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A B S T R A C T   

Electrohysterography has been shown to provide relevant information on preventing preterm labor. Recent 
studies have confirmed the feasibility of using the vectormyometriogram (VMG) to assess uterine myoelectric 
vector displacement, with different physiological implications for the slow and fast waves, without suggesting its 
implementation in clinical practice. The fast wave VMG component has dynamic behavior in any specific di-
rection on the X-Y plane. Since recurrence is a common feature of dynamic systems, we aimed to determine the 
recurrence pattern of uterine vector displacement, exploring its clinical potential in detecting imminent and 
preterm labor in women with threatened preterm labor and a serious preterm birth risk. For this, we analyzed the 
recurrence patterns from a 2D-vectormyometriogram using four common statistics: determinism, longest diag-
onal, entropy, and laminarity. We found significantly increased determinism (0.035 ± 0.011 vs. 0.077 ± 0.041), 
entropy (1.768 ± 0.116 vs. 2.197 ± 0.24) and laminarity (0.086 ± 0.034 vs. 0.173 ± 0.078) from the early 
(26–30 weeks) to late (35–37 weeks) gestation stages. As pregnancy progresses, the uterine vector displacement 
becomes more periodic, predictable and stable, while VMG recurrence statistics in the fast wave high bandwidth 
better detect imminent and preterm labor, outperforming classical EHG parameters from bipolar channels. The 
proposed method was also resistant to motion artifacts and preserved its discriminative capacity between the 
groups. Our results on VMG recurrence statistics could thus be another reliable biomarker for preventing preterm 
labor in women with threatened preterm labor and would favor transferring the EHG technique to clinical 
practice.   

1. Introduction 

Preterm birth is defined as births before the 37th week of gestation, 
form approximately 11 % of all births [1] and affects around 15 million 
families worldwide [1]. Premature births are responsible for 1 million 
neonatal deaths annually and are the leading cause of neonatal mortality 
in the first four weeks of life [2]. The babies that survive are associated 
with 1 in 5 mental retardations, 1 in 2 cerebral palsies, and 1 in 3 eye 
injuries [2]. Premature babies are also at risk of other long-term mor-
bidities, such as asthma, learning disabilities, attention deficit disorder 
and emotional problem [3]. Preterm birth health care requires a sig-
nificant drain on hospital resources. In the U.S., the gross annual eco-
nomic burden attributed to preterm delivery in 2016 was $25.2 billion 

relative to term or post-term births, more than $64815 per premature 
baby [4]. 

Threatened preterm labor (TPL), which occurs in approximately 9 % 
of all pregnancies, is a leading risk factor for preterm birth and the most 
common cause of hospitalization admission in the second half of preg-
nancy [5]. TPL is associated with significant maternal morbidity, pro-
longed patient admission periods and a substantial expenditure of health 
care resources [6]. The economic burden related to TPL was estimated at 
$820 million per year in the U.S. [7]. The average cost of a ’false’ TPL 
was estimated to be $20,372 per patient [8]. TPL may also involve more 
or less aggressive treatments with possible side effects, significant 
distress for the pregnant woman and her family and reduced attention to 
other children in the family. 75–95 % of women with TPL do not deliver 
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within seven days after hospitalization, and 40 % deliver at term [9]. 
Forty-four percent of these women have readmissions for preterm labor, 
thus leading to additional costs. Hence, the accurate prediction of 
imminent labor is crucial in TPL management. In this study, imminent 
labor is defined as deliveries within 7 days from the time of recording, in 
line with the practice established in the literature, since preterm labor 
can start 7 days before delivery [10–12]. Accurate identification of true 
preterm labor may prolong the pregnancy of real preterm infants with 
better and more personalized care [13], which may increase the survival 
rate in cases of extreme prematurity and reduce maternal and neonatal 
morbidity, while precise preterm labor prediction also reduces unnec-
essary hospitalization. 

Early detection is key to preventing preterm delivery and minimizing 
its negative consequence. The most commonly used techniques in clin-
ical practice are uterine dynamic monitoring by tocodynamometer and 
assessment of the cervical state (length, consistency and dilatation, 
effacement) and/or biochemical biomarkers such as fetal fibronectine 
and interleukin 6 [14,15]. These methods have achieved a limited de-
gree of success (AUC ~ 67 %), with a high negative predictive value and 
low positive predictive value [15,16], i.e. none of these techniques can 
accurately predict the risk of prematurity. 

Electrohysterography (EHG) has emerged as an alternative tech-
nique for precision uterine dynamic monitoring and predicting preterm 
labor, thanks to its high sensitivity. EHG is the recording of uterine 
myoelectrical activity on the maternal abdominal surface. EHG is made 
up of a slow wave (0.005–0.03 Hz) and a fast wave, which in turn is 

divided into fast wave low (0.1 to 0.34 Hz) and fast wave high (0.34 to 4 
Hz) with its energy mainly distributed below 1 Hz and which has been 
associated with signal propagation and cell excitability, respectively 
[15,17–19]. Traditionally, the analysis of the EHG signal focused on 
characterizing the fast wave component by a set of temporal, spectral, 
and non-linear parameters [15,20,21] since the slow wave taken from 
surface recordings has a dubious physiological meaning due to over-
lapping with skin stretching and baseline fluctuation [19]. Previous 
studies have shown that signal amplitude increases as delivery ap-
proaches due to the major recruitment of uterine cells [19], while cell 
excitability also increases as pregnancy progresses, giving rise to the 
shifting of spectral content to a higher frequency [17,18]. Labor prox-
imity is also related to higher signal predictability and regularity 
[18,20]. The latest studies sought to determine the propagation velocity 
and directionality of uterine contraction using multichannel EHG to 
identify new biomarkers for preventing preterm labor, with no agree-
ment on the propagation direction [22–24]. 

