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Abstract: This paper investigates the ion-acoustic wave structures in fluid ions for the Benjamin–
Bona–Mahony–Peregrine–Burgers (BBMPB) equation. The various types of wave structures are
extracted including the three-wave hypothesis, breather wave, lump periodic, mixed-type wave,
periodic cross-kink, cross-kink rational wave, M-shaped rational wave, M-shaped rational wave
solution with one kink wave, and M-shaped rational wave with two kink wave solutions. The Hirota
bilinear transformation is a powerful tool that allows us to accurately find solutions and predict the
behaviour of these wave structures. Through our analysis, we gain a better understanding of the
complex dynamics of ion-acoustic waves and their potential applications in various fields. Moreover,
our findings contribute to the ongoing research in plasma physics that utilize ion-acoustic wave
phenomena. To show the physical behaviour of the solutions, some 3D plots and their respective
contour level are shown, choosing different values of the parameters.

Keywords: BBMPB equation; Hirota’s bilinear transformation; ion-acoustic wave structures

1. Introduction

The study of wave phenomena is an important aspect of modern physics and has been
a subject of interest for many years. Waves can be observed in various physical systems
such as fluids, plasmas, and solids, and their dynamics can be described by a variety of
mathematical models. In particular, the behaviour of waves in plasmas has been an active
area of research due to its relevance for a wide range of applications, including space
physics, fusion research, and plasma processing.

One of the most important wave phenomena in plasmas is the ion-acoustic wave [1],
which is a compressional wave that is primarily driven by the motion of the ions in the
plasma. The ion-acoustic wave is a fundamental mode of oscillation in plasmas and is
characterized by its dispersion relation, which relates the wave frequency to the wave
number. The study of ion-acoustic waves is of great importance in plasma physics because
it provides insights into the basic plasma processes, such as energy transport, wave–particle
interactions, and turbulence [2–5].
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The BBMPB model is a nonlinear partial differential equation that can be used to
explore nonlinear wave patterns. The equation is given by:

vt − vxxt − αvxx + λvx + θvvx + βvxxx = 0,

where v(x, t) is the unknown function, and α, β, λ, and θ are constants.
The BBMPB equation has been studied extensively by researchers in the field of

nonlinear wave theory. In particular, there have been many studies on the existence and
stability of solitary wave solutions for this equation. One of the earliest studies on the
BBMPB equation was conducted by Benjamin and Peregrine [6], where they derived the
BBMPB equation as a model for long waves in shallow water. They showed that the
equation has solitary wave solutions that are stable under certain conditions. As example
of some of the recent studies of this equation, Yang et al. constructed the travelling wave
solutions for the Zakhrov–Kuznetsov–Benjamin–Bona–Mahony equation [7], while Akcagil
et al. found the exact travelling wave solutions of nonlinear pseudoparabolic equations
by using the G′

G expansion method [8]. Overall, the BBMPB equation has been studied
extensively in the literature, and there have been many important results regarding its
properties and solutions.

There are many techniques to obtain a different soliton solution for physical sys-
tems. Zou used the Riemann–Hilbert approach and gained the soliton interactions and
position shift for the higher-order Gerdjikov–Ivanov equation [9,10], and Shen et al. con-
sidered the nonlocal nonlinear Schrödinger equation to obtain the Gaussian-like, nearly
flat-topped, multipeak, and four-peak form solitons [11] and complex-valued astigmatic
cosine–Gaussian soliton solutions [12]. Li and Guo explored optical solitons in the form of
breathers, rogue waves, and semirational solutions on periodic backgrounds for the coupled
Lakshmanan–Porsezian–Daniel equations [13], and Song et al. studied Laguerre–Gaussian
and Hermite–Gaussian solitons in the nonlocal nonlinear Schrödinger equation [14]. Zhang
and Xu worked on the localized symmetric and asymmetric solitary wave solutions using
the Darboux transformation [15]. There are many mathematical techniques to explore
the soliton solution such as the direct algebraic method [16], the sine-Gordon expan-
sion method [17], the new MEDA method [18,19], the Riccati equation mapping (REM)
method [20], the Sardar subequation method [21], the Jacobi elliptic functions method [22].
However, in this study, we apply Hirota’s direct strategy [23] that provides us with the
purely soliton solutions. The Hirota bilinear approach is one of them and is a crucial and
straightforward method. It can solve both integrable and nonintegrable equations. The
Hirota bilinear approach has the advantage of being an algebraic method as opposed to
an analytical one, and it has been used to solve a lot of soliton problems, including the
nonlinear Schrödinger equation, the KdV equation, the mKdV equation, the sine-Gordon
equation, etc.

Discussion of the Model and Wave Structures

The BBMPB model is a mathematical model that describes the dynamics of ion-acoustic
wave structures in a plasma consisting of fluid ions. This equation is a modified version
of the classical Burgers equation [8], which is a nonlinear partial differential equation
describing the propagation of shocks in a fluid. The BBMPB equation incorporates the
effects of dispersion, diffusion, and nonlinearity, which are all important factors that affect
the behaviour of ion-acoustic waves in a plasma. The BBMPB equation is given by:

vt − vxxt − αvxx + λvx + θvvx + βvxxx = 0, (1)

where v(x, t) is the ion-acoustic wave amplitude, t is time, x is the position, and the
constants α, λ, θ, and β are parameters that depend on the properties of the plasma. The
first term on the left-hand side of the equation represents the dispersive effects of the
plasma, while the second term represents the diffusive effects. The third and fourth terms
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represent the linear damping and driving forces, respectively, while the fifth term represents
the nonlinear effects that arise due to the interaction between the waves.

The BBMPB equation can be used to study a wide range of ion-acoustic wave phe-
nomena in plasmas, including the formation of solitons, shock waves, and other nonlinear
structures. In particular, the equation can be used to study the propagation of ion-acoustic
waves in a plasma with a spatially varying ion density profile, which is a common feature
of many plasma systems. The equation can also be used to study the effects of external
forces, such as electric fields or magnetic fields, on the dynamics of ion-acoustic waves.

