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A B S T R A C T   

Currently in three-phase distribution networks, especially low-voltage networks, there are some inefficient 
powers. These are defined as reactive power, unbalanced power owing to linear loads, power owing to supply 
unbalanced voltage, and harmonic power. This has given rise to the concept of power quality. To improve power 
quality, devices called active filters have been developed. These devices eliminate all the inefficient power. 
However, for most processes, the elimination of reactive power needs to be from a price/performance perspective 
because the use of active filters is very expensive. Therefore, the use of capacitor banks in any of their versions 
(single-phase, three-phase, scalable battery, SVC, etc.) is the most economical and sufficient solution. In this 
study, a calculation algorithm is proposed to obtain compensators for the inductive reactive power of the load, 
consisting only of single-phase capacitor banks. These capacitors are designed to minimise losses in the supply 
line, which are lower than those obtained using the minimum loss line (MLL) strategy. The resulting compensator 
consists of three, two, or one capacitor, depending on the load characteristics.   

1. Introduction 

The quality of the electrical power supply is one of the most 
researched topics, especially in three-phase low-voltage systems with 
three or four wires. Because these are dynamic systems, they always 
operate under conditions of load imbalance and voltage imbalance. This 
leads to an increase in the total apparent power with respect to the ideal 
power of a balanced system, which is characterised by positive-sequence 
active power. Therefore, these unbalanced powers represent one of the 
factors that increase the total apparent power of the system [1–4]. These 
powers and their physical meanings have been widely discussed by the 
scientific community [5–7]. 

Technological development has brought another power source due 
to the use of non-linear loads such as variable speed drives (widely used 
in industry), arc welding equipment, and switching power supplies for 
their operation, for example, computers, printers, battery chargers, etc. 
This nonfundamental power was classified as harmonic power by [8]. 
This harmonic power has also been widely discussed by the scientific 
community [9]. This has led to the development of active filters to 
compensate for the effects of harmonic components [10]. 

However, this unbalanced power and harmonic power increase the 

losses in the power lines that feed the loads. A great deal of research has 
been conducted to compensate for these powers and reduce line losses 
[11–13]. There are two main areas of research in this field. One line 
analyses the use and behaviour of passive elements, called reactive 
power compensators (RPCs), and the other analyses the use and 
behaviour of active elements, called switching power converters (SPCs), 
of the advanced compensator or active filter type. 

It is evident that SPC-type compensators are much better than RPCs 
because they have more functions to improve the power quality and are 
more accurate and faster. However, they are 30–35 % more expensive 
than RPCs [14]. Furthermore, the use of an RPC compensator provides 
an acceptable level of power quality for most industrial networks. 

The theoretical basis of SPC compensators is basically based on 
Akagi’s p–q theory [15]. In this paper, Akagi proposes two compensa-
tion strategies namely "constant instantaneous power control strategy" 
and the "sinusoidal current control strategy". Both strategies can be 
applied to RPC compensators and are known as the minimum loss line 
(MLL) and sinusoidal balancing current (SBC), respectively. 

Almost all low-voltage electrical systems encountered in real life are 
inductive systems. Therefore, in this study, we focus on the compensa-
tion of reactive power and asymmetric power in three-phase linear four- 
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wire systems with asymmetric voltages and loads using only single- 
phase capacitor banks. The use of only capacitors, whether they are 
single-phase banks, scalable banks, or their more advanced form (SVC), 
is due to the fact that they have already proven their capability in 
compensating the reactive power consumed by the loads. 

It should also be noted that a few authors [16,14] are already 
working on this line of research. However, in the cited works, they are 
used for highly inductive loads and do not specify what happens when 
the loads are not highly inductive. 

In 2022, the authors published an article [17] in which a method was 
developed to compensate for the load reactive power and maximum 
negative-sequence current in unbalanced three-phase three-wire sys-
tems using only capacitors. This results in lower line losses than when 
the MLL strategy is used. Unlike [17], this work applies to unbalanced 
four-wire three-phase systems in both voltage and load. Therefore, the 
zero-sequence current is taken into account, which conditions us to a 
star configuration for the compensator. 

This study proposes a new algorithm for calculating reactive power 
compensation using capacitors for four-wire linear electrical systems 
with unbalanced voltages and/or loads. With this procedure, lower line 
losses were obtained than with the MLL strategy without using coils. 
This compensator consists of three, two, or one capacitor. 