Garfield et al. recently provided a new approach based on vector-
myometriogram (VMG) to analyze EHG signals [19]. Similar to the well- 
known vectorcardiogram, which is a vector representation of the elec-
trocardiogram, VMG is a spatio-temporal representation of uterine 
vector displacement based on the fact that the morphology of bioelectric 
waves depends on the geometric relationship between the magnitude of 
bioelectric events and the orientation of the electrodes [19]. Theoreti-
cally, uncorrelated disorganization of the bioelectric events shows a 
chaos vector map with major displacement divergence, while more 
organized events show a more coherent and smoother vector represen-
tation [19]. The vectorcardiogram has been shown to provide more 
information than the traditional electrocardiogram, with a higher 
sensitivity to detect myocardial infarction, ischemia, and hypertrophy 
[25–27]. VMG analysis may thus provide another potential indicator of 
the proximity of delivery for preterm labor prevention, which has not 
been considered previously in the literature. In a preliminary VMG study 
of both slow wave and fast wave components conducted on a few women 
in the active phase of term labor [19], Garfield et al. showed that the 
slow wave initiates fast wave activity clusters that activate muscle 
contractions, presenting a predominant up/down direction [19]. The 
percentage of slow wave downward-directed vectors increased from 58 
% in EHG term recordings to 75 % in the 2nd stage of labor [19]. By 
contrast, the VMG of the fast wave component consists of multiple small 
amplitude loops without any specific direction in X–Y rather than a 
predominant direction, suggesting the dynamic behavior of the propa-
gation direction [19]. However, there is no evidence in quantitative 
VMG analysis to predict imminent labor and/or preterm labor. 

In the literature, the recurrence plot arose as an advanced non-linear 
method widely used to characterize dynamic vectorcardiogram 
behavior [28–30], since recurrence is a common feature of dynamic 
systems [31]. A recurrence plot is a graphical tool based on phase space 
reconstruction [32], which quantifies recurrences that occur in a 
displacement, where recurrence is the ability to return to the same state 
after a certain period [33], i.e. the trajectory returns to a previously 
visited area in the phase space. The recurrence plot can be used for vi-
sual and qualitative analysis of specific large- and small-scale patterns of 
dynamic systems. Recurrence quantification analysis (RQA) is the sta-
tistical quantification of a recurrence plot for the analysis of non-linear 
dynamic systems to assess laminar, divergent, or non-linear transition 
behavior by means of quantifying the diagonal and vertical lines of the 
recurrence plot [34]. RQA has been shown to be helpful in detecting 
phase transition even in short, non-stationarity and noisy data [32]. It 
has also been widely used to characterize biomedical signals [30,35,36] 
and to discriminate imminent labor and non-imminent labor in women 
with TPL [37]. 

The aim of this work was thus to determine the feasibility of 
detecting imminent/non-imminent and preterm/term labor in women 
with TPL using RQA of VMG and to compare their discriminatory ca-
pacity with temporal, spectral and non-linear parameters derived from 

Table 1 
Demographic description of the dataset (median (IQR Q1–Q3)).   

Imminent Non-imminent p-value 

Sample size 17 38 – 
Week of gestation 35.6 (IQR 33.3–36.3) 31.4 (IQR 29.4–32.7) <0.001 
Week of labor 35.7 (IQR 33.3–36.6) 38.6 (IQR 37.2–39.9) <0.001 
Parity 0 (IQR 0–1) 0 (IQR 0–0) N.S. 
Maternal age (years) 32 (IQR 29–36) 32 (IQR 30–35) N.S.   

Preterm Term p-value 
Sample size 22 33 – 
Week of gestation 33 (IQR 31.1–35.7) 31.7 (IQR 29.9–34) N.S. 
Week of labor 34.3 (IQR 32.4–36.1) 38.7 (IQR 38–40.1) <0.001 
Parity 0 (IQR 0–0.75) 0 (IQR 0–0) N.S. 
Maternal age (years) 32 (IQR 30–35.8) 32 (IQR 30–35) N.S. 

Abbreviation: N.S., no significant differences. 

Fig. 1. The arrangement of the eight monopolar electrodes (M1–8) on 
the abdomen. 
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bipolar EHG. We also wanted to assess the relationship between VMG 
recurrence statistics and both gestational age and time to delivery. 

2. Materials and methods 

2.1. Database 

We used a total of 55 EHG records from singleton pregnant women 
with threatened preterm labor (TPL) between the 26th and 36th week of 
gestation recruited at the Department of Gynecology and Obstetrics, 
Peking Union Medical College Hospital, Beijing [38]. The patients were 
followed up until delivery and provided the following clinical data: 
week of gestation, week of labor, maternal age and parity. We further 
divided the entire database into preterm labor and term labor groups 
according to the gestational age at the time of delivery. We also analyzed 
the ability of EHG to detect imminent labor (delivery in less than 7 days) 
in women with TPL. Table 1 gives the demographic description of the 
dataset. The study adhered to the guidelines of the Declaration of Hel-
sinki and was approved by the Institutional Review Board of the hospital 
(Register Number 2018/0530). The patients were informed of the nature 

of the study and gave their written informed consent. 
We conducted a 30-min simultaneous recording of multichannel 

EHG and tocographic signals on each patient, as shown in Fig. 1. 
Physiologically, closely spaced bipolar recordings are mainly sensitive 
to local bioelectrical activity close to the surface between the electrode, 
while distant electrodes can pick up the propagation events from the 
entire uterus [19]. We strategically positioned eight electrodes on the 
maternal abdomen, covering practically the whole uterus and collected 
the information in both horizontal and vertical directions to obtain a 2D 
VMG. Electrodes 1 to 4 were placed on the fundus, electrodes 5 and 6 
were symmetrically placed below the navel, 7 and 8 were placed on the 
pubic symphysis and the reference and ground electrodes were placed 
on each side of the iliac crests. The technical description of the device 
used was: bandwidth of the EHG channels is 0–70 Hz, gain of amplifiers 
is 24, sampling rate is 250 Hz. The device included an ADS1299 analog- 
to-digital converter (ADC), a 24-bit delta-sigma ADC. 