One of the most important features of ion-acoustic waves in plasmas is their ability to
form coherent structures, such as solitons and shock waves, that can propagate over long
distances without dissipating [1,24]. These structures arise due to the interplay between the
dispersive, diffusive, and nonlinear effects in the plasma, and their properties can be studied
using the BBMPB equation. Solitons are stable, localized wave packets that maintain their
shape as they propagate through the plasma, while shock waves are characterized by a
rapid increase in wave amplitude and are often associated with energy dissipation [24,25].

The BBMPB equation can be solved analytically in some special cases, such as when
the plasma is homogeneous or when the nonlinearity is weak [26]. The BBMPB equation
has been extensively studied in the literature due to its rich and diverse wave structures.
In this context, analytical methods have been used to investigate different types of wave
structures. In the following, we briefly introduce some of the wave structures that are
studied in this research for the BBMPB equation.

Three-wave hypothesis: The three-wave hypothesis is a well-known phenomenon
in nonlinear science, which describes the interaction of three waves that satisfy certain
resonance conditions [1,27,28].
Breather wave: A breather wave is a localized and oscillatory solution that maintains its
shape over time [1,9,29].
Lump periodic waves: lump periodic waves are periodic solutions that consist of a se-
quence of wave packets [1,9,29].
Mixed–type wave solutions: mixed-type wave solutions are complex and diverse wave
structures that have both soliton-like and oscillatory components [1,28,30].
Periodic cross kink: a periodic cross kink is a localized wave structure that exhibits a cross-
ing behaviour [1,9,30].
Cross-kink rational wave solution: the cross-kink rational wave solution is a type of non-
linear wave solution that is characterized by the presence of two perpendicular kinks in the
wave profile, which cross each other at a single point [31,32].
M-shaped rational wave solution: the M-shaped rational wave solution is another type of
nonlinear wave solution that is characterized by an “M”-shaped profile [31,32].
M-shaped rational wave solution with one kink wave: The M-shaped rational wave solu-
tion with one kink wave is a variant of the M-shaped solution that includes a single kink in
the wave profile [31,32].
M-shaped rational wave solution with two kink waves: The M-shaped rational wave solu-
tion with two kink waves is a variant of the M-shaped solution that includes two kinks in
the wave profile [31,32].

2. Glimpse of the Method

In this section, we use the method to gain the solutions of the ion-acoustic wave
structures in fluid ions, described by the nonlinear partial differential equation (NLPDE) in
two variables, x and t, given by

Ψ(v, vt, vx, vxt, vtt, vxx, · · · ) = 0, (2)

where v(x, t) is the ion-acoustic wave amplitude, t is time, x is the position , Ψ is a polyno-
mial in v = v(x, t) with different partial derivatives, in which the highest-order derivatives
and nonlinear terms are involved.



Symmetry 2023, 15, 1682 4 of 18

We use the transformation v(x, t) = V(η), where η = x − ct, and V =

∂ f (η)
∂η

f (η)
in (2),

and obtain the following ordinary differential equation:

Ψ(V, cV′, V
′
, cV

′′
, c2V

′′
, V
′′′

, . . .) = 0, (3)

where Ψ is a polynomial function of V, and we integrate (3) with respect to η and let the
integral constants 0 for our convenience; simplifying the resulting equation, we obtain

(c + β)V
′′ − αV

′
+ (λ− c)V − θ

2
V2 = 0. (4)

To find the different forms of solutions to (1), we use the following transformation [1]

V =

∂ f
∂η

f
, (5)

4(β− 1) f ′(η)3 + f (η) f ′(η)
(
(2α + θ) f ′(η)− (β− 1) f ′′(η)

)
+2 f (η)2

(
(β− 1) f (3)(η)− α f ′′(η) + (λ + 1) f ′(η)

)
= 0. (6)

In bilinear form, we have

2 f 2
(
−α

∂2 f
∂η2 + (β− 1)

∂3 f
∂η3 + (λ + 1)

∂ f
∂η

)
+

f
∂ f
∂η

(
(2α + θ)

∂ f
∂η
− 6(β− 1)

∂2 f
∂η2

)
+ 4(β− 1)

(
∂ f
∂η

)3
= 0. (7)

Our focus now is on Equation (7), which we use to find the different solutions of the wave
structures discussed for Equation (1).

3. Finding the Solutions of the Wave Structures

1. Multiwave solutions: With the help of the following transformation [1], we are able
to use the three wave hypothesis to generate different types of solutions:

f = n2 cos(ηε3 + ε4) + n1 cosh(ηε1 + ε2) + n3 cosh(ηε5 + ε6). (8)

Substituting Equation (8) in Equation (7), simplifying and collecting similar terms
with trigonometric and hyperbolic functions, and equating the coefficients of each
obtained expression to zero, we obtained a system of equations and simplified it with
the help of Mathematica to gain the following different sets of unknown constants:

Set 1: Setting n3 = 0, ε1 = −
√

λ+1√
2
√

β−1
and ε3 =

√
−λ−1√

2
√

β−1
, and putting them in

Equation (8) and then in Equation (5) gives

V1,1(η) =

√
λ+1n1 sinh

( √
λ+1η√

2
√

β−1
−ε2

)
√

2
√

β−1
−
√
−λ−1n2 sin

( √
−λ−1η√
2
√

β−1
+ε4

)
√

2
√

β−1

n2 cos
( √

−λ−1η√
2
√

β−1
+ ε4

)
+ n1 cosh

( √
λ+1η√

2
√

β−1
− ε2

) . (9)

The multiwave solution of Equation (1) is extracted as
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v1,1(x, t) =