The remainder of the paper is organised as follows. Section 2 de-
velops an algorithm for obtaining the capacitors to be placed in the 
compensator with two objectives: (1) to compensate for the reactive 
power of the load and (2) to minimise the losses in the power line. In 
Section 3, several case studies are analysed to verify the developed 
calculation algorithm, considering different types of loads. Each of these 
case studies represents three possible solutions depending on the num-
ber of compensation banks used: one, two, or three. The results were 
compared with those obtained using the MLL reactive power compen-
sation strategy. Finally, Section 4 presents the conclusions of this study. 

2. Method of calculating the compensation system 

Fig. 1 shows a four-wire electrical system with unbalanced voltages 
feeding an unbalanced load, whose total reactive power QL is inductive. 
Here, van, vbn and vcn are the line-to-neutral voltages measured at the 
load terminals. In contrast, iaL, ibL, icL and inL are the line currents in each 
phase and neutral, respectively. Both the voltages and line currents can 
be easily measured at the load connection point using a measuring 
device. 

The objective of this study is to compensate for the total reactive 
power of the system QL, using only capacitors, and the optimal solution 
represents the lowest losses in the line connected to the load. For the 
compensation elements to be capacitive, it is a prerequisite that QL is 
inductive. 

The calculation procedure developed in this study consists of a 
maximum of three calculations that are performed sequentially 
depending on the results obtained in such a way that once the optimal 
solution has been obtained, it is not necessary to continue with the rest 
of the calculations. First, the calculation of a compensation system using 

three single-phase star-connected compensation banks is discussed. If 
the results obtained in each bank represent capacitive elements, the 
optimum solution is obtained directly without the need for subsequent 
calculations. Throughout this study, a positive value of compensation 
power is considered to be capacitive, and a negative value of compen-
sation power is considered to be inductive. The second calculation was 
performed using two single-phase compensation banks. This calculation 
is performed when the reactive power result obtained from the first 
calculation is negative in one of the compensation banks; that is, it 
represents a coil. In this case, because only capacitors are used, the 
corresponding single-phase compensation bank is cancelled and the 
compensation system is calculated using two single-phase compensation 
banks. The third calculation is performed using a single-phase 
compensation bank. Under the same assumptions as in the previous 
calculations, this calculation is necessary when using three capacitor 
banks results in two negative reactive compensation powers or when 
using two capacitor banks results in one negative reactive compensation 
power. 

The three methods for calculating the aforementioned compensation 
system are as follows:  

- Calculation with three single-phase compensation banks  
- Calculation with two single-phase compensation banks  
- Calculation with a single-phase compensation bank 

2.1. Calculation with three single-phase compensation banks 

Suppose that three single-phase banks of wye-connected capacitors 
are placed in parallel with the load to compensate for the inductive 
reactive power of the load QL, as shown in Fig. 2. The capacitive reactive 
powers provided by the capacitors are given by QCa, QCb, and QCc, 
respectively. To compensate for the total reactive power of the load, 
condition (1) must be fulfilled. 

QCa + QCb + QCc − QL = 0 (1) 

By including the compensator, the new line currents circulating 
through each of the phases are given by (2), and the current circulating 
through the neutral phase by (3). 

Iz
→

= IzL
̅→

+ ICz
̅→ for z = a, b, c (2)  

where, 

ICz
̅→

=
QCz

Vzn
e

j

(
αz+

π
2

)

for z = a, b, c (3)  

Here, αz is the angle of the voltage Vzn. 
In contrast, the current circulating in the neutral conductor is 

determined by (4). 

In
→

=
∑

z=a,b,c
Iz
→ (4) 

As the line-to-neutral voltages are measured at the load terminals, 
the optimal solution of the compensation system that guarantees the 
minimum losses on the line is given by the minimum value of the 
expression f(x) according to (5). 

f (x) = I2
a + I2

b + I2
c + I2

n (5) 

From (2) and considering (3), the moduli of the currents to be 
included in (5) are obtained. 

I2
z =

[

Re
{

IzL
̅→

}
+

QCz

Vzn
cos

(
αz +

π
2

)]2

+

[

Im
{

IzL
̅→

}
+

QCz

Vzn
sin

(
αz +

π
2

)]2

(6) 

Therefore, Fig. 1. Unbalanced voltage system feeding an unbalanced load.  
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I2
z =

[

IzLcosβzL +
QCz

Vzn
cos

(
αz +

π
2

)]2

+

[

IzLsinβzL +
QCz

Vzn
sin

(
αz +

π
2

)]2

(7)  

Here, βzL is the current angle of the load IzL. 
Considering the fact that cos

(
αz +

π
2
)
= − sinαz and sin

(
αz + π

2
)

=

cosαz, and substituting in Eq. (7), we obtain (8). 

