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The computing capacity demanded by embedded systems is on the rise as software implements more function-

alities, ranging from best-effort entertainment functions to performance-guaranteed safety-related functions.

Heterogeneous manycore processors, using wormhole mesh (wmesh) Network-on-Chips (NoCs) as the main

communication means, and contention block among applications, are increasingly considered to deliver the

required computing performance. Most research efforts on software timing analysis have focused on deriving

bounds (estimates) to the contention that tasks can suffer when accessing wmesh NoCs. However, less effort

has been devoted to an equally important problem, namely, accurately measuring the actual contention tasks

generate each other on the wmesh which is instrumental during system validation to diagnose any software

timing misbehavior and determine which tasks are particularly affected by contention on specific wmesh

routers. In this paper, we work on the foundations of contention measuring in wmesh NoCs and propose

and explain the rationale of a golden metric, called task PairWise Contention (PWC). PWC allows ascribing

the actual share of the contention a given task suffers in the wmesh to each of its co-runner tasks at packet

level. We also introduce and formalize a Golden Reference Value (GRV) for PWC that specifically defines a

criterion to fairly break down the contention suffered by a task among its co-runner tasks in the wmesh. Our

evaluation shows that GRV effectively captures how contention occurs by identifying the actual core (task)

causing contention and whether contention is caused by local or remote interference in the wmesh.
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1 INTRODUCTION
The trend towards more autonomous software-centric functionalities is on the rise in time-sensitive

embedded systems (TSES) in relevant industrial domains such as automotive. This includes auto-

motive artificial-intelligence-based driving assistance systems functionalities, like lane keeping

and obstacle detection, and autonomous driving (AD) solutions.

Authors’ addresses: Jordi Cardona, jordi.cardona@bsc.es, Universitat Politècnica de Catalunya and Barcelona Supercomput-

ing Center, Barcelona, Spain; Carles Hernández, carles.hernandez@bsc.es, Universitat Politècnica de València and Barcelona

Supercomputing Center, Valencia, Spain; Jaume Abella, jaume.abella@bsc.es, Barcelona Supercomputing Center, Barcelona,

Spain; Enrico Mezzetti, enrico.mezzetti@bsc.es, Barcelona Supercomputing Center, Barcelona, Spain; Francisco J. Cazorla,

francisco.cazorla@bsc.es, Barcelona Supercomputing Center, Barcelona, Spain.

© 2023 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in , https://doi.org/10.1145/1122445.1122456.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


2 J. Cardona, et al.

As a result, embedded products comprise more and more complex software components with

different timing needs and unprecedented computing performance requirements [2, 3]. On the

hardware side, major TSES industry players have adopted (or are on the way to doing so) small mul-

ticores, such as the Infineon AURIX family [29] in automotive and the Xilinx Zynq UltraScale+ [64]

in avionics, which include few cores (e.g. 3 to 6).

Commercial Off-The-Shelf (COTS) manycores, with larger core counts than already adopted

multicores, are of particular interest given their high performance and availability. Yet their timing

characteristics may challenge the verification and validation of the timing constraints of critical

real-time applications. For the interconnection, manycores build on NoCs as they provide good

scalability and high flexibility to set appropriate topologies, routing algorithms, arbitration policies,

etc. Multiple processors targeting TSES already deploy NoCs (e.g. to connect 10 to 20 nodes),

such as the Kalray MPPA 256 SoC [4] (e.g. a 4x4 mesh) and the Xilinx VERSAL Multi-Processor

System-on-Chip (MPSoC) [5].

The other side of the coin is that hardware-shared resources in general, and NoCs in particular,

cause the timing of an application (and the bounds derived to it) to depend on the activity of

its co-runner tasks, i.e. their usage of shared resources. While some existing proposals advocate

for hardware/software support to reduce or even eliminate contention [26, 48, 53], hence not

requiring to bound or track NoC contention, they are not generally embraced by high-performance

and general-purpose manycore due to the difficulties to control NoC traffic, especially in the

presence of distributed and coherent cache memories. Other works [9, 30, 50, 62, 63] focus on

COTS solutions from the high-performance market, which include minimum hardware support for

time predictability, in an attempt to contain non-recurring costs of real-time embedded products

[52, 58]. The mechanisms proposed in these works build on generic NoC designs, e.g. wormhole

mesh NoCs, and target-specific NoC configurations under which derived contention bounds are

tight, e.g. deterministic routing (like XY for mesh networks) with minimum size packets. In this

line, we target wormhole mesh (wmesh) NoCs as they are widely implemented in COTS manycores

[4, 52, 58] for their high performance and limited implementation costs.

In terms of timing analysis of COTS NoCs components, several works specifically focus on

deriving timing bounds for verification purposes. However, fewer efforts address software timing

validation methods that follow a requirement-based dynamic testing approach. In this line, safety

standards and the associated support documents call for controlling contention on a per-shared

resource basis. This is carried out by bounding contention and setting appropriate safety measures

in case of overruns, thus in line with the freedom from interference requirement in ISO 26262 in

automotive [20], and interference channels mitigation in CAST-32A (now AM(C) 20-193) [16] for

avionics. During the validation phase, testing campaigns are carried out in the different integration

steps to collect evidence supporting that those assumptions and conclusions reached during the

design phase effectively hold. The absence of timing violations during the tests is considered a key

element of the evidence on the system’s timing correctness [18].

Works deriving bounds to the worst-case contention in NoCs [23, 24, 35] classify contention

into direct or indirect depending on whether contending flows share resources over their paths in

the NoC or not [55]. However, these methods aim at deriving upper bounds to contention, needed

during verification, rather than tracking the actual contention during the testing phase, needed for

validation, and hence, they cannot be used for validation/testing purposes.

In this work, we contend that the ability to accurately track the contention a task suffers in

each node of a NoC-connected manycore by each other CT is instrumental to validate the timing

behavior of TSES to a sufficient extent and properly diagnosing software timing overruns. Overruns

can otherwise go unnoticed if we just track the cumulative contention a task suffers by all its
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CTs. More in detail, accurately tracking per-node and per-task contention brings the following

advantages:

• Detection. It allows detecting situations in which a given task incurs longer contention

than expected by a contender task, even if this effect is hidden or compensated by another

contender task causing less contention than expected. This anomalous behavior, which does

not arise just by analyzing end-to-end timings [39], must be detected during testing.

• Correction. It allows determining the point (nodes) of the mesh where the contention occurs

and the tasks’ contribution to this contention. This is fundamental to propose and apply

corrective measures in case of detected misbehavior (see sections 2.2 and 7). Examples of

corrective actions that can be taken include the enforcement of a task mapping where delayed

and delaying tasks do not share links/routers or where the offended (offending) task is placed

much closer to (farther from) the target node to reduce the contention impact. The same

information can also be used to introduce or readjust traffic limitations and priorities, or to

recompute offline tasks contention budgets.

In this line, the goal of this work is to set the foundations of a fine-grained contention tracking
approach that aims at capturing the actual contention tasks generate to each other in a wmesh, as

a building block for the timing validation for wmesh NoCs. Our contribution develops along the

following three axes:

(1) We define a golden metric called PairWise Contention (PWC) that captures the slowdown the

packets generated by the Task under Analysis (TuA) suffer when accessing the wmesh due

to packets from the CTs. The main challenge in deriving PWC emanates from the distributed

nature of the wmesh NoCs that causes contention to happen in different nodes (locations),

as opposed to centralized interconnects where all contention occurs at a single location.

For wmesh, simple ways exist to trace contention information locally in each router. That

information only reflects the packet (including its source core) that stalls another packet.

However, it does not reflect whether the blocking packet is effectively causing such contention

or is, in turn, blocked by another packet. Ascribing all contention suffered by the TuA only

to packets arbitrated in that same router leads to incorrectly ascribing contention effects to

the contenders. Instead, in order to effectively capture the source of the contention, PWC

defines local and remote contention that is to be applied to each pair of tasks running.

(2) We define and formulate for the first time a Golden Reference Value (GRV) for PWC. GRV is

a criterion to derive the local and remote PWC components for tasks running in a wmesh-

centric processor. GRV fairly ascribes the contention the TuA suffers in the wmesh to its CTs.

GRV builds around the idea of ascribing contention experienced by an analyzed packet to the

actual contending packet causing the contention, whether it shares (local) or not (remote)

nodes with the packet causing contention. GRV is complete, meaning that it is able to classify

all types of contention packets may suffer, distinguishing the source and location of each

contention case.

(3) We propose a particular implementation of GRV via an offline method for timing validation.

For each test, our method processes execution traces of a set of tasks executed on a wmesh-

centric multicore to break down the contention each task suffers in each router. We assess

the effectiveness of GRV in controlled scenarios (including a variety of wmesh sizes and

setups) in which contention can be ascribed to the cores issuing packets. Our method, for

every single cycle of contention experienced by a packet, identifies the core that issued the

packet ultimately causing such contention, the router where contention occurred, and hence,

whether such contention is local or remote. Finally, we also assess the scalability of the
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proposed approach to large NoCs (e.g. 5x5 and 6x6 meshes), which are already larger than

those NoCs in current and evaluated COTS manycores for TSES [4, 5].

GRV is instrumental in the development of PWC metrics tailored to specific COTS multicores,

hence building only on observation knobs (e.g. performance monitoring counters in the NoC

routers) available on the board. The characteristics of the COTS multicore under study can be

modeled (e.g. in a timing simulator) which will allow comparing the tailored PWC implementation

against GRV with the aim of tuning such PWC implementation until it is close enough to GRV,

while adequate for the particular COTS multicore under study.

The rest of this paper is structured as follows: Section 2 introduces the relevant background.

Section 3 defines PairWise Contention (PWC). Section 4 defines our Gold Reference Value (GRV).

Section 5 proposes an off-line method to derive GRV and explains how PWC/GRV applies to other

wmesh setups and NoCs. Section 6 assesses how GRV accounts for PWC and provides reliable

contention information in wmesh mesh-based systems. Section 7 presents the most relevant related

works. Finally, Section 8 summarizes the main conclusions of this work.

2 BACKGROUND
2.1 Wormhole NoCs fundamentals
We target NxM wormhole mesh NoCs, see Figure 1a and Figure 1b, which are widely implemented

in COTS manycores [4, 52, 58] as they provide high performance. The main NoCs characteristics

are summarized below.