√
λ + 1n1 sinh

(√
λ+1(x−ct)√

2
√

β−1
− ε2

)
−
√
−λ− 1n2 sin

(√
−λ−1(x−ct)√

2
√

β−1
+ ε4

)
√

2
√

β− 1
(

n2 cos
(√
−λ−1(x−ct)√

2
√

β−1
+ ε4

)
+ n1 cosh

(√
λ+1(x−ct)√

2
√

β−1
− ε2

)) . (10)

Set 2: Setting n1 = 0, ε3 =
√
−λ−1√

2
√

β−1
, ε5 = −

√
λ+1√

2
√

β−1
, and putting them in

Equation (8) and then in Equation (5) gives

V1,2(η) =

√
λ+1n3 sinh

( √
λ+1η√

2
√

β−1
−ε6

)
√

2
√

β−1
−
√
−λ−1n2 sin

( √
−λ−1η√
2
√

β−1
+ε4

)
√

2
√

β−1

n2 cos
( √

−λ−1η√
2
√

β−1
+ ε4

)
+ n3 cosh

( √
λ+1η√

2
√

β−1
− ε6

) . (11)

The multiwave solution of Equation (1) is extracted as

v1,2(x, t) =

√
λ + 1n3 sinh

(√
λ+1(x−ct)√

2
√

β−1
− ε6

)
−
√
−λ− 1n2 sin

(√
−λ−1(x−ct)√

2
√

β−1
+ ε4

)
√

2
√

β− 1
(

n2 cos
(√
−λ−1(x−ct)√

2
√

β−1
+ ε4

)
+ n3 cosh

(√
λ+1(x−ct)√

2
√

β−1
− ε6

)) . (12)

2. Interaction via double exponential form: With the help of the following transforma-
tion [1], we generate different types of solutions:

f = n1 exp(ηε1 + ε2) + n2 exp(ηε3 + ε4). (13)

Substituting Equation (13) in Equation (5), simplifying and collecting similar terms
with exponential functions, and equating the coefficients of each obtained expression
to zero, we obtained a system of equations and simplified it with the help of Mathe-
matica to gain the following different sets of unknown constants:
Set 1: Setting ε1 = − 2(λ+1)

θ , ε3 = 0, α = − θ
2 , β = 1, and putting them in

Equation (13) and in Equation (5), we obtain

V2,1(η) = −
2(λ + 1)n1eε2−

2(λ+1)η
θ

θ

(
n1eε2−

2(λ+1)η
θ + n2eε4

) . (14)

Thus, the solution of Equation (1) is extracted as

v2,1(x, t) = − 2(λ + 1)n1eε2

θ

(
n2e

2(λ+1)(x−ct)
θ +ε4 + n1eε2

) . (15)

Set 2: Setting ε1 = 0, ε3 = − 2(λ+1)
θ , α = − θ

2 , β = 1, and putting them in (13) and
Equation (5), we obtain

V2,2(η) = −
2(λ + 1)n2eε4−

2(λ+1)η
θ

θ

(
n2eε4−

2(λ+1)η
θ + n1eε2

) . (16)
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Thus, the solution of Equation (1) is extracted as

v2,2(x, t) = − 2(λ + 1)n2eε4

θ

(
n1e

2(λ+1)(x−ct)
θ +ε2 + n2eε4

) . (17)

Set 3: Setting ε1 = − 2(λ+1)
θ , ε3 = − 2(λ+1)

θ , and putting them in (13) in Equation (5),
we obtain

V2,3(η) =
− 2(λ+1)n1eε2−

2(λ+1)η
θ

θ − 2(λ+1)n2eε4−
2(λ+1)η

θ

θ

n1eε2−
2(λ+1)η

θ + n2eε4−
2(λ+1)η

θ

. (18)

Thus, the solution of Equation (1) is extracted as

v2,3(x, t) =
− 2(λ+1)n1eε2−

2(λ+1)(x−ct)
θ

θ − 2(λ+1)n2eε4−
2(λ+1)(x−ct)

θ

θ

n1eε2− 2(λ+1)(x−ct)
θ + n2eε4−

2(λ+1)(x−ct)
θ

. (19)

3. Homoclinic breather approach: With the help of the following transformation [1],
we generate different types of solutions:

f = n1 exp(r(ηε3 + ε4)) + exp(−r(ηε1 + ε2)) + n2 cos(r(ηε5 + ε6)). (20)

Substituting Equation (20) in Equation (7), simplifying and collecting similar terms
with exponential, trigonometric, and exponential–trigonometric functions, and equat-
ing the coefficients of each obtained expression to zero, we obtained a system of
equations and simplified it with the help of Mathematica to gain the following differ-
ent sets of unknown constants:
Set 1: Setting n1 = 0, ε1 =

√
−(λ+1)2ε5

λ+1 , α = − θ
8 , β = 32λ+θ2+32

32(λ+1) , r =

− 2
√
−λ2−2λ−1

θε5
, and putting them in Equation (20) and then in Equation (5), we obtain

V3,1(η) =
− 2(λ+1)n1e

r
(

ε4−
2(λ+1)η

θr

)
θ − 2(λ+1)e

−r
(

2(λ+1)η
θr +ε2

)
θ

n1er
(

ε4−
2(λ+1)η

θr

)
+ n2 cos(rε6) + e−r

(
2(λ+1)η

θr +ε2

) . (21)

Thus, the homoclinic breather solution of Equation (1) is extracted as

v3,1(x, t) = −

2(λ + 1)

e
2
√
−(λ+1)2ε2

θε5 − n2e
2(λ+1)(x−ct)

θ sinh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
θ

n2e
2(λ+1)(x−ct)

θ cosh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
+ e

2
√
−(λ+1)2ε2

θε5

 . (22)

