart city dynamics. 

 

10.2 Contributions of the Research 
 

Based on the initial DUCSIM through to EDPAF, this suite of algorithms has made a vital 

contribution to crowd dynamics and urban management research. The first steps in 

developing modern algorithms used elementary approaches that served as a basis. The 

first two stages provided parameter settings for properly and numerically understanding 

crowd dynamics. The ensuing algorithms became more sophisticated and detailed, 

involving MOBILE tower-based recording, quartile classifications, and the inclusion of 

historical details. Such advancements were critical in improving the precision of the 

models and assisting in discerning crowd behaviour patterns in greater detail. Notably, 

Algorithm 6 introduced extensive threshold analysis per day or week, including quartile 

classification, for more holistic insight into crowd flows. This is a big move ahead in this 

area as it facilitated a more precise and thorough assessment of the evolution of crowd 

motions over time. Algorithm 7 symbolized this transition to active crowd management, 

confirming the algorithm's feasibility for real-time scenes. These algorithms enabled a 

preemptive crowd control strategy instrumental in urban planning and community 

security. Later algorithms included integrating individual mobility patterns, the sense of 

group identity, and social tie strength measurement. 

 

After a long evolution, EDPAF is the ultimate of all these developments, integrating 

dynamic and self-learning features with up-to-date system parameters in real-time 
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operation. This latest form of predictive modelling technology has shown exceptional 

versatility in adapting to the continuously shifting dynamics of urban masses and offers 

highly credible forecasts. Thus, this suite of progressing algorithms is crucial for crowd 

dynamics research, providing a full package of tools to handle crowds within cities. Every 

algorithm in this suite is a step towards increased technical ability and greater insight into 

the intricate dynamics of what influences crowd behaviour. However, the work forms 

useful groundwork for town planners, security police, and scientists and provides novel 

ways of coping with urban chaos in a globalizing environment. 

 

10.3 Reflection on Enhanced DUCSIM's Journey 
 

Regarding urban computational analysis, the Enhanced DUCSIM algorithm is a milestone 

because it integrates multiple data sources, revealing the intricacies of cities. This process 

started with observing the existence of a reliable tool to perceive and foresee urban 

changes. Over time, EDUCSIM has evolved into an exemplary prototype of urban 

complexity. 

 

10.3.1 Comprehensive Data Integration 
 

Enhanced DUCSIM is strong in terms of data integration. This algorithm vividly 

describes urban dynamics using information from Wi-Fi systems, traffic flow, ridesharing, 

and social media. Integrating this perspective into other facets of the city will reveal more 

details about how these parts intermingle and inform one another in new ways. 

 

10.3.2 Dual Analysis: Macroscopic and Microscopic 
 

The dual nature of Enhanced DDUCSIM in analysing macroscopic trends such as city 

movements and the density of crowds, among others, and microscopic behaviours like 

individual social interaction and sentiment analysis are revolutionary. This strategy offers 

a complete perspective critical in city planning and administration. This method provides 

small trends and patterns that may not be obvious using traditional analysis focusing only 

on one factor. 
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10.3.3 Predictive Modelling: A Leap into the Future 
 

Enhanced DUCSIM is unique in its predicting capacities. Through sophisticated 

mathematical models, the algorithm reads present data and predicts new urban conditions 

in the future. The predictive analysis is necessary for proactive urban planning by city 

planners and others to anticipate and make preparations earlier for coming challenges and 

changes in urban dynamics. 

 

10.3.4 Practical Applications and Broader Implications 
 

The practical applications of Enhanced DUCSIM are very broad and diverse. The 

algorithm can, among other things, help with city planning and design, inform emergency 

response strategies, and contribute to sociological studies. This improves efficiency, 

safety, and responsiveness for the cities’ inhabitants and helps reduce costs related to 

emergencies/disasters. When applied in a smart city project, it contributes to more 

sustainable and livable cities. 

 

10.3.5 Navigating Challenges and Ethical Considerations 
 

Despite its strong sides, Enhanced DUCSIM has its weaknesses to be overcome. Focus 

should be taken on the ethical implications of data use, especially users' data from social 

media or ride-sharing. Striving for balance, assuring privacy, and the right use of data by 

keeping the algorithm's effectiveness intact. 

 

10.4 Future Directions: Scalability, Adaptability, and Technological Integration 
 

The future development of Enhanced DUCSIM needs to focus on scalability and 

adaptability. Adapting the algorithm for various urban environments, dimensions, and 

cultures is critical for the method to be widely useful. By utilizing new technologies such 

as artificial intelligence and machine learning, efficiency can improve predictability, but 

there is a need to customize the future algorithm based on the real world's ever-changing 

dynamics. The future scope are further explained as follows:  
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Advanced Integration of Diverse Data Sources: Further research might consider a 

more seamless integration of different data sources, such as environmental sensors and 

public transport systems or extending to other social media platforms. It would also add 

to the data pool, so that our understanding of urban dynamics could be more nuanced. 