I2
z =

[

IzLcosβzL −
QCz

Vzn
sinαz

]2

+

[

IzLsinβzL +
QCz

Vzn
cosαz

]2

(8) 

By developing (8) and considering Eqs. (9) and (10), we obtain (11): 

sin2(a) + cos2(a) = 1 (9)  

sin(a)cos(b) − cos(a) sin(b) = sin(a − b) (10)  

I2
z = I2

zL +
Q2

Cz

V2
zn
+ 2IzL

QCz

Vzn
sin

(
βzL − αz

)
(11) 

The second and third summands in (11) represent the currents that 
the capacitors should provide to compensate for the reactive power of 
the system. Substituting z = a,b,c, we obtain the expression of the new 
line currents for each phase of the system as follows: 

I2
a = I2

aL +
Q2

Ca

V2
an

+ 2IaL
QCa

Van
sin(βaL − αa) (12)  

I2
b = I2

bL +
Q2

Cb

V2
bn

+ 2IbL
QCb

Vbn
sin(βbL − αb) (13)  

I2
c = I2

cL +
Q2

Cc

V2
cn

+ 2IcL
QCc

Vcn
sin(βcL − αc) (14) 

Evolving in the same way, the new current that will circulate through 
the neutral conductor from (4), Eq. (15) is obtained. 

I2
n =

[
∑

z=a,b,c

(

IzLcosβzL −
QCz

Vzn
sinαz

)]2

+

[
∑

z=a,b,c

(

IzLsinβzL +
QCz

Vzn
cosαz

)]2

(15) 

Developing and regrouping (15), we obtain (16). 

I2
n =

∑

z=a,b,c
I2

zL +
∑

z=a,b,c

Q2
Cz

V2
zn
+
∑15

i=1
fi (16)  

where, 

f1 = 2IaL
QCa

Van
sin(βaL − αa) (17)  

f2 = 2IbL
QCb

Vbn
sin(βbL − αb) (18)  

f3 = 2IcL
QCc

Vcn
sin(βcL − αc) (19)  

f4 = 2IaL
QCb

Vbn
sin(βaL − αb) (20)  

f5 = 2IaL
QCc

Vcn
sin(βaL − αc) (21)  

f6 = 2IbL
QCa

Van
sin(βbL − αa) (22)  

f7 = 2IcL
QCa

Van
sin(βcL − αa) (23)  

f8 = 2IbL
QCc

Vcn
sin(βbL − αc) (24)  

f9 = 2IcL
QCb

Vbn
sin(βcL − αb) (25)  

f10 = 2IaLIbLcos(βaL − βbL) (26)  

f11 = 2IaLIcLcos(βaL − βcL) (27)  

f12 = 2IbLIcLcos(βbL − βcL) (28)  

f13 = 2
QCa

Van

QCb

Vbn
cos(αa − αb) (29)  

f14 = 2
QCa

Van

QCc

Vcn
cos(αa − αc) (30)  

f15 = 2
QCb

Vbn

QCc

Vcn
cos(αb − αc) (31) 

Substituting (11) and (16) into (5) yields (32): 

f (QCa,QCb,QCc) = 2
∑

z=a,b,c
I2

zL + 2
∑

z=a,b,c

Q2
Cz

V2
zn
+ 2IzL

QCz

Vzn
sin

(
βzL − αz

)
+
∑15

i=1
fi

(32) 

Using the Lagrange multipliers method to determine the minimum 
value of f(QCa,QCb,QCc) defined in (32) and considering the constraint of 
expression (1) as g(QCa,QCb,QCc), we obtain (33). 

∇f (QCa,QCb,QCc) = λ∇g(QCa,QCb,QCc) (33) 

By calculating the partial derivative of (32) with respect to QCa, we 

Fig. 2. Compensation using three single-phase capacitors.  
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obtain (34) 

∂f (QCa,QCb,QCc)

∂(QCa)
= a1QCa + b1QCb + c1QCc − λ − k1 (34)  

where, 

a1 =
2

V2
an

b1 =
2cos(αa − αb)

VanVbn
c1 =

2cos(αa − αc)

VanVcn
(35)  

k1 = −
1

Van
[4IaLsin(βaL − αa)+ 2IbLsin(βbL − αa)+ 2IcLsin(βcL − αa)] (36) 

By calculating the partial derivative of (32) with respect to QCb, we 
obtain (37) 