Set 2: Setting ε1 =

√
−(λ+1)2ε5

λ+1 , ε3 =

√
−(λ+1)2ε5
−λ−1 , α = − θ

8 , β = 32λ+θ2+32
32(λ+1) , r =

− 2
√
−λ2−2λ−1

θε5
, and putting them in Equation (20) and then in Equation (5), we obtain

V3,2(η) = −

2(λ + 1)

e
2
√
−(λ+1)2(ε2+ε4)

θε5 − n2e

2

λη+

√
−(λ+1)2ε4

ε5
+η


θ sinh(G) + n1



θ

e
2
√
−(λ+1)2(ε2+ε4)

θε5 + n2e

2

λη+

√
−(λ+1)2ε4

ε5
+η


θ cosh(G) + n1


, (23)
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where G = 2(λ+1)(ηε5+ε6)
θε5

. Thus, the homoclinic breather solution of Equation (1) is
extracted as

v3,2(x, t) = −

2(λ + 1)

−n2 exp(R) sinh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
+ e

2
√
−(λ+1)2(ε2+ε4)

θε5 + n1


θ

n2 exp(R) cosh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
+ e

2
√
−(λ+1)2(ε2+ε4)

θε5 + n1

 , (24)

where R =
2

(
(λ+1)(x−ct)+

√
−(λ+1)2ε4

ε5

)
θ .

Set 3: Setting n1 = 0, ε1 =

√
−(λ+1)2ε5
−λ−1 , α = − θ

8 , β = 32λ+θ2+32
32(γ+1) , r = 2

√
−λ2−2λ−1

θε5

and putting them in Equation (20) and then in Equation (5), we obtain

V3,3(η) =

2(λ + 1)

n2e

2

λη+

√
−(λ+1)2ε2

ε5
+η


θ sinh

(
2(λ+1)(ηε5+ε6)

θε5

)
− 1



θ + θn2e

2

λη+

√
−(λ+1)2ε2

ε5
+η


θ cosh

(
2(λ+1)(ηε5+ε6)

θε5

) . (25)

Thus, the homoclinic breather solution of Equation (1) is extracted as

v3,3(x, t) =

2(λ + 1)

n2 exp

 2

(
(λ+1)(x−ct)+

√
−(λ+1)2ε2

ε5

)
θ

 sinh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
− 1



θn2 exp

 2

(
(λ+1)(x−ct)+

√
−(λ+1)2ε2

ε5

)
θ

 cosh
(

2(λ+1)(ε5(x−ct)+ε6)
θε5

)
+ θ

. (26)

4. Mixed-type solutions: With the help of the following transformation [1], we generate
different types of solutions:

f = n1 exp(r(ηε1 + ε2)) + n2 exp(−r(ηε1 + ε2)) + n3 sin(r(ηε3 + ε4)) + n4 sinh(r(ηε5 + ε6)). (27)

Substituting in Equation (27) and then in Equation (7), simplifying and collecting
similar terms with exponential, trigonometric, and exponential–trigonometric func-
tions, and equating the coefficients of each obtained expression to zero, we obtained
a system of equations and simplified it with the help of Mathematica to gain the
following different sets of unknown constants:

Set 1: Setting n1 = 0, n3 = 0, ε1 =

√
(λ+1)2ε5
−λ−1 , α = − θ

8 , β = 32λ+θ2+32
32(λ+1) , r =

− 2
√

λ2+2λ+1
θε5

, and putting them in Equation (27) and then in Equation (5) yields

V4,1(η) =

2
√

(λ+1)2
√

λ2+2λ+1n2 exp(Q)
(−λ−1)θ −

2
√

λ2+2λ+1n4 cosh

(
2
√

λ2+2λ+1(ηε5+ε6)
θε5

)
θ

n2 exp(Q)− n4 sinh
(

2
√

λ2+2λ+1(ηε5+ε6)
θε5

) , (28)
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where Q =
2
√

λ2+2λ+1

(√
(λ+1)2ηε5
−λ−1 +ε2

)
θε5

.
The mixed-type solution of Equation (1) is extracted as

v4,1(x, t) =
−2(λ + 1)n2 exp(W)− 2

√
(λ + 1)2n4 cosh

(
2(λ+1)(ε5(x−ct)+ε6)

θε5

)
θ

(
n2 exp(W)− n4 sinh

(
2
√

(λ+1)2(ε5(x−ct)+ε6)
θε5

)) , (29)

where W =
2

(
(λ+1)(ct−x)+

√
(λ+1)2ε2

ε5

)
θ .

Set 2: Setting n1 = 0, n4 = 0, ε1 = 2(λ+1)
θr , ε3 = 2

√
−λ2−2λ−1

θr , α = − θ
8 , β =

32λ+θ2+32
32(λ+1) , and putting them in Equation (27) and then in Equation (5) yields

V4,2(η) =

2
√
−λ2−2λ−1n3 cos

(
r
(

2
√
−λ2−2λ−1η

θr +ε4

))
θ − 2(λ+1)n2e

−r
(

2(λ+1)η
θr +ε2

)
θ

n3 sin
(

r
(

2
√
−λ2−2λ−1η

θr + ε4

))
+ n2e−r

(
2(λ+1)η

θr +ε2

) . (30)

The mixed-type solution of Equation (1) is extracted as

v4,2(x, t) =
2
√
−(λ + 1)2n3e

2(λ+1)(x−ct)
θ +rε2 cos

(
2
√
−(λ+1)2(x−ct)

θ + rε4

)
− 2(λ + 1)n2

θ

(
n3e

2(λ+1)(x−ct)
θ +rε2 sin

(
2
√
−(λ+1)2(x−ct)

θ + rε4

)
+ n2

) . (31)

5. Periodic cross kink: With the help of the following transformation [1], we generate
different types of solutions:

f = n1 exp(r(ηε3 + ε4)) + exp(−r(ηε1 + ε2))

+n2 cos(r(ηε5 + ε6)) + n3 cosh(r(ηε7 + ε8)) + ε9. (32)

