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Analog Programmable-Photonic Computation

Andrés Macho-Ortiz,* Daniel Pérez-López, José Azaña, and José Capmany*

Digital electronics is a technological cornerstone in this modern society that
has covered the increasing demand for computing power during the last
decades thanks to a periodic doubling of transistor density in integrated
circuits. Currently, such scaling law is reaching its fundamental limit, leading
to the emergence of a large gamut of applications that cannot be supported by
digital electronics, specifically, those that involve real-time multi-data
processing, e.g., medical diagnostic imaging, robotic control, and
autonomous driving, among others. In this scenario, an analog computing
approach implemented in a real-time reconfigurable nonelectronic hardware
such as programmable integrated photonics (PIP) can be more efficient than
digital electronics to perform these emerging applications. However, actual
analog computing models such as quantum and neuromorphic computation
were not conceived to extract the unique benefits of PIP (and integrated
photonics in general). Here, the foundations of a new computation theory are
presented, termed Analog Programmable-Photonic Computation (APC),
explicitly designed to unleash the full potential of PIP technology.
Interestingly, APC enables overcoming basic theoretical and technological
limitations of existing computational models and can be implemented in
other technologies (e.g., in electronics, acoustics or using
metamaterials), consequently exhibiting the potential to spark a
ground-breaking impact on the information society.
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1. Introduction

Over the last decades, digital electronic
technology has supported the increasing
demand for computing power thanks
to an exponential performance scaling
in microelectronics. In particular, this
progress is embodied in Moore’s and
Dennard’s laws by which the density
of transistors, power efficiency, and
clock frequency in microprocessors
has approximately doubled every 18–
24 months.[1,2] Nevertheless, as seen
in Figure 1a, these scaling laws are
reaching their fundamental limits. As
a result, there is currently a wide range
of emerging realtime signal processing
and computing applications (including
medical diagnostic imaging, robotic
control, remote sensing, smart homes,
drug design, and autonomous driving,
among others) that may not be efficiently
dealt with using the dominant digital
electronic paradigm.[1–6]

Despite the fact that the electronic
industry has proposed to circumvent
the end of Moore’s and Dennard’s laws
by introducing multi-core technology,

there is a limit in the number of cores that can simultaneously
be powered on with a fixed power budget and a constant heat
extraction rate (Amdahl’s law).[2,3] Moreover, as the bandwidth
limitations of silicon electronics and printed metallic tracks are
reached, the power consumed in data transport in an electri-
cal circuit cannot be further reduced.[2,4] These physical bottle-
necks − in combination with the fact that conventional compu-
tational models are conceived as serialized and centralized pro-
cessing architectures (von-Neumann machines) implementing
the nonlinear Boolean algebra − severely limit the performance
of digital electronic computers.[1,2,7–9] In general, such schemes
are inefficient in performingmulti-linear operations and compu-
tational architectures that are distributed, parallel, and adaptive
(Figure 1b); for instance, those used to perform real-time matrix
operations, requiring high bandwidth, low energy consumption,
and high reconfigurability (such as the applications mentioned
above).[5,6]

Although from the Church–Turing thesis, it can be inferred
that any class of computational problem (or computable func-
tion) can be solved by a digital electronic computer,[2,10] this does
not imply that digital computation.[9] and electronic technology
always lead to the most suitable marriage between a mathemat-
ical computing theory and a hardware platform. Analog com-
puting approaches implemented in alternative system-on-chip
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Figure 1. Limitations of digital electronics and complementary system-on-chip technology. a) Historical evolution and perspective of the main per-
formance parameters of digital electronics.[3] b) Distributed, parallel, and adaptive computational network performing multi-linear operations via
real-time matrix transformations of the input signals, a scenario where digital electronic paradigm shows significant mathematical and technological
limitations.[5,6] c) Programmable integrated photonic circuit integrated into a silicon photonic platform. This hardware technology can be co-integrated
with microelectronic processors to carry out parallel reconfigurable matrix transformations on the input signals using optical interference as a funda-
mental physical principle.[12–14].

technologies can be mathematically more efficient than digi-
tal computation in solving the aforementioned computational
scenarios and may provide hardware advantages over elec-
tronics in basic performance parameters (bandwidth, paral-
lelism, power consumption, or reconfigurability).[1,5,6,10,11] Specif-
ically, technologies that are inherently capable of performing
matrix operations offering complementary hardware require-
ments to those of electronics and being CMOS-compatible are a
priority.[1,4,12–14]

In this context, a new hardware technology has emerged in re-
cent years: programmable integrated photonics (PIP).[12–14] PIP
is a system-on-chip platform that enables the programming of
advanced signal processing tasks by leveraging on the capac-
ity of integrated photonic circuits to manage multiple optical
interferences. In essence, this entails the independent setting
of amplitude and phase characteristics of interfering signals by
employing meshes of tunable basic units (i.e., basic building
blocks) that are constructed from mainstream integrated op-
tical devices: phase shifters, beam splitters, beam combiners,
and resonators.[14–16] The combination and interconnection of
such devices allow the implementation of PIP circuitry featur-
ing various degrees of complexity and functionality, which can be
grouped into three families:[13] application-specific photonic inte-
grated circuits, multi-port interferometers, and photonic waveg-
uide meshes.
PIP is the ideal hardware technology to explore an analog

computing paradigm for a variety of reasons. First, PIP is able
to carry out reconfigurable matrix transformations on the input

waves by programming the transfer matrix of the PIP platform
via external electrical signals (Figure 1c). Second, PIP circuits
can be co-integrated with microelectronic processors by exploit-
ing its CMOS compatibility via compact silicon photonic plat-
forms with complementary features to electronics: high band-
width, massive parallelism via wavelength-division multiplexing,
low power consumption, and high reconfigurability.[12–14] This
combination of characteristics cannot concurrently be found in
other optical platforms based on metamaterials,[17,18] photonic
crystals,[19,20] nanowire networks,[21] plasmonic waveguides,[22,23]

free-space optics,[5] and nonlinear optics.[4,24,25] Third, PIP bene-
fits from the scalable fabrication methods of integrated circuits
and its manufacturing could achieve economies of scale compa-
rable with the microelectronic industry in the next decades.[12]

So far, PIP has essentially been explored as a hardware-
accelerated solution for existing computational models such as
digital,[9] quantum,[10] and neuromorphic computation[26] im-
plemented in electronic circuits. Here, PIP only carries out
signal processing tasks (i.e., wave transformations), which in-
volve a high degree of complexity in electronics, in particu-
lar, multi-dimensional wave transformations via vector-by-matrix
multiplications.[12–14,27] Nonetheless, PIP has not yet been uti-
lized to perform true computational tasks, i.e., transformations
of units of information. A unit of information is the basic mathe-
matical object of any computation theory where user information
is encoded to be transformed by mathematical functions termed
computational operations or gates (e.g., in electronics the com-
putational tasks are Boolean operations on digital bits, which
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Figure 2. Construction of the computation theory proposed in this work. Flowchart of the steps required to construct the new computing model, termed
Analog Programmable-Photonic Computation (APC), implementable with programmable integrated photonic (PIP) technology. APC revolves around the
idea of performing operations on a new unit of information, the analog bit or anbit (Step 1), evolving the concept of optical signal processing shown in
Figure 1c into true optical computing. The computational operations (or gates) are classified in twomain classes: combinational and sequential systems
(Step 2), which are respectively implemented by using non-feedback and feedback PIP circuits (Step 3). Note that the circuits shown in Step 3 are only
illustrative schemes of non-feedback and feedback PIP configurations. The specific circuitry of combinational and sequential systems is sketched in
Figure 5 and Figure 7. Finally, a roadmap details the additional concepts that should be developed in future research to extend the fundamental principles
of the computational framework presented in this work (Step 4).

respectively constitute the gates and the units of information in
digital computation.[9])
In fact, at present, there is no specific computation theory avail-

able − explicitly designed for PIP (and integrated photonics in
general) − that allows us to exploit this technology to implement
true optical computing, in the same way as digital computation
sparked a paradigm shift in electronics. Moreover, digital, quan-
tum, and neuromorphic computation were not conceived to ex-
tract the whole benefits of PIP since these models were originally
built without considering the complexity of their implementation
in integrated optics.[4,6,11,28–30]