 

Enhancement of Predictive Accuracy through AI and ML: Further integrating the 

most advanced Artificial Intelligence (AI) and Machine Learning-based techniques can 

further refine Enhanced DUCSIM's predictive ability. Thus research in this area can seek 

out more advanced algorithms which learn from a wide range of data inputs, yielding 

even greater accuracy for forecasts about the dynamics of cities. 

 

Customization for Different Urban Environments: Similarly, the potential for varied 

urban settings--diverse in cultural contexts and geography as well as socio-economic 

backgrounds--to yield different scenarios is a key feature deserving continued 

investigation. In a later specific strategy, the algorithm can be modified according to 

different cities 'characteristics and problems around the world. 

 

Ethical and Privacy Considerations in Data Use: Since Enhanced DUCSIM depends 

largely on such data provided by users, further research will need to explore the ethical 

aspects. This includes establishing rigorous privacy protection policies and data handling 

procedures that are as open to public scrutiny. 

 

Application in Disaster Management and Emergency Response: For emergency 

response and disaster relief uses, Enhanced DUCSIM has a considerable amount of 

upside. In future studies, there is scope to explore how this tool can help make real-time 

decisions in response to crises. This has obvious safety and efficiency advantages. 

 

Integration with Smart City Infrastructure: Integrating an Enhanced DUCSIM with 

existing and future smart city infrastructures is another area opened up. This would make 

for a more coordinated and overall approach to urban affairs, so that the people of our 

cities can live better. 
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Longitudinal Studies on Urban Dynamics: Long-term studies with Enhanced DUCSIM 

would give us a good idea of how cities change through time. This could help with long-

term urban planning. 

 

User Behaviour Analysis and Sociological Implications: Discussing sociological 

aspects of urban motion, whereby the group sets limits on individual behaviour or how 

community life affects various types of people, helps us get beyond numerical data to 

understand more clearly about human elements in urban planning. 

 

Scalability and Performance Optimization: Increasing complex cities will be the test 

for Scalability of Enhanced DUCSIM. Going forward, the algorithm must be optimized 

for performance and scalability so that it is effective even with massive amounts of data. 

 

Interdisciplinary Collaboration: By cooperating among different levels of expertise, 

such as in urban planning, computer science and sociology or environmental sciences, 

Enhanced DUCSIM can develop into a more complete solution covering almost every 

aspect of Urban Mobility. 

 

The Enhanced DUCSIM is a critical advancement in urban analysis across these areas, 

i.e., technology, urban planning, and social science. With the growth of city tools like 

ENHANCED DUCSIM, people will need them as they navigate the intricacies of urban 

life. Therefore, developing this software will aid in building intelligent, flexible, and 

humane environments. 

 

 

 

 

 

 

 

 

 



267 
 

10.5 List of Publication  
 

10.5.1 Patents  
 

[1]. [202142038429 – Indian Patent: Publication Date: 03/09/2021]  

[2021107444 – Australia Innovation Patent, Publication Date: 08/12/2021. Granted] 

Title: Medical-IoT System for Estimating Hospital Beds Vacancy, Re-Routing Of 

Emergency Human Logistic Vehicle & Thereof. 

https://patentscope.wipo.int/search/en/detail.jsf?docId=AU342862121 

Innovators: Addepalli Lavanya Murali, Vidyasagar S.D., Ashutosh Verma, Dr. Jaime 

Lloret Mauri, Dr. Darsha Panwar, Dr. Navandar Yogeshwar, Dr. Prabhakar, C. J., 

Shubhangi Kachhawa 

 

[2]. [IN202341052661} - SMART SURVEILLANCE FOR PUBLIC HEALTH: 

BIKER TRACKING AND CONTAGIOUS DISEASE MAPPING VIA ON-

ROAD CAMERAS AND GEO-FENCED BLOCKCHAIN 

https://patentscope.wipo.int/search/en/detail.jsf?docId=IN414847304 

Inventors: Addepalli Lavanya, Darsha Panwar, Vidya Sagar S D, Jaime Lloret Mauri, 

Haritha Dasari, Dr. Vamsi Krishna Uppalapati, Maloth Bhavsingh 

 

[3]. [IN202341086155]: System and Method for Estimating Crowd Density and 

Assessing Social Networks Using Geo-Fenced Blockchain Environment and 

Wireless Data 

Inventors: Addepalli Lavanya Murali, Jaime Lloret Mauri 

 

[4]. [IN202341074214] – A system of Quantum-Enhanced Secure Lightwave Data 

Hyper-fusion for Li-Fi Communications and there of 

Inventors: Dr. Suman Rani, Dr. M. Sri Lakshmi, Addepalli Lavanya Murali, Jaime Lloret 

Mauri, Vidya Sagar S D, Maloth Bhavsingh 
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10.5.2 Other Network Patents  
 

[5]. [IN202341074335] - UAV-Supported IoT Network Health Surveillance via 

Video Steganography Techniques 

Inventors: Dr. Jaibir Singh, Dr. M. Kalpana Devi, K. Samunnisa, Addepalli Lavanya, 

Murali, Jaime Lloret Mauri, Vidya Sagar S D, Maloth Bhavsingh 

 

[6]. [IN 202341066982] - A blockchain-hybrid Network System with Physiological 

Signal Integration of XAI Enhanced stress Reduction in Gaming  

Inventors:  Addepalli Lavanya Murali, Dr. Banoth Samya, Maloth Bhavsingh, Dr. 

