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SUPERMAN strikes again
in legumes

Ana L. Rodas, Edelı́n Roque*, Rim Hamza,
Concepción Gómez-Mena, José Pı́o Beltrán and Luis A. Cañas*

Instituto de Biologı́a Molecular y Celular de Plantas (Consejo Superior de Investigaciones Cientı́ficas-
Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Valencia, Spain
The SUPERMAN (SUP) gene was described in Arabidopsis thaliana over 30 years

ago. SUP was classified as a cadastral gene required to maintain the boundaries

between reproductive organs, thus controlling stamen and carpel number in

flowers. We summarize the information on the characterization of SUP

orthologs in plant species other than Arabidopsis, focusing on the findings for

the MtSUP, the ortholog in the legume Medicago truncatula. M. truncatula has

been widely used as amodel system to study the distinctive developmental traits of

this family of plants, such as the existence of compound inflorescence and

complex floral development. MtSUP participates in the complex genetic network

controlling these developmental processes in legumes, sharing conserved

functions with SUP. However, transcriptional divergence between SUP and

MtSUP provided context-specific novel functions for a SUPERMAN ortholog in a

legume species. MtSUP controls the number of flowers per inflorescence and the

number of petals, stamens and carpels regulating the determinacy of ephemeral

meristems that are unique in legumes. Results obtained in M. truncatula provided

new insights to the knowledge of compound inflorescence and flower

development in legumes. Since legumes are valuable crop species worldwide,

with high nutritional value and important roles in sustainable agriculture and food

security, new information on the genetic control of their compound inflorescence

and floral development could be used for plant breeding.

KEYWORDS

SUPERMAN, legumes, Medicago truncatula, MtSUP, compound inflorescence, flower
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Introduction

Most angiosperm flowers are organized in four concentric whorls: sepals (W1), petals

(W2), stamens (W3) and carpel/s (W4), (Smyth et al., 1990). The number offloral organs and

the placement of the organs within each whorl are genetically determined and MADS-box

floral homeotic genes play a crucial role in the specification of floral organ identity (Bowman

et al., 2012). Other classes of genes, the ones that determine the boundaries of different cell

identities, are also crucial players during floral development (Yu and Huang, 2016). They

were classified as “cadastral genes”, to which the Arabidopsis SUPERMAN (SUP) gene was

assigned (Bowman et al., 1992; Sakai et al., 1995).
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SUP is a transcriptional repressor, extensively studied in

Arabidopsis thaliana, that encodes a plant-specific EPF-like protein

with one Cys2-His2 zinc finger DNA binding domain and a C-

terminus EAR-like (DLELRL) motif (Sakai et al., 1995; Hiratsu

et al., 2002; Hiratsu et al., 2003; Hiratsu et al., 2004). The specific

expression of SUP at the boundary between W3 and W4 (Sakai et al.,
Frontiers in Plant Science 02
1995; Prunet et al., 2017) led to its classification as a cadastral gene

specifying the stamens-carpel boundary. The supernumerary male

organs at the expense of the female one of the sup-1 mutant

(Figure 1A) (Bowman et al., 1992) was initially associated with the

expansion of the MADS-box genes APETALA3 (AP3) and

PISTILLATA (PI) expression closer to the centre of the floral
FIGURE 1

Comparative floral development of Arabidopsis thaliana and Medicago truncatula. (A) Comparative schematic representation among superman
(sup) mutant alleles in Arabidopsis regarding floral organ number. Wild type A. thaliana flower: 4 sepals, 4 petals, 6 stamens and two fused carpels.
(B) Comparative schematic representation among superman (mtsup) mutant alleles in Medicago regarding floral organ number. Wild type M. truncatula
flower: 5 sepals, 5 petals, 10 stamens, 9 fused (staminal tube) and one free, and a single carpel. In Arabidopsis, the ‘superman’ class of mutants harbors
supernumerary stamens and reduced or absent carpel, resembling mtsup-2 showing additional petals at the expense of stamens. An increased
number of carpels characterize the “superwoman” class. Similar phenotypes displayed the mtsup-1 (class 2 and 3) alleles, with two or three carpels in
M. truncatula. The “supersex” class, to which sup-5 allele belong, produces more stamens and additional carpels. This phenotype is observed in mtsup-1
allele (class 4). Also, additional petals are produced by this allele. (C) Left. In A. thaliana organ differentiation is centripetal and sequential. First are
differentiated the sepal primordia, then the petal primordia, the stamen primordia and finally the carpel primordium. Right. In M. truncatula, the four
common primordia differentiate petals and stamens in W2 and W3 respectively. (D) Floral meristem of M. truncatula showing the early carpel primordium
(C, green) in the centre, the four common primordia (CP, orange) and the sepal primordia (S). (E) Each common primordium differentiates petals
(P, yellow) in W2 and antepetal (Stp) and antesepal (Sts) stamens in W3 (orange). VM, vegetative meristem; FM, floral meristem; I1, primary inflorescence
meristem; I2, secondary inflorescence meristem; spk, spike; S, sepal primordium; CP, common primordium; P, petal primordium; St, stamen primordium;
C, carpel primordium. Scale bars, 25 mm in (D, E) Adapted from Benlloch et al., 2003; Breuil-Broyer et al., 2016; Prunet et al., 2017 and Rodas et al., 2021.
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meristem (Sakai et al., 1995; Prunet et al., 2017). Initially, models to