Being PIP a hardware technology that naturally performs ma-
trix transformations on optical signals, and whose building block
may be designed by using a mathematical framework similar
to quantum computing[31] (based on matrix transformations of
the quantum bits or qubits, which are respectively the gates and
the units of information in quantum computation), one could
ask whether a classical version of quantum computing might be
proposed within the realm of classical wave-optics. Different at-
tempts have been reported revolving around this idea in order
to:[32–40] (i) simulate a quantum computer with a classical com-
puter and (ii) dig into the fundamental differences between quan-
tum and classical systems. However, to our knowledge, the quan-
tum computing formalism has never been extrapolated to a clas-
sical scenario to construct an analog computing landscape based
on deterministic physical laws. This would offer a novel compu-
tational framework that could allow us to realize two significant
goals. First, harness the full potential of PIP technology by de-
signing a computing model (unit of information and gates) with
mathematical propertiesmatched to the ability of PIP to carry out
vector-by-matrix multiplications. Second, overcome some of the
basic theoretical and technological limitations of quantum com-
puting, such as the need to operate with extremely low tempera-

tures, the practical difficulties of scaling the capabilities of a quan-
tum computer to a large number of qubits, the wave function col-
lapse in data measurement, and the impossibility of performing
cloning, summation, and feedback operations.[10,34,41,42]

To this end, here we present the foundations of an entirely
new class of computation theory, termed Analog Programmable-
Photonic Computation (APC). To achieve this overall aim, we will
follow the steps sketched in Figure 2. First, we will propose a
unit of information named as analog bit (or anbit), defined as
a 2D analog vector function (similar to the qubit, but with es-
sential differences, as detailed below). Second, we will introduce
the basic computational operations (anbit gates), based on ma-
trix algebra. Third, we will design the circuit implementations
of these gates using PIP technology. Fourth, we will specify the
class of computational problems that can be handled with APC
(including some basic examples and applications) and a roadmap
to further develop this computational model in future research.
Finally, a qualitative comparison among the main properties of
APC versus digital, quantum, and neuromorphic computation is
discussed, assessing the unique potential and versatility offered
by this new computing paradigm.

2. Preliminary Concepts on Information Processing

Before delving into the theory of any computational model, it
is helpful to first describe how the user information is pro-
cessed from an information-theoretical approach. This entails
having a perspective of any computational architecture (classical
or quantum and digital or analog) as a communication system
composed by a transmitter, a channel, and a receiver where in-
formation is respectively generated, propagated, and recovered
(Figure 3).[43,44]
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Figure 3. Block diagramof a generic communication system. Any computational architecture (classical or quantumand digital or analog) can be regarded
as a communication system composed by a transmitter where information is generated, a channel where information is propagated (e.g., the circuits
of an optical chip), and a receiver where information is recovered.[43,44] In the first (mechanical and electronic) analogue computers, the encoder and
modulator are implemented by a single block that directly maps the information of the originator source into a physical wave.[18] Such a mapping is
traditionally termed as an “analogy”. At the receiver, the demodulator and decoder are also implemented by a single block that reverses the analogy.
In contrast, in modern analog computing models (such as quantum computation and APC), the encoder (decoder) and modulator (demodulator) are
usually independent blocks.

Concretely, the transmitter is composed by three subsys-
tems. First, an originator source that generates a single mes-
sage (e.g., an image) or a sequence of messages (e.g., a sequence
of letters).[45] The kind of messages generated by the originator
source may be the same in digital, quantum, and neuromorphic
computing,[43–47] as well as in APC.
Second, an encoder that maps this information into a “con-

tainer” of information commonly termed as unit of informa-
tion (but not in the strict sense of physical unit since such a
container of information may encode a variable amount of in-
formation, e.g., as can be observed in the qubit via the Holevo
bound.[44]) Bearing in mind both classical and quantum infor-
mation theories,[43,44] a unit of information can be defined in a
unified way as a time-dependent function that may be continu-
ous or discrete in time andwith values belonging to a continuous-
or discrete-state space (in the discrete-time case, the output of the
encoder is usually modeled as a sequence of units of information
given that each time interval can be regarded as a different unit
of information). Specifically, we deal with a digital computation
theory when the unit of information is a discrete-time function
with values belonging to the discrete-state space {0, 1} (the dig-
ital bit).[43] Otherwise, we deal with an analog computation the-
ory, where the unit of information is defined as a continuous- or
discrete-time function with values ranging on a continuous- or
discrete-state space (but different from {0, 1}).[44,48–50]

Third, a modulator that converts the units of information
into physical (electromagnetic, acoustic, or mechanical) waves
that will be propagated through the channel. Such a mapping is
known as modulation format.[43] In a computational system, the
channel propagates and transforms the physical waves encoding

the units of information to carry out a series of computational
operations required to solve a specific mathematical problem.
Finally, the receiver restitutes the information by means of a

demodulator that transforms the physical waves into units of in-
formation, a decoder mapping the units of information into a
message (or a sequence of messages), and a recipient source pro-
viding an interpretation of such information.
In particular, APC is a computing model that will be imple-

mented in a PIP platform to solve mathematical problems that
are inefficiently handled by digital electronics. This implies that
any APC architecture can be regarded as a communication sys-
tem where integrated electronic and photonic circuits should co-
exist. Whilst the originator (recipient) source and the encoder
(decoder) will be implemented with integrated electronics, the
modulator (demodulator) and the channel will be carried out
within the realm of integrated photonics. The bridge between
both system-on-chip technologies is performed by an electro-
optic (opto-electrical) conversion at themodulator (demodulator).
From these preliminary concepts of information processing, it

can be inferred that the design of the unit of information is vital
to endow a computational model with the sought-after proper-
ties. Outstandingly, in our case, APC will be devised as a versa-
tile analog computing paradigm matched to current and future
PIP technology via a unit of information that can be deemed as a
discrete- or continuous-time function.

3. Unit of Information: the Analog Bit

APC revolves around the idea of performing operations on
a new unit of information, the anbit, which must be easily
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Figure 4. The analog bit. a) Physical implementation of an anbit 𝝍 (t) =
𝜓0 (t)ê0 + 𝜓1(t)ê1 using PIP technology and space-anbit modulation (see
Methods). The anbit amplitudes 𝜓0,1 = |𝜓0,1| ei∠0,1 are mapped onto two
optical wave packets propagated by the fundamental modes ê0,1 of two
uncoupled waveguides. b) Different classes of anbit measurement using
coherent or direct detection. In the former case, an anbit of the form
𝜓0ê0 +𝜓1ê1 is measured, where  is the responsivity of the photo-
diodes of a 90-degree hybrid architecture. In the latter case, an anbit of
the form|𝜓0|2ê0 +|𝜓1|2ei(∠1−∠0)ê1 is retrieved (see Section S1.2, Sup-
porting Information for more details). c) Geometric representation of an
anbit with 4 effective degrees of freedom (EDFs) using a polar diagram in
the complex plane. d) Geometric representation of an anbit with 3 EDFs
in the generalized Bloch sphere (GBS). Here, the anbit 𝝍 can equivalently

be written as 𝝍 =
√ (cos(𝜃∕2)̂e0 + ei𝜑 sin(𝜃∕2)̂e1), see Section S1.3,

Supporting Information.

implementable using PIP technology. Since the building block
of PIP is usually an optical circuit carrying out 2×2 matrix
transformations,[12–14,31] the input and output signals of this sys-
tem are 2D vectors. Thus, it seems reasonable to define an an-
bit as a 2D vector function 𝝍 (t)≔𝜓0(t) ‚e0 + 𝜓1(t) ‚e1, where 𝜓0,1 are
scalar complex functions referred to as the anbit amplitudes and
‚e0,1 are constant orthonormal vectors. The anbit amplitudes can
take on a continuous range of complex values and should be con-
ceived as discrete-time functions to be fitted to the technological
features of present PIP platforms, implementingmatrix transfor-
mations that are reconfigurable in time, but with constant matrix
entries when the signals are propagated through the circuits. Ac-
cordingly,𝝍 is assumed as a discrete-time function and is defined
within a finite time interval (TANBIT), see Figure 4 (optionally, APC
can also be constructed from continuous-time anbits, see Conclu-
sion and Section S6, Supporting Information).

