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Abstract
The modeling of fleet vehicles as self-interested agents brings a realistic perspective to open fleet transportation research.

This feature allows us to model the fleet operation from a non-cooperative point of view. In this work, we study parcel

delivery in a city with limited resources (roads and charging stations). We designed and implemented a system composed

of a multi-agent planner and a game-theoretic coordination algorithm: a Best-Response Fleet Planner. The system allows

for the self-organization of the transportation system by coordinating a fleet of self-interested electric vehicles. The

system’s operation is optimized together with resource usage while preserving the agents’ private interests, allowing each

agent to plan its actions. The results show that our system has higher scalability than similar approaches, allowing it to

function for a considerable number of agents in settings that feature congestion and conflicts. Additionally, overall solution

quality is improved compared to other coordination systems, reducing congestion and avoiding unnecessary waiting times.

Keywords Intelligent agents � Transportation � Self-interest � Best response � Nash equilibrium � Coordination

1 Introduction

A city can be seen as a non-cooperative or competitive

scenario. Many of its resources, like road networks or

petrol stations, may get congested if too many users want

to use them simultaneously. As users (generally drivers) act

selfishly and uninformedly, resource management tends to

be poor. This translates into traffic congestion, higher

waiting times to refuel, and, in general, more air pollution

and less quality of service (for transportation service users).

Optimization techniques can improve systems by iden-

tifying and minimizing inefficiencies, reducing waste, and

maximizing output. These techniques use mathematical

and computational models to analyze data and identify

areas of improvement [1, 2], such as minimizing produc-

tion costs, reducing delivery times, or improving quality. In

transportation systems, for instance, optimization tech-

niques can be used to optimize routing, minimize fuel

consumption, and reduce transportation time, resulting in

improved delivery performance and reduced costs. One of

the main limitations, however, when it comes to traffic

optimization, is gathering the necessary information to

coordinate every user’s actions and make intelligent deci-

sions. Connecting all services and infrastructure would be

beneficial for such a complex task. Smart city technology

would allow data collection and exchange among these

services. These data could be used in research on

improving urban traffic and applied to develop solutions.

The aforementioned technologies can be applied to

develop an intelligent, self-organizing transportation ser-

vice. This work focuses on open delivery fleets, dynamic

fleets whose number of vehicles can increase or decrease

according to the demand. In contrast with traditional fleets,

the drivers are autonomous; they choose the passenger or

delivery to serve and obtain a benefit accordingly.

Although drivers belong to the same fleet, they act

according to their benefits. Therefore, when reproducing

such a fleet, we must ensure that the agents make their own

decisions and are not coordinated by a centralized entity.

The transports that compose the delivery service must be

able to self-organize themselves according to their private
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goals, but taking into account they all coexist in the same

scenario, and thus it is in their best interest not to cause

congestion. Considering these features, agent-based mod-

eling (ABM) and game theory are applied to reproduce this

type of fleet. ABM [3] is a computational modeling tech-

nique used to simulate complex systems consisting of

multiple interacting agents. In ABM, each agent in the

system is programmed with a set of rules that govern their

behavior and decision-making processes. Game theory [4],

on the other hand, is defined as the study of mathematical

models of strategic interaction among rational decision-

makers, i.e., agents who make decisions based on personal

benefit. Game theory provides the tools to coordinate the

fleet’s autonomous transports taking into account the

actions of each other.

Our work presents a practical application to coordinat-

ing self-interested vehicles of a fleet. In addition, this

coordination considers the resources of the urban area

where the fleet operates to optimize its use and avoid

congestion. To this end, we have, on the one hand,

designed and implemented an ad hoc optimal planning

algorithm that enables each fleet’s individual vehicles to

plan their actions according to their interest. Moreover, the

planner considers every other vehicle’s plans to obtain the

optimal plan with respect to every other agent’s plan. This,

in turn, implies the avoidance of congestion and conflict

resolution. On the other hand, we have implemented a

game-theoretic coordination algorithm (best-response

dynamics) which converges to an equilibrium: A collection

of agent plans from which no vehicle is incentivized to

change. The fleet’s operation that describes the equilibrium

ensures the vehicles perform their services to maximize

their benefits, implying that their private interests are

preserved.

The main differences between our approach and other

fleet coordination techniques are the following. On the one

hand, decentralized coordination is provided. Generally,

fleets are coordinated by a central entity that decides the

actions of each vehicle. In contrast, our fleet vehicles have

the autonomy to make their decisions. In addition, vehicle

coordination may occur even if a member fails to com-

municate, thus being appropriate to model an open fleet.

Finally, our approach enables each vehicle to keep its goals

private, which is useful when coordinating agents in a non-

cooperative scenario. On the other hand, using game theory

techniques allows us to define the use of the city’s

resources as a congestion game which, in turn, shows the

agents (vehicles) that it is in their best interest to make

better use of them. With these features, we achieve the

optimization of the whole system together with the

preservation of the agent’s autonomy, which is generally

lost in other coordination approaches.

Our research explores the limitations of the proposed

system through extensive experimentation. We show the

extent to which the ad hoc planner can return optimal plans

in a reasonable time according to problem complexity and

the number of agents. The results indicate that the system

overcomes similar approaches in terms of computation

power, taking into account the advantage of having an ad

hoc planner. Our system proves the viability of simulating

realistic scenarios, with a significant number of agents, in a

game-theoretic environment. Finally, we assess the quality

of the returned solutions, which are better than those

obtained by greedy coordination.

The remainder of the paper is organized as follows.

Section 2 reviews related work. Then, in Sect. 3, we pre-

sent an overview of the entire proposed system. Next,

Sect. 4 specifies the urban mobility planning domain that

reflects the problem to be solved. Section 5 describes in

detail the developed ad hoc planner. Following, the best

response fleet planning (BRFP) process with which the

whole game is developed to reach an equilibrium solution

is explained in Sect. 6. The experimental results of the

proposed work are presented in Sect. 7. Section 8 discusses

urban transportation challenges, how our system applies to

other problems, and its limitations. Finally, Sect. 9 draws

the conclusions of this work and presents possible future

research directions.