Substituting Equation (32) in Equation (7), simplifying and collecting similar terms
with exponential, trigonometric, and exponential–trigonometric functions, and equat-
ing the coefficients of each obtained expression to zero, we obtained a system of
equations and simplified it with the help of Mathematica to gain the following differ-
ent sets of unknown constants:
Set 1: Setting n2 = 0, ε1 =

√
(λ+1)2ε7
−λ−1 , ε3 =

√
(λ+1)2ε7

λ+1 , ε9 = 0, α =

− θ
8 , β = 32λ+θ2+32

32(λ+1) , r = − 2
√

λ2+2λ+1
θε7

, and putting them in Equation (32) and
then in Equation (5) yields

V5,1(η) = −

2(λ + 1)

e
2
√

(λ+1)2(ε2+ε4)
θε7 − n3e

2

λη+

√
(λ+1)2ε4

ε7
+η


θ sinh

(
2(λ+1)(ηε7+ε8)

θε7

)
+ n1



θ

e
2
√

(λ+1)2(ε2+ε4)
θε7 + n3e

2

λη+

√
(λ+1)2ε4

ε7
+η


θ cosh

(
2(λ+1)(ηε7+ε8)

θε7

)
+ n1


. (33)

Thus, the periodic cross-kink solution of Equation (1) is extracted as
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v5,1(x, t) = −
2(λ + 1)

(
−n3 exp(L) sinh

(
2(λ+1)(ε7(x−ct)+ε8)

θε7

)
+ e

2
√

(λ+1)2(ε2+ε4)
θε7 + n1

)

θ

(
n3 exp(L) cosh

(
2(λ+1)(ε7(x−ct)+ε8)

θε7

)
+ e

2
√

(λ+1)2(ε2+ε4)
θε7 + n1

) , (34)

where L =
2

(
(λ+1)(x−ct)+

√
(λ+1)2ε4

ε7

)
θ .

Set 2: Setting n1 = 0, n2 = 0, ε1 =

√
(λ+1)2ε7

λ+1 , ε9 = 0, α = − θ
8 , β =

32λ+θ2+32
32(λ+1) , r = 2

√
λ2+2λ+1

θε7
, and putting them in Equation (32) and then in Equation (5)

yields

V5,2(η) =

2(λ + 1)

n3e

2

λη+

√
(λ+1)2ε2

ε7
+η


θ sinh

(
2(λ+1)(ηε7+ε8)

θε7

)
− 1



θ + θn3e

2

λη+

√
(λ+1)2ε2

ε7
+η


θ cosh

(
2(λ+1)(ηε7+ε8)

θε7

) . (35)

The periodic cross-kink solution of Equation (1) is extracted as

v5,2(x, t) =

2(λ + 1)

n3 exp

 2

(
(λ+1)(x−ct)+

√
(λ+1)2ε2

ε7

)
θ

 sinh
(

2(λ+1)(ε7(x−ct)+ε8)
θε7

)
− 1



θn3 exp

 2

(
(λ+1)(x−ct)+

√
(λ+1)2ε2

ε7

)
θ

 cosh
(

2(λ+1)(ε7(x−ct)+ε8)
θε7

)
+ θ

. (36)

Set 3: Setting n1 = 0, n2 = 0, ε1 = 2(λ+1)
θr , ε7 = 2

√
λ2+2λ+1

θr , ε9 = 0, α =

− θ
8 , β = 32λ+θ2+32

32(λ+1) , and putting them in Equation (32) and then in Equation (5)
yields

V5,3(η) =

2
√

λ2+2λ+1n3 sinh
(

r
(

2
√

λ2+2λ+1η
θr +ε8

))
θ − 2(λ+1)e

−r
(

2(λ+1)η
θr +ε2

)
θ

n3 cosh
(

r
(

2
√

λ2+2λ+1η
θr + ε8

))
+ e−r

(
2(λ+1)η

θr +ε2

) . (37)

Thus, the periodic cross-kink solution of Equation (5) is extracted as

v5,3(x, t) = −
2
(
−
√
(λ + 1)2n3e

2(λ+1)(x−ct)
θ +rε2 sinh

(
2
√

(λ+1)2(x−ct)
θ + rε8

)
+ λ + 1

)
θn3e

2(λ+1)(x−ct)
θ +rε2 cosh

(
2
√

(λ+1)2(x−ct)
θ + rε8

)
+ θ

. (38)

6. Cross-kink rational wave solution: With the help of the following transformation [31],
we generate different types of solutions:

f = n1 exp(ηε1 + ε2) + exp(−(ηε1 + ε2)) + (ηr1 + r2)
2 + (ηr3 + r4)

2 + r5. (39)
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Substituting Equation (39) in Equation (7), simplifying and collecting similar terms
with exponential functions and equating the coefficients of each obtained expression
to zero, we obtained a system of equations and simplified it with the help of Mathe-
matica to gain the following different sets of unknown constants:

Set 1: Setting n1 = 0, ε1 = 2(λ+1)
θ , r2 = − r1(2λη+2η+θ)

2(λ+1) , r3 = 0, α = − θ
2 , β = 1,

and putting them in Equation (39) and in Equation (5), we obtain

V6,1(η) = −
4(λ + 1)3

2(λ + 1)2θ + θ3r2
1e

2(λ+1)η
θ +ε2

. (40)

Thus, the cross-kink rational wave solution of Equation (1) is extracted as

v6,1(x, t) =
4(λ + 1)3

2(λ + 1)2θ + θ3r2
1e

2(λ+1)(x−ct)
θ +ε2

. (41)

Set 2: Setting ε1 = 0, r2 = − r1(2λη+2η+θ)
2(λ+1) , r3 = 0, α = − θ

2 , β = 1, and putting
them in Equation (39) and in Equation (7), we obtain

V6,2(η) =
2
(

r1 − (2λ+2)r1
2(λ+1)

)(
ηr1 − r1(2λη+2η+θ)

2(λ+1)

