Contents

Agradecimientos					
Abstract					
esume	en	vii			
esum		ix			
onten	ts	xi			
Intro 1.1 1.2 1.3	Dduction Motivation and background Noise generation and propagation Proposed approach 1.3.1 Prediction based on CFD 1.3.2 Mitigation based on acoustic metamaterials Goals and organisation of the Thesis	1 4 6 8 9 10			
Aero 2.1 2.2 2.3	Aeroacoustic problem 2.1.1 Noise sources during launch 2.1.2 Aeroacoustic prediction methodologies Vibroacoustic prediction 2.2.1 Vibro-acoustic model 2.2.2 Numerical methods available	 13 14 15 21 24 25 26 31 			
	sume sume onten 1.1 1.2 1.3 1.4 Aero 2.1 2.2 2.3	sumen sum intents Introduction 1.1 Motivation and background 1.2 Noise generation and propagation 1.3 Proposed approach 1.3.1 Prediction based on CFD 1.3.2 Mitigation based on acoustic metamaterials 1.4 Goals and organisation of the Thesis 2.1 Aeroacoustic problem 2.1 Noise sources during launch 2.1.2 Aeroacoustic prediction methodologies 2.2 Vibroacoustic prediction 2.2.1 Vibro-acoustic model 2.2.2 Numerical methods available 2.3 Acoustic mitigation			

	2.4	2.3.1 2.3.2 2.3.3 Summa	Noise reduction methods for the launch pad	32 37 38 41 43 44 46
2	-			40
3	Prec	diction	methodology	49
	3.1	Introdu		49
	3.2	Aero-a		50
		3.2.1		50
		3.2.2		51
		3.2.3	Turbulence modelling	52
		3.2.4	Numerical models approach	54
		3.2.5	Unsteady Reynolds-Averaged Navier-Stokes numerical model	55
			3.2.5.1 Acoustic pressure in URANS	57
		3.2.6	Large Eddy Simulation Model	58
		3.2.7	Validation model	59
			3.2.7.1 URANS model set-up in OpenFOAM	62
			3.2.7.2 LES model set-up in DrNum	62
		3.2.8	VEGA launch case	62
			3.2.8.1 VEGA launch geometry	63
			3.2.8.2 Mesh generation	64
			3.2.8.3 Boundary conditions and discretisation schemes	65
			3.2.8.4 Experimental data	68
	3.3	Summa	ary	69
4	Miti	igation	methodology	71
•	4 1	Introdu	iction	71
		4.1.1	Connection with turbulent noise generation.	72
	42	Acoust	ic mitigation approach	73
	4.3	Reflect	ion transmission and absorption coefficients	74
	4.4	Launch	pad metamaterial: Rainbow Trapping Absorber	75
		4.4.1	RTA experimental test campaign	77
	4.5	Fairing	metamaterial: Single Resonator Absorber	79
		451	SRA experimental test campaign	81
	46	Fairing	metamaterial. Composite Honeycomb Acoustic Resonator	83
	1.0	461	Structural model	84
		1.0.1	4611 Core properties	85
			4 6 1 2 Instability failure modes	87
		462	Definition of methodology	80
		4.0.2 4.6.3	Acoustic model	09
		T.U.J		21