2 Related work

The proposed system is related to three fields within arti-

ficial intelligence: Multi-agent systems, automated plan-

ning, and game theory. In this case, techniques of each

branch are applied to an urban mobility domain intending

to optimize the operation of delivery fleets. Multi-agent

systems and their simulation allow us to reproduce the

behavior of human drivers in a software world and study

their actions and any synergies that may arise. Moreover,

automated planning algorithms ensure that given an agent’s

current knowledge, they are able to compute their best

course of action, considering each possible path at each

computational step. Finally, knowing they are part of a

competitive environment and assuming rationality on all

other participants, game theory gives the basis to reach

agreements and equilibria among the actions of all agents

in the scenario.

2.1 Multi-agent simulation

Multi-agent simulation (MAS) is a computational model-

ing technique that allows the simulation of complex sys-

tems composed of multiple interacting agents. Applied to

urban fleet management, MAS is used to model and
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analyze the behavior of a fleet of vehicles in a city, con-

sidering various factors such as transportation demand,

traffic conditions, and resource availability. MAS can help

improve the efficiency and sustainability of the trans-

portation system by allowing fleet managers to test dif-

ferent scenarios and strategies in a safe and controlled

environment before implementing them in the real world.

MAS has been widely used to model and simulate vehicle

fleets [5–7]. An urban mobility domain must define many

different interactions among the various elements of the

scenarios. MAS help achieve that as we can represent each

element through an agent (vehicles, pedestrians, charging

stations, etc.) and define appropriate behaviors for them. In

[8], authors presented a MAS-based simulator specialized

in the representation of urban fleets of different kinds.

Later, in [9], the aforementioned simulator was extended to

include new types of fleets, such as carsharing. Using

simulators enables us to explore the effect of different

coordination paradigms on the operation of a fleet without

having to implement changes in the real world.

In recent years, new agent-based simulators have

appeared that facilitate the development of different

strategies for fleet management in the urban environment.

One of the tools is SUMO [10], an open-source traffic

simulator that can be used for route choice, communication

between agents and infrastructure, traffic management, and

autonomous driving. SUMO uses an origin/destination

matrix to assign movement between city zones. Another

tool is MATSim [11], a framework for demand modeling

and traffic flow simulations. SIMmobility [12] is another

simulation tool that focuses on mobility demand impact

prediction for smart shipment services. Finally, commer-

cial tools like VISSIM [13] offer an array of technologies

to address multiple mobility and transportation problems.

2.2 Fleet coordination and game theory

Regarding vehicle fleet coordination, the degree of freedom

given to each vehicle is crucial. Such a degree indicates

how much the self-interest of the vehicle (or its driver) can

influence its actions. Authors assess this topic in [14],

where a taxonomy of autonomous vehicle coordination

problems is presented. According to the degree of freedom

given to each vehicle, the coordination approaches vary

from fully centralized, where an external entity imposes

actions on every fleet vehicle, to fully emergent, where its

self-interest guides all of the vehicle’s actions.

There is no direct involvement of the agents (vehicles,

drivers) in any coordination protocol in emergent coordi-

nation approaches. Agents behave according to their goals

and aim to maximize their actions’ utility. These features

give rise to the use of game-theoretic techniques, where

each agent assumes the rationality of the others and

determines its actions based on the information it knows or

can guess about other participants.

For instance, the work in [15] presents a distributed

approach for coordinating the charging of a large fleet of

plug-in electric taxis in a city, aiming to reduce charging

costs, improve charging station utilization, and balance

charging requests for the power grid. The approach

involves a two-stage decision process with a thresholding

method for charging time slot selection and a game-theo-

retical approach for charging station selection, as validated

by extensive numerical simulations. Similarly, the paper

[16] discusses the problem of fleet configuration for

unmanned vehicles, focusing on optimizing the fleet for

minimum costs. The proposed approach involves trans-

forming the fleet configuration activity into an optimization

problem using game-theoretic techniques, with the aim of

achieving interoperability among different organizations

involved in fleet provision through distributed and decen-

tralized planning.

Therefore, emergent coordination is generally applied to

fleets composed of independent vehicles, in other words,

non-cooperative fleets. In these fleets, like those of Uber,

Lyft, or Glovo, each driver obtains benefits thanks to his/

her work. Even if they belong to the same fleet, the dif-

ferent drivers do not tend to cooperate, although that does

not imply that they are competitive either. For our work,

we will assume non-cooperative (agents only care about

maximizing their utility) and non-strictly competitive

(agents do not actively look to reduce the utility of other

agents) self-interested agents.

2.3 Automated planning

Self-interested agents must be able to plan their actions

according to their private benefits. Because of that we

introduced automated planning to the system. A planner

generally looks for a feasible, somewhat optimized solution

to a problem. This applied to a fleet would imply central-

ized coordination, as the planner would define each vehi-

cle’s actions. Nevertheless, the planning goal can be

distributed into different tasks, allowing each agent to plan,

by itself, how to carry out their task. When planning is

applied to MAS, we perform multi-agent planning (MAP)

[17].

In recent years, there has been significant research on

cooperative MAP, where agents join their efforts to achieve

a common goal. Cooperative MAP is used to solve tasks

that cannot be performed by a single agent or are better

solved when several agents work together [18]. In some

cases, agents with different abilities must cooperate to

solve a planning task [19]. However, we focus on types of

MAP where game theoretic techniques may be applied.

These are the coalitional MAP, where establishing
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alliances benefits groups of agents [20]; adversarial MAP,

which features self-interested agents with opposed goals

and, consequently, takes place in strictly competitive sce-

narios; and finally, non-cooperative MAP, in which agents

are not strictly competitive; and therefore, they are prone to

follow a collaborative strategy and resolve conflicts.