Prasadu Peddi, Vidya Sagar S D , Jaime Lloret Mauri 

 

[7]. [IN202341066991] Farm-to-Shelf Blockchain Network System for 

Unstructured Retailers Trading Among Small-Scale Producers 

Inventors: Addepalli Lavanya Murali, Dr. Vishal Dattana, Joydeep Mookerjee, Sri Pooja 

Chavali, Vidya Sagar S D, Jaime Lloret Mauri, Maloth Bhavsingh 

 

[8]. [IN202341074182] - Secured Airway Assessment System: A Hybrid Network-

Blockchain Approach for Medical Image Evaluation 

Inventors: Dr. Vamsi Krishna Uppalapati, B. Swarna Jyothi, Dr, N.V. Muthu 

Lakshmi, Addepalli Lavanya Murali, Vidya Sagar S D, Jaime Lloret Mauri, Maloth 

Bhavsingh 

[9]. [IN202241004223 - A CLOUD-IOT SYSTEM WITH GEO-FENCED 

BLOCKCHAIN TO IDENTIFY WAREHOUSE EMPTY SPACE & 

AUTOMATIC BILLING 

https://patentscope.wipo.int/search/en/detail.jsf?docId=IN350376787 

Inventors: Addepalli Lavanya, Dr. Jaime Lloret Mauri, Vidya Sagar, S, D., Hemanth 

Shinde Dileep Naigapula, Dr. J. Bhavani, Dr. Navandar Yogeshwar, Dr. Alexis Bañón 

Gomis, Dr. Pablo Ruiz-Palomino 
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[10]. [IN-202341050538] AUTONOMOUS TRAFFICGUARD - AI-

ENABLED TRAFFIC ANALYSIS ECOSYSTEM FOR ENHANCED ROAD 

SAFETY 

https://patentscope.wipo.int/search/en/detail.jsf?docId=IN414862822 

Inventors: JAIME LLORET MAURI, Addepalli Lavanya, Vidya Sagar S  

 

[11]. [IN202341053117] - A DECENTRALIZED PARKING NETWORK 

WITH LICENSE PLATE RECOGNITION AND AUTOMATED 

PAYMENTS ON THE BLOCKCHAIN 

https://patentscope.wipo.int/search/en/detail.jsf?docId=IN414845295 

Inventors: Addepalli Lavanya, Jitendra Pandey, Vidya Sagar S D, Jaime Lloret Mauri, 

Maloth Bhavsingh, Vrinda Santosh Bhalerao, Shubhangi Kachhawa 

 

10.5.3 Papers 
 

[1]. Lavanya, A, Waqas Ali, Dr. Jaime Lloret, Vidya Sagar, S. D, and Chivukula 
Bharadwaj, “A Real-time Visualization of Global Sentiment Analysis on 
Declaration of Pandemic”, Int. J. Comput. Eng. Res. Trends, vol. 9, no. 6, pp. 
104–113, Jun. 2022. 

 

10.5.4 Conference  
 

[1]. Lavanya A., P. Darsha, P. Akhil, J. Lloret and N. Yogeshwar, "A Real-Time 
Human Mobility Visualization of Covid-19 Spread from East Asian Countries," 
2021 Eighth International Conference on Social Network Analysis, Management 
and Security (SNAMS), 2021, pp. 1-8,  
doi: 10.1109/SNAMS53716.2021.9732103. 
 

10.5.5 Book chapter  
 

[1]. Lavanya. A, Darsha Panwar, Jaime Lloret, Ali Waqas, Digvijay Pandey, Sagar 
Pathare, Anik Biswas (2022) Event Based Multi Model Classification to assess the 
User Participation Levels on Twitter – multi model classification of twitter user 
activity frequencies. Thakur, N., & Parameshachari, B. D. (Eds.). Human-
Computer Interaction and Beyond: Advances Towards Smart and Interconnected 
Environments (Part II). Bentham Science Publishers. 
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APPENDIX – CODE  
 

1. Code: Algorithm 6  
 
Code 1: Algorithm 6 
 
import pandas as pd 
 
# Example DataFrame structure 
data = pd.DataFrame({ 
    'Time': ['00:00:00', '01:00:00', '02:00:00', '00:00:00', '01:00:00'], 
    'Ref_Count': [100, 150, 200, 110, 160], 
    'Current_Count': [120, 180, 210, 105, 165] 
}) 
 
# Convert Time to datetime and extract hour 
data['Time'] = pd.to_datetime(data['Time']).dt.hour 
 
# Define the initial classification function 
def classify_initial(current_count, median_ref_count): 
    return 'Above Median' if current_count >= median_ref_count else 'Below Median' 
 