explain the SUP function were based on a single allele: sup-1 (flo-10)

(Bowman et al., 1992; Sakai et al., 1995; Prunet et al., 2017). However,

the study of other sup alleles displaying phenotypes deviating from

sup-1 (Figure 1A) has shed light on the SUP functions (Breuil-

Broyer et al., 2016; Prunet et al., 2017; Xu et al., 2018). SUP is a

gene controlling the stamens-carpel boundary setting and is linked

to floral meristem termination (FMT) at the early stages of

flower development.

It has been described that SUP is required for the correct timing

to turn offWUSCHEL (WUS) from the floral meristem centre (FMC),

thus controlling the floral meristem termination. WUS activity is

required for the stem cell division at the floral meristem centre, a

prolonged expression ofWUS would lead to a delayed floral meristem

termination, and more floral organs could be produced. However,

SUP and WUS do not show an overlapping spatial expression and, in

sup mutants, WUS expression is prolonged (Prunet et al., 2017; Xu

et al., 2018). Moreover, SUP contributes to carpel medial region

formation and the tissues derived from this region (Breuil-Broyer

et al., 2016).

These studies provided new information to generate different

models to explain SUP functions. One of the models proposes that

SUP indirectly promotes floral meristem termination by repressing B-

class genes. This model explains the different sup alleles phenotypes

(Figure 1A), showing an indistinct male-female boundary and a

sporadic carpel development (sup-1). By contrast, the increased

number of stamens and carpels in the sup-5 mutant (Figure 1A)

supports a second model that proposes that SUP controls the balance

of cell proliferation and differentiation at W3 and W4 (Breuil-Broyer

et al., 2016). To this regard, the effect of the overexpression of SUP-

like genes supports the activity of SUP as a cell proliferation control

gene (Nandi et al., 2000; Bereterbide et al., 2001; Hiratsu et al., 2002;

Kazama et al., 2009; Nibau et al., 2011; Zhao et al., 2014). Recent

studies demonstrated that SUP regulates both stem cell proliferation

in the floral meristem and floral organogenesis through fine-tuning

auxin biosynthesis (Xu et al., 2018). This mechanism might explain all

sup mutant phenotypes (Figure 1A). Studies in SUP have shown its

broad spectrum of action, highlighting how different are the floral

phenotypes according to the type of mutation (Bowman et al, 2012;

Breuil-Broyer et al, 2016).
Compound inflorescence and floral
development in legumes.
Distinctive traits

In addition to the well-known capacity to fix nitrogen

symbiotically, some distinctive features of legumes are the presence

of compound leaves and inflorescences and a complex floral

development (Ferrándiz et al., 1999; Singer et al., 1999; Benlloch

et al., 2003). All these traits make them of interest for the study of

unique developmental processes (Hofer and Ellis, 2014; Cañas and

Beltrán, 2018).

Most legumes show complex raceme inflorescences with more

than one branching. In the model legume Medicago truncatula the

primary inflorescence meristem (I1) differentiates a secondary
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inflorescence meristem (I2). The existence of the I2 is linked to the

compound inflorescence development and is a distinctive feature

compared to Arabidopsis, which produces a unique inflorescence

meristem (IM) before differentiating the floral meristem (FM)