Node. Each node, with an ID between 0 and (N ×M) − 1, see Figure 1a, comprises the router,

serving as an interface to the mesh, and a PME (Processor or Memory Element). Each router

comprises up to 5 bidirectional ports (i.e input port and output port), see Figure 1b, and each input

port comprises a queue to store flits
1
. The main memory or memory controller is attached to one of

the ports of one of the routers in a corner, which hence has both a PME and a main memory port.

(a) 3x3 2Dmesh using XY routing (b) Router input/output ports (c) Backpressure example

Fig. 1. Mesh concepts

Routing. Routing policies are defined over the set of routers R in the mesh and a given routing

policy defines the traffic flows (Fi ) per each source i as a set of packets that are sent over a predefined
subset of routers in R (i.e., path). For example, in Figure 1a, flow F4 identifies the set of packets that

are sent over the path identified by routers {R4,R5,R8} ⊆ R. The term Ĥi is used in this paper to

denote the ordered set of routers traversed by Fi packets. Deterministic routing policies like XY or

YX routing are the preferred policies to allow the Worst Case Delay (WCD) estimation [46, 50] in

TSES. XY routing, for instance, forwards packets in the X direction first until reaching the column of

the destination node and then forwards them in the Y direction. One of the best properties of these

routing policies is that they take deterministic decisions which, in addition, result in minimal-length

routes (in terms of hops).

1
A flit – short of flow control unit – is the atomic element in which packets are split into be transmitted. Only the first flit

of a packet is arbitrated, the others follow the head flit as long as buffer space is available in the next router or port.
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Switching and control flow. In wormhole switching messages or packets are split into several

flits: the header flit that contains the destination information, the body flits that contain the data,

and the tail flit that can contain error detection codes information. When the header flit of packet

Pi arrives at the Rn , the flit is stored in Rn ’s input port and the router allocates an entry queue in

Rm (being Rm the next router in Ĥi ). Once Rm can accept the header flit, the latter competes for an

output port in Rn and, only when granted access, traverses the router crossbar. Flits of a packet

leave the router when the signals of the control flow mechanism from the next router inform that

there is an empty slot in the target queue. A new arbitration is performed once the entire packet

has been sent. One of the main properties of wormhole switching is that the switching is done at

flit level, not at packet level, allowing flits to advance to the next router even if not all the flits of

the packet fit in an input port, which maximizes buffer utilization and wNoC performance with

reduced hardware resources. Wormhole switching is one of the most common approaches used

in multicore processors [52, 58]. Indeed, recent works build upon wormhole switching and study

contention effects instance buffer backpreassure [59] and how to take them into account in the late

stages [23, 24].

Arbitration. Policies like round-robin are locally fair, which favors time predictability, and are

easy to implement [31]. Round-robin policy fairly grants access to the input ports contending for

the same output port that has a ready packet to be sent at the moment of taking the decision. When

the header flit is stalled due to arbitration (contention), body flits are also stalled. Also, note that

input port queues are typically sized with enough space to avoid bubbles in the packet transmission.

Design choices. The only requirement of our PWC and GRV is the use of deterministic routing

setups that anyway are needed to enable the derivation of tight worst-case traversal times and avoid

deadlocks. Our proposed PWC and GRV can handle both highly predictable and less predictable

setups as discussed in Section 5.2. Furthermore, we cover virtual channel (VC) extension in PWC

and GRV in Section 4.3 and multiple packet size scenarios in Section 6.2. As explained there, those

scenarios require no change to PWC and GRV, so the adoption of these features is a matter of

whether they can be modeled during the timing analysis (budgeting) phase rather than whether

they can be measured during the timing validation with PWC/GRV.
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2.2 Software Timing
Timing-related aspects of multicore shared resources in TSES are covered in different stages of the

overall software engineering process, namely, verification, validation and operation (see Table 1).

Table 1. Scopes of software timing verification, validation and safety measures.

Stage Early Stages Late Stages Operation
Name Usually referred to as

verification or budgeting

Usually referred to as validation

or testing

Safety measures or enforce-

ment

Goal Feasible schedule maxi-

mizing utilization. Build a

“correct” system

Gather evidence of schedule be-

ing respected. Detect incorrect

behavior

Preserve safety. Guarantee

safety despite incorrect be-

havior

Means Estimate Track and Report Track and React

Target End-to-end timing for

tasks

Detailed timing information for

each task for diagnosis pur-

poses

End-to-end timing for tasks

Result Tight upper bounds Actual contention Safe operation

Research Abundant scientific works Received little attention.

The target of this work
Some scientific works

Verification (budgeting) For manycores, an extensive set of timing budgeting techniques are

used to factor in the fact that multiple functionalities can be simultaneously executed. This includes

hardware techniques to isolate tasks or bound the impact they can cause on each other [7, 27, 28,

53, 60, 67] and software techniques that control the number of requests each task generates as a

way to control the contention they can cause on others [6, 11, 14, 32, 38, 43]. In the case of wmesh

NoCs, budgeting solutions result in a packet-level analysis of contention to accurately bound the

maximum contention experienced per packet and/or for the task as a whole.
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Current main techniques used to bound contention in wNoCs can be categorized as follows:

• Scheduling Theory techniques [65] consider tasks contention managing flows priorities,

multiple VCs and flit-level preemption so as to reduce contention suffered by high-priority

flows.

• Network Calculus [23, 35, 49] techniques derive contention bounds by using mathematical

and statistical tools and assuming per flow packets arrival and departure distribution curves.

• Recursive Calculus techniques [12, 37] use branch and prune or branch, prune and collapse

algorithms to compute end-to-end packets latency [36].

• Compositional Timing Analysis techniques [51, 59] extend Network Calculus to obtain the

worst-case contention delay.

• Statical Timing Analysis Techniques mathematically compute WCD and WCET by systemat-

ically considering the worst-possible contention case [46, 50].

Some of those solutions break down contention among direct and indirect categories [23, 24, 65],

where potential contention caused by flows sharing any resource with the one under analysis (e.g.

an arbiter or a buffer in a router) is regarded as direct, and remaining contention as indirect. This

concept is further reviewed in Section 3.

Validation (testing) mechanisms are used during late design stages to provide evidence on

the correctness of the selected time budgets (i.e. WCET or contention estimates). Validation relies

on extensive testing intended to cause extreme – yet possible – behavior. The absence of timing

failures, i.e. software components overrunning their time budget, serves as an argument to sustain

the correctness of the software timing behavior. Focusing on total observed contention effects

only is generally considered inadequate as observations can hide undesired contention behavior,

decreasing the confidence that can be put on testing. In this work, we focus on improving the

effectiveness and informative value of validation testing.

Operation (enforcement). Safety measures are deployed to prevent timing violations during

system operation by monitoring the use of resources for the running tasks. In the former case,

mechanisms are deployed to monitor the execution time of tasks to take corrective actions in case

of a timing budget exhaustion (e.g. watchdogs [20]). In the latter case, the number of accesses to

shared hardware resources (or any other usage measure) is monitored [7, 43] to take corrective

actions when specific usage thresholds are exceeded.

3 DEFINING PAIRWISE CONTENTION (PWC)
Previous works in the literature have focused on providing bounds to NoC contention, but they

provide no information about the actual NoC contention tasks suffer. This is better illustrated with

an example. We model a 2x2 2Dmesh NoC with XY routing, see Figure 3, in which all cores target

the same memory controller located in the right output port of R3. For simplicity, we assume that

all routers have one virtual channel, ports have a 2-entry queue that can store two packets and

traversing a NoC link and a router takes 1 cycle.

The left bar in Figure 2 shows the WCET estimate for τA that sends 1000 packets to the NoC

derived assuming that the other three tasks are larger than τA so that they send packets at their

maximum rate during τA execution time. The WCET estimate is derived as the addition of the

execution time in isolation of τA (i.e. with no contention), Tiso, and the WCD derived for each

packet [46, 55]. In this case,Tiso = 7000 cycles andWCD vary for each contending task based on the

core in which they run and the path followed to reach the memory controllerWCDB = 2000 cycles,

WCDC = 5000 cycles,WCDD = 5000 cycles. So that WCD and WCET are derived analytically

and built on information about the contention τA packets suffer in each link, buffer and routing

information, and the number of requests each contenting task sends.
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For the purpose of illustration, we then run τA in three different scenarios: S1, S2, and S3. In all of

them, the number of requests each task generates is the same 1000 but the tasks take different times

to execute in each experiment. Bars labeled S1, S2, and S3 in Figure 2 show the actual contention

suffered by τA from the other tasks in each scenario. In S1 requests from τA and τD do not overlap

in time so the latter does not generate any contention on τA, while τB and τC only partially overlap.

In S2 the situation is similar with the exception that τB and τA request do not collide and the request

from τC and τD only partially collide with τA. Finally, in S3, tasks send requests to the NoC so that

they do not collide with each other.

Fig. 2. Comparison between worst-case and observed contention CTs generate on τA under scenarios S1, S2
and S3 as introduced early in this Section.

Hence, τA’s WCET analytical computation that builds on WCD (bounds) caused by τA worst

potential arbitration packets alignment does not reflect the actual contention suffered by the packets

of τA in scenarios S1 to S3 nor correctly determines which tasks are creating more contention to τA.
In fact, the WCD and WCET derived for τA are only valid as a global contention upperbounds for

all three scenarios but not as a method to bound the maximum contention contribution each task

can create to τA. The actual contention τA suffers depends on how requests align with the requests

of other tasks, which varies across experiments. Hence, techniques deriving bounds to contention

(WCD) cannot be used to measure the actual contention tasks suffer.

That is so because bound-based approaches, in general, assume certain traffic conditions (e.g.

worst-case packets alignment with a certain packets arrival distribution) that may not reflect the

real traffic behavior in execution. However, as they do not analyze fine-grain real traffic from a run,

these techniques cannot provide any feedback other than whether the final WCET is accomplished

or not (not reliable in validation). Similarly, bound-based approaches that rely on static arbitration

policies (e.g. round-robin) to compute the shares between tasks (i.e. bandwidth distribution), cannot

capture bandwidth distribution variation over time in tasks’ runs. This can occur, for instance,

when one or more tasks of the system do not use the entire bandwidth assigned by the arbitration

policy used. In that case, the remaining unused bandwidth is distributed among the NoC and can

be used by the other CTs. That can lead to a scenario where a task generates more contention to

other tasks than the expected one assuming a computed bandwidth distribution independently

if it exceeds or not the global WCET. In these kinds of scenarios, only fine-grain packet analysis

methods such as PWC and GRV can detect and provide precise information useful for validation

and verification purposes.