The coordination of self-interested agents in non-coop-

erative settings is generally performed through a game. In

this game, the agent strategies are their plans, the actions

they intend to do. These plans will be adapted to other

agents’ plans to avoid conflicts. Finally, an equilibrium is

obtained: a union of agent plans (joint plan) that ensures no

agent will deviate from it. The equilibrium, in addition,

must solve the goal of the MAP task. The works in [21, 22]

introduce FENOCOP, an approach to solving non-cooper-

ative planning problems. In this approach, agents have a

limited set of plans. The final joint plan is built in two

phases or games: first, a Nash Equilibrium [23] is obtained

from the many combinations of agent plans. Then, a

scheduling process delays specific actions to obtain an

executable outcome, avoiding conflicts. This approach can

obtain Pareto optimal and fair equilibria, an extra-quality

measure for the solutions. However, the methods lack

scalability because of their exponential complexity.

Another work, presented in [24], describes the so-called

Better-response Planning Strategy (BRPS), a game-theo-

retic algorithm to solve congestion games [25]. In con-

gestion games, the scenario features a series of resources

that agents will use. When too many agents use a resource

simultaneously, it gets congested, and its cost increases.

Congestion games can significantly represent urban

mobility domains, as these contain many resources (roads,

charging stations) in which we wish to avoid congestion. In

a best-response process, an equilibrium is reached through

an iterative process in which the participant agents propose,

in turn, a plan which is a best-response to every other

agent’s plan. This process finally converges when no agent

is incentivized to change its plan. The Better-response

Planning Strategy of [24] allows agents to propose not their

best plan but simply a plan that improves the utility of its

previously proposed plan. This avoids the need for optimal

planning that a best-response process requires, which is

computationally more costly than satisficing planning in

practice [26].

Our approach is inspired by the Better-response Plan-

ning Strategy but uses a best-response process, as we can

perform optimal planning in a fast manner thanks to the

design and implementation of our ad hoc planner. We

apply these methods to coordinate the operation of an open

delivery vehicle fleet, ensuring optimal delivery routes and

resource congestion avoidance.

3 System overview

The work described in this paper is motivated by the

research on rational, self-interested agents. An agent with

those features has its private objectives, which, in practice,

translates to its unique utility function. Our goal is to

explore the coordination of urban fleets composed of self-

interested agents, particularly electric delivery vehicles.

Such vehicles may belong to a fleet, thus serving cus-

tomers’ delivery requests and getting compensated by it.

Introducing delivery vehicles in a city with limited

resources creates a competitive scenario where agents

compete to deliver their parcels as soon as possible.

However, we must ensure that the aforementioned scenario

(delivery service) is solvable, avoiding the conflicts that

generally arise between agents. For that, we model the

operation of the agents as a MAP task, precisely a non-

cooperative MAP task in a non-strictly competitive setting,

one in which agents do not create coalitions to solve the

global goal of the task but instead, the task is solved by

coordinating how agents solve their goals. In this way, we

aim to obtain a functioning of the agents which preserves

their individuality, not imposing any action but allowing

them to determine their actions by themselves and simul-

taneously avoid conflicts with the rest of the agents of the

scenario.

In a delivery fleet with the aforementioned modeling,

the global goal would be to complete all delivery tasks,

thus solving the scenario. On the other hand, the agents that

compose it will aim to maximize their utility, dropping off

the parcels as soon as possible while following the most

efficient route: the one that involves less traveled distance

and power consumption. To avoid conflicts, the actions of

each agent are decided by a game-theoretic process: A

Best-Response Fleet Planning (BRFP) process (Sect. 6).

The process begins by creating a congestion game equiv-

alent to the scenario to solve. For this game, the moves or

strategies of the players will be their actions, i.e., an

ordered list of the actions they will do. This list of actions

is a plan, being the plan’s goal to get the highest possible

utility out of the actions. Therefore, transport (delivery)

agents act as players whose strategies are plans built

according to their interests.

To compute such individual plans, we developed an ad

hoc planner (Sect. 5). It is ad hoc as it is designed to solve

problems set in the Urban Mobility Planning Scenario

(Sect. 4). We take advantage of the domain characteristics

to speed up the search. All in all, given a scenario and a

transport agent in that scenario, the ad hoc planner builds

the optimal plan for such an agent, taking into account both

the state of the scenario and the plans of every other agent,
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always obtaining a plan that is the best response to all other

agents’ plans.

Once the congestion game is established, it is developed

by the BRFP process, in which the agents propose different

strategies (plans), always in the best response, improving

each turn (if possible) their previously proposed plans to

(1) avoid conflicts with other agents and (2) minimize their

costs. The process converges to an executable solution

(joint plan), a pure-strategy Nash equilibrium (PNE) [27],

guaranteeing that no agent will deviate from it (change its

strategy). In this way, the BRFP obtains a solution that

indirectly achieves the global goals of the fleet (all trans-

port agent’s delivery tasks are served) by capitalizing on

the agents’ own incentive to maximize its benefits, which it

does by completing the tasks following the optimal route

and avoiding congestion. As the global goals are satisfied,

the obtained joint plan also coordinates the fleet’s opera-

tion, which could be simulated.

The diagram in Fig. 1 shows the operation of the BRFP.

It can be seen how the agents use the planner to propose

their best strategy. In one iteration, every agent has to

propose a new best plan (if the previous one was not in

best-response already), updating the joint plan. If, after a

whole iteration, no agent has changed their plan, the pro-

cess has converged, and the joint plan, the union of every

agent’s individual plan, is returned. The joint plan

describes a solution to the congestion game, which is an

equilibrium and, in addition, ensures the lack of conflicts

among agents of the scenario. In the following sections, we

describe the planner and BRFP algorithm and the urban

mobility planning domain in which the executions occur.

4 Urban mobility planning scenario

The planning problems of this work are set in an urban

mobility scenario that models a real-world smart-city urban

area. The scenario contains three types of elements: par-

cels, with an associated initial position and final destina-

tion; electric delivery vehicles or transport agents, with an

initial position and a current travel capacity (electric

power), expressed in kilometers; and finally, electric

charging stations, which have a certain number of charging

poles for the transports to recharge their batteries and an

electric power which determines the speed at which agents

charge in them.