(Tucker, 2003; Benlloch et al., 2007). The I2 is a transient

meristem, and its identity is given by a genetic function of

VEGETATIVE1 (VEG1) in Pisum sativum and MtFRUITFULLc

(MtFULc) in M. truncatula (Cheng et al., 2018). It has been

proposed that this function was derived from the sub-

functionalization of the AGL79 MADS-box gene clade within the

AP1/SQUA/FUL family (Berbel et al., 2012). The perpetual activity of

the I2 meristem will define the number of flowers per inflorescence

and its termination as a residual vegetative organ (stub or spike) in the

legume compound inflorescences (Benlloch et al., 2003; Benlloch

et al., 2015). In the model legumeM. truncatula, the identity of the I1

and FM, also involved in this developmental process, are specified by

MtTERMINAL FLOWER1 (MtTFL1) and MtAPETALA1 (MtAP1) or

MtPROLIFERATING INFLORESCENCE MERISTEM (MtPIM),

respectively (Benlloch et al., 2006; Cheng et al., 2018). Their spatial

and temporal expression and mutual repression control the

compound inflorescence development in M. truncatula (Cheng

et al., 2018).

The wild type flower of M. truncatula (Figure 1B) displays

pentamerous floral organs per whorl: five sepals in W1, five petals in

W2 (a keel petal formed by two fused petals, two wing petals and

one standard or vexillum), 10 stamens in W3 (nine fused in a

staminal tube and one free) and a single carpel in W4 (Benlloch

et al., 2003; Cañas and Beltrán, 2018). In contrast to Arabidopsis,

organ differentiation shows a high degree of spatial and temporal

overlapping. Even more characteristic is the presence of common

primordia (CP), ephemeral meristems from which petals and

stamens will differentiate, and the early carpel differentiation

(Ferrándiz et al., 1999; Tucker, 2003; Benlloch et al., 2003; Roque

et al., 2018). The model species A. thaliana (Figure 1C left) shows a

centripetal and sequential organ differentiation. First, the sepal

primordia are differentiated, then the petal primordia, followed by

the stamen primordia, and finally, the carpel primordium. In

contrast, M. truncatula (Figure 1C right) shows unidirectional

differentiation of the organ primordia with a high degree of

overlapping. Unique differences are the presence of four common

primordia and the early carpel primordium differentiation

(Figures 1D, E). Despite the functional divergence of the

duplicated floral homeotic MADS-box genes in M. truncatula, the

specification of the floral organs is conserved in this model legume

(Roque et al., 2018).
MtSUPERMAN: Conserved and new
functions controlling compound
inflorescence and floral development

The SUP gene has been widely studied in A. thaliana. However,

there is scant information on the role of SUP orthologs in other plant

species. The petunia PhSUP gene (Nakagawa et al., 2004) had been the

only SUP ortholog functionally characterized on its own species until

it was studied in the model legumeM. truncatula (Rodas et al., 2021).
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Recently, the SMALL REPRODUCTIVE ORGANS (SRO) gene was

described as the SUP ortholog in rice (Xu et al., 2022).

The results obtained from the functional characterization of

MtSUP in Medicago (Rodas et al., 2021) uncovered new context-

specific functions in a different plant species. This information may

have changed not only the previously proposed idea of SUPERMAN

as a boundary gene but also madeMtSUP a key player of the complex

regulatory network behind the compound inflorescence development,

being an undescribed function for a SUP ortholog in eudicots.

Nevertheless, there are also similarities between MtSUP and other

SUP orthologs regarding flower development.

The floral phenotypes of mtsup mutants (Figure 1B) are different

to Arabidopsis, Petunia and rice mutants in several respects.

However, sup, phsup and mtsup mutants have in common the

increase in the numbers of both stamens and carpels in their

respective flowers. Thus, the early floral meristem function of SUP

is conserved in these three species (Nakagawa et al., 2004; Rodas et al.,

2021). However, the rice SUP ortholog controls the size of male and

female organs but not their number (Xu et al., 2022).

MtSUP transcript is firstly detected in the I2 meristem and later

in the FM (Figures 2A, B). The expression pattern of MtSUP during

floral organogenesis (Rodas et al., 2021) showed that even before the

carpel primordium is initiatedMtSUP transcript is already detected in

the floral meristem centre and later in the common primordia

(Figure 2C). The proliferation of extra petals was a distinctive

feature discovered for the mtsup mutants during floral development

(Figure 1B). At the common primordia, the meristematic cells that

will produce petals and stamens coexist, and a given number of

meristematic cells will give place to the organ primordia (Bossinger

and Smyth, 1996).

As a role already described for SUP, MtSUP might control cell

proliferation in the common primordia. In other words, MtSUP is

involved in the determinacy of the common primordia as prolonged

maintenance of these meristematic cells can give rise to extra organs

(Bowman et al., 1989; Bossinger and Smyth, 1996). The

supernumerary petals, stamens and carpels in mtsup mutants

(Figure 1B) might also be explained by a delayed floral meristem

termination linked to MtWUS persistence, as also occurs for WUS in

sup mutants of A. thaliana (Prunet et al., 2017; Xu et al., 2018).