∂f (QCa,QCb,QCc)

∂(QCb)
= a2QCa + b2QCb + c2QCc − λ − k2 (37)  

where, 

a2 =
2cos(αa − αb)

VanVbn
b2 =

2
V2

bn
c2 =

2cos(αb − αc)

VbnVcn
(38)  

k2 = −
1

Vbn
[4IbLsin(βbL − αb)+ 2IaLsin(βaL − αb)+ 2IcLsin(βcL − αb)] (39) 

By calculating the partial derivative of (32) with respect to QCc, we 
obtain (40) 

∂f (QCa,QCb,QCc)

∂(QCc)
= a3QCa + b3QCb + c3QCc − λ − k3 (40)  

where, 

a3 =
2cos(αa − αc)

VanVcn
b3 =

2cos(αb − αc)

VbnVcn
c3 =

2
V2

cn
(41)  

k3 = −
1

Vcn
[4IcLsin(βcL − αc)+ 2IaLsin(βaL − αc)+ 2IbLsin(βbL − αc)] (42) 

Generalising in matrix form, the system of equations for the 
compensation system is determined as follows: 

(A) (X) = (C) (43)  

where, 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 b1 c1 − 1

a2 b2 c2 − 1

a3 b3 c3 − 1

1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

QCa

QCb

QCc

λ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

k1

k2

k3

QL

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(44) 

The solution of the system of equations that determines the values of 
QCa, QCb, QCc, and λ is given by (45). 

(X) = (A)− 1
(C) (45) 

Knowing the values of QCa, QCb and QCc, the values of the reactances 
corresponding to each phase are as follows: 

XCz =
V2

zn

QCz
for z = a, b, c (46) 

In this case, XCz > 0 represents capacitive reactance, and XCz < 0 
represents inductive reactance. Considering the main objective of this 
study, that is, the reactive power compensation of a system using only 
capacitors, the following observations should be made, depending on 
the values of XCz:  

- It is only considered as a valid solution using three single-phase 
banks of capacitors, one for each phase, when all values of XCz ≥ 0 

(refer Fig. 3). In this case, the value of the capacitance in farads of 
each capacitor in the compensator is given by (47). 

Cz =
1

ωXCz
for z = a, b, c (47)    

- When one of the values of XCz < 0, the compensating element in that 
phase is a coil. In this case, the phase in which XCz < 0 must be left 
open circuit, and we will have to reconsider the compensation 
calculation using two capacitors. The calculation of compensation 
using the two capacitors, is given in the following sections.  

- When there are two values where XCz < 0, as aforementioned, we 
ignore these values and leave both branches open circuit. In this case, 
the reactive power compensation of the system is calculated using a 
single capacitor. This calculation is described in the following 
sections.  

- If it is the case that all values of XCz < 0, it means that the total 
reactive power of the load is capacitive. The main requirement for 
applying this method is that the total reactive power of the load must 
be inductive. 

2.2. Calculation with two single-phase compensation banks 

As described in the previous section, after calculating the compen-
sation system using three connected banks of capacitors, when the 
reactance XCz value of one of the compensation banks is negative, it 
corresponds to a coil. As the objective of this study is to use only ca-
pacitors to compensate for the total reactive power of the system, this 
compensation bank should be eliminated, and the compensation system 
is recalculated using the other two single-phase compensation banks. 
Assume that XCa < 0, therefore, the compensation bank Ca that is con-
nected between phase A and neutral is eliminated, that is, QCa = 0, as 
shown in Fig. 4. Therefore, it is necessary to consider the new constraint 
given by (48). 

h(QCa) = QCa = 0 (48) 

In this case, using Lagrange multipliers and following the same 
procedure as in the previous section, we have 

∇f (QCa,QCb,QCc) = λ∇g(QCa,QCb,QCc) + μa∇h(QCa) (49)  

where μa, the Lagrange multiplier used for the new constraint QCa = 0 is 
given by (48). Under these conditions, the matrices defined in (43) are 

Fig. 3. General procedure with three single-phase capacitors.  
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modified according to (50): 

A =

⎛

⎜
⎜
⎜
⎜
⎝

a1 b1 c1 − 1 − 1
a2 b2 c2 − 1 0
a3 b3 c3 − 1 0
1 1 1 0 0
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

X =

⎛

⎜
⎜
⎜
⎜
⎝

QCa
QCb
QCc

λ
μa

⎞

⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎜
⎜
⎝

k1
k2
k3
QL
0

⎞

⎟
⎟
⎟
⎟
⎠

(50) 

By following the same procedure, when XCb < 0, Cb must be elimi-
nated (refer Fig. 5). In this case, the additional constraints are h(QCb) =

QCb = 0, μb is the Lagrange multiplier, and the matrices must be 
modified according to (51). 