We are modeling a delivery service with non-fixed pick-

up or drop-off locations. Transport agents have two basic

behaviors: complete a delivery task, which involves mov-

ing to the parcel location, picking it up, driving to its

destination, and recharging their batteries by driving to a

charging station. Transports can carry a single (1) parcel at

a time. Consequently, our system considers the following

four types of actions:

1. PICK-UP: Move to a parcel’s position and pick it up.

2. MOVE-TO-DEST: Move to the carried parcel’s des-

tination and drop it off.

3. MOVE-TO-STATION: Move to a charging station and

wait for the charge.

4. CHARGE: Begin charging until the travel capacity is

full.

Actions 1 and 2 constitute a delivery service while actions

3 and 4 constitute a charging service. These services must

be executed without interruption; consequently, during the

construction of the individual plan of a transport agent,

actions of types 1 and 2 will always appear consecutively.

The same applies to actions of types 3 and 4. A scenario

will be solved once the delivery tasks assigned to every

transport are completed. In practice, a transport agent with

a preassigned number of delivery tasks will aim to follow

the optimal order to complete them so that delivery time

and power expenses are minimized.

We have chosen to apply this system to a delivery fleet.

Nevertheless, our approach can be used for other applica-

tions in the field of urban mobility, such as the coordination

of fully autonomous vehicles. In addition, it could be

adapted to manage the operation of other distributed sys-

tems in which the self-interest of each part must be

considered.

4.1 Transport agent’s utility

Transport agents are modeled as rational, self-interested

agents that act according to their private interests. Such an

interest is to maximize their utility. Transports must com-

plete all their delivery tasks regardless of the cost involved.

Because of this, an agent’s utility is equivalent to the

negative value of its costs. Thus, transports are motivated

to complete their tasks minimizing their total cost.

The costs arise from two main sources: customer wait-

ing time or waiting cost and resource congestion.

Regarding the former, transport agents have their costs

incremented by a fixed amount every time instant a

delivery task assigned to them remains uncompleted.

Concerning the latter, roads and charging stations represent

resources whose use incurs costs. These resources may get

congested if too many agents use them simultaneously (in

overlapping time intervals). If a congested resource is used,

the cost of such usage will be higher than expected.

Resource congestion costs are identified as road cong for

road network congestion and power cong for electric

power network congestion in Eq. 1.

The exact formulas that describe congestion costs can be

configured by the user. Generally, a resource will have a
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certain resource bound defining the number of simultane-

ous uses it can withstand. Once that bound is surpassed, the

resource’s cost increases proportionally to how many

agents use it. Our modeling defines two resource bounds:

power bound, for power network congestion, and road

bound, for road network congestion. Let us define a bound,

for instance, of 0.5. For power network congestion, that

would indicate the network gets congested once 50% of its

power is drawn at a time. In contrast, road network con-

gestion would indicate a road is congested once 50% of its

capacity is used at a time.

The total cost of a transport agent is used to evaluate its

plan. It is computed as the addition of its waiting cost and

the costs derived from resource congestion, if any. In

addition, every type of equation cost is pondered by a

weight: ww, wr, and wp for waiting, road congestion, and

Fig. 1 Graphic of the functioning of the best-response fleet planner.

The image at the top shows how the Joint plan is updated each

iteration: All agents compute their plans and update a copy of the

joint plan sequentially. The process converges when no agent changes

their plan. The image at the bottom shows an iteration in detail; each

agent invokes the ad hoc planner during its turn to propose their best

plan, updating the Joint plan if necessary. The planner considers all

other agents’ plans by reading the joint plan each time it is invoked
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power congestion costs, respectively. The utility of an

agent, described in Eq. 1, is equal to �ðtotal cost), which,
in time, is the utility associated with its plan.

U ¼ �ðtotal costÞ
¼ �ðwaiting cost � ww þ road cong � wr

þ power cong � wpÞ
ð1Þ

With this modeling of costs, we achieve transport agents

interested in completing their assigned delivery tasks in an

order that involves less delivery time, fewer power

expenses, and avoids congestion when it is profitable.

4.2 Conflicts

A shared scenario, populated by self-interested agents and

with a limited number of resources, may give rise to con-

flicts among agent plans. A conflict makes the involved

agents’ plans unfeasible. Our domain presents charging

station conflicts when two or more agents plan to recharge

in the same charging station during overlapping periods,

and the station does not have enough available charging

poles to serve all transports simultaneously. In this situa-

tion, the agent that arrives at the station the soonest has its

charging spot ensured. Therefore, the conflict resolution

falls to the rest of the agents, who will have to choose

between waiting in line at the station for their turn to

charge or charging at another station.

Conflict resolution always involves an increase in the

agent’s delivery time and, therefore, costs. However, there

is no way in which conflicts could be permitted. To ensure

agents avoid and/or resolve conflicts, any agent whose plan

is in conflict will be penalized with a great increment of its

costs.

4.3 Individual plans and the joint plan

Agent actions are reflected in plans. A plan consists of a list

of entries arranged in ascending order according to their

start time. Every plan entry corresponds to one action and

presents it with its attributes and initial and end time in

seconds. An example of a joint plan (the union of agents’

individual plans) in our domain is shown in Table 1.

We must differentiate between two types of plans: in-

dividual or agent plans, and the joint plan. Individual plans

are the ones planned and executed by a single agent. The

joint plan, in contrast, is the union of every individual plan.

Individual plans are computed guiding the planning only

by the agent’s private interests, i.e., minimizing its costs.

However, when part of the joint plan, the individual plan

may have actions in conflict. All the conflicts must be

resolved for a joint plan to be executable.

5 Ad hoc planner

Considering the characteristics of the urban mobility

domain defined above, we decided to implement an ad hoc

planner. Agents invoke an instance of the planner to obtain

optimal individual plans that solve the problem scenario

while ensuring their actions avoid conflicts. The current

world state is represented by the transport agent’s knowl-

edge at the moment of planning. This includes its current

position and travel capacity as well as its uncompleted

tasks. In addition, because of the associated best-response

process, the agent will have complete information on the

plan in the joint plan of every other agent in the scenario.