)
n1eε2 +

(
ηr1 − r1(2λη+2η+θ)

2(λ+1)

)
2 + r2

4 + r5 + e−ε2
. (42)

Thus, the cross-kink rational wave solution of Equation (1) is extracted as

v6,2(x, t) =
2
(

r1 − (2λ+2)r1
2(λ+1)

)(
r1(x− ct)− r1(2λ(x−ct)+2(x−ct)+θ)

2(λ+1)

)
(

r1(x− ct)− r1(2λ(x−ct)+2(x−ct)+θ)
2(λ+1)

)
2 + n1eε2 + r2

4 + r5 + e−ε2
. (43)

Set 3: Setting n1 = 0, ε1 = 2(λ+1)
θ , r1 = −ir3, r4 = ir2, r5 = 0, and putting them

in Equation (39) and in Equation (7), we obtain

V6,3(η) =
− 2(λ+1)e−

2(λ+1)η
θ

−ε2

θ + 2r3(ηr3 + ir2)− 2ir3(r2 − iηr3)

e−
2(λ+1)η

θ −ε2 + (ηr3 + ir2)2 + (r2 − iηr3)2
. (44)

Thus, the cross-kink rational wave solution of Equation (1) is extracted as

v6,3(x, t) =
2r3(r3(x− ct) + ir2)− 2ir3(r2 − ir3(x− ct))− 2(λ+1)e−

2(λ+1)(x−ct)
θ

−ε2

θ

(r3(x− ct) + ir2)2 + (r2 − ir3(x− ct))2 + e−
2(λ+1)(x−ct)

θ −ε2
. (45)

7. M-shaped rational wave solution: With the help of the following transformation [31], we
generate different types of solutions:

f = (ηr1 + r2)
2 + (ηr3 + r4)

2 + r5 (46)

Substituting Equation (46) in Equation (7), simplifying and collecting similar terms,
and equating the coefficients of each obtained expression to zero, we obtained a sys-
tem of equations and simplified it with the help of Mathematica to gain the following
different sets of unknown constants:
Set 1: Setting r2 =

−ηr2
1−ηr2

3−r3r4
r1

, r5 = − (r2
1+r2

3)(ηr3+r4)
2

r2
1

, and putting them in

Equation (46) and in Equation (5), we obtain
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V7,1(η) =

2
(

r1 +
−r2

1−r2
3

r1

)(
ηr1 +

−ηr2
1−ηr2

3−r3r4
r1

)
+ 2r3(ηr3 + r4)−

2r3(r2
1+r2

3)(ηr3+r4)

r2
1(

ηr1 +
−ηr2

1−ηr2
3−r3r4

r1

)2
+ (ηr3 + r4)2 − (r2

1+r2
3)(ηr3+r4)

2

r2
1

. (47)

Thus, the M-shaped rational wave solution of Equation (1) is extracted as

v7,1(x, t) =
2
(

r1 +
−r2

1−r2
3

r1

)
H + 2r3(r3(x− ct) + r4)−

2r3(r2
1+r2

3)(r3(x−ct)+r4)

r2
1

H2 + (r3(x− ct) + r4)
2 − (r2

1+r2
3)(r3(x−ct)+r4)

2

r2
1

, (48)

where H =
r2

1(−(x−ct))−ηr2
3−r3r4

r1
+ r1(x− ct).

Set 2: Setting r2 = ir4, r3 = −ir1, and putting them in Equation (46) and in
Equation (5), we obtain

V7,2(η) =
2r1(ηr1 + ir4)− 2ir1(r4 − iηr1)

(r4 − iηr1)2 + (ηr1 + ir4)2 + r5
. (49)

Thus, the M-shaped rational wave solution of Equation (1) is extracted as

v7,2(x, t) =
2r1(r1(x− ct) + ir4)− 2ir1(r4 − ir1(x− ct))
(r4 − ir1(x− ct))2 + (r1(x− ct) + ir4)2 + r5

. (50)

Set 3: Setting r2 =
−ηr2

1−ηr2
3−r3r4

r1
, α = 0, and putting them in Equation (46) and in

Equation (7), we obtain

Ψ7,3(η) =
− 2(λ+1)e−

2(λ+1)η
θ

−ε2

θ + 2r3(ηr3 + ir2)− 2ir3(r2 − iηr3)

e−
2(λ+1)η

θ −ε2 + (ηr3 + ir2)2 + (r2 − iηr3)2
. (51)

Thus, the M-shaped rational wave solution of Equation (1) is extracted as

v7,3(x, t) =
2r3(r3(x− ct) + ir2)− 2ir3(r2 − ir3(x− ct))− 2(λ+1)e−

2(λ+1)(x−ct)
θ

−ε2

θ

(r3(x− ct) + ir2)2 + (r2 − ir3(x− ct))2 + e−
2(λ+1)(x−ct)

θ −ε2
.

(52)
8. M-shaped rational wave solution with one kink wave: With the help of the follow-

ing transformation [31], we generate different types of solutions:

f = n1 exp(ηε1 + ε2) + (ηr1 + r2)
2 + (ηr3 + r4)

2 + r5. (53)

Substituting Equation (53) in Equation (7), simplifying and collecting similar terms
with exponential functions, and equating the coefficients of each obtained expression
to zero, we obtained a system of equations and simplified it with the help of Mathe-
matica to gain the following different sets of unknown constants:
Set 1: Setting n1 = 0, ε1 = 2(λ+1)

θ , r2 = − r1(2λη+2η+θ)
2(λ+1) , r3 = 0, α = − θ

2 , β = 1,
and putting them in Equation (53) and in Equation (5), we obtain

V8,1(η) = −
4(λ + 1)3

2(λ + 1)2θ + θ3r2
1e

2(λ+1)η
θ +ε2

. (54)