MtWUS expression is not detected in the wild type after the floral

apex flattens (Rodas et al., 2021). This is consistent with the early

carpel initiation in legumes (Ferrándiz et al., 1999), as floral meristem

termination happens when the pool of stem cells of the floral

meristem centre is set to a female fate (Prunet et al., 2009). In

mtsup-1, the expression of MtWUS is prolonged, thus the pool of

stem cells remains undifferentiated during more time at the floral

meristem centre. Contrary to SUP, which is not expressed in the floral

meristem centre and plays a non-cell-autonomous function there

(Prunet et al., 2017). MtSUP and MtWUS expression overlaps, both

spatially and temporally at the I2 and the floral meristem centre,

which would allow them to interact physically (Rodas et al., 2021).

MtSUP has a novel function in the common primordia determinacy

and seems to conserve its cell antiproliferative role in this unique

feature of legumes.

A proper carpel primordium formation requires a correct floral

meristem termination (Sakai et al., 2000; Prunet et al., 2017). MtSUP

is expressed in the carpel marginal tissue that will develop the parietal
Frontiers in Plant Science 04
placenta. It agrees with the defects in the marginal derived tissues of

the gynoecium in mtsup mutants. Defects in placenta morphogenesis

were also observed in the Petunia phsup mutants (Nakagawa et al.,

2004), and the strong sup-5mutant (Figure 1A) of A. thaliana (Gaiser

et al., 1995). Therefore, the SUP orthologs PhSUP and MtSUP are

required for proper floral meristem termination and the correct

development of the carpel marginal tissues (Nakagawa et al., 2004;

Rodas et al., 2021). Common aberrancies in the development of the

placenta impacted ovule development in mtsup mutants, reducing

fertility. Similar phenotypes were reported for Arabidopsis sup-5

(Gaiser et al., 1995) and Petunia phsup mutants (Nakagawa et al.,

2004). Thus, the late floral function of SUP controlling ovule

development is conserved in these three species (Gaiser et al., 1995;

Nakagawa et al., 2004; Breuil-Broyer et al., 2016; Rodas et al., 2021).

Unlike Arabidopsis, MtSUP was first detected in the whole I2

(Figures 2A, B), similar to the expression of the I2 identity gene

MtFULc (Figures 2D, E). This expression matched with the

multiflowered phenotype in mtsup mutants, assigning MtSUP a

determinant role in controlling the maturation rate of the I2. This

novel function has not been described for any SUP-like gene. In M.

truncatula cv.R108, the I2 derived from the I1 divides to produce one

or two floral meristems (Benlloch et al., 2003). The I2 is a transient

state between the vegetative and the reproductive tissue that remains

immature until the floral identity acquisition (Prusinkiewicz et al.,

2007). After producing a floral meristem, the remaining cells of the I2

enter senescence and produce the spike (Tucker, 1989; Benlloch et al.,

2007). In mtsup mutants, the I2 gives rise to more floral meristems

than the wild type because the residual cells of the I2 terminate as a

floral meristem instead of a spike (Figures 2F–J). The I2 determinacy

could also be linked to the gradual turn-off of MtWUS in the I2. As

MtWUS prolongs its expression, the I2 could extend its activity in

mtsup mutants, or MtSUP could influence the I2 activity by

controlling cell proliferation. MtFULc transcript occupies a broader

area inmtsupmutants compared to the wild type (Figures 2D, E), and

there might be more cells expressing MtFULc. According to the

expression analysis, MtSUP also seems to restrict MtPIM expression

to the floral meristem and this restriction could be considered another

way to control the determinacy of the I2. In mtsup mutants, MtPIM

invades the expression domain of MtFULc in the I2 and the remnant

cells that lose their vegetative nature and acquire floral identity (Rodas

et al., 2021).