# Define the quartile-based classification function 
def classify_quartiles(current_count, q1, q3): 
    if current_count < q1: 
        return 'Low' 
    elif current_count < q3: 
        return 'Medium' 
    else: 
        return 'High' 
 
# Process data 
results = [] 
for hour in data['Time'].unique(): 
    # Filter data for the current hour 
    hour_data = data[data['Time'] == hour] 
 
    # Step 1: Calculate the median Ref_Count 
    median_ref_count = hour_data['Ref_Count'].median() 
 
    # Step 2: Initial Classification 
    hour_data['Initial_Classification'] = hour_data['Current_Count'].apply(classify_initial, 
args=(median_ref_count,)) 
 
    # Step 3: Further Classification 
    for initial_class in ['Above Median', 'Below Median']: 
        class_data = hour_data[hour_data['Initial_Classification'] == initial_class] 
        q1 = class_data['Current_Count'].quantile(0.25) 
        q3 = class_data['Current_Count'].quantile(0.75) 
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        class_data['Final_Classification'] = 
class_data['Current_Count'].apply(classify_quartiles, args=(q1, q3)) 
        results.append(class_data) 
 
# Compile final results 
final_results = pd.concat(results) 
 
print(final_results.head()) 
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2. Code: Algorithm 7 

 
Code 2: Algorithm 7 
import pandas as pd 
import numpy as np 
 
# Sample input data  
data = pd.DataFrame({ 
    'Time': ['00:00:00', '01:00:00'], 
    'Ref_Count': [4921, 5356], 
    'Current_Count': [6607, 7777] 
}) 
 
# Define a function to classify records as "Above Median" or "Below Median" 
def classify_initial(record, median): 
    if record['Ref_Count'] >= median: 
        return "Above Median" 
    else: 
        return "Below Median" 
 
# Define a function to classify records based on quartiles 
def classify_quartiles(record, q1, q3): 
    if record['Ref_Count'] < q1: 
        return "Low" 
    elif q1 <= record['Ref_Count'] < q3: 
        return "Medium" 
    else: 
        return "High" 
 
# Extract distinct hours 
hours = data['Time'].str.split(':').str[0].unique() 
 
# Create an empty DataFrame for the final classification 
final_classification = pd.DataFrame() 
 
# Create an empty DataFrame to store threshold values 
threshold_values = pd.DataFrame(columns=['Hour', 'Median', 'Q1', 'Q3']) 
 
for hour in hours: 
    # Extract records for the current hour 
    hour_data = data[data['Time'].str.startswith(hour)] 
 
    # Calculate the median for this hour 
    median_t = hour_data['Ref_Count'].median() 
 
    # Perform initial classification and add it to the DataFrame 
    hour_data['InitialClass'] = hour_data.apply(lambda x: classify_initial(x, median_t), 
axis=1) 
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    # Calculate quartiles for the classified group 
    q1_t_class = hour_data[hour_data['InitialClass'] == 'Below 
Median']['Ref_Count'].quantile(0.25) 
    q3_t_class = hour_data[hour_data['InitialClass'] == 'Below 
Median']['Ref_Count'].quantile(0.75) 
 
    # Store threshold values in the threshold_values DataFrame 
    threshold_values = threshold_values.append({'Hour': hour, 'Median': median_t, 'Q1': 
q1_t_class, 'Q3': q3_t_class}, ignore_index=True) 
 
    # Perform further classification and add it to the DataFrame 
    hour_data['FinalClass'] = hour_data.apply(lambda x: classify_quartiles(x, q1_t_class, 
q3_t_class), axis=1) 
 
    # Append the hour's data to the final classification DataFrame 
    final_classification = final_classification.append(hour_data) 
 
# Print the final classification 
print(final_classification) 
 
# Save threshold values to CSV 
threshold_values.to_csv('threshold_values.csv', index=False) 
 
# Save final classification to CSV 
final_classification.to_csv('final_classification.csv', index=False) 
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3. Code: Algorithm 8 

 
Code 3: Algorithm 8 
import pandas as pd 
import numpy as np 
 
# Load the CSV file into a DataFrame 
input_file = 'Input_Synthetic.csv' 
df = pd.read_csv(input_file) 
 
# Initialization 
D_grouped = df.groupby('Time') 
T = {} 
 
# Compute Hourly Median Thresholds 
for hour, group in D_grouped: 
    median_h = np.median(group['Current_Count']) 
    T[hour] = median_h 
 
# Categorization of Counts into Above and Below Threshold 
def categorize_count(row): 
    hour = row['Time'] 
    if row['Current_Count'] > T[hour]: 
        return 'Above Threshold' 
    else: 
        return 'Below Threshold' 
 
df['Threshold_Category'] = df.apply(categorize_count, axis=1) 
 