Here, in line with the communication system shown in
Figure 3, an encoder maps the user information onto the moduli
and phases of 𝜓0 = |𝜓0| ei∠0 and 𝜓1 = |𝜓1| ei∠1 , and a modula-
tor converts the anbit amplitudes into optical waves utilizing two
classical optical wave packets, e.g. with a rectangular temporal
shape for simplicity (quasi-rectangular in practice), propagated
in the fundamental modes of two parallel uncoupled waveguides,
a technique termed space-anbit modulation (see Figure 4 and
Methods). Note that 𝜓0 and 𝜓1 are defined in different time inter-
vals T0 and T1 (with T0 = T1 or T0 ≠ T1), and the time delay ΔT
from𝜓0 to𝜓1 establishes a differential phase∠1 − ∠0 = 2𝜋fcΔT ,
where fc is the frequency of the optical carrier (since ΔT ∼ 1∕fc,
then ΔT is within the scale of the optical cycle). Alternative phys-
ical implementations of an anbit can be proposed by exploring
the mode, polarization, frequency, and time domains, giving rise
to different anbit modulation formats (Section S1.1, Supporting
Information). Moreover, the following noteworthy features of an
anbit should be highlighted:

• Vector space. In the single-anbit vector space 1 = span{ ‚e0, ‚e1},
the standard complex inner product ⟨⋅|⋅⟩ allows us to define
a norm ‖𝝍≔ √⟨𝝍|𝝍⟩ = √|𝜓0|2 + |𝜓1|2 whose square pro-
vides information about the optical power () propagated by
the waveguides depicted in Figure 4a (see Methods).

• Dimension. Although, in general, we will work in a vector space
with dimension d = 2, we have the possibility of defining the
unit of information in a Hilbert space with d ≥ 1, leading to
different versions of APC termed d-APC (the usual case with
d = 2 will be referred to as APC for short). In Supporting
Section 4, we discuss how to construct the theory with d ≠ 2.

• Anbit measurement and degrees of freedom. At the receiver, the
demodulator recovers the anbit from the optical waves (which
will be later processed by a decoder and a recipient source in
the electrical domain, as commented in Section 2). Using ter-
minology similar to that of quantum information,[10,44] the de-
modulation task will be referred to as the anbit measurement
and can be carried out via two different ways in PIP: (i) a coher-
ent measurement, implementable using coherent detection,
or (ii) a differential measurement, associated to a direct detec-
tion scheme (Figure 4b). The former retrieves the moduli and
phases of 𝜓0,1 (4 real degrees of freedom) and the latter only
provides information about |𝜓0,1|2 and ∠1 − ∠0 (3 real degrees
of freedom, the differential phase ∠1 − ∠0 is recovered from
the time delay ΔT between the photocurrents, but the global
phase of the anbit cannot be measured, see Section S1.2, Sup-
porting Information). Hence, the number of effective degrees
of freedom (EDFs) where the user information can be encoded
at the transmitter depends on the kind of anbit measurement
employed at the receiver. Thus, a given APC system will op-
erate with anbits of 3 (or 4) EDFs when the receiver uses dif-
ferential (or coherent) measurement. Although a differential
measurement provides the lowest number of EDFs, it is the
most economical strategy in a PIP platform.

• Geometric representations. An anbit with 4 EDFs can be geomet-
rically represented by using a polar diagram illustrating the
moduli and phases of 𝜓0,1 (Figure 4c). An anbit with 3 EDFs
may be represented in the generalized Bloch sphere (GBS),
with a radius different from 1 (Figure 4d).
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• Multiple anbits. A multi-anbit system will require to operate
in a vector space “higher” than 1. The construction of such
a vector space can be carried out by using the tensor product
(⊗)[51] or the Cartesian product (×).[52] The former will allow
us to extrapolate multi-anbit gates from quantum computing
(e.g., controlled gates, see below). The latter will be of great
benefit to construct multi-anbit linear operations that would
otherwise exhibit a nonlinear nature using the tensor product
(e.g., the fan-in and fan-out gates, see below). In Section S1.5,
Supporting Information, we detail the main properties of the
tensor and Cartesian products within the framework of APC.

Despite the fact that the anbit is similar to the qubit (and to
its classical counterpart, the cebit,[32,33]) the following fundamen-
tal differences should be highlighted: (1) the anbit norm may be
different from 1 and can be modified using a non-unitary oper-
ation, (2) the vector superposition of ‚e0 and ‚e1 is preserved after
an anbit measurement, see Figure 4b (a feature also observed in
a cebit measurement but not in a qubit measurement), (3) an
anbit has 1 or 2 more EDFs than the qubit and the cebit (a di-
rect consequence of (1) and (2)), (4) multiple anbits can be com-
posed by using not only the tensor product but also the Cartesian
product, (5) an anbit may be defined in a one-dimensional vector
space (qubits and cebits cannot be restricted to one dimension
given that a global phase is not observable in quantum waves[51]

and in classical wave-optics based on direct detection[32]). How-
ever, in contrast to quantum computing, in APC we will not be
able to perform instantaneous non-local operations (i.e., the en-
tanglement of multiple anbits) because the underlying physical
laws are deterministic,[53] a computational limitation that is also
shared by any classical emulation of quantum computing.[32–40]

Furthermore, taking into account the vector formalism re-
quired to describe an anbit and its mathematical similitude
with a qubit, let us introduce at this point the use of Dirac’s
notation[43,54,55] in order to: (i) simplify the mathematical calcu-
lations when designing complex APC computing architectures
and (ii) extrapolate diverse analysis and design strategies from
quantum computing, preserving the same notation between both
computation theories. Therefore, from now on, let us express
the anbit as |𝜓⟩ = 𝜓0 |0⟩ + 𝜓1|1⟩, with 𝝍 ≡ |𝜓⟩, ‚e0 ≡ |0⟩, and
‚e1 ≡ |1⟩.

4. Basic Anbit Operations

The second natural step to construct a computation theory is to
introduce the basic computational operations: the anbit gates.
Since PIP is a hardware platform capable of integrating non-
feedback and feedback circuits,[12–16] APC operations should be
respectively classified in two principal classes (Figure 2): combi-
national and sequential. In a combinational operation, the out-
put anbits depend solely on the input anbits. Contrariwise, in a
sequential operation, the output anbits can be connected with the
input anbits allowing feedback systems. In this section, we will
first describe the basic combinational anbit gates and, second, we
will present the fundamental concepts to design sequential anbit
operations. In both scenarios, we will detail their technological
implementations by using PIP circuitry.

4.1. Fundamentals of Combinational Design

Given that APC systems should be readily implementable with
PIP technology, it is natural to ask how the mainstream PIP de-
vices (phase shifters, beam splitters, beam combiners, attenua-
tors, amplifiers, and resonators) may be employed to transform
anbits. The answer depends on our ability to define basic anbit
gates that mirror the wave transformations performed by these
devices. To this end, we should first introduce the basic anbit op-
erations in abstract terms, and later we will specify their PIP im-
plementation.
The simplest anbit operation that can be built is a gate of a

single anbit: a combinational (i.e., non-feedback) system carrying
out a transformation between two different anbits, the input anbit|𝜓⟩ = 𝜓0 |0⟩ + 𝜓1|1⟩ and the output anbit |𝜑⟩ = 𝜑0 |0⟩ + 𝜑1|1⟩
(Figure 5a). Mathematically, the gate is described via an arbi-
trary mapping (or operator) ‚F : 1 → 1, which will be assumed
to be a holomorphic function for convenience. In this way, such a
mapping can be written as a power series ‚F = ‚F(1) + ‚F(2) + ‚F(3) +
⋯, with ‚F(k) accounting for the linear (k = 1) and nonlinear
(k > 1) responses of the gate. Considering that PIP circuits typ-
ically implement linear wave transformations via matrix signal
processing,[13] wewill focus our attention on the case ‚F ≡ ‚F(1): lin-
ear gates constructed frommatrix algebra (see below). Nonethe-
less, it is worthmentioning that we will also be able to implement
nonlinear anbit gates with PIP technology (constructed from ten-
sor algebra, see Methods), extending the applicability of APC to
solve computational problems requiring both linear and nonlin-
ear operations (see Section 5).
Specifically, a single-anbit linear gate is a linear operator ‚F ex-

hibiting the following general properties:

• Uniqueness. The input and output anbits are always related
by a unique linear operator ‚F. This property directly follows
from the uniqueness of a linear transformation between vec-
tor spaces.[56]

• Matrix representation. Given an orthonormal vector basis 1 =
{|0⟩, |1⟩} , thematrix representation of ‚F is unique and is given
by the expression:

F =
[⟨0| ‚F|0⟩ ⟨0| ‚F|1⟩⟨1| ‚F|0⟩ ⟨1| ‚F|1⟩

]
(1)

Hence, the gate can equivalently be described by the ma-
trix F and the input-output relation |𝜑⟩ = ‚F |𝜓⟩ can be ex-
pressed as the vector-by-matrixmultiplication [|𝜑⟩]1

= F[|𝜓⟩]1
,

where [|𝜑⟩]1
= (𝜑0 𝜑1 )

T
, [|𝜓⟩]1

= (𝜓0 𝜓1 )
T
, and T denotes

the transpose matrix (see Sections 1.4 and 2.1, Supporting Infor-
mation).

• Reversibility. By definition, a gate is reversible when ‚F is a bijec-
tive mapping. In such circumstances, det(F) ≠ 0 and the input
anbit can be recovered from the output anbit by applying the
inverse mapping ‚F−1, whose matrix representation is F−1. In
contrast, a gate is irreversible when det(F) = 0 and the input
anbit cannot be retrieved from the output anbit given that ‚F−1

does not exist.
• Non-locality. The input-output relation |𝜑⟩ = ‚F |𝜓⟩ is non-
local and causal. The input and output anbits are respectively

Laser Photonics Rev. 2023, 2200360 2200360 (6 of 15) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 5. Basic combinational single-anbit linear gates. a) A combina-
tional single-anbit gate is a non-feedback system performing a transforma-
tion between two different 2D vectors: the input anbit |𝜓⟩ = 𝜓0|0⟩ + 𝜓1|1⟩
and the output anbit |𝜑⟩ = 𝜑0 |0⟩ + 𝜑1|1⟩. If such a transformation is
linear and we use anbits with 3 EDFs, the gate can be geometrically
represented as a trajectory between two different points located on the
same GBS (U-gate) or different GBSs with dissimilar radii (G- and M-
gates). b) Minimal circuit architecture (MCA) of a U-gate, implement-
ing the universal unitary matrix of Equation (2) via the Euler factorization
U = ei𝛿 Rn̂(𝛼) ≡ ei𝛿Rẑ(𝛼3)Rx̂(𝛼2)Rẑ(𝛼1).

[31] The U-gate generates a rota-
tion around an arbitrary unit vector n̂ of the GBS, preserving the norm of
the input anbit. c) MCA of a G- and M-gate, based on the singular value
decomposition. While a G-gate is a reversible operation (two different in-
put anbits |𝜓⟩a and |𝜓⟩b are always transformed into two different output
anbits |𝜑⟩a and |𝜑⟩b), an M-gate may be an irreversible operation (two
different input anbits |𝜓⟩a and |𝜓⟩b may generate the same output anbit|𝜑⟩a). (PS: phase shifter).

implemented by two different electric fields E(r1, t1) and
E(r2, t2) with r1 ≠ r2 and t1 < t2 (see Methods).

• Classes of linear gates. Since PIP technology is able to imple-
ment optical systems whose transfer matrices may be unitary
or non-unitary,[13] we define the following classes of linear an-
bit operations based on matrix algebra:[57] unitary gates (U-
gates), general linear gates (G-gates) and general matrix gates
(M-gates). Concretely, the U-gates will account for the linear
reversible mappings that preserve the norm of the input an-
bit (conservative operations) via a unitary matrix transforma-
tion (Figure 5b). Contrariwise, the G- and M-gates will de-

scribe non-conservative linear operations (Figure 5c). While,
by definition, a G-gate is always reversible, an M-gate may
be reversible or irreversible, encompassing both possibilities.
Hence, a G-gate will be described by a general linear (i.e., non-
singular)matrix, whereas anM-gate will be associated to a gen-
eral complex matrix (singular or non-singular).

• Geometric representation. Using differential measurement
(which will be the case in most PIP platforms), a single-anbit
gate may be geometrically interpreted as a trajectory between
two points located on the sameGBS (U-gate) or different GBSs
with dissimilar radii (G- and M-gates), see Figure 5. Specifi-
cally, the kind of trajectory depends on the class of the gate,
see Section S2.1, Supporting Information for more details.

• Universal matrices. The U- and G-gates belong to the U(2) and
GL(2,ℂ) Lie groups, respectively, while an M-gate belongs to
the 𝔤𝔩(2,ℂ) Lie algebra.[57] Using the fundamentals of these al-
gebraic structures,[10,31,57,58] it is straightforward to find a uni-
versal (or arbitrary) matrix in each class of gate, which must
be able to describe all the possible 2×2 matrix transformations
associated to the class when varying the value of its entries,
encoded by parameters. In particular, a universal matrix of a
U-gate reads as follows:[10,31]

U = ei𝛿R ‚n (𝛼) = ei𝛿
(
cos 𝛼

2
− inz sin

𝛼

2
−
(
ny + inx

)
sin 𝛼

2(
ny − inx

)
sin 𝛼

2
cos 𝛼

2
+ inz sin

𝛼

2

)
(2)

where 𝛿 ∈ [0, 2𝜋) is a global phase shifting and R ‚n(𝛼) is a rotation
matrix accounting for a rotation of an angle 𝛼 ∈ [0, 2𝜋] around an
arbitrary unit vector ‚n = nx ‚x + ny ‚y + nz ‚z in the GBS (Figure 5b).
Note that Equation (2) is constructed by using 4 independent real
parameters (𝛿, 𝛼 and two components of ‚n), according to the di-
mension of U(2).[31,58] On the other hand, a possible universal
matrix of a G- or M-gate is a parametric matrix (denoted as G or
M, respectively) with the four entries described by four indepen-
dent complex numbers (8 independent real parameters, in line
with the dimension of GL(2,ℂ) and 𝔤𝔩(2,ℂ)).[57,58] Nevertheless,
in the former case (G-gate), the condition det(G) ≠ 0must be ful-
filled.

• PIP implementation. The optical implementation (or circuit ar-
chitecture) of a U-, G-, or M-gate must be able to perform the
2×2 matrix transformation described by its universal matrix
by utilizing basic PIP devices. Since a universal matrix may
be implementable by different equivalent circuit architectures,
we should introduce here the concept of minimal circuit ar-
chitecture (MCA), defined as the PIP implementation encom-
passing the minimum number of basic devices. Furthermore,
since any PIP circuit is fully characterized by analyzing the
Lorentz reciprocity and the forward-backward (FB) symme-
try (basic physical properties of an optical system that are not
equivalent,[13]) we include an extended discussion about these
properties within the context of APC in Section S2.1, Support-
ing Information.