SUPERMAN was classified as a “cadastral gene” after studying

the sup-1 (flo10) allele (Bowman et al., 1992). However, the results

obtained in Medicago might support that the conserved ancestral

function of SUP-like genes is the control of cell proliferation rather

than a cadastral function. MtSUP does not have a typical boundary

expression pattern since it is expressed in the whole I2 and floral

meristem. This transcript localization correlates with the floral and

inflorescence phenotypes of mtsup-1 mutant. Thus, the model that

proposes the balance of cell proliferation explains mtsup mutants

better than the model that considers that SUP is related to the

repression of B-class MADS-box genes to the floral meristem

centre. Indeed, MtPI expression (Roque et al., 2018) in mtsup-1

expands towards the W1 instead of expanding to the floral

meristem centre (Rodas et al., 2021). In both flower and

inflorescence development, there is no need to invoke a boundary

function to explain mtsup mutants. Certainly, the phenotypic
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FIGURE 2

MtSUP controls compound inflorescence development in M. truncatula. (A) MtSUP transcript is firstly detected in the I2. (B) Later on MtSUP activity is
detected in the FM. (C) During early floral development MtSUP expression is detected in the common primordia (CP). (D) MtFULc expression in the wild
type (WT) flower. (E) MtFULc expression in the mtsup-1 mutant. MtFULc transcript occupies a wider area in MtSUP mutants compared to the WT.
(F) Schematic representation of the compound inflorescence development in Medicago with the formation of an I2 and the terminal spike in the WT and
a new FM instead the spike in the mtsup-1 mutant. (G) SEM image of a WT floral primordium with its respective bract and spike. (H) The WT of M.
truncatula R108 produces one or two flowers per inflorescence and terminates in a spike. (I) In mtsup-1, the I2* (future spike) acquires floral identity.
(J) In the mtsup-1 mutant the residual cells of the I2 terminate as a new flower (F*) instead a spike. (K) Comparative schematic representation of SUP and
MtSUP expression patterns during inflorescence and flower development in Arabidopsis and Medicago. SUP and MtSUP are orthologs that have
functionally diverged through changes in their gene transcription patterns. IM, inflorescence meristem; I1, primary inflorescence meristem; I2, secondary
inflorescence meristem; FM, floral meristem; CP, common primordium; S, sepal primordium; P, petal primordium; C, carpel primordium; Br, bract; Spk,
spike; F*, new flower. Scale bars, 20 mm in (G, I), and 2 mm in (H, J) Adapted from Rodas et al. (2021).
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consequences of sup mutations in Arabidopsis are correlated to an

over-proliferation of cells at W3 and the floral stem cells at the floral

meristem centre (Prunet et al., 2009; Prunet et al., 2017; Xu et al.,

2018). In addition, in P. hybrida the specific expression of PhSUP in

the stamen primordia and the excessive proliferation of cells at the

connective tissue in phsup1 anthers suggest that the control of cell

division and growth is the function of this SUP ortholog (Nakagawa

et al., 2004). Similar conclusions were reached with the SUP ortholog

in rice. The authors stated that SRO is not a cadastral gene based on its

expression pattern and the mechanisms through which SRO regulates

reproductive organ development (Xu et al., 2018).

From an evolutionary point of view, SUP and MtSUP are

orthologs that have functionally diverged through changes in their

gene transcription patterns while keeping some common functions

(Figure 2K). Such changes can occur through transposition,

rearrangement, duplication or point mutations in the regulatory

regions (Carroll, 2005), which are frequent after whole-genome

duplications (WGD) events, a common phenomenon in the

evolution of angiosperms (Cui et al., 2006). The WGD event that

pre-dated the speciation of legumes ~50–60 million years ago had an

essential role in structuring the M. truncatula genome and in the

success of papilionoid legumes (Cannon et al., 2006). However, these

rounds of polyploidization have contributed mainly to the gradual

decline in the conserved synteny between species, as is the case for

Arabidopsis andM. truncatula (Young et al., 2011). An example is the

absence of collinearity in the flanking regions of MtSUP and SUP in

their respective genomes (Rodas et al., 2021).

The functional study of SUP orthologous genes in other legume

species (alfalfa, common bean) or plants with complex

inflorescence (i.e. tomato, mustard) could help to understand

SUP-like genes implications in the development of higher order

meristems (i.e. I2). Alternatively, they could show the emergence of

new functions for transcription factors when they are expressed in

species with different architectures. Recently, the SINGLE

FLOWER (SFL) gene, a MYB transcription factor expressed in

the I2, was shown to perform a similar role to MtSUP in chickpea

(Caballo et al., 2022). Multiflowered pea and chickpea mutants

have been reported for three decades (Murfet, 1985; Singer et al.,

1999; Gaur and Gour, 2002; Srinivasan et al., 2006; Devi et al.,

2018). However, the correlation between the multiflowered

mutants and the genes responsible requires further studies.

The genes involved in the specification and determinacy of

inflorescence meristems could be used as bioengineering tools to

optimize inflorescence traits (Wang et al., 2021). In line with this,
Frontiers in Plant Science 06
SUP-like genes in other crops should be studied to determine their

possible roles in inflorescence development.
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