Detailed information about actual contention suffered by a task in the mesh allows detecting

any unexpected timing behavior during the validation phase, even if no deadline violation occurs

but tasks individually exceed their quota (i.e. the contention they are expected to cause on the

TuA). This may happen, for example, when contention caused by τB on τA exceeds its estimated

bound, but the total contention caused by all contenders on τA happens to stay within the admitted

threshold. Such diagnosis information also helps to identify the root cause of a timing misbehavior
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during operation and promptly react by applying the appropriate safety measure like switching to a

different precomputed task-to-core mapping or adjusting the interconnect configuration [54]. Safety

standards and reference documents like CAST-32A and A(M)C 20-193 in avionics advocate identi-

fying each interference channel and provide evidence that it has been removed or mitigated. This

cannot be easily achieved with end-to-end measurements and requires per-resource (interference

channel) contention tracking.

Actual contention bounds can also be used as additional evidence that the derived contention

bounds are correct since small changes in the configuration in the NoC can invalidate the derived

bounds. To that end, benchmarks generating high load on the network are executed against reference

applications to compute the observed contention and the theoretical bound.

In both cases, detailed information about actual contention can provide accurate diagnostics in

specific (and relevant due to causing overruns) scenarios that are unlikely to be easily reproducible

due to the difficulties to control application execution at a sufficiently fine grain. Hence, overruns

may easily occur sporadically and mechanisms to diagnose the causes without needing re-execution,

which may not reproduce the overrun, become of prominent importance. However, the challenge

lies in determining the information that is required and how to combine it to produce a metric that

captures the actual contention that tasks generate on each other.

3.1 PWC for centralized interconnects
For centralized interconnects, like buses, PWC can be defined as the contention a request from a

core (master) CB causes on a request from another core CA. It can be derived as the time interval

in which CB is granted access to the interconnect and CA has its request signal active. Hence, in

centralized interconnects, contention-related information is available in a single location and, since

contention occurs locally in the centralized interconnect, reasoning about the cause and effects of

contention (‘who’ causes it and ‘who’ experiences it) is relatively simple.

Intuitively, PWC for wmesh could be defined as for centralized interconnections by applying it

locally in each router. As an input port can be shared by multiple packets belonging to different

flows from different cores, the contention is tracked per packet and classified per flow. The rule to

account for contention is relatively straightforward: every cycle a given packet Pj from Fj (terms

are defined in Table 2) in a given input port in Rn is granted access to the output port during the

header flit arbitration, the other packets (e.g. Pi and Pk from Fi and Fk ) that lose the arbitration are

accounted for an additional cycle of contention, see Figure 1c left router (Rn). This contention is

also accounted for while Pj is using the output port during the transmission of body flits, and the

flits in the other input ports, e.g. Pi and Pk , or the PME are waiting to get access to the same output

port. In both scenarios, every cycle contRnj◃i and cont
Rn
j◃k are incremented

2
.

However, this approach that considers local router information only fails to capture the contention

caused due to propagated backpressure, which is common in wmeshes. It arises, for instance, when

a packet Pj in the output port under analysis in Rn cannot access Rm because it is busy. For instance,

in Figure 1c, Pi and Pk are delayed by Pj who wins the arbitration for X+ in Rn but awaits to win

X+ arbitration in Rm . Propagated backpressure can happen when the output port in Rm that Pj
is willing to use is occupied by another packet Pr . In this scenario, if we only use local router

information, contRnj◃i and contRnj◃k in Rn would be incremented every cycle Pi and Pk are stalled

because Pj cannot be transmitted due to backpressure from Pr in the following router. However, in

reality, Pj is not ascribable for stalling Pk and Pi , which are instead stalled in Rn because of Pr ’s

2
Note that, a flow is composed of packets, and each packet is composed of flits. However, in several discussions in this

paper, some of these terms can be used indistinctly. For instance, a (header) flit may suffer contention, but we can also state

that the packet suffers contention.
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Table 2. Definitions used in this paper.

Term Definition

R Set of N ×M routers in the mesh

Rn A router in R

Fi Stream of packets (Flow) traversing the same route

Pi A generic packet belonging to flow Fi
PTTPi Packet Traversal Time of a packet Pi
PTT Rn

Pi
Packet Traversal Time of a packet Pi in router Rn

FTTFj Flow Traversal Time of all packets in Flow Fj
Ĥi Ordered set of Rn routers that define Fi ’s path

zllRnPi Traversal time of packet P when traversing router Rn without contention

contRnPi Contention a packet Pi suffers due to all other contending packets in router Rn
contRnj◃i Contention a packet Pi in suffers due to a packet Pj in router Rn
contRnτx Contention task τx suffers from all other tasks in Rn
cont l r cτx Local Router contention task τx suffers due to all other tasks

cont r rcτx Remote Router contention task τx suffers due to all other tasks

cont l r c ,Rnτx Local Router contention task τx suffers due to all other tasks in Rn
cont r rc ,Rnτx Remote Router contention task τx suffers due to all other tasks in Rn

lrcRnPi Local Router Contention a packet Pi suffers due to all other contending packets in router Rn
r rcRnPi Remote Router Contention a packet Pi suffers due to all other contending packets in router Rn
lrcRnj◃i Local Router Contention Fi suffers due to Fj in router Rn
r rcRnj◃i Remote Router Contention Fi suffers due to Fj in router Rn
contτi Total contention suffered by τi

contτj◃τi Total contention τi suffers due to τj

backpressure in Rm . Accordingly, if we consider the state beyond the local router, contRnr◃i , cont
Rn
r◃k

and contRnr◃j should be updated instead as Pr is the ‘guilty’ packet that prevents Pi , Pk and Pj to
traverse Rn .

3.2 PWC for NoCs
We illustrate PWC for NoCs via the scenario depicted in Figure 3 in which four tasks (τA-τD ) run in

a 2x2 wmesh-connected multicore, with τA being the TuA and τB , τC and τD the CTs. τA runs in

(the core at) R0, τB in R1, τD in R2 and τD in R3.

For this example, let us assume that the upper gray area in the left bar of Figure 4 represents the

cumulative contention experienced by the packets of τA (the bottom stripped area is the time in

isolation of τA). The contention part of the τA execution time is incremented every cycle a packet of

τA is stalled by a contending packet of a different task, whether the other contending packet is either

in the same router as the stalled packet of τA (local contention) or in another router propagating

contention through backpressure (remote contention).

The contention time that τA’s packets experience can be broken down following different criteria,

as shown in the different bars in Figure 4. From left to right, (i) per contender task delaying τA
in the wmesh; (ii) per router where τA suffers contention; and (iii) a combination of both, i.e. per

router and contending task. Section 4 details how the information gathered by PWC and GRV

allows producing those and many other breakdowns. The latter breakdowns let us understand that

τA is suffering contention mainly in R0, R1, and R3 by τB , τC , and τD , respectively, capturing the
requirements for validation described in previous sections.

Overall, to properly capture propagated backpressure our proposed PWC differentiates between

local contention and remote contention.



Accurately Measuring Contention in Mesh NoCs in Time-Sensitive Embedded Systems 11

Fig. 3. 2x2 2Dmesh XY-routing
setup

Fig. 4. Synthetic example breaking down of contention into its PWC
components

• Local router contention (lrc) is experienced by a packet Pi in one of the routers Rn to its

destination, i.e. Rn ∈ Ĥi where its header flit is and the contention (guiltiness) can be ascribed

to a packet Pj that gains the arbitration or is traversing one of the output ports in Rn .
• Remote router contention (rrc) is experienced by a packet Pi in one of its routers Rn and can

be ascribed to propagated backpressure in another router in the mesh. Hence, the contention

is not ascribable to any other packet in the same router (which would instead fall into the lrc

category). As a distinguishing factor, in this scenario, the contention guiltiness cannot be

ascribed within the same router Rn where the contention takes place, but is to be assigned to

another packet Pj in one of its routers Rm ∈ Ĥj .

Both lrc and rrc are identified as part of PWC and defined per pair of tasks (i.e. a task causes

lrc and/or rrc on another task). Also, the rrc suffered by Fi can be further broken down per router,

allowing to identify where contention originates.

It is worth noting that the same breakdown principle we apply to local/remote contention can

be applied to direct/indirect contention classification [23, 55]. That is, our proposal is transversal to

both. Direct/indirect contention has been proposed to classify the contention that packets suffer

from other flows depending on whether those other flows share or not physical resources in their

paths with the flow of the TuA. Beyond the fact that direct/indirect classification has been used so

far only for contention estimates or upper bounds (i.e. expected maximum contention), it can also

be applied to measured (observed) contention. However, in our view, the local/remote classification

is more naturally applied as it provides insightful information about where and who delayed the

packets of a given task’s flow, rather than capturing whether the flow delaying the TuA’s flow

shares or not routers with it. Hence, and without loss of generality, during the rest of this work, we

apply our approach to local/remote contention.

It is also worthmentioning that contention tracking approaches can be applied to anywmesh NoC

configuration that uses deterministic routing setups whereas techniques to derive NoC contention

bounds typically require more specific configurations so as to contain NoC contention estimates.

That is, under an unsatisfactory NoC configuration for which no bounds can be derived, contention

tracking allows determining, for a specific run, how tasks affect each other in the NoC. For a NoC

configuration for which bounds can be derived, contention tracking allows validating the bounds

derived for each flow/task and assessing how far the real case is from the worst case. In that line,

while our solution is not restricted to wmesh NoCs, they offer a favorable application scenario

because it has been shown that tight bounds can be produced for specific configurations thereof.
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4 DEFINING A GOLDEN REFERENCE VALUE (GRV)
Building on PWC, we define a GRV that correctly captures the sources of contention in a mesh

NoC. GRV aims at enabling effective diagnosis of the root causes of potential timing task violations,

as well as identification of individual contention bounds for tasks. Moreover, tailoring PWC metrics

to specific COTS multicores where monitoring support is limited requires a reference value to

assess their accuracy. GRV fills this gap by allowing the comparison of the specific PWC metric for

such a COTS processor against GRV (e.g. in a timing simulator), thus allowing to tune of the PWC

metric. For the definition of GRV, we identify several properties that a reliable GRV to breakdown

contention in wmesh NoCs must exhibit.

(1) Completeness. The criterion must classify as contention all the additional time, w.r.t. to

isolation time, that each packet of τA needs to traverse the NoC due to interaction with its

CTs.