		4.6.4	Optimisation	94
			4.6.4.1 Acoustic FEM	94
			4.6.4.2 Squared cell	95
			4.6.4.3 Hexagonal cell	97
		4.6.5	Manufacturing	99
		4.6.6	Experimental test plan	102
			4.6.6.1 Acoustic test	102
			4.6.6.2 Structural test	103
	4.7	Metam	aterials vibroacoustic model	104
		4.7.1	Structural characterisation of acoustic metamaterials	105
			4.7.1.1 Numerical Test Campaign	106
			4.7.1.2 DIGIMAT Software	109
			4.7.1.3 Equivalent structural constants	110
		4.7.2	Equivalent acoustic modelling	116
			4.7.2.1 RTA impedance model	119
			4.7.2.2 SRA impedance model	121
	4.8	Test ca	mpaign predictive models	122
		4.8.1	SRA vibroacoustic model	122
		4.8.2	RTA vibroacoustic model	123
		4.8.3	CHAR structural model	125
	4.9	Summa	ary	126
			-	
5	Nois	se gene	ration and propagation during space launcher lift-off	129
5	Noi s 5.1	se gene Numeri	ration and propagation during space launcher lift-off	129 130
5	Nois 5.1	se gene Numeri 5.1.1	ration and propagation during space launcher lift-off ical models validation	129 130 130
5	Nois 5.1	5e gene Numeri 5.1.1 5.1.2	ration and propagation during space launcher lift-off ical models validation	129 130 130 131
5	Nois 5.1 5.2	se gene Numeri 5.1.1 5.1.2 Noise s	ration and propagation during space launcher lift-off ical models validation	129 130 130 131 136
5	Nois 5.1 5.2 5.3	se gene Numeri 5.1.1 5.1.2 Noise s Noise p	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation	129 130 130 131 136 141
5	Nois 5.1 5.2 5.3	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1	ration and propagation during space launcher lift-off ical models validation	129 130 130 131 136 141 141
5	Nois 5.1 5.2 5.3	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels	129 130 130 131 136 141 141 141
5	Nois 5.1 5.2 5.3 5.4	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation	129 130 130 131 136 141 141 146 149
5	Nois 5.1 5.2 5.3 5.4	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface	129 130 130 131 136 141 141 141 146 149 156
5	Nois 5.1 5.2 5.3 5.4 5.5	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface	129 130 131 136 141 141 146 149 156 158
5	Nois 5.1 5.2 5.3 5.4 5.5	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface ary of results	129 130 130 131 136 141 141 146 149 156 158
5 6	Nois 5.1 5.2 5.3 5.4 5.5 Nois	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface ary of results pad RTA mitigation systems	129 130 131 136 141 141 146 149 156 158 161
5	Nois 5.1 5.2 5.3 5.4 5.5 Nois 6.1	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa Se mitig Launch 6.1.1	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface ary of results pad RTA mitigation systems Absorption coefficient	129 130 130 131 136 141 141 146 149 156 158 161 161
5	Nois 5.1 5.2 5.3 5.4 5.5 Nois 6.1	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa Se mitig Launch 6.1.1	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface. ary of results pad RTA mitigation systems Absorption coefficient Distributed source method in the anechoic chamber	129 130 131 136 141 141 146 149 156 158 161 161 162 163
5	Nois 5.1 5.2 5.3 5.4 5.5 6.1	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa se mitig Launch 6.1.1 6.1.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface ary of results pad RTA mitigation systems Absorption coefficient Distributed source method in the anechoic chamber 61.2.1	129 130 131 136 141 141 146 149 156 158 161 162 163 164
6	Nois 5.1 5.2 5.3 5.4 5.5 Nois 6.1	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa Se mitig Launch 6.1.1 6.1.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface. ary of results pad RTA mitigation systems Absorption coefficient Distributed source method in the anechoic chamber 61.2.1 Free-field measurement of the DSM	129 130 131 136 141 141 146 149 156 158 161 162 163 164 165
6	Nois 5.1 5.2 5.3 5.4 5.5 Nois 6.1	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa se mitig Launch 6.1.1 6.1.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface ary of results pad RTA mitigation systems Absorption coefficient Distributed source method in the anechoic chamber 6.1.2.1 Free-field measurement of the DSM 6.1.2.2 Rigid panel DSM measurement 6.1.2.3 Rainbow trapping absorber DSM measurement	129 130 131 136 141 141 146 149 156 158 161 161 162 163 164 165 167
6	Nois 5.1 5.2 5.3 5.4 5.5 6.1	se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa se mitig Launch 6.1.1 6.1.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch oropagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface arry of results Absorption coefficient Distributed source method in the anechoic chamber 6.1.2.1 Free-field measurement of the DSM 6.1.2.2 Rigid panel DSM measurement 6.1.2.4 Insertion loss	129 130 131 136 141 141 146 149 156 158 161 162 163 164 165 167 170
6	Nois 5.1 5.2 5.3 5.4 5.5 Nois 6.1	Se gene Numeri 5.1.1 5.1.2 Noise s Noise p 5.3.1 5.3.2 Launch 5.4.1 Summa Se mitig Launch 6.1.1 6.1.2	ration and propagation during space launcher lift-off ical models validation VEGA launch case: URANS Scaled model configuration: URANS vs LES ources generation during launch propagation Acoustic waves propagation Sound pressure levels pad structures optimisation Directivity analysis of the acoustic pressure on the fairing surface. ary of results stributed source method in the anechoic chamber 6.1.2.1 Free-field measurement of the DSM 6.1.2.2 Rigid panel DSM measurement 6.1.2.4 Insertion loss Acoustic performance in launch pad conditions	129 130 131 136 141 141 146 149 156 158 161 162 163 164 165 167 170 172