# Quartile Classification based on Threshold 
Q1 = df['Current_Count'].quantile(0.25) 
Q2 = df['Current_Count'].quantile(0.5) 
Q3 = df['Current_Count'].quantile(0.75) 
 
def classify_quartile(row): 
    if row['Current_Count'] <= Q1: 
        return 'Low Density' 
    elif Q1 < row['Current_Count'] <= Q2: 
        return 'Medium Density' 
    elif Q2 < row['Current_Count'] <= Q3: 
        return 'High Density' 
    else: 
        return 'Very High Density' 
 
df['Density_Range'] = df.apply(classify_quartile, axis=1) 
 
# Compilation of Results 
R = df.copy() 
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# Export to CSV 
result_file = 'result.csv' 
threshold_file = 'thresholds.csv' 
R.to_csv(result_file, index=False) 
threshold_df = pd.DataFrame({'Hour': T.keys(), 'Median': T.values()}) 
threshold_df.to_csv(threshold_file, index=False) 
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4. Code: Algorithm 9  

 
Code 4: Algorithm 9 

import pandas as pd 
import numpy as np 
from collections import defaultdict 
 
# Step 1: Load the CSV data and calculate Hourly Median Thresholds 
df = pd.read_csv('synthetic_individual_movements.csv') 
 
# Extract hours from the 'Time' column 
try: 
    hours = df['Time'].str.extract('(\d+:\d+:\d+)')[0] 
    df['Hour'] = pd.to_datetime(hours, format='%H:%M:%S').dt.hour 
except Exception as e: 
    print("Error:", e) 
    exit() 
 
# Calculate Hourly Median Thresholds 
median_thresholds = 
df.groupby('Hour')['SiteID'].value_counts().groupby('Hour').median().reset_index() 
median_thresholds.columns = ['Hour', 'Median_Threshold'] 
 
# Save Hourly Median Thresholds to a CSV file 
median_thresholds.to_csv('hourly_median_thresholds.csv', index=False) 
 
# Step 2: Simulate data for subsequent steps (simplified example, replace with historical 
data) 
# Generate random group data and social tie strengths for illustration purposes (replace 
with actual data) 
n = len(df['IndividualID'].unique()) 
H = len(df['Hour'].unique()) 
group_data = defaultdict(list) 
social_tie_strengths = defaultdict(float) 
 
for h in range(0, H): 
    groups = {} 
    for i in range(1, n + 1): 
        tower_id = df[(df['IndividualID'] == f'Individual {i}') & (df['Hour'] == 
h)]['SiteID'].values[0] 
        if tower_id not in groups: 
            groups[tower_id] = [] 
        groups[tower_id].append(i) 
 
    for k, v in groups.items(): 
        group_data['Hour'].append(h) 
        group_data['SiteID'].append(k) 
        group_data['Individuals'].append(v) 
        social_tie_strengths[(h, k)] = len(v) 
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group_dynamics = pd.DataFrame(group_data) 
 
# Step 3: Simulate predictive models based on historical data (replace with actual 
predictive models) 
# Generate random predictive models for illustration purposes (replace with actual 
models) 
# Load historical data (replace with your actual historical data) 
# historical_data = pd.read_csv('historical_data.csv') 
 
# Define the number of future days to predict 
n_days_to_predict = 7  # Example: Predict for the next 7 days 
 
# Create an empty DataFrame to store predictions 
future_predictions = pd.DataFrame(columns=['Hour', 'PredictiveModel']) 
 
# Loop through the next n_days_to_predict days and make predictions 
for day in range(1, n_days_to_predict + 1): 
    # Replace this with your actual predictive model 
    predictive_model = pd.DataFrame({'Hour': range(0, H), 'PredictiveModel': 
np.random.rand(H)}) 
     
    # Append the predictions for the current day to the future_predictions DataFrame 
    future_predictions = pd.concat([future_predictions, predictive_model], 
ignore_index=True) 
 
# Save future predictions to a CSV file 
future_predictions.to_csv('future_predictions.csv', index=False) 
 
# Step 4: Save Mobility Profiles (as before) 
 
# Create mobility profiles based on the simplified data 
mobility_profiles = df.groupby('IndividualID')['SiteID'].apply(list).reset_index() 
mobility_profiles.columns = ['IndividualID', 'MobilityProfile'] 
mobility_profiles.to_csv('mobility_profiles.csv', index=False) 
 
print("Execution completed. Results saved to CSV files.") 
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5. Code: Algorithm 10  
 
Code 5: Algorithm 10 

import pandas as pd 
from datetime import datetime 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_squared_error 
 
# Function to calculate similarity between individuals 
def calculate_similarity(df): 
    similarity_matrix = pd.DataFrame(index=df.index, columns=df.index, data=0) 
    for i in df.index: 
        for j in df.index: 
            if i != j: 
                similarity_matrix.loc[i, j] = sum(df.loc[i] == df.loc[j]) 
    return similarity_matrix 
 
# Load the dataset 
file_path = 'path_to_your_file.csv'  # Update this with your file path 
data = pd.read_csv(file_path) 
 
# Convert 'Time' column to datetime and extract the hour 
data['Time'] = pd.to_datetime(data['Time'], format='%H:%M:%S') 
data['Hour'] = data['Time'].dt.hour 
 