(2) Source and accuracy of the contention. The criterion must be capable of identifying the

packets causing contention on any given packet of task τA, thus allowing to know where

contention occurred (router), what task caused it, andwhether it was lrc or rrc. This per-packet

information can be aggregated to have per-task figures.

In order to show that our proposed GRV achieves these goals, we perform an analysis at packet

level, where the source of each contention cycle can be singled out unequivocally. We focus on the

NoC contention. Thus, the contention that occurred in other shared resources is not considered in

the analysis. Note that, in this paper, we implicitly use the term time to refer to a discrete number

of cycles, putting aside any further consideration about the duration of each cycle (i.e. as if all

the analysis was performed under constant operating frequency). Considering cycles of different

duration would require expanding each term in each formula into as many terms as potential cycle

durations were possible, which would be against the clarity of our already complex formulation.

We define the Packet Traversal Time of a packet Pi , denoted as PTTPi , as the cumulative time

spent by Pi in all routers Rn ∈ Ĥi it traverses. Accordingly, we define the Flow Traversal Time of a

flow Fx , denoted as FTTx , as the addition of the traversal time of all packets Pi ∈ Fx .

FTTx =
∑
Pi ∈Fx

PTTPi =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

PTT Rn
Pi

(1)

More in detail, PTT Rn
Pi

is the result of the packet Pi traversal time when traversing router Rn

without contention, also called Zero Load Latency (zllRnPi ), plus the increased traversal time due to

other packets contention (contRnPi ).

PTT Rn
Pi
= zllRnPi + cont

Rn
Pi

(2)

On the one hand, zllRnPi depends on the router architecture implementation (e.g. number of pipeline

stages). It can be obtained measuring the time a packet Pi takes to traverse router Rn in isolation
3
.

On the other hand, contRnPi is determined by the interference caused by other packets on packet Pi
in router Rn . As introduced in Section 3.2, we classify the contention a packet Pi suffers in router

Rn into two different types of contention:

• local router contention (lrcRnPi ) when the packet causing a delay to Pi is in router Rn .

3
In many NoCs, zllRnPi = zll

Rm
Pj

for all packets Pi and Pj of any flow, and all routers Rn and Rm in the NoC, so we could

refer simply to zll , but we keep zllRnPi for the sake of generality.
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• remote router contention (rrcRnPi ) when the packet delaying Pi is in another router when Pi
suffers contention in router Rn .

Accordingly, we can define contRnPi as follows:

contRnPi = lrc
Rn
Pi
+ rrcRnPi (3)

In order to fulfill the identified mandatory properties on the PWC metric (completeness, source,

and accuracy of the contention), we bound the classification of lrc and rrc for a given packet Pi ∈ Fx
in a router Rn to a specific time (cycle) t , where t ∈ stalled(Pi ,Rn). Note that stalled(Pi ,Rn) is the

set of cycles when Pi is stalled in Rn and its cardinality is |stalled(Pi ,Rn)| = PTT Rn
Pi
− zllRnPi . That is,

stalled(Pi ,Rn) is the Pi traversal time of routerRn minus the zero load latency. It is worth noting that

contRnPi and stalled(Pi ,Rn) terms are closely related. The former one identifies the cumulative effect

of contention that Pi suffers in Rn whereas the second one is used to identify, in the formulations,

the specific set of cycles where the contention happens. For example, stalled(Pi ,Rn) = {3, 4, 5}

contains the set of cycles where the contention occurs and contRnPi = 3 contains the count of these

cycles.

For each t ∈ stalled(Pi ,Rn), there exists exactly one guilty packet Pj ∈ Fy that causes such cycle

of contention on Pi .
We can define contRnPi (t) with the lrc and rrc parameters, i.e. the contention a packet Pi suffers

in a router Rn at time t (Eq. 4) with respect to a guilty packet Pj (Eq. 5), as follows:

contRnPi (t) =
∑
Pj

contRnj◃i (t) (4)

contRnj◃i (t) = lrc
Rn
j◃i (t) + rrc

Rn
j◃i (t) (5)

where lrcRnj◃i (t) and rrc
Rn
j◃i (t) represent the PairWise Contention unfolding of the local and remote

contention terms in Eq. 3. Note that, for a given t ∈ stalled(Pi ,Rn), exactly one of the two terms

in Eq. 5 is one and the other is zero for packet Pj . Those terms are both zero for any other packet

different from Pj .
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We can model the cumulative contention suffered by a task τx building on FTTx as follows:

contτx =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

t ∈stalled (Pi ,Rn )

contRnPi (t) (6)

We can build on Eq. 4 and 5 to narrow the scope of Eq. 6 to model the PWC suffered from τx
because of τy (per contender breakdown in Figure 4):

contτy◃τx =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

t ∈stalled (Pi ,Rn )

∑
Pj ∈Fy

(
lrcRnj◃i (t) + rrc

Rn
j◃i (t)

)
(7)

By restricting Eq. 6 and 7, we can also obtain different contention breakdowns, such as those

shown in Figure 4 or combinations thereof, for instance considering only lrc or rrc , considering
only a given router Rn , or considering only a given contender τy . In particular, we can model the

cumulative contention suffered by a task τx per router Rn , denoted as contRnτx , building on Eq. 6 as

follows (per router breakdown in Figure 4):

contτx =
∑

Rn ∈Ĥi

contRnτx (8)

contRnτx =
∑
Pi ∈Fx

∑
t ∈stalled (Pi ,Rn )

contRnPi (t) (9)

where contRnPi (t) is the PairWise Contention suffered by each packet Pi of flow Fx from all other

tasks unfolded per router Rn .
Similarly, we can model the cumulative contention suffered by a task τx per contention type,

denoted respectively as cont lrcτx and contr rcτx , as follows:

contτx =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

t ∈stalled (Pi ,Rn )

(
lrcRnPi (t) + rrc

Rn
Pi
(t)

)
(10)

cont lrcτx =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

t ∈stalled (Pi ,Rn )

(
lrcRnPi (t)

)
(11)

contr rcτx =
∑
Pi ∈Fx

∑
Rn ∈Ĥi

t ∈stalled (Pi ,Rn )

(
rrcRnPi (t)

)
(12)

where lrcRnPi (t) and rrc
Rn
Pi
(t) are respectively the amount of local and remote router contention each

packet Pi from a flow Fx suffers from all other packets in router Rn in cycle t .
The finest grain cumulative contention analysis breakdown using the 3 parameters, namely task,

type of contention and router, can be obtained building on Eq. 10 in the following manner:

cont lrc ,Rnτx =
∑
Pi ∈F̂x

t ∈stalled (Pi ,Rn )

(
lrcRnPi (t)

)
(13)

contr rc ,Rnτx =
∑
Pi ∈F̂x

t ∈stalled (Pi ,Rn )

(
rrcRnPi (t)

)
(14)
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where lrcRnPi (t) and rrc
Rn
Pi
(t) are respectively the lrc and rrc contention suffered by each packet Pi

of Fx in Rn in cycle t .

Table 3. Functions used in this paper.

Term Function
stalled(Pi ,Rn) Given a packet Pi in a routerRn it returns the cycles where Pi is stalled suffering

contention in Rn .
PH (Pi ,Rn, t) Given a packet Pi in a router Rn at time t , it returns the packet Pj that is the

packet at the head of Pi input port.
PSO(Pi ,Rn, t) Given a packet Pi in a router Rn at time t , it returns the packet Pj that is

targeting the same output port Pi targets, and granted permission to move

forward (e.g. to the next router), if any.

HN (Pi ,Rn+1, t) Given a packet Pi at router Rn in time t , it returns the packet Pj that is the
head packet of the targeted input port of Pi in the next router Rn+1.

SP(Pi ,Rn, t) Given a packet Pi at router Rn in time t , it returns the packet Pj that causes
contention on Pi in a router Rm different to Rn due to backpressure. Such

packet Pj is found following the procedure described in steps (S3a), (S3b) and

(S3c) detailed in Section 4.2.

4.1 Defining lrc
For the sake of clarity, in this section, we use Pi to refer to the packet under analysis, and Pj and Pk
to other packets in the same router.

Lrc is defined over the set of packets that are ready to be arbitrated, and it identifies the contention

a given packet Pi ∈ Fi suffers due to the arbitration of another packet Pk ∈ Fk in the same router Rn .
A packet is considered ‘ready to be arbitrated’ whenever it could leave the router in a no-contention

scenario.

We identify two scenarios. S1 captures lrc when Pi is ready to be arbitrated and is waiting for

another packet Pk to traverse its targeted port (i.e Pi loses the arbitration). S2 considers lrc when
Pi is not the first packet of an input port and there is at least one packet Pj in that input port that

is currently suffering lrc contention due to another packet Pk in another input port. As in this

section we deal with lrc, all scenarios take place in the same router Rn . Note that we build on the

definitions of PH () and PSO() in Table 3.

(S1) At a given time t in router Rn ∈ Ĥi , a packet Pi is queued and ready to be arbitrated at the head
of its corresponding input port (Pi = PH (Pi ,Rn, t)). Pi suffers contention from another packet

Pk that is currently traversing the same target output port as Pi , i.e. ∃Pk |Pk = PSO(Pi ,Rn, t).

Therefore, lrcRnk◃i (t) = 1.

(S2) At a given time t , a packet Pi is not the head of its corresponding input port in Rn ∈ Ĥi such

that ∃Pj = PH (Pi ,Rn, t), with Pj , Pi . If Pj is granted access to traverse the output port,

denoted Pj = PSO(Pj ,Rn, t), then lrc
Rn
j◃i (t) = 1. Alternatively, Pj could be in turn delayed by

another packet Pk from another input port that is granted access to traverse Pj ’s output port,

denoted Pk = PSO(Pj ,Rn, t). In this case, Pk is the one causing contention, i.e. lrcRnk◃i (t) = 1.

Note that when Pi = PH (Pi ,Rn, t) and Pk = PSO(Pi ,Rn, t) = ∅ but the target of Pi is not a router
(i.e. it is a PME) then no packet is causing NoC contention as contention may arise from the PME.
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4.2 Defining rrc
As for Section 4.1, in this section, we use Pi to refer to the packet under analysis, Pj and Pk to other

packets in the same router. Besides we use Pf and Pд to refer to other packets in a remote router.

As introduced before, rrc captures the contention a packet Pi suffers in router Rn due to the

arbitration of another packet Pд in a router Rm , Rn . That is, those scenarios in which a packet is

ready to be arbitrated to an output port but suffers contention delay without this being ascribable

to any other packet traversing any output port of the same router (which would fall into the lrc

category instead). With this rrc definition, we address the same corresponding scenarios already

explained in lrc but with the relevant difference that contention actually arises in a remote router.