The EHG signals were further band-pass filtered between 0.1 and 1 
Hz using a fifth-order digital zero-phase Butterworth filter, since EHG 
distributes its spectral content within this bandwidth [15]. We con-
ducted the analysis using three specific bandwidths: the whole band-
width (0.1–1 Hz), fast wave low (FWL, 0.1–34 Hz), and fast wave high 
(FWH, 0.34–1 Hz) [18,19,39]. The bandwidth selection is a trade-off 
between computational cost and the accurate representation of the 
recurrence plot. In this regard, the recurrence plot is based on thresh-
olding the distance between 2-dimensional points to determine whether 
or not they are recurrent (as explained below), using information from 
0.1 to 1 Hz is quite an accurate estimation of uterine vectors without loss 
of generalities. In addition, EHG signals were downsampled to 4 Hz. 

2.2. Recurrence quantification analysis of vectormyometriogram 

Taking into account the fact that the inter-electrode distance of bi-
polar recordings should be as long as possible and similar in the X-Y 

Table 2 
Summary of Corrupted Segments, Mean Duration, and Associated Rejection Rate 
per Record. Presented as Median (Interquartile Range, Q1–Q3).  

VMG Number of corrupted 
segments per record 

Average duration 
(seconds) per record 

Rejection rate per 
record 

X1- 
Y1 

1 (IQR 0–2) 83 (IQR 0–288) 8.83 % (IQR 
2.08–28.06 %) 

X1- 
Y2 

1 (IQR 0–2) 81.67 (IQR 0–288) 10.29 % (IQR 
2.36–30.24 %) 

X2- 
Y1 

1 (IQR 0–2) 71.33 (IQR 0–287) 7.5 % (IQR 
1.86–24.22 %) 

X2- 
Y2 

1 (IQR 0–2) 78.17 (IQR 0–310.38) 11.04 % (IQR 
2.15–26.68 %)  

Fig. 2. Recurrence plot of VMG from a woman with TPL at 36 weeks of gestation who finally delivered prematurely. Only 480 s of signal were represented to simplify 
the visualization, instead of the complete record. (A) Horizontal bipolar EHG X2 (B) Vertical bipolar EHG Y2. (c) 2D-VMG. (D) Recurrence matrix, in which the 
distance between phase space states is coded by color. Red indicates high distant phase space states. (E) Recurrence plot after thresholding with its median value, 
where black pixels represent recurrence points. 
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direction to be analogous to that used by Garfield et al. [4], we obtained 
two horizontal (X1 = M1 – M3 and X2 = M2 – M4) and two vertical 
components (Y1 = M2 – M7 and Y2 = M3 – M8) in orthonormal X, Y 
directions. We then formed four 2-D VMG configurations (X1-Y1, X1-Y2, 
X2-Y1, and X2-Y2). Each monopolar channel (M1–M8) in the EHG re-
cords were later reviewed by two experts in a double-blind process to 
discard all the corrupt signal segments (motion artifacts and respiration 
interference, among others) [3]. Subsequently, a common segmentation 
was obtained from the monopolar channels of each 2-D VMG configu-
ration. Table 2 summarizes the commonly used statistical measures of 
the corrupted segments with their mean duration and rejection rate. 

Our aim was to study the robustness of recurrence quantitative 
analysis against motion artifacts and carried out the same signal pro-
cessing pipeline for both raw data and motion artifact-free data, which 
consisted of discarding the corrupted segments and joining together the 
remaining physiological activities to construct a single recurrence plot 
for each EHG record [41–48] due to the fact that longer time series are 
preferred for a more robust recurrence quantification analysis [49]. A 
shorter time series may not adequately represent the complete recurrent 
behavior of the signal [32]. As detailed in Appendix A, we compared the 
ability of the different VMG configurations to detect preterm and 
imminent labor in women with TPL by assessing the feature number 
with statistically significant differences between the groups and inter- 
group separability by calculating the Cohen’s effect size and found X2- 
Y2 the best configuration to detect preterm and imminent labor in 
women with TPL. We only focus on X2-Y2 in the following sections of 
the paper for the sake of clarity and brevity. 

We carried out a RQA analysis of uterine VMG. Considering thev
⇀

(i) 2- 
dimensional phase space represented by the i-th point of time series X 
and Y, we first computed the recurrence matrix of dimension N x N, 
which contains the distances of each point v⇀(i) from all the other v⇀(j) in 
the phase space [31], where N is the total sample number of the time 
series. We then considered the recurrence point as the one that satisfies 
that v⇀(j) was close enough to v⇀(i) with a distance less than a predefined 
threshold ε, thus obtaining the recurrence plot: 

RP(i, j) = Θ(ε − ‖ v→(j) − v→(i)‖ )

where ‖‖⋅‖‖ the Euclidean distance norm and Θ is the Heaviside function 
[32]. Fig. 2 shows an example of both X2 (trace A) and Y2 (trace B) time 
series, its corresponding 2D-VMG (trace C), recurrence matrix (trace D), 
and thresholded recurrence plot (trace E) obtained from a woman with 
TPL who finally delivered prematurely. 

As mentioned above, the recurrence plot is a graphical representa-
tion for qualitative analysis. In this work, we used RQA, which quantifies 
the recurrence of the dynamic system and provides a set of scalar metrics 
from the recurrence plot [32]. RQA is based on identifying continuous 
sequences of recurrence points, which form vertical, horizontal or di-
agonal lines and how frequently they are repeated in the whole recur-
rence plot. Consecutive recurrence points imply similar structures along 
the original time series. Thus, diagonal lines represent segments with 
synchronous periodicity, while vertical or horizontal, i.e., laminar 
structures, reflect high stability signals [32]. We used four typical RQA 
metrics to quantify the periodicity, complexity, and stability of the 
recurrence plot of VMG: determinism, longest diagonal (Lmax), entropy 
and laminarity. As pregnancy progresses, the rising synchronization and 
rhythm involve increased periodicity and predictability [18,20]. 

• Determinism: characterizes diagonal lines parallel to the diagonals 
of an iterated graph. The maximum determinism coefficient values exist 
in periodic systems, in which the disappearance of periodicity causes the 
fragmentation of oblique lines [32]. 