Symmetry 2023, 15, 1682 12 of 18

Thus, the solution of Equation (1) is extracted as

v8,1(x, t) =
4(λ + 1)3

2(λ + 1)2θ + θ3r2
1e

2(λ+1)(x−ct)
θ +ε2

. (55)

Set 2: ε1 = 0, r2 = − r1(2λη+2η+θ)
2(λ+1) , r3 = 0, α = − θ

2 , β = 1, and putting them in
Equation (53) in Equation (7), we obtain

V8,2(η) =
2
(

r1 − (2λ+2)r1
2(λ+1)

)(
ηr1 − r1(2λη+2η+θ)

2(λ+1)

)
n1eε2 +

(
ηr1 − r1(2λη+2η+θ)

2(λ+1)

)
2 + r2

4 + r5 + e−ε2
. (56)

Thus, the solution of Equation (1) is extracted as

v8,2(x, t) =
2
(

r1 − (2λ+2)r1
2(λ+1)

)(
r1(x− ct)− r1(2λ(x−ct)+2(x−ct)+θ)

2(λ+1)

)
(

r1(x− ct)− r1(2λ(x−ct)+2(x−ct)+θ)
2(λ+1)

)
2 + n1eε2 + r2

4 + r5 + e−ε2
. (57)

Set 3: Setting n1 = 0, ε1 = 2(λ+1)
θ , r1 = −ir3, r4 = ir2, r5 = 0, and putting them

in Equation (53) and in Equation (7), we obtain

V8,3(η) =
− 2(λ+1)e−

2(λ+1)η
θ

−ε2

θ + 2r3(ηr3 + ir2)− 2ir3(r2 − iηr3)

e−
2(λ+1)η

θ −ε2 + (ηr3 + ir2)2 + (r2 − iηr3)2
. (58)

Thus, the solution of Equation (1) is extracted as

v8,3(x, t) =
2r3(r3(x− ct) + ir2)− 2ir3(r2 − ir3(x− ct))− 2(λ+1)e−

2(λ+1)(x−ct)
θ

−ε2

θ

(r3(x− ct) + ir2)2 + (r2 − ir3(x− ct))2 + e−
2(λ+1)(x−ct)

θ −ε2
. (59)

9. M-shaped rational wave solution with two kink waves: With the help of the fol-
lowing transformation [31], we generate different types of solutions:

f = n1 exp(ηε1 + ε2) + n2 exp(ηε3 + ε4) + (ηr1 + r2)
2 + (ηr3 + r4)

2 + r5. (60)

Substituting Equation (60) in Equation (7), simplifying and collecting similar terms
with exponential functions, and equating the coefficients of each obtained expression
to zero, we obtained a system of equations and simplified it with the help of Mathe-
matica to gain the following different sets of unknown constants:
Set 1: Setting ε1 = − 2(λ+1)

θ , ε3 = − 2(λ+1)
θ , r1 = 0, r3 = 0, r5 = −r2

2 − r2
4, and

putting them in Equation (60) and in Equation (5), we obtain

V9,1(η) =
− 2(λ+1)n1eε2−

2(λ+1)η
θ

θ − 2(λ+1)n2eε4−
2(λ+1)η

θ

θ

n1eε2−
2(λ+1)η

θ + n2eε4−
2(λ+1)η

θ

. (61)

Thus, the solution of Equation (1) is extracted as

v9,1(x, t) =
− 2(λ+1)n1eε2−

2(λ+1)(x−ct)
θ

θ − 2(λ+1)n2eε4−
2(λ+1)(x−ct)

θ

θ

n1eε2− 2(λ+1)(x−ct)
θ + n2eε4−

2(λ+1)(x−ct)
θ

. (62)

Set 2: Setting ε1 = − 2(λ+1)
θ , ε3 = − 2(λ+1)

θ , r2 = −ir4, r3 = ir1, r5 = 0, and
putting them in Equation (60) and in Equation (5), we obtain
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V9,2(η) =
− 2(λ+1)n1eε2−

2(λ+1)η
θ

θ − 2(λ+1)n2eε4−
2(λ+1)η

θ

θ + 2ir1(r4 + iηr1) + 2r1(ηr1 − ir4)

n1eε2−
2(λ+1)η

θ + n2eε4−
2(λ+1)η

θ + (r4 + iηr1)
2 + (ηr1 − ir4)

2
. (63)

Thus, the solution of Equation (1) is extracted as

v9,2(x, t) =
− 2(λ+1)n1eε2−A

θ − 2(λ+1)n2eε4−A

θ + 2ir1(r4 + ir1(x− ct)) + 2r1(r1(x− ct)− ir4)

n1eε2−A + n2eε4−A + (r4 + ir1(x− ct))2 + (r1(x− ct)− ir4)
2 , (64)

where A = 2(λ+1)(x−ct)
θ .

Set 3: Setting n1 = 0, ε3 = − 2(λ+1)
θ , r1 = −ir3, r4 = ir2, r5 = 0, and putting

them in Equation (60) and in Equation (5), we obtain

V9,3(η) =
− 2(λ+1)n2eε4−

2(λ+1)η
θ

θ + 2r3(ηr3 + ir2)− 2ir3(r2 − iηr3)

n2eε4−
2(λ+1)η

θ + (ηr3 + ir2)2 + (r2 − iηr3)2
. (65)

Thus, the solution of Equation (1) is extracted as

v9,3(x, t) =
− 2(λ+1)n2eε4−

2(λ+1)(x−ct)
θ

θ + 2r3(r3(x− ct) + ir2)− 2ir3(r2 − ir3(x− ct))

(r3(x− ct) + ir2)2 + (r2 − ir3(x− ct))2 + eε4−
2(λ+1)(x−ct)

θ

. (66)