The planner uses this to avoid conflicts.

In this section, we describe our planner’s elements, its

search tree’s components, and the procedure used to build

and explore it.

5.1 Best-response planning

Our planner is meant to be used by the agents participating

in a best-response process to obtain and propose their best

strategy, that is, the best possible plan with respect to every

other agent’s plan. Because of that, our planner performs

optimal planning, which is reasonable given the restrictions

of our domain. Hence, the individual plan returned from

the planning process is always the best response to the plan

of every other transport agent. When a plan is returned, the

agent proposes it and is added to the joint plan, updating it.

Each planner instance has its own station usage table, a

data structure containing, for every charging station in the

scenario, the agents that planned to use it together with the

time instants they arrive at it and start and finish the charge.

An example of such a structure is shown in Table 2. This

data structure is used to detect charging conflicts at the end

Table 1 Visual representation of a joint plan

Init time Actions End time

0.00 (Agent_A, MOVE-TO-STATION, station1) 4.62

0.00 (Agent_B, PICK-UP, parcel1) 9.81

4.62 (Agent_A, CHARGE, station1) 9.97

8.52 (Agent_C, PICK-UP, parcel3) 17.51

9.81 (Agent_B, MOVE-TO-DEST, parcel1) 16.07

9.97 (Agent_A, PICK-UP, parcel2) 19.01

17.51 (Agent_C, MOVE-TO-DEST, parcel3) 25.41

Each row corresponds to a plan entry. On the left column, the initial

time instant of the action is presented in seconds. In the middle one,

the action with all its attributes. On the right column, the time instant

in which the action finishes is indicated, also in seconds
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of a best-response turn and makes agents avoid them in

their subsequent planning processes.

The best-response process will eventually converge to a

pure-strategy Nash equilibrium (PNE) [27]. Once the best-

response process converges, the joint plan is guaranteed to

be a PNE, conflictless and, thus, executable.

5.2 Partial plan search tree and exploration
algorithm

Our planner searches for the optimal plan by building and

expanding a search tree of partial plans following an A*

algorithm. During this process, the most promising nodes

are expanded depending on both the utility of the partial

plan developed so far and the potential (optimistic) utility

that the rest of the plan could develop from that node. The

nodes of the tree contain partial plans. Nodes expand and

generate children, which inherit their plan and add new

actions.

Nodes can be of two types: parcel or charge nodes. A

parcel node is created for each uncompleted delivery task

of the agent when expanding the parent node. Charge

nodes are created whenever the agent’s travel capacity is

not maxed out in the parent node. One charging node is

created per reachable charging station in the scenario. The

information of each station is accessed through the station

usage table (Sect. 5.1). With it, the planner sets the time

instants at which the agent will reach the station and start

charging, according to the available poles and the charge

duration.

By creating parcel and charge-type children, plans are

built adding two actions to the parent node’s partial plan in

each step. Using this method, we only consider the addition

of necessary and feasible actions every time. Consequently,

we are avoiding search tree ramifications that would

eventually be discarded either because of conflicts or a low

utility value.

5.3 Plan evaluation

The value of a plan is tied to the utility it reports to the

transport agent that executes it and, therefore equivalent to

the -(total cost) described in Sect. 4.1. Globally, a joint

plan is not evaluated, as only its feasibility is relevant. The

planner (the individual instance of an agent planner)

evaluates partial plans during the plan-building process

and complete plans to return the best solution. Any con-

gestion in which the agent might be involved is considered

during the plan evaluation, increasing its cost accordingly.

To evaluate a partial plan n Eq. 2 is used, where g(n) is

its cost, h(n) is an optimistic calculus of the expected cost

that completing every non-completed goal would yield, and

h�ðnÞ is the optimal cost to reach all non-completed goals

from node n.

f ðnÞ ¼ gðnÞ þ hðnÞ; hðnÞ� h�ðnÞ ð2Þ

The heuristic function h is a relaxation of the problem

constraints. It assumes that from a particular partial plan,

the remaining delivery tasks can be completed as effi-

ciently as possible without the need to charge. This is done

by computing the best permutation; the order in which to

attend the remaining delivery tasks that minimize costs.

The node’s heuristic value will estimate the minimum cost

of completing the rest of a plan. The heuristic estimate

would only match the actual cost of a plan if such a plan

was completed without charge actions and the agent was

not involved in any congestion.

The value of a complete plan n is equal to g(n). When an

agent proposes its plan, it gets integrated into the joint plan.

Such a plan may present conflicts as a part of a joint plan. If

the integration does not cause any conflicts, the plan’s

value will be the same as it had when proposed. However,

when a plan causes any conflict, its cost is highly increased,

forcing the planner to change it in the following planning

turn.

5.4 Search tree pruning

Planning is a computationally hard task. Our planner

implements mechanisms that aid in speeding up the plan

search process and lower memory consumption.

Best solution prune. Once the first solution node is

found, its plan is extracted, evaluated, and its utility saved

as the best solution value found so far. This value is

updated as new solution nodes are reached. If the value of a

child node is worse than the best solution value, it will be

discarded. The partial plan of an open node with an f-value

below the best solution value has no potential to evolve

into a better solution, so the planner can avoid wasting

computational power expanding it.

Table 2 Station usage table example

Station Agent Arrival Charge start Charge end

Station1 Agent1 17.38 17.38 21.38

Agent3 19.56 21.38 26.38

Station2

Station3 Agent2 5.54 5.54 15.54

It reflects the information regarding charges that appear in the joint

plan. For every station, it contains a list with the agents charging in it

and the time instants in which they arrive at the station, begin and

finish charging
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Previous plan utility bound. When an instance of the

planner is created, the invoking agent’s previous plan

(found in the previous best-response iteration) can be

passed to it. If there is a previous plan and the utility it

reports is higher than 0, such a value will define a lower

bound value for the planning process. When a node is

evaluated, it will be discarded if its value is below the

lower bound. In this way, solution nodes that contain worse

plans (or partial plans with no potential to improve) than

the previously obtained ones are not considered, speeding

up the process. This technique is only applied if the pre-

vious plan of an agent is not causing any conflicts.