DET =

∑N
l=lmin

l P(l)
∑N

l=1l P(l)
(2)  

where P(l) is the histogram of diagonal lines, l is the diagonal line length, 

lmin is the minimal length of a diagonal line and N is the length of the 
time series. 

• Lmax: is the length of the longest diagonal and is a measure of the 
stationarity of the signal. The diagonal length of a given signal indicates 
the duration of the periodic component, so that the Lmax value is 
generally higher for systems with regular dynamics, i.e. stationary sys-
tems, while the Lmax value is lower for systems with irregular behavior 
[32]. 

Lmax = max
(
{li}

Nl
i=1

)
(3)  

where Nl is the total number of diagonal lines. 
• Shannon entropy: estimates the variability in the distribution of 

diagonals [32]. Classical entropy measures generally increase their 
magnitude when the signal complexity and chaos rise. However, the 
entropy obtained from a recurrence plot correlates with the inverse of 
the largest Lyapunov exponent and therefore has an entirely opposite 
meaning, decreasing when signal complexity and chaos increase 
[31,50]. 

ENTR = −
∑N

l=lmin

p(l) ln(p(l)) (4)  

where p(l) = is the probability of finding a line of exact length l. 
• Laminarity: characterizes the vertical lines on the graph and is a 

measure of signal stability. It describes the percentage of points 
belonging to the vertical lines against the total rate of recurrence points 
[32]. 

LAM =

∑N
w=wmin

wP(w)
∑N

w=1P(w)
(5)  

where P(w) is the histogram of vertical lines, w is the length of verticals, 
wmin is the minimal length of a diagonal line. 

As pregnancy progresses, the rising synchronization and rhythm 
involve increased periodicity and complexity [18,20]. Indeed, deter-
minism, Lmax and entropy, which characterize the periodicity and 
complexity properties of the signals, are expected to increase as labor 
approaches. Likewise, the increase in signal stability as delivery nears is 
reflected in increased laminarity. 

For each scenario (imminent or preterm labor) and each analysis 
bandwidth, we conducted a grid search of both threshold ε and mini-
mum length of both diagonal and vertical lines (lmin = wmin) to maximize 
the separability between the groups using the Wilcoxon Rank-Sum Test 
(α = 0.05). The hyperparameter was optimized by sweeping the 
threshold ε from 0.5 to 1.5, with a step of 0.1 [35,49,51] times the 
median phase distance and the minimum number of recurrence points 
from 2 to 10 [32,52]. 

2.3. Statistical analysis 

Due to the intrinsic relationship between the labor trigger with 
gestational age, we subdivided the database into 4 subgroups by 
gestational age to visually analyze the data: W1 (26–30 weeks), W2 
(31–32 weeks), W3 (33–35 weeks), and W4 (36–37 weeks), and sub-
divided the database into 4 subgroups according to time to delivery: T1 
(less than 24 h), T2 (more than 24 h but less than 1 week), T3 (1–2 
weeks), and T4 (3 or more weeks). Spearman’s rank correlation (α =
0.05) was used to determine whether the recurrence statistics had a 
significant relationship with gestational age (W1–W4) and time to de-
livery (T1–T4), using all the available data. We also determined the 
ability of the recurrence statistics obtained from the VMG to detect both 
imminent and preterm labor in women with TPL for both the whole 
bandwidth (WBW, 0.1–1 Hz), FWL and FWH. We used the Wilcoxon 
rank sum test (α = 0.05) and also computed Cohen’s effect size to 
determine the magnitude effect. The p-value indicates the existence of 

F. Nieto-del-Amor et al.                                                                                                                                                                                                                       



Biomedical Signal Processing and Control 89 (2024) 105795

5

the effect, the Cohen’ effect size gives us its magnitude and its sign re-
flects the direction of the effect, while its sign indicates the nature of the 
effect. A negative effect size suggests a lower average value in the 
imminent/preterm group than in the non-imminent/term group, 
whereas a positive effect size denotes the opposite [53]. To determine 
the robustness of RQA against motion artifacts, we also compared their 
performance between raw data and motion artifact-free data identified 
by experts in a double-blind process. 

2.4. Comparison with bipolar EHG parameters 

Finally, we compared the discriminatory capability between groups 
(preterm vs. term, imminent vs. non-imminent) of the recurrence sta-
tistics from VMG with classical bipolar EHG parameters. We used four 
commonly used EHG parameters that have been proven to provide 

relevant labor prediction. For both the X2 and Y2 bipolar channels, we 
computed the peak-to-peak amplitude, related to cell recruitment, the 
dominant and median frequency used to assess uterine cell excitability, 
the sample entropy to quantify signal regularity, and time reversibility 
to assess the non-linear degree of the signal with greater time revers-
ibility, indicating more stability [15,18,20,21,54]. Peak-to-peak ampli-
tude, sample entropy and time reversibility were calculated in the 
0.34–1 Hz range (we did not obtain better results for 0.34–4 Hz), while 
the dominant median frequency was computed in the 0.2–1 Hz band-
width, in which the EHG power spectra is predominantly distributed 
[18,20,21]. The characterization was performed using a sliding window 
of 120 s with a 50 % overlap [55]. Each patient was then taken as a 
representative value for each parameter of the median value of the 
windows. The Wilcoxon Rank-Sum Test was again used to determine the 
statistical difference between the groups and the Cohen’s effect size was 

Fig. 3. Box and whiskers plot of recurrence metrics (determinism, maximum diagonal length, Shannon entropy, and laminarity) computed in FWH bandwidth as a 
function of the week of gestation (upper row) and time to delivery (lower row). The P-value (p) < 0.05 shows that recurrence statistics are significantly linked with 
gestational age and time to delivery. ρ is Spearman’s Rank Correlation Coefficient. The data is organized into distinct categories: gestational age subgroups cate-
gorized as W1 (26–30 weeks), W2 (31–32 weeks), W3 (33–35 weeks), and W4 (36–37 weeks), and time to delivery subgroups categorized as T1 (less than 24 h), T2 
(more than 24 h but less than 1 week), T3 (1–2 weeks), and T4 (3 or more weeks). 