# Generate crowd count data 
crowd_count_data = data.groupby(['SiteID', 
'Hour']).size().reset_index(name='CrowdCount') 
 
# Macroscopic Analysis 
# Calculate hourly thresholds and perform quartile classification 
hourly_thresholds = 
crowd_count_data.groupby('Hour')['CrowdCount'].median().reset_index(name='HourlyT
hreshold') 
crowd_count_data_merged = pd.merge(crowd_count_data, hourly_thresholds, on='Hour') 
crowd_count_data_merged['Quartile'] = 
pd.qcut(crowd_count_data_merged['CrowdCount'], 4, labels=['Q1', 'Q2', 'Q3', 'Q4']) 
 
# Microscopic Analysis 
# Individual mobility patterns 
individual_mobility = 
data.groupby('IndividualID')['SiteID'].nunique().reset_index(name='UniqueSitesVisited') 
 
# Social ties inference 
pivot_data = data.pivot_table(index='IndividualID', columns='Hour', values='SiteID', 
aggfunc=lambda x: x) 
social_ties = calculate_similarity(pivot_data) 
 
# Predictive Modelling 
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# Preparing data for the model 
X = crowd_count_data[['SiteID', 'Hour']] 
X['SiteID'] = X['SiteID'].apply(lambda x: int(x.split()[1])) 
y = crowd_count_data['CrowdCount'] 
 
# Splitting the data 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
 
# RandomForestRegressor model 
model = RandomForestRegressor(n_estimators=100, random_state=42) 
model.fit(X_train, y_train) 
 
# Predicting and evaluating 
y_pred = model.predict(X_test) 
mse = mean_squared_error(y_test, y_pred) 
 
# Output results 
print("Mean Squared Error of the model:", mse) 
 
# Save results to CSV 
crowd_count_data_merged.to_csv('crowd_count_data_with_quartiles.csv', index=False) 
individual_mobility.to_csv('individual_mobility_patterns.csv', index=False) 
social_ties.to_csv('social_ties_similarity_matrix.csv') 
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6. Code: Algorithm 11  
 
Code 6: Algorithm 11 

import pandas as pd 
import numpy as np 
 
def load_data(file_path): 
    data = pd.read_csv(file_path) 
    data['Hour'] = pd.to_datetime(data['Time']).dt.hour 
    return data 
 
def macroscopic_density_analysis(data): 
    crowd_count_raw = data.groupby(['SiteID', 
'Hour']).size().reset_index(name='RawCrowdCount') 
    daily_thresholds = 
crowd_count_raw.groupby(['Hour'])['RawCrowdCount'].median().reset_index(name='Dai
lyThreshold') 
    merged_data = pd.merge(crowd_count_raw, daily_thresholds, on='Hour') 
    quartiles = pd.qcut(merged_data['RawCrowdCount'], 4, labels=['Q1', 'Q2', 'Q3', 'Q4']) 
    merged_data['Quartile'] = quartiles 
    return merged_data 
 
def cumulative_mobility_analysis(data): 
    site_ids = data['SiteID'].unique() 
    hours = data['Hour'].unique() 
    mobility_matrix = pd.DataFrame(columns=['FromSite', 'ToSite', 'Hour', 
'CrowdMovement']) 
    for hour in hours: 
        current_hour_data = data[data['Hour'] == hour] 
        next_hour_data = data[data['Hour'] == (hour + 1) % 24] 
        for from_site in site_ids: 
            for to_site in site_ids: 
                if from_site != to_site: 
                    moved_individuals = len(set(current_hour_data[current_hour_data['SiteID'] 
== from_site]['IndividualID']) & 
                                            set(next_hour_data[next_hour_data['SiteID'] == 
to_site]['IndividualID'])) 
                    mobility_matrix = mobility_matrix.append({'FromSite': from_site, 'ToSite': 
to_site, 'Hour': hour, 'CrowdMovement': moved_individuals}, ignore_index=True) 
    density_estimation = mobility_matrix.groupby(['ToSite', 
'Hour'])['CrowdMovement'].sum().reset_index(name='Incoming') 
    density_estimation = pd.merge(density_estimation, 
mobility_matrix.groupby(['FromSite', 
'Hour'])['CrowdMovement'].sum().reset_index(name='Outgoing'), left_on=['ToSite', 
'Hour'], right_on=['FromSite', 'Hour']) 
    density_estimation['DensityEstimation'] = density_estimation['Incoming'] - 
density_estimation['Outgoing'] 
    density_estimation = density_estimation[['ToSite', 'Hour', 'DensityEstimation']] 
    return density_estimation 
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def save_results(density_analysis, mobility_analysis, density_analysis_file, 
mobility_analysis_file): 
    density_analysis.to_csv(density_analysis_file, index=False) 
    mobility_analysis.to_csv(mobility_analysis_file, index=False) 
 