6 Best-response planning

This section explains how the best-response planning

process is developed. First, it describes the iterative process

in which the agents propose their best plan given the plans

of the other agents. Then, the way to resolve conflicts that

may arise between agents during this process is explained.

Finally, we explain how to build an initial joint plan with a

greedy algorithm.

6.1 BRFP process

The BRFP is a process in which an agent a iteratively looks

for a plan pa which is in best response to every other plan

in the joint plan P. At the beginning of the process, an

arbitrary order is defined among all participant agents, and

an empty joint plan P ¼ ; is created. Alternatively, the

process can begin from an initial joint plan

P ¼ hp10 ; p20 ; . . .; pn0 i, where pa
0
is a non-optimal plan

created following a greedy strategy (see Sect. 6.2). This

provides the agents with a lower utility bound (see

Sect. 5.4), speeding up the planning during the first BRFP

iteration.

During the process execution, agents must best respond

in each iteration. A planning process is used for that, which

can return either a new plan, the same plan as the previous

iteration, or nothing if there is no solution. If the same plan

is returned, the agent will preserve it since it means that it

is still in the best response to every other plan. When no

agent modifies its plan in a complete iteration, the BRFP

has converged to a joint plan that is a PNE.

From an agent’s perspective, the BRFP works as

follows:

• An arbitrary order between agents is established.

Following such order, an initial joint plan is built

incrementally using the individual planner of the agent

or following a greedy strategy: P ¼ h;; . . .; ;i,

P ¼ hp1; ;; . . .; ;i, P ¼ hp1; p2; . . .; ;i, . . .,

P ¼ hp1; p2; . . .; pni.
• In one iteration i, agent a executes these steps:

1. Analyze the utility of its current plan pai�1 in the

joint plan, defining a lower bound for the following

search.

2. Start a planning process to search for a new plan pai
which is in best response to every plan in the joint

plan.

3. If a new plan is returned, update the joint plan:

P ¼ h. . .; pai�1; . . .; i ! P0 ¼ h. . .; pai ; . . .; i

In case no plan with higher utility than the lower

bound can be found, the agent keeps its previous

plan pai�1, since it is still in best response.

• When no participant agent changes its plan in a

complete iteration, the process has converged, and the

current joint plan is a PNE.

6.2 Initial greedy joint plan

The complexity of our planning scenarios is proportional to

the number of parcels and charging stations that they

include. The planning during the first iteration of the BRFP

process is considerably slower. The absence of previous

individual plans implies not being able to use the previous

plan utility bound (Sect. 5.4). We implemented a greedy

method that creates an initial plan for every agent to pal-

liate this. Such a greedy plan provides the first best-re-

sponse iteration with a utility value to prune the search tree.

The greedy plan is built as follows:

While there are uncompleted delivery tasks:

1. Select the parcel with a pick-up location closest to the

agent’s current location.

2. Check if the agent has enough travel capacity to

complete the delivery.

(a) If it does, go to (3).

(b) If it does not, the agent goes to the closest station

and charges. Then goes back to (1).

3. Complete the delivery task of the selected parcel (pick-

up and drop-off).

The cost of the initial greedy plan will be higher or equal to

that of the optimal plan but never lower. The creation of an

initial greedy joint plan has proved to be very effective,

significantly reducing the amount of generated nodes dur-

ing the first planning process. However, it influences the

BRFP process, as it guides it toward certain equilibria,

avoiding others that cannot be reached with the method’s

restrictions.
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7 Experimental results

The described solution has been implemented with Python

3.7. Among the employed Python modules, Shapely,

Geopy, and Geojson stand out, as they were employed to

reproduce real-life road networks, calculating travel dis-

tances and times over the city area where the vehicle fleet

is deployed. Transport routing is solved by the open-source

routing machine [28], a routing service that calculates,

among others, the fastest route between any two given

points. Each problem configuration was encoded in JSON

format, indicating the attributes of each of the actors

(agents, resources) of the problem together with their

location in the city. Finally, the multi-agent simulator

SimFleet [8] was used to load and visualize the problem

configurations, although it had nothing to do with their

resolution.

To test our system, we defined a set of 13 problem

configurations, presented in Table 3, with different levels

of complexity. The complexity of our problem is defined

by the number of transport agents, the number of delivery

tasks or parcels an agent must complete, and the number of

charging stations. The number of parcels per agent (P/A)

increases planning variability. Charging stations have the

same effect. Therefore, as those values increase, the com-

plexity does too. The number of agents mainly affects the

performance of the best-response process, as more agents

imply longer iterations and more conflicts to resolve. All

charging stations belong to the same power network, whose

maximum power is the addition of each station’s power.

The main area of the city of Valencia, Spain, was chosen

as the scenario for all the problems, and the agents used its

road network. Distances among scenario elements are

determined by their location in the city and expressed in

meters. The speed of every transport agent is fixed. Fig-

ure 2 shows a visual representation of a problem in our

urban mobility domain. The initial position of transport

agents and parcel positions are defined according to a

probability distribution computed from various city data,

including population, traffic intensity per road, and geolo-

calized social network activity. Please note that each

transport has been assigned its packages already. Thus, the

problem we are dealing with is the coordination of their

delivery.

Such a heterogeneous set of problems aims to show both

our system’s capability and limits. Therefore, we first

compare the performance of our planner against other

similar approaches. Then, we address the quality of our

solutions to show how our approach optimizes the urban

traffic system. Finally, we demonstrate the interest in

modeling resource congestion and how self-interested

agents can be incentivized to avoid it.

Unless otherwise indicated, the default values of the

different variables affecting the agents’ utility are those

presented in Table 4. The base price of power is estab-

lished, as well as the standard power consumption for

electric vehicles. In addition, a unit cost for waiting time is

defined. Finally, the congestion bounds of the different

resources are indicated following their modeling in

Sect. 4.1.