Uncovering the MCA of the U-, G-, and M-gates requires to
explore diverse matrix factorization techniques that allow us to
implement the universal matrix of each class of operation by uti-
lizing PIP technology. After a thorough examination of thematrix
theory literature,[10,52,56–62] two different factorization techniques

Laser Photonics Rev. 2023, 2200360 2200360 (7 of 15) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

 18638899, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202200360 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

should be taken into consideration in our discussions: Euler’s ro-
tation theorem and the singular value decomposition.
As reported in ref.,[31] a 2×2 universal unitary matrix of the

form given by Equation (2) cannot be directly implemented by us-
ing mainstream PIP devices because of the arbitrary nature of ‚n.
Here, we can take advantage of Euler’s rotation theorem to factor-
ize theUmatrix as a concatenation of three rotations around two
Cartesian axes of the GBS, which are implementable via phase
shifters, directional couplers, andmultimode interferometers. In
addition, taking into account that a U-gate can be regarded as a
2×2 universal unitary signal processor, then the MCA of a U-gate
(Figure 5b)must be the same as theMCA of a 2× 2 universal uni-
tary signal PIP processor, shown in Figure 4a of ref.[31] and based
on the Euler factorization U = ei𝛿 R ‚n(𝛼) ≡ ei𝛿R ‚z(𝛼3)R ‚x(𝛼2)R ‚z(𝛼1).
The matrices R ‚z(𝛼1,3) can be implemented by phase shifters inte-
grated in parallel uncoupled waveguides and the matrix R ‚x(𝛼2)
may be generated by a synchronous directional coupler with
tunable mode-coupling coefficient 𝜅 = 𝛼2 ∕(2L), where L is the
length of its arms. This MCA preserves the Lorentz reciprocity
but breaks the FB symmetry (provided that 𝛼1 ≠ 𝛼3). Equivalent
circuit architectures of a U-gate may be explored by selecting
different rotation vectors when using Euler’s rotation theorem.
As an example, Section 2.2, Supporting Information it is shown
a scheme built from fixed couplers, based on the factorization
U = ei𝛿 R ‚z(𝛼3)R ‚y(𝛼2)R ‚z(𝛼1).
While a U-gate is a conservative transformation (given that

it preserves the norm of the input anbit or, equivalently, the
power of the 2D wave that implements the anbit), both G- and
M-gates are non-conservative transformations. This implies that
their MCAs will require to include attenuators and amplifiers.
Remarkably, a common MCA for both kind of gates is found
from the singular value decomposition,[52,56,59] which factorizes
the universal matrices of these gates as a function of two U-gates
along with a 2 × 2 diagonal matrix with positive real entries,
implementable by using tunable optical attenuators and ampli-
fiers (Figure 5c). The reciprocal (non-reciprocal) nature of such
devices preserves (breaks) the Lorentz reciprocity in the MCA.
Likewise, note that the FB symmetry is broken in the MCA when
using the circuit of Figure 5b to implement the U-gates.
Although equivalent circuit architectures of the U-, G-, and

M-gates can be proposed by using matrix factorizations differ-
ent from Euler’s rotation theorem and the singular value de-
composition, all of them lead to optical schemes integrating a
higher number of basic PIP devices than the structures depicted
in Figure 5 (see Section S2.2, Supporting Information).
So far, we have presented the basic single-anbit operations.

Nonetheless, keeping in mind that PIP is a hardware that is re-
configurable via control signals,[12–14] the design of complex com-
binational architectures will be simplified by introducing an addi-
tional fundamental piece in APC: a controlled gate. Such a kind of
operation is usually present in any computation theory,[10,43], e.g.,
in quantum computing, where a controlled gate is indispensable:
(i) to enable or disable a computational operation on the qubits
and (ii) to scale the quantum computing systems.[10] Therefore,
taking into account the mathematical similarities between quan-
tum computing and APC, we will define a controlled gate in APC
in the same way as in quantum computing.[10] By convention, a
controlled anbit gate performs a transformation ‚F on the target
anbits when the control anbits are equal to |1⟩. Otherwise, the

target anbits remain invariant at the output. Figure 6a illustrates
the functionality of a controlled gate with a single target anbit|t⟩ and a single control anbit |c⟩. Using the tensor product, the
mathematical formalization and properties of a controlled gate
in APC can be directly extrapolated from quantum computing
(Section S2.3, Supporting Information), with the significant dif-
ference that a controlled gate may be constructed from a non-
unitary ‚F transformation in APC.
An additional crucial difference between APC and quantum

computing in a controlled gate emerges when analyzing its im-
plementation using PIP technology. Since the reconfigurability
of a PIP circuit is realized by utilizing classical electrical control
signals,[12–14] the implementation of a controlled anbit gate does
not require the intricate design strategies and architectures em-
ployed in optical quantum computation[10,29,63,64] (however, these
schemes could be extrapolated to APC, if desired). As seen in
Figure 6b, the simplest implementation of a controlled anbit gate
arises from an electro-optic design, where the control anbit is
mapped onto the electrical control signals of the PIP platform
and the target anbit is implemented with a 2D optical wave (al-
ternatively, both control and target anbits can be implemented
with optical waves, giving rise to an all-optical architecture re-
quiring a higher footprint than that of the electro-optic design,
see Figure 6c). In this fashion, the same MCAs as those of the
U-, G-, and M-gates (Figure 5) may be employed to perform con-
trolled operations of each kind of gate. Thus, the electro-optic ar-
chitecture only entails the definition of a mapping between the
states |0⟩ and |1⟩ of the control anbit and the electrical control sig-
nals of the PIP circuit, which can be directly established via soft-
ware. Here, a non-ideal behavior of the hardware components
(e.g., due to noise or manufacturing imperfections) could devi-
ate the electrical control signals (implementing the state of the
control anbit) from the ideal values, which could generate phase-
shifter deviations and, consequently, additive noise onto the am-
plitudes of the target anbit. Nonetheless, it should be noted that
this problem is not exclusive of a controlled anbit gate. In general,
this problem can be found in any PIP platform implementing
matrix transformations onto the optical signals,[13] where these
phase-shifter deviations aremitigated by specific hardware-error-
correction algorithms.[65–67]

As an illustrative example, the electro-optic implementation
of the controlled-NOT (CNOT) gate is sketched in Figure 6d. Any
suitable mapping between the control anbit and the electrical
control signals must guarantee that the 2×2 unitary matrix
transformations F = 𝜎x = iR ‚x(𝜋) (a Pauli matrix) and F = I
(the identity matrix) are induced on the amplitudes of |t⟩ when|c⟩ = |1⟩ and |c⟩ = |0⟩ , respectively. It is worthy noting that, in
contrast to the seminal optical implementation of the quantum
CNOT gate reported in ref.,[63] in APC the implementation
of this gate integrates a reduced number of basic devices and
does not require to use extra (ancilla or garbage) units of
information.
Interestingly, the concept of controlled gates can be easily ex-

tended to the case of multiple control anbits without requir-
ing extra devices in the PIP circuits, a feature of APC that can-
not be found in optical quantum computation.[64] Accordingly,
multi-controlled operations such as the Toffoli gate (an indis-
pensable tool to implement Boolean functions) can be carried out
in APC using the same circuit as that of Figure 6d by encoding an

Laser Photonics Rev. 2023, 2200360 2200360 (8 of 15) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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MCA of -gate
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Figure 6. Controlled anbit gates. a) Symbolic representation and functionality of a controlled gate ‚FC with a single control anbit |c⟩ ∈ {|0⟩, |1⟩} and a
single target anbit |t⟩. Inspired in a controlled quantum gate, the operation ‚F (associated to a U-, G-, or M-gate) is applied to |t⟩ when |c⟩ = |1⟩ or,
otherwise, |t⟩ remains invariant at the output. b) Electro-optic design of the controlled gate ‚FC. The PIP circuit must implement the MCA of the ‚F-gate
(here we depict the MCA of an M-gate to cover the general case), whose basic optical devices are controlled by electrical signals (blue lines) mapped
with the amplitudes of |c⟩ = c0 |0⟩ + c1|1⟩ via software.[66] The optical inputs encode the amplitudes of |t⟩ = t0 |0⟩ + t1|1⟩ (black lines). c) All-optical
design of the controlled gate ‚FC. The optical inputs encode the amplitudes of |c⟩⊗ |t⟩, where⊗ is the tensor product. d) Electro-optic implementation
of the controlled-NOT anbit gate. The PIP circuit is the MCA of a U-gate since F = 𝜎x is a unitary matrix.

additional control anbit in the electrical control signals, see Sec-
tion S2.3, Supporting Information.