# Paths for data file and output files 
file_path = 'Input_synthetic_individual_movements.csv' 
density_analysis_file = 'macroscopic_crowd_density_analysis.csv' 
mobility_analysis_file = 'cumulative_crowd_mobility_analysis.csv' 
 
# Load and process data 
data = load_data(file_path) 
density_analysis = macroscopic_density_analysis(data) 
mobility_analysis = cumulative_mobility_analysis(data) 
 
# Save results to CSV files 
save_results(density_analysis, mobility_analysis, density_analysis_file, 
mobility_analysis_file) 
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7. Code: Algorithm 12 
 
Code 7: Algorithm 12 
import pandas as pd 
from itertools import combinations 
 
# Load the dataset 
file_path = 'path_to_your_file.csv'  # Replace with your file path 
data = pd.read_csv(file_path) 
 
# Macroscopic Crowd Density Analysis 
# Compute Raw Crowd Count 
crowd_count_raw = data.groupby(['SiteID', 
'Time']).size().reset_index(name='CrowdCount') 
 
# Calculate Daily Threshold (Method of M-o-Ments) 
daily_threshold = crowd_count_raw.groupby('SiteID')['CrowdCount'].agg(['mean', 
'std']).reset_index() 
daily_threshold['Threshold'] = daily_threshold['mean'] + daily_threshold['std'] 
 
# Classify crowd density into quartiles 
quartiles = crowd_count_raw['CrowdCount'].quantile([0.25, 0.5, 0.75]).to_dict() 
def classify_quartiles(count): 
    if count <= quartiles[0.25]: 
        return 'Q1' 
    elif count <= quartiles[0.5]: 
        return 'Q2' 
    elif count <= quartiles[0.75]: 
        return 'Q3' 
    else: 
        return 'Q4' 
crowd_count_raw['Quartile'] = 
crowd_count_raw['CrowdCount'].apply(classify_quartiles) 
 
# Cumulative Crowd Mobility Analysis (Adjusted) 
# Note: The original method is adjusted due to data limitations 
# We use the raw crowd count as an estimate for crowd density 
 
# Microscopic Individual Mobility and Social Interaction Analysis 
# Construct a Social Interaction Matrix 
social_interaction_data = data.groupby(['Time', 
'SiteID'])['IndividualID'].apply(list).reset_index() 
social_interaction_data['Interactions'] = 
social_interaction_data['IndividualID'].apply(lambda x: list(combinations(x, 2))) 
exploded_social_interaction_data = social_interaction_data.explode('Interactions') 
exploded_social_interaction_data = 
exploded_social_interaction_data.dropna(subset=['Interactions']) 
 
# Save results to CSV files 
crowd_count_raw.to_csv('crowd_count_raw.csv', index=False) 
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daily_threshold.to_csv('daily_threshold.csv', index=False) 
exploded_social_interaction_data.to_csv('social_interaction_data.csv', index=False) 
 
print("Data analysis complete. Files saved.") 
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8. Code: Algorithm 13 
 
Code 8: Algorithm 13 
import pandas as pd 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import numpy as np 
 
# Load the dataset 
file_path = 'path_to_your_file.csv'  # Replace with your file path 
data = pd.read_csv(file_path) 
 
# Process the data for modelling 
# Assume 'SiteID' and 'Time' are relevant columns 
data['Hour'] = pd.to_datetime(data['Time']).dt.hour 
data['SiteID_Encoded'] = data['SiteID'].astype('category').cat.codes 
 
# Compute Raw Crowd Count 
crowd_count_raw = data.groupby(['SiteID_Encoded', 
'Hour']).size().reset_index(name='CrowdCount') 
 
# Features and target variable 
X = crowd_count_raw[['Hour', 'SiteID_Encoded']] 
y = crowd_count_raw['CrowdCount'] 
 
# Splitting the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 
 
# Building the RandomForestRegressor model 
model = RandomForestRegressor(n_estimators=100, random_state=42) 
model.fit(X_train, y_train) 
 
# Making predictions on the test set and evaluating the model 
y_pred = model.predict(X_test) 
mse = mean_squared_error(y_test, y_pred) 
rmse = np.sqrt(mse) 
 
# Predicting future crowd density 
# Assuming the 'next hour' is the hour following the last hour in the dataset 
next_hour = data['Hour'].max() + 1 
future_predictions = pd.DataFrame({'Hour': next_hour, 'SiteID_Encoded': 
data['SiteID_Encoded'].unique()}) 
future_predictions['PredictedCrowdCount'] = model.predict(future_predictions) 
 
# Mapping encoded SiteID back to original SiteID 
site_id_mapping = data[['SiteID', 'SiteID_Encoded']].drop_duplicates() 
future_predictions = future_predictions.merge(site_id_mapping, on='SiteID_Encoded') 
future_predictions = future_predictions[['Hour', 'SiteID', 'PredictedCrowdCount']] 
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# Save the future predictions to a CSV file 
future_predictions.to_csv('future_predictions.csv', index=False) 
 
print(f"Model RMSE: {rmse}") 
print("Future predictions saved to 'future_predictions.csv'") 
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9. Code: Algorithm 14 
 