7.1 General performance

In the first set of experiments, we show the performance of

our planner in terms of time to achieve a solution. For that,

we solved the problems presented in Table 3 and measured

the number of iterations the best-response algorithm

Table 3 Problem instances used

for experimentation
Problem Transport agents Parcels P/A Stations Charging poles

p20–60 20 60 3 20 40

p20–80 20 80 4 20 40

p20–100 20 100 5 20 40

p50–150 50 150 3 20 40

p50–200 50 200 4 20 40

p50–250 50 250 5 20 40

p100–200 100 200 2 30 60

p100–300 100 300 3 30 60

p100–400 100 400 4 30 60

p150–300 150 300 2 30 60

p150–450 150 450 3 30 60

p200–400 200 400 2 30 60

p500–1000 500 1000 2 30 60

Row values indicate the number of transport agents, parcels, parcels per agent (P/A), stations, and charging

poles in the scenario, respectively
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needed to converge, the total running time of the BRFP,

and the average time that each individual planner instance

took to return a solution. We also indicate the time per

iteration since it is helpful to estimate the total running

time of problems with a similar level of complexity.

This process was repeated on five instances of the

problems: problems with the same complexity magnitude

(number of agents, parcels, and stations) but with the ele-

ments positioned differently within the scenario. This was

done to palliate the irregularity among problems caused by

element positioning. Averages of the results of the five

instances are presented in Table 5,1 where time is expres-

sed in seconds.

As can be seen, the number of parcels per agent (P/A) is

closely related to the increase in planning time. An agent

with more parcels will have more ways to deliver them;

thus, it will have to explore every order to find the optimal

one. The standard deviation of the planning time also

increases with the problem’s complexity. Regarding the

total time, the best-response process is expected to last

longer with the more participants it has. With problems

such as p500-1000, even though the P/A number is only 2,

the high number of agents makes the process too time-

consuming.

Fig. 2 Visualization of a problem configuration using the SimFleet software. The experimentation takes place in the main area of the city of

Valencia, Spain. Different icons represent the location of electric vehicles, parcels, and charging stations

Table 4 Default values of different problem variables

Price per KWh 0.3 €

Power consumption per Km 0.14

KWh

Power price per Km 0.3 � 0.14
Time penalty (waiting cost) 1

Road network cong. bound 0.3

Power network cong. bound 0.5

These variables affect the numeric value of the agent’s costs and the

application of congestion

1 All the tests were conducted on a single machine with an Intel Core

i7-7700 CPU at 3.60GHz and 16 GB RAM.
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Even though our work focuses on our particular problem

and domain, we want to compare it with a similar

approach. The research in [24] approaches fleet coordina-

tion through the so-called Better-response dynamics. As its

name hints, such an algorithm is developed in a very

similar way to best-response but with the agents proposing

plans that improve the utility of their previously proposed

plan, not necessarily being the current best plan. As the

authors prove, the convergence to an equilibrium in such a

case is guaranteed as with best-response dynamics. With

this, the need for optimal planning is avoided. This enables

the authors to use a general-purpose satisficing planner that

can be applied to different domains. However, in contrast

with our planner, the plan computation for complex sce-

narios is computationally more costly, as our planner is

refined for the specific planning scenario. Regarding the

problem modeling, we are applying the BRFP to a more

realistic application using the real road network and a

routing service (OSRM). In contrast, their modeling solves

an electric autonomous taxi problem in simple networks

with a concrete number of junctions.

Finally, assessing the experimentation results of both

approaches, we can see that our system can solve scenarios

with a higher level of relative complexity. The problem

complexity in these scenarios depends on the number of

agents to be routed and the number of junctions, increasing

the planning process’s ramifications. The most complex

experiments performed in [24] and [29] [Section 6.4]

include six agents (which can be interpreted as 18 since

each company agent manages three taxis carrying cus-

tomers) and between 8 and 12 junctions, depending on the

case. Therefore, our simplest problem (p20–60) is already

orders of magnitude above the aforementioned ones that

require almost 1800 s of computation time to reach an

equilibrium, which makes it unfair to compare planning

and total times directly. Our approach’s most significant

benefit (with its ad hoc planner) brings the system’s ability

to manage up to 500 agents in a considerable amount of

time. Nevertheless, most of our configurations reach an

equilibrium in less than 15 min, except in the most com-

plex cases where between 15 min and an hour is required,

even for problems like p50–250, where the planning pro-

cess is especially complex.

Our system’s major limitation comes from the com-

plexity of planning, which is PSPACE-complete [30] or

even harder in practice for optimal planning [26]. The

computation time increases exponentially with the problem

complexity, which means that our planner would stop

returning solutions in a reasonable time for a certain

number of agents or problem variability. However, given

the nature of the type of problems we are dealing with,

which include both the self-interest of the agents, thus

requiring a game-theoretic approach, and their planning

capabilities to perform a set of tasks optimally, the theo-

retical complexity cannot be reduced except by improving

at the practical level the computation time, as we have done

using an ad hoc planner for the restricted domain we have

defined.

From the point of view of game theory, our system

introduces a number of agents, which is orders of magni-

tude above the norm. The computation of equilibria is

costly; therefore, most applications cannot bear to compute

them for games with such a significant number of partici-

pants. Even though our approach computes only a single

equilibrium, it can do so for up to 500 participants in

Table 5 Average performance

of five repetitions of the

problem set

Problem P/A Iterations Total time Time/iter. Planning time

p20–60 3 3.2 22.2 6.82 0.45±0.21

p20–80 4 3.6 72.8 20.06 1.33±0.83

p20–100 5 4.0 234.4 58.59 3.82±3.11

p50–150 3 3.4 150.1 43.61 1.12±0.60

p50–200 4 4.2 523.7 125.08 3.14±2.09

p50–250 5 5.5 2693.0 489.25 11.79±10.81

p100–200 2 3.0 206.7 68.90 0.89±0.52

p100–300 3 3.8 820.2 216.06 2.72±1.42

p100–400 4 4.8 3638.7 757.45 9.28±6.96

p150–300 2 3.0 528.7 176.24 1.53±0.92

p150–450 3 3.8 2102.2 555.08 4.73±2.47

p200–400 2 3.0 929.1 309.69 2.01±1.21

p500–1000 2 3.0 6462.8 2154.27 5.75±3.48

Times indicated in seconds. P/A parcels per agent, iterations number of iterations the best-response

algorithm took to converge, total time time until a solution was obtained, time/iter. total time/iterations,

planning time average time that each individual planner instance needed to return a solution
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complex planning scenarios that feature congestion and

conflicts.