(S3) At a given time t in router Rn ∈ Ĥi , a packet Pi is queued and ready to be arbitrated at the

head of an input port, i.e. Pi = PH (Pi ,Rn, t), and no packet is granted to traverse the output

port because of backpressure from the destination input port (∅ = PSO(Pi ,Rn, t)). The packet
causing such contention needs to be looked up with the following recursive procedure:

(S3a) If the packet Pд at the head of the target input port in the following router Rm is granted

access to traverse its output port, then Pд causes contention on Pi .
(S3b) If the packet Pд at the head of the target input port in the following router Rm is stalled

because another packet Pf in another input port in Rm is granted access to traverse its

output port, then Pf causes contention on Pi .
(S3c) If the packet Pд at the head of the target input port in the following router Rm is stalled

and no packet in Rm is granted access to traverse Pд ’s output port, then the packet causing

contention on Pi needs to be looked up recursively in router Ro repeating the process from

(S3a), where Ro is the next router for Pд in Ĥд . If the next target of Pд is not a router (i.e. it is
a PME), then no contention guiltiness is ascribable to the NoC. Hence, no NoC contention

is suffered by Pi
4
.

Note that, with this procedure, we find a packet Pд in the NoC causing rrc on Pi , if it exists.
We define such packet as Pд = SP(Pi ,Rn, t), where SP(Pi ,Rn, t) performs the recursive search

described in steps (S3a), (S3b) and (S3c). Overall, rrcRnд◃i (t) = 1.

(S4) The previous scenario can be extended to also cover the cases in which Pi is not ready to be

arbitrated. First, we identify the packet at the head of Pi ’s input port Pj = PH (Pi ,Rn, t), as in
(S2). Then, we find out the packet causing remote contention on Pj , namely Pд = SP(Pj ,Rn, t),

which in turn causes contention on Pi . Therefore, rrc
Rn
д◃i (t) = 1.

4.3 Multiple VC impact on lrc and rrc
Generally, VCs are implemented to minimize the contention caused by packets that are in the same

router’s input port but that go to different output ports. That allows, for instance, to avoid head of

line (HoL) blocking effect when possible maximizing routers’ packets ejection. To do so, an input

queue per port is assigned to each VC. VCs can be dynamically or statically allocated. With static

VC allocation, the idea is to isolate certain communication flows which improve time predictability.

With dynamic VC allocation, HoL blocking is reduced and average performance is improved but

time predictability is more difficult to achieve which usually leads to pessimistic WCET estimates.

Multiple VC’s implementations in routers exist depending on the domain where they are applied.

In the high-performance domain, input port arbitration and VC arbitration are done together or

in multiple rounds so as to maximize input ports and VCs requests matching with the available

output ports.

4
Notice that even though Pi does not suffer contention ascribable to the NoC, it can be suffering contention in other shared

resources as the PME
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However, in TSES with different area and energy constraints, simpler solutions [22] are usually

implemented favoring also the systems’ time predictability. For instance, VCs are usually imple-

mented in on-chip routers by performing two arbitration rounds. In the first round, the input port

that is granted access to the output port is selected and, in the second one, the VC for the already

selected input port is chosen
5
.

The extension of PWC and GRV to include VCs with static or dynamic allocation assuming a

hierarchical two-round arbitration can be done by slightly modifying the functions already defined

in Table 3. Functions that initially refer to the head packet of the input port, now need to provide

the head packet of the VC in the same input port that has the turn for granting the VC arbitration.

More in detail:

• PH (Pi ,Rn, t): PH function that initially was returning the Pj packet head of Pi packet input
port for Rn in time t, now returns the packet Pj that is the packet that has won or has the

turn to win the VC arbitration inside packet’s Pi input port.
• PSO(Pi ,Rn, t): PSO function as PH, needs to return the packet Pj that is the head packet that

has won the VC arbitration inside packet’s Pj input port, target the same output port of Pi
and granted permission to move forward to the next router, if any.

• HN (Pi ,Rn+1, t): HN function also should return the packet Pj that is the head packet of the

targeted input port and VC of Pi in the next router Rn+1.
• SP(Pi ,Rn, t): SP function definition, in contrast, keeps being correct as it recursively refers to

other scenarios (S3a, S3b and S3c in Section 4.2) that are now compatible with the hierarchical

static-VC allocation adoption.

PWC formulation and scenarios can also be extended tomore complex VC router implementations

by modifying functions according to the VC and input port arbitration criterion used in systems’

routers (e.g each function returns a set of packets in the head of each VC of an input port).

5 DERIVING GRV
The use of GRV for PWC can be leveraged in two different stages of the software development

cycle, as introduced in Section 2. First, during the timing validation phase for each test performed

the breakdown provided by GRV complements the raw execution time measurements to determine

whether the contention tasks generate each other stay within the allocated budget. GRV helps to

distill the root causes for those cases with a test failing, i.e. resulting in a timing violation. It also

captures hidden contention effects that compensate each other in the test but can potentially arise

during operation. And second, GRV can be exploited during operation in case of overruns so that

appropriate safety measures are applied, based on the root cause of the timing violation.

While the definition of GRV remains unchanged, regardless of the application scenario, the same

cannot be said about its implementation. During the validation phase, execution time information

of the packets/flows is collected whilst tests are executed. This information is analyzed off-line,

reporting back any contention-related issue. Instead, during the operation phase, the analysis shall

be performed on-line, which is more challenging since information is distributed in the wmesh,

and a computation node or hardware, would be required to derive GRV. In this work, we target

timing validation and hence, we focus on the former use of GRV (off-line analysis).

5.1 Off-line Analysis
In this case, GRV works with an execution trace containing information about packet ingress and

egress in each router. Each generated trace contains: packet time information including arrival and

leaving time to/from a router in the 2Dmesh, its source packet (i.e. the flow to which it belongs),

5
Notice that in the lrc and rrc formulation presented, we only consider the first arbitration round mentioned.
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Algorithm 1 GRV offline implementation

1: procedure Compute_GRV( lrc, rrc)
2: for each time t in Time do
3: for each router Rn in R do
4: GRV(Rn , t , lrc , rrc)
5: end for
6: end for
7: end procedure

Algorithm 2 GRV routine

1: procedure GRV(Rn , t , lrc , rrc) ◃ Call for Router Rn at time t
2: Pr eady (Rn, t) ← packets ready to be arbitrated in Rn at time t
3: for pi ∈ Pr eady (Rn, t) do
4: < CONT ,Rдuilty ,pдuilty > = GRVrec(pi ,Rn, t )
5: if CONT then
6: if Rдuilty == Rn then
7: lrc[Rn][pi .src][pдuilty .src] + +
8: else
9: rrc[Rn][pi .src][pдuilty .src] + +
10: end if
11: end if
12: end for
13: end procedure

destination, identifier, the router identifier in which the packet is stored at the time of the recording.

We generate traces with the gNoCsim simulator [1], as shown in Section 6. We added regular

monitors capturing traffic information in the NoC similar to how they can be implemented in any

COTS multi/many-core based system. This allows us to compare GRV against PWC to assess its

accuracy.

The information in the traces is used to determine the (contending) packet delaying the progress

of any other (stalled) packet in the NoC. To that end, GRV checks for every flow, i.e. core, the

packets that enter and leave each router and compares their timing with the ideal case (i.e. the

packet is never stalled inside the router). When a packet is stalled, GRV identifies the source of the

stall and classifies the contention delay as caused by the contending packet/flow. GRV also records

the router where the stalled packet is so that every single cycle of contention experienced by any

packet can be tagged with the contending flow, the router where it is experienced, and whether it

fits the lrc or rrc case.

The outermost level of the GRV implementation is shown in Algorithm 1. The algorithm operates

on the set of routers in the mesh (R) and accumulates the information on contention in specific

data structures (lrc and rrc).
For every time instant t , which corresponds to cycles in a discrete approximation, the algorithm

considers the packets’ status at time t (e.g. packets position in the buffers, packets traversing

routers,..) and calls GRV routine (see Algorithm 2) on all routers in R to populate the lrc and rrc
data structures with contention information.

GRV routine builds on a recursive approach to compute lrc and rrc calling GRVrec. As a base
step, the algorithm iterates over all packets ready to be arbitrated and queued in all Rn router input
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ports (they were not granted access to their output port): the recursive step GRVrec is invoked on

those packets to determine the source of contention, if any. GRVrec eventually returns the guilty

packet pдuilty causing contention to the packet under analysis (pi ) and the router Rдuilty where

pдuilty packet has been found as the actual source of contention. Note that CONT is a boolean

indicating whether any packet effectively causes NoC contention on pi .

• If Rдuilty corresponds to Rn , then pдuilty causes the contention in the same router where p
suffers the contention (Rn ). Hence, contention is classified as local router contention (lrc).

• Otherwise, if Rдuilty identifies a different router than Rn , the contention suffered by p must

be classified as remote router contention (rrc).

In both cases (lrc and rrc) contention is accounted in the router where pi suffers the contention (Rn ).
Per-flow information on what flow causes contention and what flow suffers it is directly obtained

from the tasks owners of p and pдuilty .
Function GRVrec (see Algorithm 3) implements the core search for the pдuilty in router Rдuilty

that is causing contention to p at time t . The function implementation exhaustively captures the

lrc and rrc scenarios detailed in sections 4.1 and 4.2 respectively.

5.1.1 lrc.
As a first step,GRVrec retrieves the head packet at the input port targeted by p (i.e. the packet

passed toGRVrec as input), which could be p itself. In line 3, the algorithm gets the packet granted

access to the output port targeted by the input port head ph . Packet pд (line 4), if it exists, is the one

that causes contention to the others. In the very first invocation to GRVrec from GRV , pд in line 4

is in the same router Rn as p (i.e. pi inGRV ) and hence, generates lrc on p. By definition, if pд = ph ,
then ph would be granted access to the output port, and hence, would experience no contention

but cause contention on p. A special scenario is where p = ph = pд : in that case p experiences no

contention at all.

The lrc scenarios described in Section 4.2 are exhaustively modeled by Algorithm 3 as follows:

• (S1): if PH (p,Rn, t) = p and pд , p, the packet under analysis is stalled in the head of the

input port suffering lrc contention because of another packet, from another input port in Rn ,
being arbitrated in the same output port.