4.2. Fundamentals of Sequential Design

From a signal processing perspective, feedback systems are cru-
cial configurations in a PIP platform to implement applications
out of the scope of non-feedback schemes, e.g., filters with infi-
nite impulse response.[13] Therefore, from a computational per-
spective, we wonder about the potential applications of feedback
PIP circuits within the context of APC. To this end, we introduce
the concept of sequential anbit operations where, in contrast to
a combinational gate, the output anbits can be connected with
the input anbits leading to feedback computational architectures
(Figure 7).
Remarkably, in contrast to quantum computation, feedback

schemes will be allowed in APC thanks to the feasibility of
performing summation (fan-in) and cloning (fan-out) of anbits
using PIP circuits. These are prohibited operations within the
realm of quantum computing that will however play a funda-
mental role to construct any sequential architecture in APC.
Concretely, both fan-in and fan-out anbit gates can be imple-
mented via the PIP circuit depicted in Figure 7a, which preserves
the Lorentz reciprocity and the FB symmetry (provided that the
amplifiers have a reciprocal and FB symmetric behavior). This
scheme transforms the input anbits |𝜓⟩ and |𝜑⟩ into the out-

put anbits |𝜓 + 𝜑⟩ = (𝜓0 + 𝜑0) |0⟩ + (𝜓1 + 𝜑1)|1⟩ and |𝜓 − 𝜑⟩ =
(𝜓0 − 𝜑0) |0⟩ + (𝜓1 − 𝜑1)|1⟩. Thus, setting |𝜑⟩ = |0⟩ = 0|0⟩ +
0|1⟩ (the null vector of 1) we will carry out a fan-out operation
on the anbit |𝜓⟩ (a perfect cloning) and taking |𝜑⟩ ≠ |0⟩ we will
perform a fan-in operation on the anbits |𝜓⟩ and |𝜑⟩. Moreover,
in order to guarantee a linear behavior, both fan-in and fan-out
gates should be defined by using the Cartesian product, which
allows us to independently transform the anbit amplitudes 𝜓0,
𝜓1, 𝜑0 and 𝜑1 (conversely, the tensor product leads to multi-anbit
nonlinear operations, see Supporting Section 3.1, Supporting In-
formation, including amore in-depth discussion about themath-
ematical properties and optical implementation of these gates).
Figure 7b shows the simplest sequential architecture that can

be built in APC, integrated by both fan-in and fan-out gates
along with two M-gates ( ‚M1 and ‚M2) to complete the feedback
loop. The analysis of the input-output relation |𝜑⟩ = ‚Meq |𝜓⟩ in-
dicates that this sequential scheme is equivalent to a combina-
tional M-gate described by the matrix Meq = (I −M1M2)

−1 M1.
Hence, the existence of Meq is closely linked to the condition
det(I −M1M2) ≠ 0. Contrariwise, the loop cannot be built be-
cause the matrix I −M1M2 is singular. In Section S3.2, Support-
ing Information, we provide further information about the anal-
ysis and properties of this structure. Although the same single-
anbit operation ‚Meq can be implemented via the MCA of an M-
gate (Figure 5c), the potential of this basic sequential scheme re-
lies on the fact that it establishes the fundamental strategies to an-
alyze and design more complex sequential architectures in APC,

Laser Photonics Rev. 2023, 2200360 2200360 (9 of 15) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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a b

c d

amplifiers

DC/MMI

50:50

Figure 7. Sequential anbit systems. a) Optical implementation using PIP technology of both fan-in (FI) and fan-out (FO) anbit gates. The FI operation
maps the input |𝜓⟩ × |𝜑⟩ into the output |𝜓⟩ + 𝜑 × |𝜓⟩ − 𝜑, where × is the Cartesian product. The FO operation performs a perfect cloning of |𝜓⟩ when
𝜑0 = 𝜑1 = 0, i.e., taking |𝜑⟩ = |0⟩ , where |0⟩ = 0|0⟩ + 0|1⟩ is the null anbit. b) Sequential system of a single anbit, composed by both FI and FO gates
along with 2 single-anbit M-gates ( ‚M1 and

‚M2). c) Multi-anbit combinational system composed by 4 single-anbit M-gates, 2 FI gates, and 2 FO gates.
d) Equivalent multi-anbit sequential system, integrating 2 single-anbit M-gates, 2 FI gates, and 2 FO gates. (DC: directional coupler. MMI: multi-mode
interferometer).

which will allow us to uncover unexpected applications of such a
kind of systems.
For instance, the intricate multi-anbit combinational scheme

shown in Figure 7c can be replaced by the sequential architecture
depicted in Figure 7d, composed by a lower number of gates. Sur-
prisingly, using the Cartesian product, we find that both systems
are governed by an input-output relation of the form:

||𝜑1⟩ × ||𝜑2⟩ = ‚F1 ||𝜓1⟩ × ||𝜓1⟩ + ‚F2 ||𝜓2⟩ × ||𝜓2⟩ (3)

Here, taking ‚F1 ≡ ‚M3 × ‚M4 and
‚F2 ≡ ‚M5 × ‚M6, we recover the

input-output relation of the circuit sketched in Figure 7c, and
setting ‚F1 ≡ [(1 − ‚M1

‚M2)
−1 ‚M1] × [(1 − ‚M2

‚M1)
−1 ‚M2

‚M1] and
‚F2 ≡

[(1 − ‚M1
‚M2)

−1 ‚M1
‚M2] × [(1 − ‚M2

‚M1)
−1 ‚M2], we obtain the input-

output relation of the circuit shown in Figure 7d (see Section
S3.3, Supporting Information). Consequently, both computa-
tional schemes are found to be equivalent, provided that the ‚M1
and ‚M2 gates of the sequential system lead to the same ‚F1,2 op-
erators in Equation (3) as those of the multi-anbit combinational
architecture. This result unveils a potential application of sequen-
tial gates: the simplification of multi-anbit combinational sys-
tems, which paves the way for the scalability of APC structures.
A possible technological difficulty might arise when integrat-

ing optical amplifiers within a feedback loop, whichmay give rise
to undesirable nonlinear and lasing effects. This is a well-known
implementation problem in PIP when designing feedback ar-
chitectures (e.g., in photonic waveguide meshes) that is circum-
vented by normalizing the transfer matrices of the PIP systems
(whose circuitry only requires passive devices) and carrying out
the amplification stages outside of the meshes by external dedi-
cated high-performance blocks.[12] Furthermore, these dedicated

blocks prevent the propagation of amplified spontaneous emis-
sion noise inside the meshes and, at the same time, preserve the
FB symmetry of the tunable basic units. Fabrication techniques
such as micro-transfer printing enable the integration of ampli-
fiers in silicon PIP platforms, allowing arbitrary placement of III-
V semiconductor materials compatible to silicon features.[68,69]

5. Computational Problems and Roadmap

Once the basic operations of APC have been introduced, the
next natural step is to discuss the type of mathematical problems
that may be computed. As detailed in Section 4 (Methods), lin-
ear (nonlinear) anbit operations are described by matrices (ten-
sors). Consequently, the problems that can be solved by APC cor-
respond to those that are computable by an algorithm based on
linear and nonlinear operations that can be expressedwithmatrix
and tensor algebra, respectively.
There are numerous applications in mathematics, physics,

and (bio) engineering that can be efficiently solved by utiliz-
ing matrix algorithms, such as artificial intelligence,[70] deep
learning,[71] tensor decomposition,[72] astronomical imaging,[73]

robotics,[74] drug design,[75,76] autonomous driving,[77] medical
diagnostic imaging,[78] and genomic analysis.[79,80] Most of these
applications involve pattern recognition, a computational task
that can be conducted with quantum computers, e.g., using the
single-qubitmodel reported in refs.[81, 82] Remarkably, this com-
puting method may be directly extrapolated to APC by using
single-anbit U-gates (Figure 5b). Alternatively, pattern recogni-
tion can also be tackled with single-anbit gates by mimicking the
one-neuron model recently proposed in ref.[83] This exclusively
requires to use M-gates (Figure 5c) and nonlinear single-anbit