A =

⎛

⎜
⎜
⎜
⎜
⎝

a1 b1 c1 − 1 0
a2 b2 c2 − 1 − 1
a3 b3 c3 − 1 0
1 1 1 0 0
0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

X =

⎛

⎜
⎜
⎜
⎜
⎝

QCa
QCb
QCc

λ
μb

⎞

⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎜
⎜
⎝

k1
k2
k3
QL
0

⎞

⎟
⎟
⎟
⎟
⎠

(51) 

Finally, when XCc < 0, we would eliminate Cc (refer Fig. 6) by 
replacing the constraint with h(QCc) = QCc = 0, μc is the Lagrange 
multiplier, and the matrices are according to (52). 

A =

⎛

⎜
⎜
⎜
⎜
⎝

a1 b1 c1 − 1 0
a2 b2 c2 − 1 0
a3 b3 c3 − 1 − 1
1 1 1 0 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

X =

⎛

⎜
⎜
⎜
⎜
⎝

QCa
QCb
QCc

λ
μc

⎞

⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎜
⎜
⎝

k1
k2
k3
QL
0

⎞

⎟
⎟
⎟
⎟
⎠

(52) 

To facilitate the use of the method, based on the results obtained in 
Section 2.1 when a branch is not considered to be a coil, the connection 
diagram to be used from those shown in Figs. 4, 5, and 6 is presented in 
Fig. 7. 

When the calculation is performed with two single-phase banks, as 
shown in Figs. 4, 5 or 6, as in the previous section with three banks, the 

valid solution will be when the two banks are capacitors, that is, when 
the reactance values are positive. If the result in one branch is a coil, it is 
not considered, and the calculation must be performed with only one 
bank to compensate for the reactive power QL. Fig. 8 clearly shows the 
procedure for the ease of understanding. 

2.3. Calculation with a single-phase compensation banks 

When there are two negative-compensation reactance values using 
three single-phase banks, or when there is one negative value of 
compensation reactance using two single-phase banks, it is necessary to 
implement a compensation system using a single-phase bank. This 
single-phase bank will have to compensate for the reactive power of the 
load and will be connected to the phase whose reactance value has been 
positive in the calculations in the previous sections. For its calculation, it 
is sufficient to equal the reactive power provided by the single-phase 
bank QCz to the total reactive power of the load QL, that is, QCz = QL. 
Therefore, we have the following:  

- XCa =
V2

an
QL 

when the capacitor is connected to Phase A, as shown in 
Fig. 9.  

- XCb =
V2

bn
QL 

when the capacitor is connected to Phase B, as shown in 
Fig. 10.  

- XCc =
V2

cn
QL 

when the capacitor is connected to Phase C, as shown in 
Fig. 11. 

In any of the aforementioned three cases, the value of the compen-
sation bank capacitance is determined by (47). 

3. Practical cases 

In this section, three case studies are developed to verify the load 

Fig. 4. Compensation using Cb and Cc when XCa < 0.

Fig. 5. Compensation using Ca and Cc when XCb < 0.

Fig. 6. Compensation using Ca and Cb when XCc < 0.

Fig. 7. Choice of connection system using two capacitor banks.  
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reactive power compensation calculation algorithm using single-phase 
capacitor banks proposed in this paper. In all the cases, a four-wire 
unbalanced inductive load connected to a three-phase system with un-
balanced voltages was used, as shown in Fig. 12. The solution for each 

case is related to previous sections of this paper, and the cases are:  

- Case Study 1: Compensation using three single-phase capacitor 
banks 

Fig. 8. General procedure using two banks of capacitors.  

Fig. 9. Single-phase compensation using only Ca.

Fig. 10. Single-phase compensation using only Cb.
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- Case Study 2: Compensation using two single-phase capacitor banks  
- Case Study 3: Compensation using a single-phase capacitor bank. 

In each of the practical cases, the results obtained using the proposed 
algorithm were compared with those obtained using the MLL method 
[17]. The reactance values of the compensation banks obtained using 
the MLL method are those necessary to phase the voltages with their 
respective current. 