Fig. 4. Box and whisker plots of recurrence metrics of imminent vs. non-imminent (threshold = 0.8 and minimum number of points = 8) and preterm vs. term 
(threshold = 0.9 and minimum number of points = 8) groups of women with TPL. The configuration of the EHG-vector is X2-Y2 and in the FWH bandwidth. p is the 
p-value of Wilcoxon Rank-Sum Test, and “d” is the Cohen’s effect size. Blue boxes are for the imminent/preterm group, and red boxes are for the non-imminent/ 
term group. 
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computed to determine the magnitude effect. 

3. Results 

Fig. 3 shows the changes in the recurrence metrics computed in the 
FWH bandwidth throughout the third trimester of pregnancy (upper 
row) and time to delivery (lower row). The four recurrence statistics 
showed an upward trend as labor progresses, with subtle changes be-
tween the subgroups W1, W2 and W3. By contrast, the subgroup W4 
showed an abrupt increase for the four recurrence statistics (see Fig. 3 
(A)–(D)). The four recurrence statistics considerably increased from 
early (W1) to late (W4) stages: determinism (0.035 ± 0.011 vs. 0.077 ±
0.041), Lmax (28.8 ± 4.5 vs. 52.2 ± 16.4), entropy (1.768 ± 0.116 vs. 
2.197 ± 0.24), and laminarity (0.086 ± 0.034 vs. 0.173 ± 0.078). We 
found that the relationship with gestational age is generally moderate 
and statistically significant, with correlation coefficients ranging from 
0.34 and 0.47 for determinism and Lmax, respectively. The recurrence 
statistics obtained higher correlation coefficients than gestational age 
with time to delivery (see Fig. 3(E)–(H)), ranging from − 0.50 to − 0.61 
for laminarity and Shannon entropy respectively. The other bandwidths 
analyzed showed similar trends with weaker correlation coefficients 

(results not shown). 
Fig. 4 shows examples of box and whisker plots of the recurrence 

statistics to distinguish women with TPL who finally deliver immi-
nently/prematurely, or not, for FWH bandwidth and motion artifact-free 
data. Specifically, the imminent/preterm labor group provided higher 
recurrence statistics than the non-imminent/term labor group, as it did 
for the FWL, the whole bandwidth and for raw data. Regardless of the 
recurrence statistics, the distribution of the imminent/preterm group is 
shifted upward with respect to that of the non-imminent/term class. The 
four imminent and preterm labor recurrence statistics of were signifi-
cantly higher than non-imminent and term labor, with a large effect size 
(d > 1) in all cases. The proposed method better differentiated imminent 
vs. non-imminent labor (p-value < 0.001 and the very large effect sizes 
> 1.2) than preterm vs. term labor. Shannon entropy outperformed 
determinism (p-values < 0.001 and effect sizes of 1.68 and 1.58 to detect 
imminent and preterm labor, respectively), while this latter in turn 
performed better than Lmax and laminarity for both clinical scenarios. 

Table 3 shows the results of the recurrence metrics for different 
imminent vs. non-imminent and preterm vs. term labor groups in 
women with TPL for WBW, FWL and FWH bandwidths, and for raw data 
and motion artifact-free data. As for the bandwidth analysis, FWL 

Table 3 
P-values (effect size) for of recurrence metrics of imminent/preterm versus. non-imminent/term groups of women with TPL. The configuration of the EHG-vector is X2- 
Y2. Very large effect sizes > 1.2 are highlighted in bold.  

Bandwidth Metric Imminent vs. non-imminent Preterm vs. term Σ p-values 

Raw data Motion artifact-free data Raw data Motion artifact-free data 

WBW Determinism <0.05 (0.64) <0.01 (1.12) <0.01 (0.9) <0.05 (0.88) Σ(p < 0.05) = 14  
Lmax <0.01 (0.78) <0.01 (0.69) <0.05 (0.61) <0.01 (1.02) Σ(p < 0.01) = 7  
Entropy <0.05 (0.9) <0.01 (1.17) <0.01 (1) <0.05 (1) Σ(p < 0.001) = 0  
Laminarity N.S. (0.57) <0.05 (0.87) <0.05 (0.81) N.S. (0.77)  

FWL Determinism N.S. (0.44) <0.05 (0.9) <0.05 (0.77) <0.05 (0.64) Σ(p < 0.05) = 9  
Lmax N.S. (0.39) <0.05 (0.55) N.S. (0.62) <0.01 (0.75) Σ(p < 0.01) = 1  
Entropy <0.05 (0.72) <0.05 (0.96) <0.05 (0.74) <0.05 (0.75) Σ(p < 0.001) = 0  
Laminarity N.S. (0.42) N.S. (0.64) N.S. (0.71) N.S. (0.6)  

FWH Determinism <0.01 (0.93) <0.001 (1.52) <0.001 (1.3) <0.01 (1.27) Σ(p < 0.05) = 16  
Lmax <0.001 (0.78) <0.001 (1.2) <0.01 (1.23) <0.01 (1.17) Σ(p < 0.01) = 16  
Entropy <0.001 (1.16) <0.001 (1.68) <0.001 (1.48) <0.001 (1.55) Σ(p < 0.001) = 10  
Laminarity <0.01 (0.92) <0.001 (1.36) <0.001 (1.27) <0.01 (1.09)  

Σ p-values by column Σ(p < 0.05) 8 11 10 10  
Σ(p < 0.01) 5 7 6 6  
Σ(p < 0.001) 2 4 3 1  

Abbreviation: N.S., no significant differences. 

Table 4 
P-values (effect size) for of EHG parameters of imminent/preterm versus. non-imminent/term groups of women with TPL.  

Channel Clinical scenario Peak-to-peak 
amplitude 

Dominant 
frequency 

Median 
frequency 

Sample 
Entropy 

Time 
reversibility 

X2 Imminent vs. non-imminent N.S. (0.56) N.S. (0.35) N.S. (-0.04) N.S. (− 0.71) N.S. (0.57)  
Preterm vs. Term N.S. (0.64) N.S. (0.11) N.S. (0.01) <0.01 (− 1) N.S. (0.42) 

Y2 Imminent vs. non-imminent N.S. (0.84) N.S. (0.11) N.S. (-0.47) <0.01 (− 1.21) N.S. (0.41)  
Preterm vs. Term N.S. (0.59) N.S. (− 0.51) N.S. (-0.32) <0.01 (− 1.25) <0.05 (0.66) 

Abbreviation: N.S., no significant differences. 