• (S2): if PH (p,Rn, t) , p and pд , p, the packet under analysis is stalled suffering contention

because the packet at the head of the same input port is currently being arbitrated, or the

latter is itself stalled by another packet, from another input port in Rn , being arbitrated in its

output port.

Conversely, if pд is empty in the first call (line 6), but the target of p is not a router (line 10), then

no other packet in the NoC is blocking p. Hence, no NoC contention needs to be accounted for.

5.1.2 rrc.
If pд is empty in the first call (line 6), then the packet causing contention is in a different router

and we fall into the rrc scenario. Hence, we obtain pnext , which corresponds to the head packet

in the input port of p’s next router (Rn+1). This is shown with function HN (ph,Rn+1, t) in line 8.

Then, we trigger the recursive call toGRVrec over pnext (line 9) to find the blocking packet in Rn+1
or beyond. The recursion ends as soon as the PSO returns a non-null value or the next target of

the packet under analysis is a PME. The rrc scenarios described in Section 4.2 are exhaustively

modeled by Algorithm 3 as follows:

• (S3a-c): if in the first iteration PH (p,Rn, t) = p but PSO(ph,Rn, t) = ∅ then the packet under

analysis is suffering contention because of a packet in another router. The packet causing

contention could be either: pnext that is the head of the target input port for p in the following

router Rn+1 (S3a), or the packet blocking pnext , which can be either the packet being granted
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Algorithm 3 GRV Recursive function

1: function GRVrec(p, Rn , t ) ◃ Call for packet p in Router Rn at time t
2: ph ← PH (p,Rn, t)
3: pд ← PSO(ph,Rn, t)
4: if pд , ∅ then ◃ pд traverses the output port

5: return <TRUE, Rn , pд>
6: else
7: if tarдet(ph) is a router then
8: pnext ← HN (ph,Rn+1, t)
9: return GRVrec(pnext ,Rn+1, t )
10: else
11: return <FALSE, Rn ,ph> ◃ Target is a PME

12: end if
13: end if
14: end function

access to pnext output port (S3b) or a packet in another router down the chain of routers

(S3c).

• (S4): if PH (p,Rn, t) , p and PSO(ph,Rn, t) = ∅, then we fit exactly in the same scenarios as

in the previous point, with the only difference that p is not suffering contention directly but

through the packet ph at the head of p’s input port.

Note that in a deadlock-free NoC, we will eventually find a packet making progress or a PME.

So, the algorithm eventually finds the blocking packet causing NoC contention for pi in GRV .

5.2 GRV for different wmesh setups and NoCs
Besides the wmesh setup we have used in this work, several other setups can be adopted. In this

section, we cover the most relevant ones along with how PWC/GRV covers them.

Several wmesh features can cause predictability (budgeting) problems, including non-predictable

arbitration policies, virtual channel allocation, and maximum packet length, which depending on

whether they are allocated dynamically or statically can result in huge contention bounds [45].

However, this does not have any effect on the functioning of our PWC/GRV contention measuring

approach. Hence, hard-to-predict features only affect the number of cycles accounted as PWC

among each pair of tasks. In fact, even in a NoC setup in which starvation can occur our PWC/GRV

would work and help to identify this issue.

Our GRV/PWC proposal targets measuring contention for timing validation and optimization

in wNoCs systems using deterministic routing algorithms, as these are the preferred policies to

allow the WCD estimation TSES [8]. We do not target the applicability of GRV/PWC in systems

using non-deterministic routing algorithms as adaptive or dynamic routing. These kinds of non-

deterministic routings, even though they increase NoC performance, bring unpredictability to the

NoC and hamper the time verification and validation required for TSES, as NoC WCD can become

too pessimistic to be useful. Hence, the presented GRV/PWC does not directly support adaptive or

non-deterministic routings which are out of the scope of this work.

Regarding other NoCs, PWC/GRC can also be applied to other types of distributed NoCs and

network configurations such as the ones using virtual cut-through switching [15]. Indeed, we

present PWC reference in a way that eases the adaptation of our proposal to other NoC topologies

that for instance have routers with more or fewer ports, routing setups, and multiple or single

destination flows.
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6 RESULTS
We evaluate GRV on 2DMesh wNoCs of different dimensions, ranging from 3x3 to 6x6, hence

including the dimensions of COTS manycores (e.g. 4x4 in the case of the Kalray MPPA 256 [4]) and

beyond. We use gNoCsim [1] cycle-accurate NoC simulator that injects both synthetic and real

traffic in the NoC. We model an XY-routing mesh network with 5 bidirectional input/output ports

(X+, X-, Y+, Y- and PME) of 10 flits capacity (i.e. we use 2 buffers per router port: one used as input

and the other as an output, each of them with a capacity of 10 flits). Routers implement round-

robin arbitration, XY-routing, and wormhole switching. Flit traversal latency in the no-contention

scenario is 1 cycle to traverse the router and 1 cycle to traverse the link between routers. Cores are

connected to each router and send requests to different memory modules attached to boundary

routers, which serve one request per cycle.

(1) Synthetic traffic: we use gNoCSim as a standalone simulator that injects self-generate syn-

thetic traffic in the NoC. We inject packets in the PME input ports that we have named as

synthetic cores Cx with a given injection rate, in some cases limiting the number of in-flight

requests to mimic the impact of contention experienced by a task τx executing in Cx .

(2) Hybrid traffic: we use SoCLib [56] SoC simulator, which we integrate with gNoCsim so

that the latter works in slave mode. In this experimental setup, SoCLib simulates real code

being executed in an NGMP Sparc-based core [10], whose memory petitions traverse the

NoC (implemented with gNoCsim) to reach memory. We model a tile-based manycore with

each tile comprising L1 cache memories and a core that communicates with the rest of

tiles and memory using a NoC router. Processor cores implement an in-order pipeline with

32KB 4-way 16B/line IL1 and DL1 caches, where DL1 is write-through, in line with NGMP

multicore for the space domain. The manycore architecture also includes a unified memory,

so that each core targets a shared memory. For the sake of controllability to assess high-

contention scenarios, in this setup, we have some of the cores running real benchmarks and

hence, injecting the corresponding petitions in the NoC, whereas the remaining cores inject

synthetic traffic generated by gNoCsim according to given specifications (e.g. sustained write

traffic to memory).

In this section, we mainly focus on packets of 1 flit size (i.e. all flits are header flits and switching

and arbitration can take place every cycle), in line with recommendations in [46] to minimize

maximum contention. We discuss packets with multiple sizes specifically in Section 6.2.

From gNoCsim, either standalone or integrated with SoCLib, we generate an execution (timing)

trace with the information presented in Section 5.1. In order to compute the GRV of the experiments,

we have implemented a C++ trace parser based on the pseudocode described in Section 5. The results

reported in this section are obtained by applying GRV, as formalized in Section 4, on simulator

traces to obtain contention breakdowns. It is worth noting that the same methodology can also be

applied to PMCs or event traces collected from real NoC-based systems operation.

6.1 Synthetic Traffic
We have performed several experiments with different mesh architectural setups and different

injection rates (IR) intended to create high contention in meshes using synthetic traffic. The

particular evaluation choices taken allow for determining a priori where contention should occur

andwhat core causes it, thus allowing to validate GRV. The setups chosen intend to be representative

of different traffic patterns with varying sources of contention, thus challenging GRV capabilities.

For the synthetic traffic and for the sake of simplicity, the task under analysis, TuA or (τ0), is
placed in C0 and has exactly one packet in-flight. Hence, whenever the packet reaches memory, a
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(a) Setup 1 (b) Setup 2

Fig. 5. Illustrative 3x3 mesh setups evaluated

(a) Setup 3 (b) Setup 4

Fig. 6. Illustrative 4x4 mesh setups evaluated

new packet is inserted. The remaining cores, instead, inject packets at a high injection rate (IR = 1)

with no packets in-flight restriction.

3x3 wmesh: the first setup (see Setup 1, Figure 5a), has 2 memory modules, one attached to R2

targeted by packets from C0, and the other to R8 targeted by packets from cores C1 to C8. Setup 2

(see Figure 5b) is like Setup 1 but with C8 targeting the 3rd memory module attached in R6.

4x4 wmesh. In Figure 6a (Setup 3) we define a 4x4 2DMesh with two memory controllers,

analogous to Setup 1. Setup 4 (see Figure 6b) corresponds to a more complex scenario where the

NoC has 4 memory modules. The first memory module is attached to R3, and is targeted by packets

from cores C0 and C1. The second and third memory modules, attached to R7 and R11, are targeted

respectively by packets from C2 and C3. Finally, the fourth memory module is attached to R15 and

is targeted by packets from the rest of the cores in the mesh (C4 to C15).

5x5 mesh and 6x6 mesh. In order to analyze the scalability of our approach, we have defined

setups for bigger meshes analogous to Setups 3 and 4 for 4x4, i.e. with two memory modules (one

for C0 and one for the rest of cores), and with one memory module per row where cores C0 and

C1 target the memory module in the first row, and each other core in the first row one memory

module in another row. In this latter setup, cores not in the first row target the memory module in

the last row.

For each experiment we analyze the contention the TuA suffers (contτ0 ) due to the other tasks:

(1) We can break down contτ0 per each router where the contention takes place. This information

can be obtained with both, the baseline contention breakdown metric and GRV.

(2) Baseline contention breakdown metric: where the owner of the last packet granted access to

the target output port in a router is regarded as the one causing contention, thus strictly at

local router level.
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(3) contτ0 broken down per contention type (lrc and rrc).

(4) The contention τ0 suffers from all the other co-running tasks (contτj◃τ0 ) following our PWC

definition.

(5) A simultaneous break down (contτj◃τ0 ) per contender, showing lrc and rrc cycles.

Note that the baseline contention breakdown metric can only provide the first two breakdowns,

and only GRV can provide the last three.

6.1.1 Setup 1 (3x3 Mesh) Result Analysis.
Packets from τ0 (TuA) in C0, traverse routers R0, R1, R2 to reach memory, as shown in Figure 5a.

The high contention experienced by the other cores to reach the memory module at R8 is expected

to translate into high contention in the TuA due to backpressure. This is so since, despiteC0 targets

memory module in R2 and traffic from C1 and C2 target memory module in R8, C0 and C1 share the

X− input port in R2 withC0 targeting theX+ output port andC1 the Y+ output port. Hence, if cores
C2 to C8 experience high contention in their path to R8, this contention will be back-propagated to

C1 packets by R2 Y− port and at the same time will end affecting C0 packets.