Fig. 12 shows a three-phase four-wire unbalanced load connected to 
a three-phase system, whose line-to-neutral voltages are as follows (53): 

Van = 230 ej0 V Vbn = 232 e− j119 V Vcn = 228 ej121 V (53) 

To perform the calculations, the voltage and current data obtained 
using a network analyser or any other measuring device connected at the 
PCC will be used. This means that it is not necessary to know the 

equivalent impedances downstream. However, for the sake of better 
following the procedure, equivalent impedances will be directly used. 
The impedance values for each of the cases are shown in Table 1. 

Considering the values of the voltages from (53) and the load im-
pedances in each of the cases listed in Table 1, the values of the load 
currents for each of the practical cases were determined as presented in 
Table 2. 

From the line-to-neutral voltages according to (53) and the line 
currents shown in Table 2, the electrical power ratio of the load for each 
case is shown in Table 3. 

3.1. Case study 1: compensation using three single-phase capacitor banks 

Following the procedure of the algorithm used in this study, the first 
step was to determine the reactive power compensation of the load using 
three single-phase capacitor banks, as shown in Fig. 2. For this purpose, 
the matrix equation defined in (43) is used, and the coefficients of 
matrices A and C are calculated as follows: 

For matrix A in (43), considering the voltages defined in (53), the 
calculations were performed as follows:  

- a1, b1 and c1 by (35)  
- a2, b2 and c2 by (38)  
- a3, b3 and c3 by (41) 

For matrix C of (43), consider the voltages defined in (53) and the 
currents shown in Table 2. That is,  

- k1 is determined using (36)  
- k2 is determined using (39)  
- k3 is determined using (42)  
- The value of QL has already been calculated and is presented in 

Table 3. For Case 1, QL = 23.967 kVAr. 

Performing different calculations for the coefficients of matrices A 
and C, the results obtained for this practical case are as follows: 

a1 = 7561.4 x10− 8 b2 = 7431.6 x10− 8 c3 = 7694.7x10− 8 (54)   

Fig. 11. Single-phase compensation using only Cc.

Fig. 12. Model load for case studies.  

Table 1 
Load impedances for each case study.  

N◦ ZaL (Ω) ZbL (Ω) ZcL (Ω)  
R X R X R X 

Case 1 4 2 3 2 2 1 
Case 2 4 2 5 2 1 1 
Case 3 2 0.5 17 0.5 1 1  

a2 = b1 = − 1817.1 x10− 8 a3 = c1 = − 1964.3 x10− 8 b3 = c2 = − 1890.5 x10− 8 (55)   
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k1 = − 2272.9 x10− 4 k2 = 6567.5 x10− 4 k3 = 4787.0 x10− 4 (56) 

Substituting the values of (54) and (55) in matrix A and the values of 
(56) in matrix C and solving the matrix equation of (43), the values of 
the reactive powers of the three compensation banks are as follows: 

QCa = 2.362 kVAr QCb = 11.876 kVAr QCc = 9.729 kVAr (57) 

By applying (46), the reactance values of the respective compensa-
tion banks connected as shown in Fig. 2, are determined by (58). 

XCa = 22.394 Ω XCb = 4.532 Ω XCc = 5.343 Ω (58) 

The capacitances of single-phase compensation banks can be calcu-
lated using (47). 

Under these conditions, new currents circulating through the lines 
feeding the set formed by the load and compensation equipment, were 
calculated. The values are presented in Table 4. Compared with Table 2 
for Case 1, it can be observed that the values of the currents are lower, 
mainly the current flowing through the neutral conductor, with a 
reduction of approximately 68% with respect to the initial value. 

Table 5 lists the values of the active power, reactive power, and 
power factor of the proposed system when the compensation equipment 
is connected. Logically, the reactive power is zero, and the power factor 
is equal to one. 

Considering that the resistance value of the line conductors is 1 Ω, 
both in the phase and neutral conductors, for both the proposed 
compensation and that obtained by applying the MLL method, the line 
losses for both methods are presented in Table 6. Comparing the values 
obtained by the two methods, it is observed that the compensation al-
gorithm proposed in this study presents lower line losses than the MLL 
method. Table 6 also shows the losses in the initial system without 
compensation. 

The calculations of the line currents according to MLL method have 
been calculated as follows:  

a) Calculation of the reactive powers of the load in each of the phases. 

QaL = Van IaLsin(αa − βaL) = 5.29 kVAr  

QbL = Vbn IbLsin(αb − βbL) = 8.28 kVAr  

QcL = Vcn IcLsin(αc − βcL) = 10.40 kVAr    

b) Calculation of XCz according to MLL method. 