Table A1 
Number of statistically significant differences (Wilcoxon Rank-Sum Test) for each X-Y VMG configuration, considering both the imminent vs. non-imminent and 
preterm vs. term approaches, using both raw and motion artifact-free data.   

Imminent vs. non-imminent Preterm vs. term   

Raw data Motion artifact-free data Raw data Motion artifact-free data   

WBW FWL FWH  WBW FWL FWH  WBW FWL FWH  WBW FWL FWH  Σ(p < 0.05) 

X1-Y1 3 1 4 8 4 3 4 11 4 2 4 10 4 1 4 9 38 
X1-Y2 2 0 4 6 4 0 4 8 4 1 4 9 4 1 4 9 32 
X2-Y1 2 0 3 5 3 0 4 7 1 0 4 5 1 0 2 3 20 
X2-Y2 3 1 4 8 4 3 4 11 4 2 4 10 3 3 4 10 39 
Σ(p < 0.05) 10 2 15 27 15 6 16 37 13 5 16 34 12 5 14 31   
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performed worst, with the lowest number of statistically significant 
differences between groups. Although the WBW and FWH bandwidths 
presented a similar number of p-values < 0.05, the FWH bandwidth 
performed better with a higher number of p-values < 0.001 and very 
large effect sizes (d > 1.2). Regarding the robustness of the method 
against motion artifacts, artifact-free data performed better than raw 
data to differentiate imminent vs. non-imminent labor (more significant 
difference with a larger effect size). Even so, raw data preserved the 
ability to detect imminent labor, especially for the FWH bandwidth. 

Both raw and motion artifact-free data showed a similar ability to 
discriminate preterm and term labor, although raw data seems to obtain 
larger effect size. 

For the recurrence statistics, Shannon entropy and determinism ob-
tained similar results and outperformed Lmax and laminarity. Regardless 
of bandwidth, clinical scenario and input data, Shannon entropy and 
determinism obtained statistically significant differences between the 
groups, with 12 and 11 significant p-values out of a possible 12, 
respectively. Laminarity seemed to be highly sensitive to the bandwidth, 

Fig. A1. Box and whisker plot representing recurrence statistics for the imminent vs. non-imminent approach in the FWH bandwidth using motion artifact-free data. 
The p-value of the Wilcoxon Rank-Sum Test is denoted as ’p’, and the Cohen’s effect size is represented as ’d’. The blue boxes represent the imminent group, while the 
red boxes represent the non-imminent group. 

Fig. A2. Box and whisker plot representing recurrence statistics for the preterm vs. term approach in the FWH bandwidth and using motion artifact-free data. The p- 
value from the Wilcoxon Rank-Sum Test is denoted as ’p’, and the Cohen’s effect size is represented as ’d’. The blue boxes represent the preterm group, while the red 
boxes represent the term group. 
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obtaining promising results for the FWH bandwidth. 
Table 4 shows the discriminatory capability of temporal, spectral and 

non-linear parameters of motion artifact-free bipolar channels X2 and 
Y2 in the FWH bandwidth. Peak-to-peak amplitude, dominant frequency 
and median frequency did not show any significant differences between 
the groups. For both X2 and Y2, preterm group exhibited significantly 
lower sample entropy than the term group (p-value < 0.01, effect size <
− 1). By contrast, only Y2 yielded significant differences in discrimi-
nating imminent and non-imminent labor (p-value < 0.01, effect size =
− 1.21). For time reversibility, preterm labor only presented signifi-
cantly higher values than the term group for Y2 (p-value < 0.05, effect 
size = 0.66). 

4. Discussion 

4.1. Physiological interpretation of VMG changes during pregnancy 

This study aimed to determine the ability of recurrence statistics 
obtained from the VMG to detect imminent or preterm labor in women 
with TPL, which mainly describe VMG properties of periodicity (deter-
minism and Lmax), complexity (Shannon entropy) and stability (lami-
narity), which evolves during pregnancy [18,56–58]. We found both 
determinism and Lmax increase, which quantify in diagonal lines as 
pregnancy advances and as labor approaches, suggesting an increase in 
the periodicity of uterine vector displacement [32]. Delivery proximity 
also is linked to an increase in signal stability [41,54,59], as reflected in 
the laminarity. RQA’s Shannon entropy correlates with the inverse of 
the maximum Lyapunov exponent, which indicates chaotic behavior 
[31,50]. Shannon entropy increase associated with pregnancy progres-
sion can be interpreted as decreased chaos degree [60,61], i.e labor 
proximity is linked to increased organization and higher signal pre-
dictability of the uterine vector displacement [18,54,62]. These findings 
are attributed to electrophysiological changes in the uterus during 
pregnancy [18,54,62]. Garfield hypothesized that, in the early stages of 
gestation, there is a higher number of small “patches or clusters” of local 
electrical activity dispersed in the uterus, resulting in scarce and unco-
ordinated electrical activity [19]. As labor progresses, the gap junctions 
form and enhance the propagation of electrical activity, which may 
reduce the number of “patches or clusters” and increase the patch areas 
[19]. As a result, in advanced pregnancy electrical activity becomes 
intense and synchronized/coordinated and no longer reflects the local 
uterine activity of the “patches or clusters”, reaching a maximum during 
labor. Uterine contractions also increase as labor approaches [56,57], 
giving rise to a rhythmic uterine electrical activity (3 contractions in 10 
min) during the first stage of the active phase of labor. It has been shown 
that signal periodicity and predictability both increase as do synchro-
nization and rhythm [18,20]. Synchrony between a pair of channels is 
defined as the tendency to maintain a nearly constant phase difference 
over a period of time, although the analyzed phase of each channel may 
vary considerably during this period [58,63]. In the present work, we 
found an abrupt increase in recurrence statistics in women who were 
close to delivery, and mainly at gestational ages ranging from 35 to 37 
weeks, which may derive from the increased synchronization during this 
time interval. Indeed, studies in the literature point out that the gap 
junction formations abruptly increase few days before delivery and 
reach a maximum during labor [19]. 