Consistent with that analysis, Figure 7a shows that packets from τ0 mostly suffer contention in

R2 (even if they also traverse R0 and R1). That happens, as we have already explained, because R2 is

the router, from the C0 path, which aggregates more traffic. R2 receives traffic from C0, C1 and C2

but also backpressure from packets from C3 to C8 in R3 and R8. Hence C0’s packets are only stalled

at the router that aggregates more traffic (R2).

(a) Contention per router (b) Baseline contention per task

(c) GRV. PWC per contention type (d) GRV. PWC per task (e) GRV. PWC per task and cont. type

Fig. 7. 3x3 2DMesh contτ0 analysis (Setup1)
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The baseline contention breakdown, see Figure 7b (y-axis shared with the other figures), ascribes

contention to packets from C1 and C2 for stalling packets from C0 as these are the only two cores

that physically share links with C0 path. However, an analysis of the PWC shows that these cores

are mostly experiencing backpressure from other cores attempting to reach R8 memory module,

as shown in Figure 7c. We see that most of GRV, PWC is rrc, so C1 and C2 are not the real source

of contention. In fact, if we decrease IR down to 0.1 for C1 and C2, contention remains roughly

unchanged since C0 packets have C1 and C2 packets in front all the time, but the latter are stalled

due to backpressure from the other cores.

Cores close to the target (e.g. C8) are expected to produce a larger fraction of the bandwidth

in those routers, causing more backpressure on other packets from C1 and C2, which propagate

backpressure to the packets of the TuA
6
. GRV (Figure 7d) shows exactly that this is the case.

Contention contribution is mostly dominated by cores in the path of C1 and C2 to R8 memory

module (C1, C2, C5 and C8) and those cores with higher bandwidth to such memory module due to

the locally-fair globally-unfair round-robin arbitration (C5, C6, C7 and C8). Since C8 is dominant

in both causes of contention, it is naturally the core causing the largest fraction of contention on

the TuA. Notably, GRV accurately reflects those effects. For completeness, we also show Figure 7e,

where we see that GRV provides information broken down per contender and contention type

(lrc/rrc), being such contention only rrc for cores C3 to C8.

6.1.2 Setup 2 (3x3 Mesh) Result Analysis.
Under this setup, C8 sends packets to a different memory module (the one attached to R6). As

a result, it cannot cause any contention on C1 and C2 (and hence the TuA) due to backpressure.

In Figures 8a and 8b, we observe how τ8 contention on τ0 disappears, which matches with the

rrc contention (backpressure) τ8 was creating in setup 1 (see Figure 7d purple color). Contention

caused by the other cores on the TuA remains roughly the same except for τ3 and τ4 contention
contribution reduction to the TuA caused by the alignment variation between packets coming from

these two tasks w.r.t τ0’s packets. That is confirmed by comparing Figure 7 and Figure 8.

(a) Baseline contention per task (b) GRV. PWC per task

Fig. 8. 3x3 2DMesh contτ0 analysis (Setup2)

6
Notice that in all the synthetic traffic scenarios analyzed in this section, CTs contribution to the TuA contention matches

the expected bandwidth distribution given by the XY routing and round-robin arbitration used. This is so because NoCs

work in a saturation state (e.g. Injection Rate > Ejection Rate) and CTs have a uniform homogeneous synthetic IR=1 using

their assigned bandwidth and potentially the remaining bandwidth unused from the TuA.
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6.1.3 Setup 3 (4x4 Mesh) Result Analysis.
The peculiarity we observed in this experiment w.r.t the one shown in Setup 1 (3x3) is that the

contention that τ0 suffers because of its co-runners is around 9 times bigger since it has to traverse

an additional router, thus with much-decreased bandwidth to reach R3, and the number of cores

creating backpressure is also much higher. This can be observed, for instance, in Figure 9a for the

baseline contention assignment. As before, with the baseline technique contention is only ascribed

to cores sharing routers with the TuA, namely C1, C2 and C3 (see Figure 9a). Instead, GRV properly

captures the fact that backpressure from other cores is, instead, the one causing contention in

the TuA, as shown in Figure 9b. Since no further insights are obtained from this setup, we do not

deepen on its analysis.

(a) Baseline contention per task (b) GRV. PWC per task

Fig. 9. 4x4 2DMesh contτ0 analysis (Setup3)

6.1.4 Setup 4 (4x4 Mesh) Result Analysis.
Figure 10a shows that packets from the TuA suffer contention mostly in R2 and R3. In comparison

to Setup 1, R3 stalls decrease noticeably in favor of R2 stalls since now C0, C1 and C2 share the X+
input port in R3 whereas in Setup 1 R2 input port was only shared among C0 and C1. That means

that when backpreassure is suffered by R3 output port Y−, as before packets from C0 have higher

chances to be stalled in R2 than before because they are sharing the X+ input port of R3 with 1

more flow than in Setup 1.

In Figure 10b, the baseline solution ascribes contention to tasks τ1, τ2 and τ3 directly sharing

links with task τ0 path, omitting once again that most of the contention that τ0 incurs is rrc, as
captured by GRV in Figure 10c. In that case, most of the collisions that packets from τ0 suffer are
due to packets coming from τ1 (τ1 predominance in Figure 10b). Note also that backpressure makes,

again, cores with higher bandwidth in R15 memory module cause higher backpressure (rrc) on the

TuA (τ0), with trends similar to those of Setups 1 and 3 (Figure 10d). Also, the contention caused by

τ4, τ5 and τ6 is negligible due to the fact that their packets do not compete with τ2 ones, and only

do it with τ3 ones in a router (R7) still distant from R15, thus with little bandwidth. Overall, packets

in cores out of the path to the memory modules produce largely decreasing contention on the TuA

as we move from bottom to top in the mesh. Similarly, Figure 10e shows at fine grain that only

tasks τ1, τ2 and τ3 cause lrc and rrc contention as they directly share links with τ0, whereas tasks τ4
to τ15 only contribute with rrc.
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(a) Contention per router (b) Baseline contention per task (c) GRV. PWC per contention type

(d) GRV. PWC per task (e) GRV. PWC per task and cont.
type

Fig. 10. 4x4 2DMesh contτ0 analysis (Setup4)

(a) PWC metric per task (5x5)

Fig. 11. 5x5 2DMesh τ0 contention analysis

6.1.5 Larger wmesh (Setup 5 and Setup 6).
These larger scenarios, see Figure 11a (5x5), show, as in the previous experiments, that the

contention τ0 incurs depends strongly on the bandwidth assignment each task in the wmesh has.

When the TuA experiences remote contention, this remote contention matches the bandwidth

distribution the co-runner tasks that generate this remote contention have). More in detail, we

observe that tasks running in cores closer to their targeted memory module (R24) namely C24, C23,
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C19, C14 are the ones that generate remote contention to τ0 because of their bigger bandwidth

assignation. Still, GRV with PWC, independently on the mesh size, keeps being able to detect and

correctly capture contention a TuA incurs because of other co-runner tasks in the system even

if these other co-running tasks do not share any physical link with the TuA (remote contention).

Note that results for a 6x6 setup are omitted since they do not provide any further insight.

6.2 Synthetic Traffic with multiple size packets
PWC and GRV also support analyzing and providing contention breakdowns in NoC setups where

packets have variable sizes (e.g packet size bigger than 1 flit). As shown in the previous sections,

PWC is defined at packet level so that the contention suffered and caused by packets is ascribed

between packets regardless of their size. Similarly, GRV contention classification criteria are defined

at packet level or higher level (e.g. router, flow,...) making packet size orthogonal to GRV. We have

analyzed contention setups and scenarios already shown in the previous section using multiple

packet sizes. Results obtained do not change substantially. In this section, and for the sake of

reducing repetitiveness, we provide results for Setup 4 only.

(a) Contention per router (b) Baseline contention per task (c) GRV. PWC per contention
type

(d) GRV. PWC per task (e) GRV. PWC per task and cont. type

Fig. 12. 4x4 2DMesh contτ0 analysis (Setup4) with multiple packet sizes

Figure 12 shows the contention analysis for Setup 4 (see Figure 6b) when synthetic cores send

packets with packetsize = 2 and packetsize = 6 flits (50% of the times each size). Results with

bigger packet size than 1 flit in Figures 12 show a relevant contention increase for the same

number of packets (around 2.4 times) with respect to contention observed in contention analysis

(packetsize = 1 flit). The increase is explained by the fact that now packets are longer, more flits

need to be injected than in the packetsize = 1 scenarios, which increases contention, ultimately
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enlarging arbitration turns. More in detail, Figure 12a shows that τ0 contention still mainly takes

place in R2 despite now part of the contention suffered by the TuA occurs in R1 instead of R2.
Packets need to wait more time for gaining the arbitration due to other long packets. That favors

packets to easily spread into different routers, thus possibly creating and suffering contention in

many of them at the same time.

Figure 12b does not show any relevant change compared to the packetsize = 1 flit analysis

while Figure 12c shows that rrc portion type is even bigger than before, because of the same effect

described in Figure 12a.

Figure 12d shows that contention suffered by τ0 still mainly comes from τ15, τ14, τ7 and τ3 even
though now τ4 to τ6 also contribute (i.e. packets size change arbitration alignments and tasks that

in some scenarios do not collide with the TuA in others they do). Figure 12e confirms the merged

effect of increasing rrc contention and each task contention contribution, as already shown in

Figures 12c and 12d, respectively.

Although the size of the packets is transparent for PWC and GRV when analyzing and classifying

contention, scenarios with multiple packet sizes are the ones where PWC and GRV can be more

useful as the gap between the potential WCD that packets can suffer and the real contention that

packets end suffering in operation is bigger. This is so because to compute WCD, the worst-case

contention case arises when the packet under analysis always collides with the longest possible

packet from other tasks in the NoC (e.g. packetsize = 6 flit in this analyzed scenario).

Fig. 13. Average analysis time per packet in experiments

Figure 13 shows, from left to right, the WCD τ0 can suffer when running in Setup 4 with

packetsize = 2 and packetsize = 6, the WCD τ0 can suffer when running in Setup 4 with

packetsize = 1 and the GRV. The PWC per task, instead, is already shown in Figure 12d. In

Figure 13 we observe that the WCD global bound with packetsize = 2 and packetsize = 6 flits

(WCD_PS2&6) is 6 times bigger than the WCD global bound with packetsize = 1 (WCD_PS1).