Laser Photonics Rev. 2023, 2200360 2200360 (10 of 15) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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operations to carry out the feedback loops and the activation func-
tion of the neuron, respectively.
In addition, a range of mathematical and physical problems

can be computed with single-anbit operations. As is well known,
any system of linear equations can be written in matrix form
as A ⋅ x = b.[84] The solution of the system (if exists) is found
from the vector-by-matrix multiplication x = A−1 ⋅ b. In the 2D
case, this operation may be conducted in APC with a single-
anbit G-gate by identifying b as the input anbit, A−1 as the ma-
trix of the G-gate (Figure 5c), and x as the output anbit. Like-
wise, APC will be able to handle any physical system governed
by differential or integral equations that can be discretized in a
matrix form by an algorithm.[85–87] The underlying idea of these
algorithms is to transform the original differential or integral
equation into iterative systems of linear equations of the form
A ⋅ x = b, which are computable by single-anbit G-gates in the
2D case, as commented above. Some illustrative examples are
the Fredholm integral equation,[85] the heat equation,[86] and the
Helmholtz equation.[87] In this way, a large variety of 2D quan-
tum, photonic, acoustic, electric, and thermodynamic systems
may be numerically analyzed and designed with the single-anbit
operations and the PIP circuits shown in Figure 5.
Nonetheless, the resolution of large-scale computational prob-

lems based on matrix and tensor algorithms[72,88] will require
to use multi-anbit operations, which should be developed in fu-
ture research. In this vein, bearing in mind that this work is
completely devoted to establishing the fundamentals of APC, a
roadmapmust be specified to complete this computation theory
in forthcoming contributions.
Firstly, the fundamentals of combinational design should be

extended to the case of multiple anbits for both U-, G-, and M-
gates. We may expect that the MCA of these multi-anbit gates
can also be employed to implement controlled gates with multi-
ple target anbits (mapping the control anbits onto the electrical
control signals of the PIP platform). Secondly, the fundamentals
of sequential design should be further developed to the case of
multiple anbits, embracing the research of fan-in, fan-out, and
feedback operations. Given that a digital memory is built from
a multi-bit sequential architecture in digital computing,[9] the
study of multi-anbit feedback schemes could be of paramount
importance to revisit the concept of memory within the scope
of APC. Outstandingly, the capacity to scale both combinational
and sequential architectures to multiple anbits is inherently re-
lated to the feasibility of scaling the PIP circuits by integrating
multiple waveguides[12–14] in combination with the exploitation
of wavelength-divisionmultiplexing[27] to performmassive paral-
lel computing of anbits. Here, it is also important to bear inmind
the integration of external dedicated high-performance blocks
when designing multi-anbit combinational and sequential archi-
tectures requiring amplification stages to preclude the genera-
tion of nonlinear and lasing effects, as well as the propagation of
amplified spontaneous emission noise inside the PIP platform.
Thirdly, a gamut of specific search algorithms based on anbit op-
erations should be conceived to efficiently solve large-scalematrix
and tensor computational problems.[72,88] The time, resources,
and energy required in APC to solve these problems must be
compared with the time, resources, and energy required in dig-
ital, quantum, and neuromorphic computing using the general
methodologies of computational science.[10,89]

6. Conclusion

These results lay the theoretical foundations of APC, a new com-
puting paradigm conceived to exploit the full potential of PIP
technology and, consequently, leading to the emergence of an en-
tire field of researchwithin computational science and photonics.
In addition, APC can be regarded as a new optical design toolbox
that blazes a trail for manufacturing advanced photonic comput-
ing architectures that can team-up with digital electronic proces-
sors to unlock in the near- and middle-term the serious limita-
tions imposed by the demise of Moore’s and Dennard’s laws.
Compared with these existing computational models, APC re-

laxes some of their theoretical and technological limitations, see
Table 1. While in APCwe have the possibility of defining both lin-
ear and nonlinear gates, digital and quantum computing are only
constructed from nonlinear and linear gates, respectively.[9,10]

Moreover, neuromorphic computing embraces both linear and
nonlinear operations, but the global transformation induced on
the units of information in a neural network is nonlinear.[26]

In contrast, in APC there exists the possibility of exclusively
performing linear or nonlinear operations (or a combination of
both). A similar remark applies to the reversible and irreversible
nature of the operations. Both design possibilities can be found
in APC via the U-, G-, and M-gates, a feature that is not usually
shared by the other computation theories.
On the other hand, an essential difference between digital

computing and APC relies on the fact that a combinational APC
architecture can take advantage of both forward and backward
propagations of light to compute the double of units of infor-
mation. The capacity to exploit both propagation directions will
depend on our ability to combine and interconnect the single-
anbit U-, G, andM-gates when scaling the proposal tomulti-anbit
combinational operations in subsequent contributions. In such
a scenario, the same (a different) multi-anbit transformation will
be induced in each propagation direction when the circuit pre-
serves (breaks) the FB symmetry. This property also applies to
quantum and neuromorphic computing when implementing the
corresponding computational architectures via PIP circuitry.[6,64]

The additional properties shown in Table 1 highlight common
differences of APC, digital, and neuromorphic computing versus
quantum computing. Themost characteristic feature of quantum
computing (not shared by the other computation theories) is the
entanglement of qubits, allowing to perform instantaneous non-
local operations, which provide two significant computational ad-
vantages over classical approaches. First, quantum non-locality
alleviates the exponential increase in hardware resources when
scaling quantum computing architectures.[33,40] Second, the com-
putational time required to solve some academic examples of
non-deterministic polynomial time problems could significantly
be reduced with instantaneous non-local operations.[10,53] Hence,
the absence of entanglement in APC might impact on the above
points. In spite of the fact that the former limitationmight not be
completely circumvented when scaling APC, it could be slightly
mitigated: (i) carrying out parallel computing of anbits by lever-
aging on the benefits of wavelength-division multiplexing and
(ii) combining the space-anbit modulation (requiring two waveg-
uides per anbit) along with other modulation formats (e.g., the
frequency- and time-anbitmodulations, requiring a single waveg-
uide per anbit, see Section S1.1, Supporting Information). The
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Table 1. Qualitative features of digital computation, quantum computation, neuromorphic computation, and analog programmable-photonic computa-
tion.

Properties Digital Computing Quantum
Computing

Neuromorphic
Computing

Analog
Programmable-Photonic

Computing

Linear computation Noa) Yes No Yes

Nonlinear computation Yes No Yes Yes

Reversible operationsb) No Yes No Yes

Irreversible operations Yes No Yes Yes

Forward-backward propagation No Yes Yes Yes

Parallel computing Yes Yes Yes Yes

Summation, cloning and
feedback

Yes No Yes Yes

Instantaneous non-locality No Yes No No

Scalability with current
technology

Yes No Yes Yes

Operation at room temperature Yes No Yes Yes

Tolerance to environmental noise Yes No Yes Yes
a)
Although digital computing operations are nonlinear, this does not imply that digital computation is not able to solve linear problems. Indeed, digital computation is a

universal computing model, as inferred from the Church-Turing thesis.[2,10]
b)
In digital computation, reversible operations can also be defined, but with inefficient schemes

requiring ancilla and garbage bits.[43] In quantum computation, all operations are reversible (excluding the quantum measurement, which can be deemed as a non-reversible
operation).[44] In neuromorphic computation, the multi-dimensional transformation of a neural network is usually an irreversible operation since the nonlinear activation
functions are, in general, non-bijective mappings and a different number of neurons per layer is commonly used.[26] Nevertheless, reversible neural networks have also been
proposed to reduce memory requirements in specific deep learning applications.[104,105]

second constraint might be mitigated in APC by dequantizing
algorithms of quantum computing,[90] a promising methodol-
ogy to deal with the development of algorithms based on an-
bit operations by exploiting the similarities between anbits and
qubits.
Being APC a computation theory relying on classical waves, it

can be readily implemented by current technology operating at
room temperature. Indeed, it is worth mentioning that APC can
be implemented not only in a PIP hardware, but also in any tech-
nological platform enabling matrix signal processing such as in
metamaterials,[17,18] in free-space optics,[5] in electronics,[36,91,92]