Our results disagree with those of Borowska et al., who used a single 
EHG channel to reconstruct phase space by optimizing both the 
embedding dimension and time delay in the sliding window and 
computed recurrence statistics to detect labor imminence in 20 women 
with TPL between the 24th and 28th weeks of gestation. They found that 
the women close to labor showed significantly lower values for recur-
rence rate, determinism, Shannon entropy and laminarity than non- 
imminent women (p-value < 0.001) [37]. We believe that this differ-
ence in the recurrence statistics changes throughout pregnancy may be 
partially due to the bias of small database [64]. In the present work, we 

reconstructed the phase space from 2D-VMG using the embedding 
dimension m = 1 and time delay τ = 1, which considerably simplifies the 
data processing pipeline and allows the recurrence statistics to be esti-
mated from the whole record rather than the sliding window. Longer 
time series are preferred for a more robust recurrence quantification 
analysis [49], as a shorter time series may not adequately represent the 
signal’s complete recurrent behavior [32]. Our results are in line with 
those found by Di Marco et al. that recurrence statistics from 3 bipolar 
EHG showed higher periodicity and lower complexity as labor ap-
proaches. Their findings revealed that the recurrence statistics assessed 
for a single horizontal EHG, determinism (p-value < 0.05), Shannon 
entropy (p-value < 0.005), and Lmax (p-value < 0.05) could effectively 
differentiate preterm delivery in women undergoing regular check-ups, 
which were poorer indicators than sample entropy (p-value < 0.005) 
[52]. By contrast, our results showed that VMG recurrence statistics 
achieved a better discriminatory capacity to detect imminent and pre-
term labor in women with TPL (p-value < 0.001), outperforming sample 
entropy. Although a direct comparison is not feasible due to the differ-
ences in the databases and the clinical scenario, we speculate that VMG 
is more sensitive in detecting imminent/preterm labor than conven-
tional bipolar EHG because VMG assesses the variation of the instanta-
neous uterine vector displacement viewed from a longer distance 
associated with propagated events rather than local activity [19,65]. 

4.2. EHG biomarkers to detect preterm and imminent labor: classical 
bipolar EHG vs. VMG recurrence statistics 

As for the preterm labor detection, many studies in the literature 
have focused on developing a prediction system based on EHG in women 
with regular check-ups (physiological recording without any drug ef-
fects), obtaining promising results [15,66], while there are fewer studies 
conducted on women with TPL [15,66]. Even so, there is increasing 
evidence on the feasibility of detecting imminent labor in women with 
TPL by the EHG [10,11,55,67]. In this work, we dealt with and 
compared the performance of the recurrence statistics obtained from the 
uterine vector displacement in different bandwidths to detect both 
imminent and preterm labor in women with TPL. Recurrence statistics 
computed from the FWH bandwidth outperformed those of the WBW 
and this, in turn, performed better than FWL, which was in line with 
findings in previous works [18,20,54]. Non-linear parameters computed 
in the FWH bandwidth offered better separability between the term and 
preterm group in women with regular check-ups [20,68]. Non-linear 
parameters also showed consistent tendencies for different obstetric 
scenarios (antepartum, during labor and postpartum) when computed in 
the FWH bandwidth but not in the whole bandwidth [54]. This may be 
associated with the FWH components that mainly appear close to de-
livery and are hallmark characteristics of the proximity of delivery 
[18,20,68]. 

We also compared VMG recurrence statistics with the classical 
temporal, spectral and non-linear parameters from bipolar channels to 
identify the imminence and preterm labor risk. In the present work, the 
peak-to-peak amplitude dominant frequency and median frequency 
were unable to differentiate between imminent and non-imminent or 
preterm and term labor (no significant differences between the groups). 
This result was consistent with our previous results in studies that 
attempted to discriminate between imminent vs. non-imminent labor 
using EHG parameters from women with TPL taken from another 
database [10,55]. We believe that the lack of sensitivity may be asso-
ciated with the specific TPL clinical scenario and the fact that the EHG 
recordings were carried out in different phases of tocolytic treatment 
with the aim of inhibiting uterine contractions to block oxytocin re-
ceptors by reducing cell excitability [69,70]. In fact, in a previous study 
we found that TPL women who delivered preterm presented a time delay 
in the reduction of high-frequency EHG components in comparison to 
TPL women who delivered at term, which is probably due to the pres-
ence of a higher number of oxytocin receptors expressed by the 
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myometrial cells in the former [71]. By contrast, sample entropy, a 
widely used parameter to quantify signal regularity and predictability 
[15,18,21,66], was the most sensitive, even more so than time revers-
ibility [54], to detect imminent and preterm labor in women with TPL. 
Our results also suggest that VMG recurrence statistics outperformed 
classical EHG parameters, and provided reliable indicators of imminent 
labor in TPL women that will allow clinicians to design a patient- 
oriented strategy of prolonging pregnancy, as long as possible to 
enhance perinatal surveillance and reduce unnecessary hospitalizations 
for non-imminent labor women. In comparison to non-imminent labor 
group, imminent labor group presented significant higher gestational 
age which may partially explain the higher recurrence statistics and 
lower sample entropy. However, considering the subtle electrophysio-
logical changes throughout pregnancy that abruptly increase close to 
delivery, we believe this difference is mainly due to labor imminence 
rather than gestational age. Also, compared to sample entropy, VMG 
recurrence statistics provided more significant information for identi-
fying the preterm labor risk in TPL women, thus constituting biomarkers 
able to detect the underlying mechanism that triggers labor for better 
preventing preterm labor. 