Code 9: Algorithm 14 
import pandas as pd 
 
# Load the dataset 
file_path = 'Input_Synthetic.csv'  # Replace with your actual file path 
df = pd.read_csv(file_path) 
 
# Extract the hour from the Time field 
df['Hour'] = pd.to_datetime(df['Time']).dt.hour 
 
# Group by the 'Hour' field and compute medians 
grouped = df.groupby('Hour') 
medians = grouped['Current_Count'].median() 
 
# Compute the Median-of-Medians (M-o-M) Threshold 
M-o-M_threshold = medians.median() 
 
# Categorization Based on M-o-M Threshold 
df['Category_Threshold'] = df['Current_Count'].apply(lambda x: 'Above Threshold' if x > 
M-o-M_threshold else 'Below Threshold') 
 
# Quartile Classification 
Q1, Q2, Q3 = df['Current_Count'].quantile([0.25, 0.5, 0.75]) 
def classify_quartile(value): 
    if value <= Q1: 
        return 'Q1' 
    elif value <= Q2: 
        return 'Q2' 
    elif value <= Q3: 
        return 'Q3' 
    else: 
        return 'Q4' 
df['Quartile'] = df['Current_Count'].apply(classify_quartile) 
 
# Prediction Model 
# Define weights (assuming equal weights for simplicity) 
w_act = 1 
w_hist = 1 
w_thresh = 1 
def prediction_model(current_count, ref_count, threshold, M-o-M_threshold): 
    f_thresh = 1 if current_count > M-o-M_threshold else 0 
    return w_act * current_count + w_hist * ref_count + w_thresh * f_thresh 
df['Prediction'] = df.apply(lambda x: prediction_model(x['Current_Count'], 
x['Ref_Count'], x['Category_Threshold'], M-o-M_threshold), axis=1) 
 
# Resultant dataset R and hourly medians T 
R = df.copy() 
T = medians.reset_index() 
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T.columns = ['Hour', 'Median_Current_Count'] 
 
# File paths for the CSV exports 
resultant_file_path = 'Resultant_Dataset.csv'  # Replace with your desired file path 
medians_file_path = 'Hourly_Medians.csv'      # Replace with your desired file path 
 
# Export to CSV 
R.to_csv(resultant_file_path, index=False) 
T.to_csv(medians_file_path, index=False) 
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10. Code: Algorithm 15  
 
Code 10: Algo 15 Crowd Density 
import pandas as pd 
 
# Load the data 
simulated_data = pd.read_csv('simulated_data.csv') 
 
# Crowd Density Estimation 
simulated_data['TotalActivity'] = simulated_data[['WiFi', 'Vehicular', 'RideSharing', 
'Tweets']].sum(axis=1) 
crowd_density = 
simulated_data.groupby('Location')['TotalActivity'].median().reset_index() 
crowd_density.rename(columns={'TotalActivity': 'CrowdDensity'}, inplace=True) 
quartiles = pd.qcut(crowd_density['CrowdDensity'], 4, labels=['Q1', 'Q2', 'Q3', 'Q4']) 
crowd_density['Quartile'] = quartiles 
crowd_density.to_csv('crowd_density.csv', index=False) 
 
 
 
 
Code 11: Algorithm 15 Mobility Density 

import pandas as pd 
import random 
 
def simulate_mobility_flow(num_locations, num_timepoints): 
    flow_data = [] 
    for t in range(num_timepoints): 
        for i in range(1, num_locations + 1): 
            for j in range(1, num_locations + 1): 
                if i != j: 
                    flow_value = random.randint(0, 100)  # Simulating flow value 
                    flow_data.append([i, j, t, flow_value]) 
    columns = ['FromLocation', 'ToLocation', 'Timepoint', 'FlowValue'] 
    return pd.DataFrame(flow_data, columns=columns) 
 
# Parameters 
num_locations = 5 
num_timepoints = 24 
 
# Generate flow matrix 
flow_matrix = simulate_mobility_flow(num_locations, num_timepoints) 
flow_matrix.to_csv('flow_matrix.csv', index=False) 
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Code 12: Algorithm Social Media Interaction 

import pandas as pd 
 
# Load the data 
simulated_data = pd.read_csv('simulated_data.csv') 
 
# Interaction Matrix 
interaction_matrix = simulated_data.groupby('Location')[['RideSharing', 
'Tweets']].sum().reset_index() 
interaction_matrix.rename(columns={'RideSharing': 'RideSharingInteractions', 'Tweets': 
'TweetInteractions'}, inplace=True) 
 
# Sentiment Matrix 
sentiment_matrix = simulated_data.groupby('Location')['Sentiment'].mean().reset_index() 
sentiment_matrix.rename(columns={'Sentiment': 'AverageSentiment'}, inplace=True) 
 
# Save to CSV 
interaction_matrix.to_csv('interaction_matrix.csv', index=False) 
sentiment_matrix.to_csv('sentiment_matrix.csv', index=False) 
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