and in acoustics.[93] Likewise, we may expect that this new com-
puting paradigmhasmore tolerance to environmental noise than
quantum computation due to the absence of decoherence (the
classical vector superposition of an anbit cannot be annihilated by
environmental interactions).[94] This subsequently implies that
we will require less extra units of information than in quantum
computing to detect and correct the data errors, simplifying the
scalability of APC architectures.
An additional intriguing feature of APC arises from the gen-

eral nature of its mathematical framework, inherited from the
versatile properties of the anbit, allowing to implement (at least
partially) other existing computing paradigms using APC archi-
tectures (Section S5, Supporting Information).
In fact, the general nature of APC is also embodied in the pos-

sibility of conceiving the anbit as a continuous-time function.
This gives rise to a different version of APC, termed continuous-
time APC, which entails the use of time-varying optical media,[95]

an attractive proposal to take advantage of future dynamical PIP
systems, where the circuit transfer matrices could be modulated
at the same time as the signals are propagated (e.g., by uti-
lizing strongly-nonlinear epsilon-near-zero media[96] and phase

change materials.[97,98]). Continuous-time APC handles compu-
tational problems with an approach inspired by adiabatic quan-
tum computing:[99] the user information ismapped onto the tem-
poral shape of |𝜓(t)⟩, which is transformed by a time-varying
computational system within a finite time interval t1 ≤ t ≤ t2.
The solution of the computational problem will be encoded by|𝜓(t > t2)⟩. The potential of continuous-time APC relies on the
possibility of solving differential and integral equations via dy-
namical vector-by-matrix multiplications, without requiring an
iterative discretization of the equations. This could offer a simple
route for the challenge of engineering the computational time of
mathematical and physical problems based on differential and
integral equations with varying coefficients. For completeness,
in Section S6, Supporting Information, we sketch two computa-
tional examples of continuous-time APC.
Given that any computation theory is associated with an in-

formation theory, APC also leads to an additional field of re-
search: the Analog Programmable-Photonic Information. Here,
we will focus on the study of entropy, data compression (encod-
ing the user information into the minimum number of anbits),
modulation formats (converting the anbits into physical waves),
channel capacity, analysis of noise, error detection, and correc-
tion strategies, and cryptography techniques. The combination
of both computation and information theories has the potential
to spark a crucial impact on fundamental and applied research,
as well as on our information society.

7. Experimental Section
Space-Anbit Modulation: The description of this modulation format

(similar to the path-encoding strategy employed in optical quantum
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computation[100]) can be done by specifying the electric field strength im-
plementing the anbit of Figure 4a. According to the usual features of the
optical waveguides employed in PIP,[13] we may assume that the parallel
waveguides of Figure 4a have a negligible inter-waveguide mode-coupling
and operate in the paraxial and single-mode regimes. Hence, a space-anbit
modulation is characterized by an electric field of the form:

E (r, t) ≃
1∑

k = 0

Re
{
𝜓k

(
t − 𝛽(1)

k
r∥
)
êk
(
r⊥,1, r⊥,2,𝜔c

)
ei𝜔cte−i𝛽

(0)
k

r∥

}
=

1∑
k=0

||||𝜓k

(
t − 𝛽(1)

k
r∥
)|||| êk

(
r⊥,1, r⊥,2,𝜔c

)
cos

(
𝜔ct − 𝛽

(0)
k

r∥ + ∠k

)
(4)

where the anbit amplitudes 𝜓0 = |𝜓0| ei∠0 and 𝜓1 = |𝜓1| ei∠1 play the
role of the optical wave packets (or complex envelopes), 𝜔c is the an-
gular frequency of the optical carrier, r = r⊥,1 r̂⊥,1 + r⊥,2 r̂⊥,2 + r∥ r̂∥ is the
vector position written in terms of its transverse (r⊥,1, r⊥,2) and longi-

tudinal (r∥) components, and êk and 𝛽k(𝜔) ≃ 𝛽
(0)
k

+ (𝜔 − 𝜔c)𝛽
(1)
k

are re-
spectively the normalized mode profile and the propagation constant of
the fundamental mode in waveguide k (being 𝛽(0)

k
= 𝛽k (𝜔 = 𝜔c ), 𝛽

(1)
k

=
d𝛽k(𝜔 = 𝜔c )∕d𝜔, and omitting the dispersive terms 𝛽(n≥2)

k
in the Taylor

series expansion of 𝛽k(𝜔)). In particular, êk must satisfy the condition:[101]

∫
∞

∫
−∞

êk × ĥ
∗
k ⋅ r̂∥dr⊥,1d r⊥,2 = 2 (5)

being ĥk the normalized mode profile of the magnetic field strength. Equa-
tion (5) guarantees that the optical power () propagated by the funda-
mental modes of both waveguides can be calculated as  = |𝜓0|2 +|𝜓1|2.

Using Equation (4), it is straightforward to describe the electric field
strength at the input E(r1, t1) and at the output E(r2, t2) of the single-anbit
gate depicted in Figure 5a, which must be particularized at two differ-
ent vector positions r1 ≠ r2 and time instants t1 ≠ t2. Taking into account
the causal response of the materials employed in PIP,[13] then it follows
that t1 < t2. Hence, the input-output relation of the gate is non-local and
causal.

Nonlinear Anbit Gates: Nonlinear anbit operations could be imple-
mented in PIP, e.g., by means of the Pockels and Kerr effects, which
allow to carry out second- and third-order nonlinear anbit transforma-
tions, respectively. For instance, stimulating the self-phase modulation ef-
fect in two parallel uncoupled waveguides (similar to those of depicted
in Figure 4a), a nonlinear single-anbit operation of the form ‚F |𝜓⟩ =
𝜓0 e

−i𝛾|𝜓0|2Leff |0⟩ + 𝜓1e−i𝛾|𝜓1|2Leff |1⟩may be obtained (𝛾 and Leff are non-
linear parameters of the waveguides.[102]). However, the capability of PIP
is not only restricted to implementing second- and third-order nonlinear
anbit transformations. In general, higher-order nonlinear operations can
be performed in APC with PIP circuitry in the same vein as in neuromor-
phic computation arbitrary activation functions are generated by employ-
ing Mach–Zehnder interferometers and microring resonators.[103]

The most general definition of a single-anbit gate (including
both linear and nonlinear contributions) is given by the expression
‚F|𝜓⟩≔f0(𝜓0,𝜓1)|0⟩ + f1(𝜓0,𝜓1)|1⟩, with f0 and f1 belonging to (ℂ2,ℂ).
Thus, ‚F will induce a nonlinear transformation on the input anbit when the
functions f0,1 have a nonlinear behavior. Therefore, using holomorphic f0,1
functions in a neighborhood of a reference point (𝜓0,ref ,𝜓1,ref ) ∈ ℂ2, we
will be able to build a nonlinear response of the desired order.

The main drawback of operating with nonlinear anbit gates relies on
the fact that it could not deal with a matrix formalism. Nevertheless, the
mathematical description of the above nonlinear anbit operation can be
simplified by performing a Taylor series expansion of f0,1. Therefore, let us
introduce the vectors z≔𝜓0 ẑ0 + 𝜓1 ẑ1 and zref≔𝜓0,ref ẑ0 + 𝜓1,ref ẑ1 belong-
ing to the vector space  = span{ẑ0, ẑ1} (isomorphic to ℂ2) and being

ẑ0,1 complex orthonormal vectors. In this way, we can write ‚F =
∞∑
n=1

‚F(n)

where:

F̂(n) |𝜓⟩ = 1
n!
dnf0zref (z) |0⟩ + 1

n!
dnf1zref (z) |1⟩ (6)

is the n-th order nonlinear response of the gate with:

dnf0zref (z) =
∑

i1 ,…,in∈{0,1}
𝜓i1 …𝜓in

𝜕nf0
(
zref

)
𝜕ẑi1 … 𝜕ẑin

(7)

and similar for dnf 1⌋zref (z). As seen, nonlinear anbit operations require a
tensor formalism to describe the n-th order partial derivative of the above
equation. This nonlinear mathematical framework should be further ex-
tended in forthcoming cssontributions by defining diverse classes of non-
linear anbit gates, encompassing both combinational and sequential com-
putational architectures.
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