4.3. Limitations and future directions 

Despite the promising results, this study is not exempt from limita-
tions. Firstly, the actual database of TPL women was relatively small, so 
that detecting imminent/preterm labor was especially challenging. A 
small number of samples tends to bias the statistical test, since the 
sample is not representative of all the pregnancy cases [72]. Future work 
with a larger database is therefore still needed to further corroborate the 
clinical usefulness of the proposed method for preventing preterm labor 
in TPL women, as well as regular check-ups. RQA from the VMG out-
performed classical temporal, spectral and non-linear parameters to 
predict imminent and preterm labor in TPL women, although we did not 
analyze the mutual and complementary information among them to 
design a robust and generalizable system for preventing preterm labor 
based on EHG [21,68]. 

On the other hand, motion artifacts remain a challenge for the 
scientific-technical community, constituting the main barrier to trans-
ferring the EHG technique to clinical practice. Robust data processing 
against motion artifacts is thus of great interest to extract the reliable 
biomarkers embedded in the EHG and promote the transfer of EHG to 
clinical practice. Motion artifacts, which usually present an abrupt 
change of signal amplitude, not only distort the spectral content distri-
bution, but may also alter the threshold to obtain the recurrent points, 
and consequently the diagonal and vertical lines. The recurrence sta-
tistics estimated from raw data may thus greatly differ from their true 
value. The problem relies on the fact that motion artifacts have a widely 
varied morphologies, i.e. they can alter in different way for each EHG 
record [40]. This may explain the fact that raw data slightly outperform 
motion artifact-free data to detect preterm labor. By contrast the per-
formance of raw data was much less effective than motion artifact-free 
data to differentiate the imminent and non-imminent labor groups, 
while the removal of corrupted segments may cause a slight variation of 
the diagonal and /or vertical line (depending on the duration of the 
corrupt segments) giving rise to bias in the recurrence statistics. In this 
work, we compared raw and motion artifact-free data to assess their 
ability to detect imminent and preterm labor and found that the RQA of 
VMG preserve the discriminatory capability to differentiate imminent/ 
preterm and non-imminent/term labor (p-value < 0.05), although 
generally with a lower Cohen’s effect size, suggesting that the proposed 
method is robust to a certain extent against motion artifacts. Thiel et al. 
showed that the same determinism values were achieved by adequately 
setting the threshold for a clean signal and for the same contaminated 
signal with 10 % Gaussian noise [73]. It has also been reported that as 
the noise level increases, the recurrence metrics value decreases slightly, 
when the noise level becomes very high, the recurrence metrics values of 

all the signals suddenly changed [74]. For physiological signals, Webber 
et al. claim that recurrence plots are robust against non-uniformity, 
dynamic noise, system transitions and state changes, which are very 
frequent in standard physiological systems [75]. However, motion ar-
tifacts, which present a very varied morphology, are much more com-
plex than synthetized noise [40]. Future works designed to determine 
the robustness of recurrence statistics against motion artifacts are still 
needed to corroborate this hypothesis. In this work, we discarded mo-
tion artifacts, which typically distort the spectral content distribution, 
from EHG recordings by experts [39,40]. Although manual segmenta-
tion by experts provides the most reliable results, it is a laborious pro-
cess. Many efforts have focused on the automatic detection of uterine 
contractions in EHG [38,40,76], but its application in the early stage 
with a lower signal-to-noise ratio is still unclear. 

Also, preterm labor is not exclusively associated with uterine dy-
namics measured by EHG, but also with other multiple physiological 
mechanisms. In the literature, cervix measurement and chemical bio-
markers, such as cervical length, fetal fibronectin, and interleukin 6, 
have been established as valuable predictors of preterm birth 
[15,18,62]. Incorporating these clinical data into preterm birth predic-
tion models [10] could still improve their overall performance, although 
further studies are still needed to corroborate this hypothesis. Despite 
these limitations, we believe that this is the first study to provide reliable 
evidence of the feasibility of using the VMG to prevent preterm labor in 
women with TPL. 

5. Conclusions 

In this work we not only confirmed the existence of a recurrence 
pattern of uterine vector displacement but also determined their changes 
throughout pregnancy: as pregnancy progresses, uterine vector 
displacement becomes more stable, periodic and organized, giving rise 
to better predictability, which is reflected in increased laminarity, 
determinism, maximum diagonal length and Shannon entropy. VMG 
recurrence statistics computed in the FWH outperformed those obtained 
in the FWL and the whole bandwidth, as well as classical temporal, 
spectral and non-linear parameters computed in the same FWH band-
width in terms of the ability to discriminate between imminent and non- 
imminent labor and preterm and term labor. We also assessed the 
robustness of the proposed method against motion artifacts to preserve 
the ability to detect imminent labor and identify the preterm labor risk 
in TPL women. Our findings not only give a better understanding of 
uterine electrophysiology but would also provide clinical tools to better 
discriminate and prevent preterm labor in this group, thus improving 
maternal-fetal well-being and optimizing the management of hospital 
resources. 
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Appendix A 

This appendix details how X2-Y2 was chosen as the best VMG 
configuration. We compared the ability of the different VMG configu-
rations to detect preterm and imminent labor in women with TPL by 
assessing the number of statistics with statistically significant differ-
ences between groups (see Table A.1) and inter-group separability. 
Fig. A.1 and Fig. A.2 show the box and whisker plot of the four recur-
rence statistics of the different configurations to distinguish between 
imminent and non-imminent labor, preterm and term labor, respec-
tively, with their corresponding p-value and Cohen’s effect size (d value 
above each subplot). 

Four statistics were computed for each VMG configuration in 3 
different bandwidths (WBW, FWL and FWH): determinism (DET), 
longest diagonal (Lmax), entropy (ENTR), and laminarity (LAM), giving 
rise to 12 comparisons between the groups (imminent vs. non-imminent, 
preterm vs. term). We counted the number of statistics of all the VMG 
configurations that showed significant changes between the groups (α =
0.05). 

We then found that X1-Y1 and X2-Y2 performed equally well in 
terms of Σ(p < 0.05), specifically, 38 for X1-Y1 compared to 39 for X2- 
Y2, although X2-Y2 achieved lower p-values and higher Cohen’s d effect 
size than X1-Y1. We therefore finally chose X2-Y2 as the best 
configuration. 
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