XCa(MLL) =
V2

an

QaL
= 10 Ω XCb(MLL) =

V2
bn

QbL
= 6.5 Ω XCc(MLL) =

V2
cn

QcL

= 5 Ω    

c) Calculation of the currents ICz considering XCz(MLL). 

ICa
̅→

=
Van
̅→

XCa(MLL)
= 30 ej90 A  

ICb
̅→

=
Vbn
̅→

XCb(MLL)
= 35.7 e− j29 A  

ICc
̅→

=
Vcn
̅→

XCc(MLL)
= 45.6 e− j149 A    

d) Calculation of the line currents when connecting the three capacitor 
banks according to MLL method. From these line currents, the line 
losses are determined. 

Ia
→

= IaL
̅→

+ ICa
̅→

= 46 ej0 A  

Ib
→

= IbL
̅→

+ ICb
̅→

= 53.5 e− j119 A  

Ic
→

= IcL
̅→

+ ICc
̅→

= 91.2 ej121 A   

3.2. Case study 2: compensation using two single-phase capacitor banks 

Based on the procedure described in Figs. 3 and 7, the compensation 
system must be calculated using three single-phase banks to determine 
which of the three possible single-phase banks should not be considered. 

Table 2 
Line currents of the load in each of the case studies.  

N◦ IaL (А) IbL (А) IcL (А) InL (А)  
Modulus Angle Modulus Angle Modulus Angle Modulus Angle 

Case 1 51.43 − 26.6 64.35 − 152.7 101.96 94.4 52.70 111.2 
Case 2 51.43 − 26.6 43.08 − 140.8 161.22 76.0 118.08 64.1 
Case 3 111.57 − 14.0 13.64 − 120.7 161.22 76.0 183.08 40.0  

Table 3 
Active power, reactive power, and power factor.   

P (kW) Q (kVAr) PF 

Case 1 43.795 23.967 0.877 
Case 2 45.852 34.994 0.795 
Case 3 54.049 32.309 0.858  

Table 4 
New line currents with compensation for Case 1.  

Ia (А) Ib (А) Ic (А) In (А) 
Modulus Angle Modulus Angle Modulus Angle Modulus Angle 

47.73 − 15.5 55.74 − 102.8 91.25 119.2 16.65 130.7  

Table 5 
Active power, reactive power, and power factor for Case 1 with compensation.  

P (kW) Q (kVAr) PF 

43.795 0.000 1.000  

Table 6 
Comparison of existing losses in the supply line for Case 1.   

Ploss (kW) 

No compensation 19.960 
MLL method 15.008 
Proposed compensation algorithm 13.988  
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Performing these calculations identically to Case 1, and considering the 
values in Tables 2 and 3 for Case 2, the reactance values of the 
compensation system are determined by (59). 

XCa = − 99.209 Ω XCb = 5.880 Ω XCc = 1.971 Ω (59) 

It is observed that XCa < 0, therefore, if considered, this compensa-
tion bank would be composed of coils. Following the procedure of the 
proposed algorithm, XCa should not be considered and the reactive 
power compensation system of the load is to be recalculated using a 
compensation system with two single-phase banks. In our case, as XCa is 
not considered because it is negative, we used the assembly shown in 
Fig. 4. In other words, QCa = 0 was considered, and the system of 
equations used for the calculation is expressed by (50). 

From the system of Eqs. (50), considering the values of the line-to- 
neutral voltages and the values in Tables 2 and 3 for Case 2, the new 
coefficients of matrices A and C are as follows: 

a1 = 7561.4 x10− 8 b2 = 7431.6 x10− 8 c3 = 7694.7x10− 8 (60)   

k1 = − 7235.1 x10− 4 k2 = 1926.2 x10− 4 k3 = 18, 679.2 x10− 4

(62) 

Substituting the values in matrices A and C and solving the system of 
equations, the values of the reactive powers of the two compensation 
banks are as follows: 

QCb = 8.880 kVAr QCc = 26.114 kVAr (62) 

By applying (46), the reactance values of the two compensation 
banks connected as shown in Fig. 4, are determined by (63). 

XCb = 6.061 Ω XCc = 1.991 Ω (63) 

Table 7 lists the new currents flowing in the lines feeding the load 
and compensation equipment. If we compare these values with Table 2 
for Case 2, the current flowing through the neutral conductor has been 
reduced by approximately 73%. 

Table 8 lists the values of the active power, reactive power and power 
factor of the proposed system when the compensation equipment is 
connected. Logically, the reactive power is zero and the power factor is 
equal to one. 