	6.2	Fairing 6.2.1	SRA mitigation systems	176 176
	6.3	 6.2.2 6.2.3 6.2.4 6.2.5 Fairing 6.3.1 6.3.2 	Correlation with mechanical properties of the reference and the assembled panel	177 180 182 183 185 185 185 185 186 188
			6.3.2.2 Numerical analysis	192
	6.4	Summa	ry of results	199
7	Cone 7.1 7.2 7.3 7.4	c lusions Introdu Conclus Further Highlig	and further work ction	201 201 202 206 207
Bi	bliogr	aphy		209
Bil	bliogr	aphy	tic response of the fairing	209
Bil A	bliogr Vibr	aphy o-acous	stic response of the fairing	209 223
Bi A	Vibr A.1	raphy o-acous Vibro-a A.1.1	stic response of the fairing coustic prediction model	209 223 224 224
Bil A	Vibr A.1	o-acous Vibro-a A.1.1 A.1.2	stic response of the fairing coustic prediction model	 209 223 224 224 226
Bil A	Vibr A.1	o-acous Vibro-a A.1.1 A.1.2 A.1.3	stic response of the fairing coustic prediction model	209 223 224 224 226 227
Bil A	Vibr A.1	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation	209 223 224 224 226 227 227
Bil A	Vibr A.1	raphy o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment	209 223 224 224 226 227 227 228
Bil	A.1	raphy o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment	209 223 224 224 226 227 227 228 228
Bil	A.1 A.2 A.3	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam	Stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour	209 223 224 226 227 227 228 228 228 228
Bil A	A.1 A.2 A.3 A.4	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation	209 223 224 226 227 227 228 228 228 228 229
Bil A	A.1 A.2 A.3 A.4	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour measurement validation	209 223 224 226 227 227 228 228 228 228 228 229 230
Bil A	A.1 A.2 A.3 A.4	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation Adaptation term	209 223 224 226 227 227 228 228 228 229 230 231
Bil A	A.1 A.2 A.3 A.4 A.5	o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2 Assessm	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation Adaptation term Vibro-acoustic results DEM DEM DEM medule	209 223 224 226 227 228 228 228 228 229 230 231 232
Bil A	A.1 A.2 A.3 A.4 A.5	raphy o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2 Assessn A.5.1 A 5 2	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour Adaptation term Vibro-acoustic results performance BEM-FEM-BEM model	209 223 224 226 227 227 228 228 228 229 230 231 232 234 235
Bil	A.1 A.2 A.3 A.4 A.5	vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2 Assessn A.5.1 A.5.2	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation Adaptation term Vibro-acoustic results between of metamaterial impact BEM-FEM-BEM model	209 223 224 226 227 227 228 228 228 229 230 231 232 234 235
Bil	A.1 A.2 A.3 A.4 A.5	raphy o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2 Assessn A.5.1 A.5.2	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation Vibro-acoustic results nent of metamaterial impact BEM-FEM-BEM model BEM-FEM-FEM model	209 223 224 226 227 228 228 228 229 230 231 232 234 235 237
Bill	A.1 A.2 A.3 A.4 A.5 Tran B.1	raphy o-acous Vibro-a A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 Results Dynam Flight r A.4.1 A.4.2 Assessn A.5.1 A.5.2 osfer M The Tra	stic response of the fairing coustic prediction model Fairing numerical model FEM-BEM-SEA Structural model definition Fluid domain Acoustic excitation Metamaterial acoustic performance assessment ic behaviour neasurement validation Adaptation term Vibro-acoustic results between of metamaterial impact BEM-FEM-BEM model BEM-FEM-FEM model BEM-FEM-FEM model BEM-FEM-FEM model	 209 223 224 226 227 228 228 229 230 231 232 234 235 237 238 238 238 237 238

С	Publ	ublications, awards and projects						
	C.1	International journals	243					
	C.2	International meetings	244					
	C.3	Invited conferences	244					
	C.4	Awards	245					
	C.5	Company projects	245					
	C.6	International research stay	245					