4. Graphical Presentations

Finding soliton solutions was the main goal of this research. Optics is one of the
sciences that extensively studies the intriguing physics phenomenon known as a soliton.
A self-reinforcing solitary wave is referred to as a soliton if it can keep its shape and
speed while moving across a medium without separating or dissipating. Solitons have
an unusual behaviour that makes them remarkably stable and enables them to maintain
their shape across great distances. These solitons can arise in a variety of waveguide
designs, including planar waveguides or ion-acoustic waveguides. Solitons’ capacity to
keep their shape and propagate unaltered even in the presence of nonlinear influences
and dispersion is their defining feature. Solitons have a physical meaning when they
can balance the opposing effects of dispersion and nonlinearity. Over time, dispersion
tends to spread out a pulse, causing it to enlarge and change shape. The pulse can be
compressed by a self-focusing action brought on by nonlinearity, which, on the other
hand, can combat dispersion. For solitons to emerge, nonlinearity and dispersion must
coexist in harmony. Ionic-acoustic solitons are created when the nonlinear effects properly
balance out the dispersion, creating a localised waveform that is stable and unaltered at vast
distances. Solitons are advantageous for numerous applications, including optical signal
processing, ultrafast laser pulse propagation, and high-capacity optical communications.
Both theoretical and experimental physics have greatly benefited from the discovery and
understanding of solitons. They have aided in the growth of uses of ion-acoustic waves
and their prospective applications in a variety of fields by providing insights into the
interaction between linear and nonlinear effects in wave propagation. Solitons can behave
very differently depending on the physical impacts of various dispersion parameters on
their dynamics or characteristics.

Dispersion refers to the dependence of the wave’s phase or group velocity on its
frequency, and different types of dispersion can arise in different waveguide structures or
propagation media. We explored the graphical representations of the aforesaid solutions.
The various wave structures below demonstrate graphical depictions of some of the so-
lutions obtained above. Graphs have been extensively utilized to explain the dynamics
and distinctive appearance of solutions generated from the BBMPB equation. The results
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obtained here show that the system has a very diversified wave shape for use in fluid ion
applications. Figures 1 and 2 were drawn for the multiwave solutions while Figure 3 shows
the kink-type solution for the double rational form solution. Figures 4 and 5 show the
breather waves, and Figure 6 corresponds to the mixed-type solution. Figures 7–9 represent
the physical behaviour of the periodic cross-kink solutions. These solutions are effective in
the further study of dynamical systems.

(a) 3D graph (b) Contour graph

Figure 1. The graph depicts the solution of v1,1(x, t) by choosing β = −0.5, c = 1.1, λ = 1.5, n1 = 1.5,
n2 = 1.5, ε2 = 0.5, and ε4 = 1.5.

(a) 3D graph (b) Contour graph

Figure 2. The graph depicts the solution of v1,2(x, t) by choosing β = 0.5, c = 2.1, λ = 1.5, n2 = 0.5,
n3 = 0.5, ε4 = 1.5, and ε6 = 2.

(a) 3D graph (b) Contour graph

Figure 3. The graph depicts the solution of v2,1(x, t) by choosing c = 1.01, λ = 1.5, θ = 1.2, n1 = 0.5,
n2 = 0.5, ε2 = 0.5, and ε4 = 0.5.
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(a) 3D graph (b) Contour graph

Figure 4. The graph depicts the solution of v3,1(x, t) by choosing c = 1.1, λ = 0.2, θ = 2.5, n2 = −1.0,
ε2 = 1.5, ε5 = 0.5, and ε6 = 0.1.

(a) 3D graph (b) Contour graph

Figure 5. The graph depicts the solution of v3,2(x, t) by choosing c = 0.985, λ = 1.5, θ = 1.2, n1 = 1.5,
n2 = 0.67, ε2 = 0.5, ε4 = 1.5, ε5 = 0.9, and ε6 = 0.1.

(a) 3D graph (b) Contour graph

Figure 6. The graph depicts the solution of v4,1(x, t) by choosing c = 1.1, λ = 0.5, θ = 1.2, n2 = 0.5,
n3 = 0.05, r = 2.1, ε2 = −0.5, and ε4 = −1.5.
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(a) 3D graph (b) Contour graph

Figure 7. The graph depicts the solution of v5,1(x, t) by choosing c = 1.1, λ = 0.5, θ = 1.2, n1 = 1.5,
n3 = 3.5, ε2 = 0.5, ε4 = 1.5, ε7 = 1.5, and ε8 = 1.0.

(a) 3D graph (b) Contour graph

Figure 8. The graph depicts the solution of v5,2(x, t) by choosing c = −1.1, λ = 0.5, θ = 2.2, n3 = 1.5,
ε2 = 0.5, ε7 = 3.5, and ε8 =1.0.

(a) 3D graph (b) Contour graph

Figure 9. The graph depicts the solution of v5,3(x, t) by choosing c = −1.5, λ = 1.5, θ = 2.2, n3 = 1.5,
r = 2.1, ε2 = 0.5, and ε8 =1.0.

5. Conclusions

The BBMPB model is a useful model for understanding the behaviour of ion-acoustic
waves in fluid ions. The ion-acoustic wave is a fundamental mode of oscillation in plasmas
and is characterized by its dispersion relation, which relates the wave frequency to the
wave number. The study of ion-acoustic waves is of great importance in plasma physics
because it provides insights into the basic plasma processes, such as energy transport,
wave–particle interactions, and turbulence. The Hirota bilinear transformation technique
was used to construct different types of the solutions, and this method gave us the exact
ionic wave structures. Different types of wave structures were constructed successfully in
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the forms of breather waves, lump periodic waves, mixed-type wave solutions, cross-kink
rational wave solutions, M-shaped rational wave solutions, and M-shaped rational wave
solutions with one or two kink waves. Overall, the study of ion-acoustic wave structures
using the BBMPB equation provides valuable insights into the behaviour of plasma waves
and the underlying physics of ion-acoustic wave phenomena. The different types of wave
solutions studied through this equation gives us a clear understanding of the complex
dynamics of these wave structures and may have important implications for the design of
plasma-based technologies and experiments.
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