Considering a resistance of one ohm in the line conductors, both in 
the phase and neutral conductors, both for the proposed compensation 
and that obtained by applying the MLL method, the line losses for both 
methods are shown in Table 9. Comparing the values obtained by both 
methods, it is observed that, as in Case 1, the proposed compensation 
algorithm presents lower line losses than the MLL method. 

For the calculation according to MLL method, follow the same pro-
cedure as described in case study 1. 

3.3. Case study 3: compensation using a single-phase capacitor bank 

As in the previous cases, the compensation system must first be 

calculated from the three compensation banks. By performing this 
calculation considering the values for Case 3 (refer Tables 2 and 3), the 
following values for the reactances in the three compensation banks are 
obtained: 

XCa = − 33.107 Ω XCb = 98.253 Ω XCc = 1.558 Ω (64) 

Second, when XCa < 0, the compensation system must be recalcu-
lated using two compensation banks. As in the previous case, the two 
banks will be connected to phases B and C, respectively, as shown in 
Fig. 4. 

XCb = − 195.956 Ω XCc = 1.595 Ω (65) 

In (65), it can be observed that, for this practical case, there is also no 
valid solution using a compensation system with two single-phase 
banks, because XCb < 0. Therefore, the only possible solution is to 
compensate for the total reactive power of the load using a single-phase 
compensation bank connected to Phase C (refer mounting diagram in 
Fig. 11). 

Under these conditions, where QCc = QL = 32.309 kVAr, refer 
Table 3. The reactance value of the compensation bank is determined 
using Eq. (66). 

XCc =
V2

cn

QL
= 1.609 Ω (66) 

Table 10 lists the new currents flowing in the lines feeding the load 
and compensation equipment. If we compare these values with Table 2 
for Case 3, the current flowing through the neutral conductor has been 
reduced by approximately 74%. 

Table 11 lists the values of the active power, reactive power, and 
power factor of the proposed system when the compensation equipment 
is connected. Logically, the reactive power is zero, and the power factor 
is equal to one. 

Considering a line conductor resistance of unity value in the phase 
and neutral conductors, both for the proposed compensation and that 
obtained by applying the MLL method, the line losses for both methods 
are listed in Table 12. Comparing the values obtained by both methods, 

Table 7 
New line currents with compensation for Case 2.  

Ia (А) Ib (А) Ic (А) In (А) 
Modulus Angle Modulus Angle Modulus Angle Modulus Angle 

51.43 − 26.6 45.78 − 89.9 114.0 121.3 31.50 114.5  

Table 8 
Active power, reactive power, and power factor for Case 2 with compensation.  

P (kW) Q (kVAr) PF 

43.795 0.000 1.000  

Table 9 
Comparison of existing losses in the supply line for Case 2.   

Ploss (kW) 

No compensation 44.436 
MLL method 21.678 
Proposed compensation algorithm 18.710  

a2 = b1 = − 1817.1 x10− 8 a3 = c1 = − 1964.3 x10− 8 b3 = c2 = − 1890.5 x10− 8 (61)   
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it is observed that, as in Cases 1 and 2, the proposed compensation al-
gorithm presents lower line losses than the MLL method. 

For the calculation according to MLL method, follow the same pro-
cedure as described in case study 1. 

4. Conclusions 

In this study, a calculation method was developed for reactive power 
compensation of a 4-wire electrical system. The compensation of the 
system is executed by single-phase banks connected in parallel with the 
load or a set of loads using only capacitors. Therefore, the main 
requirement is that the total reactive power of the load be inductive. The 
method used in this study is also valid for unbalanced loads and volt-
ages. Furthermore, it has been proven that the solution obtained is not 
only able to compensate for the total reactive power of the system, but 
also to produce the lowest possible losses in the system’s supply lines. 

The calculations of the proposed method, depending on whether 
there is a possible solution using only capacitors, are structured in a 
maximum of three stages: using three compensation banks, two 
compensation banks, and a single compensation bank. The results ob-
tained were compared with those of the MLL method, which is one of the 
most widely used passive compensation methods. From this comparison, 
it was evident that the solution of the method proposed in this study 
further reduces the losses in the power lines. Furthermore, Furthermore, 
to use only capacitors in compensation banks, the total reactive power of 
the load must be inductive, regardless of the inductive or capacitive 
character in each phase of the three-phase system. To demonstrate the 
accuracy of the proposed method and facilitate practical understanding, 
three case studies were developed with different unbalanced loads fed 
with unbalanced voltages. 
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