That matches with the fact that WCD_PS6 always considers τ0 contention caused by other tasks’

packets with long size (packetsize = 6). Moreover, contention observed in Setup 4 with packet

sizes 2 and 6 (right bar in Figure 13), is far from the maximum contention that τ0 can suffer shown

in WCD_PS2&6). It is worth mentioning that WCD computation techniques aim at bounding

worst-case global contention that a task (e.g. τ0) can suffer because of other tasks. However, they

are not meant to compute bounds to the individual maximum contention contribution each task can

create on a specific task. This is because WCD is derived under a specific bandwidth distribution

(e.g. round-robin arbitration) and, based on that, we can also derive tasks contribution to that WCD.
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Nevertheless, during tasks’ execution, bandwidth distribution can vary (e.g. a task generates fewer

petitions not using their assigned bandwidth so that other tasks use their remaining bandwidth)

and hence, so will vary tasks’ contribution to a specific task without exceeding the global WCD

computed.

6.3 Hybrid traffic
We have performed several experiments with hybrid traffic based on one mesh architectural setup

in order to show how GRV works when NoC has high, medium and low contention using real and

synthetic traffic.

As in the previous section, in all cases the TuA (τ0), which in this case runs aMatMul benchmark,

is placed in C0, but it does not have any packet in-flight restriction. The remaining cores, instead,

inject packets at a high, medium and low injection rate (IR = 1, 0.14, 0.11 respectively) also with no

packets in-flight restriction. The latter two injection rates have been carefully chosen to lead to

saturation and no-saturation scenarios respectively as discussed next.

Fig. 14. Illustrative 3x3 mesh setup evaluated (Setup5)

3x3 wmesh: When analyzing real traffic behavior, we define a simpler setup than the ones

already shown (see Setup 5, Figure 14) that has 1 memory module attached to R8 targeted by

packets from all cores (i.e C0 to C8). The aim of this setup and experiments is to show how GRV

works when the NoC is working under maximum contention (IR = 1 which makes total contender

IR be IRcont = 8) due to the injection rate of the cores from C1 to C8, medium saturation (IR = 0.14,
IRcont = 1.12) and no saturation scenario (IR = 0.11, IRcont = 0.88).
Note that, when the total injection rate of the NoC IRtotal (IRtotal = IRcont + IRτ0 ) is greater

than the NoC maximum ejection rate (1 packet/cycle), packets saturate the NoC and accumulate

in the routers’ buffers causing high contention. Otherwise, if the total injection rate is smaller than

the NoC ejection rate, packets do not accumulate and cause lower contention than in the previous

case.

In terms of the results, for setup 5 we show contτ0 due to the other co-runner tasks when varying

their IR = 1, 0.14 and 0.11 respectively in Figures 15a-15c. As expected, contτ0 experienced by

τ0 decreases ad IR for the CTs decreases. In particular, contention is around 6,200,000 cycles for

IR = 1; 2,700,000 cycles for IR = 0.14; and 18,000 cycles only for IR = 0.11. Figure 15a for IR = 1

shows that, since all tasks target the same memory controller, tasks that are closer to memory,

and consequently have more bandwidth according to the round-robin arbitration (τ8, τ7, τ6, τ5),
cause more contention to τ0. Indeed, tasks contribution perfectly matches round-robin bandwidth

distribution to tasks along the NoC.

However, when co-runner tasks IR decreases to IR = 0.14 (see Figure 15b), tasks contention
distribution tends to equalize. That is explained because with lower IR (still sufficient to cause
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(a) MatMul vs contend IR = 1 (b) MatMul vs contend IR = 0.14 (c) MatMul vs contend IR = 0.11

Fig. 15. 3x3 2DMesh PWC contτ0 per task analysis (Setup5)

(a) MatMull vs contend IR = 1 (b) MatMul vs contend IR = 0.14 (c) MatMul vs contend IR = 0.11

Fig. 16. 3x3 2DMesh lrc and rrc PWC contτ0 per task analysis (Setup5)

saturation), packets from the routers with the highest bandwidth (e.g. above 0.14) are generated

at a lower rate than they are granted in the arbiters. Hence, all routers in general, but those with

higher bandwidth in particular, generate lower interference, and since saturation needs contribution

from more routers, those receive higher bandwidth. For instance, tasks in cores C3 to C8 cause

a cumulative IR of 0.84. Therefore, cores C0 to C2 have a cumulative bandwidth of at least 0.16

sustainedly. At a lower scale, the very same effect is captured again in Figure 15c, where the

contention is very low. In that case, TuA packets practically traverse the NoC without contending

with packets from other tasks. Hence, contention relates more to whether injected packets collide

with others unluckily rather than to saturation. GRV also captures this effect in the lrc and rrc

contention types classification (see Figures 16a-16c). When CTs have high IR (see Figure 16a), most

of the contention is rrc and is created by the tasks that have more bandwidth in the NoC. However,

when the contenders’ IR is low (see Figure 16c), rrc contention is residual and the low contention

that takes place in the NoC is lrc.

Another relevant result of this setup is that the injection rate of the TuA is not limited by

construction. Hence, a packet of the TuA may be produced when older TuA packets are still

traversing the NoC. As a consequence, especially for high IR scenarios, one packet of the TuA is

more likely to generate backpressure on other packets from the TuA. This is reflected in Figures

15a-15c, where we see that τ0 (the TuA) causes contention on τ0 itself.
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6.4 Off-line algorithm analysis
We have implemented the off-line GRV computing algorithm described in Section 5, where the

trace is processed sequentially. The execution time required by the algorithm depends mainly on:

(1) the number of packets analyzed with the algorithm, and (2) the size of the mesh where these

packets are analyzed. In Figure 17 we show the execution_time/packet (µseconds/packet) of the
experiments done in 3x3, 4x4, 5x5 and 6x6 meshes. Results have been obtained in a laptop with an

Intel i7-8650U processor with 16GB of DRAM.

Those per-packet execution times led to 2 seconds to process ≈35,000 packets for Setup 1, and

to up to 1 hour and 6 minutes to process more than 14 million packets for 6x6 setups, in all cases

requiring less than 200MB of main memory. Moreover, scenarios with a packet size bigger than

one flit can be treated as a particular case of increasing the number of flits or packets (in the case

of packetsize = 1 flit). Note that, for instance, the NoC of the SiPearl Rhea processor from the

European Processor Initiative [17] implements a 6x6 mesh NoC, so setups considered in this paper

are in line with those NoC sizes.

Fig. 17. Average analysis time per packet in experiments

6.5 Assessment of the GRV properties
As shown in Section 4, a reliable GRV must adhere to several properties which we review in light of

the results obtained. First, GRV successfully classifies every single cycle of contention attributing

it to an appropriate source of such contention, so no contention cycle remains unclassified or is

classified twice. And second, unlike the baseline metric, which fails to properly attribute contention

to tasks, GRV successfully determines the cores causing such high contention whether it occurs in a

given specific router. Hence, GRV allows carrying precise validation and optimization information

for tasks running on a mesh-based manycore. Last but not least, our results show the scalability of

our approach to derive GRV by considering 3x3 up to 6x6 meshes.

7 RELATEDWORK
Interference-free designs have been considered the default choice to implement multicore designs

for TSES in the past [26, 27, 53, 67]. Unfortunately, real-time specific designs (e.g. time-triggered

ones and those based on TDMA) involve high non-recurrent costs that jeopardize their general

adoption in the context of TSES [34, 57]. Furthermore, other works have arisen in the same direction

for mixed-criticality COTS systems processors[21].

Also in the context of wormhole NoCs, several works [44] have targeted analyzing NoC con-

tention using queue models. Unfortunately, this analysis cannot be directly applied to precisely

determine theWCD and/or the contention breakdown. To support wormhole NoCs in hard real-time

systems, using virtual channel prioritization coupled with router architectures that support flit-level
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preemption has been proposed to limit inter-task interferences in the NoC [41, 55]. Nevertheless,

COTS wormhole NoCs do not implement such support.

In processors with limited support for time predictability, approaches to analyze contention

rely on the utilization of PMCs to track and enforce contention quotas [11, 14, 32, 40, 43]. These

techniques require bounding the longest contention latency a request can suffer [19, 32, 42], and

tracking the maximum number of accesses a task can perform to shared hardware resources [11].

Authors in [11, 43, 47] use PMCs to implement a software approach to enforce quotas on the maxi-

mum contention created by tasks during operation. In order to improve the quality of WCET/WCRT

estimates for certain tasks, several works use PMCs to monitor tasks’ activity and suspension

mechanisms that can be implemented at the OS level [6, 38, 43, 66] or by hardware means [7].

Several works show that worst NoC interference can also be analytically or experimentally

derived in regular wormhole NoCs available in COTS manycores [33, 46, 50]. The impact of NoC

interference in task execution time has been analyzed in [61] where a model to predict applications’

slowdown is proposed. However, the proposed model does not provide a valid contention upper

bound and therefore, is not valid in the context of TSES.

So that to fill this gap, different techniques already presented in Section 2, focused on modeling

wormhole NoCs time and contention having complex effects when having multiple VCs, flows

serialization or different buffer or packets sizes, have been proposed: Scheduling Theory [65],

Compositional Performance Analysis [51, 59], Recursive Calculus [12, 36, 37], other that system-

atically consider the worst-possible contention case [46, 50], or Network Calculus [35, 49] to

model worst-case latency of wormhole NoCs included in existing manycore products under certain

load conditions [13]. In this line, many recent works extending Network Calculus have been pre-

sented [23–25, 55]. Those techniques, in essence, intend to provide precise and tight upper-bounds

to NoC contention during the system design and verification phase and the contention classifica-

tion criteria that they use are directed to that end [55]. However, testing information during the

validation phase is needed to assess whether system integration and verification were performed

as planned. Overall, to our knowledge, the current paper is the first work proposing a mechanism

to measure and break down contention across contending tasks in a fair manner for validation

purposes, thus complementing those works targeting system design and verification.

8 CONCLUSIONS
In this paper, we define pairwise contention (PWC) for wmesh, a golden metric that allows ascribing

actual shares of the contention a given task suffers from the other co-runner tasks in the wmesh

at packet-level. We analyze the challenges of measuring and classifying PWC at packet-level in

wmeshes, where the contention is split across the mesh routers and contending flows. We also

discuss how this information needs to be combined to be useful for validation & verification

purposes. We present GRV, a criterion to fairly break down the contention suffered by a task among

its co-runner tasks. GRV ascribes contention cycles to the actual contending packet causing it in the

local or remote nodes. Overall, GRV can provide valuable information for performance validation,

debugging, and optimization by revealing accurately how contention arises in wmeshes.
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