7.2 Comparison of solution quality

Users of urban traffic systems, especially drivers, tend to

act selfishly, only concerned about their goals, whether

those are to reach their destination fast, follow their pre-

ferred route, etc. With the introduction of game theory

techniques, we can turn selfishness into competitiveness

and the latter into optimization. If every user acts in the

best way with respect to every other user in the system,

their experiences will improve.

Decentralized coordination such as the one presented in

this paper may seem inadequate to optimize a system

globally. Nevertheless, having agents follow selfish

strategies in a competitive (or non-cooperative) scenario

will generally improve the agents’ utilities and some of the

system’s metrics.

In this section, we compare the agent plans obtained by

our BRFP with those obtained by a greedy strategy that

aims to reproduce the behavior of an uninformed, selfish

driver. We analyze the agents’ costs from a global per-

spective, showing that both agents’ utilities and system

metrics are optimized by following the BRFP. A solution

with improved agent utility implies, in turn, global benefits

such as optimal delivery of the parcels, both in order and

time, reduced energy spending, and less resource conges-

tion. Although there are related works such as [22] in

which the quality of Nash equilibrium solutions is com-

pared using additional criteria such as Pareto optimality or

fairness, in such a case, it is necessary to list all Nash

equilibria of the game, which is unfeasible in complex,

realistic scenarios such as ours. This is why we have pre-

ferred to compare with a greedy solution preserving the

complexity of the scenario.

The experimentation has been carried out by obtaining

solutions to the first instance of the previous 13 problems

(Table 3). Those problems were solved using the BRFP and

the so-called Greedy Solver (GS). The GS builds an agent’s

plan in two steps: Greedy plan-building and conflict-

solving.

The greedy plan is built with the following strategy: The

agent tries, at each time, to complete the delivery task

whose pick-up location is the closest to its current position.

If, at some point, the agent’s travel capacity is not enough

to complete the selected delivery task, it will instead drive

to the closest station and recharge its batteries. After that,

the delivery task selection will begin again. This process

finishes once the agent has completed every task, thus

obtaining a complete plan. Then, any action of the plan that

causes a conflict with another agent is delayed until the

conflict no longer exists. Ultimately, we obtain a feasible

joint plan composed of individual greedy plans.

The results of this experimentation are presented in

Table 6, where a comparison of the problems solved by the

GS and the BRFP can be seen. The metrics that define the

quality of a solution are the mean total cost of the delivery

fleet operation (according to each agent’s utility function

described in Sect. 4.1); and the number of agents that

experienced either a road or a power network congestion.

The BRFP shows lower values for the mean total cost and

the number of congested agents.

Table 7 further analyzes the comparison by showing the

percentage in which every mean cost is reduced by the

BRFP (with respect to the GS’s solutions). As can be seen,

the average total cost is reduced between 3.23% and

10.43%. As the problem complexity increases, the reduc-

tion is higher. It can be observed how the number of par-

cels per agent (P/A) affects the decrease in total cost. For 2

P/A, the cost reduction does not overcome 3.81%. For 3

P/A, the reduction reaches a value of 7.81%. Finally, for

problems with 4 or 5 P/A, the reduction can surpass 10%.

Even though the total cost reductions are not high, there is

a significant decrease in the number of congested agents

(see Table 7, columns under ‘‘congested agents’’). This

shows how our approach, despite the selfish strategy of the

agents, in a competitive environment can lead to socially

better solutions. In problems p20–80 and p50–150, the

results show an increase in agents which suffered road

congestions (values – 200% and – 700%) in favor of a high

reduction in those that suffered power (or charge) con-

gestions. This occurs mainly because, for this problem’s

configuration, the cost increment associated with power

congestion is higher than the one associated with road

congestion. Consequently, when the planner only finds

plans which involve either one or the other, road conges-

tion will generally be preferred.

Ultimately, these results confirm the usefulness of our

approach and show how the use of self-interested agents

improves not only their benefits, but also brings global

improvements. Our system increases customer satisfaction,

reducing the time it takes to deliver all parcels. Also, the

sustainability of the urban traffic system is enhanced,

firstly, by reducing traffic and power congestion and, sec-

ondly, by decreasing vehicle operating times, which entails

fewer kilometers traveled and, therefore, less energy con-

sumption. In addition, this type of system also studies and

promotes the implementation of electric vehicles as the

standard in urban environments.

Ideally, we would compare our system with one that

solves problems in the same domain but using a centralized

approach. However, because of our ad hoc design, there is

no other application we could fairly compare it with. Even

so, the relevance of our decentralized planning and the
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best-response algorithm is preserving the agents’ private

interests. No entity imposes actions on the agents; they

decide for themselves their best possible actions, guided by

data from the urban traffic system.

7.3 Effect of congestion

The modeling of resource congestion and how the agents

can be aware of it to avoid it gives our system the potential

to test interesting scenarios. Higher congestion cost incre-

ments will drive agents to avoid congestion with greater

interest. In the experimentation presented so far, in

Sects. 7.1 and 7.2, the impact of congestion cost incre-

ments on an agent’s total cost was minimal and did not

strongly influence the agent’s plan. In those cases, the

customer’s waiting time was the main parameter to opti-

mize, as it entailed a much higher cost.

In this section, we analyze the changes in agents’ costs

and behavior when resource bounds vary and greater

congestion costs are introduced to the system. Therefore,

for the following experiments, the power network con-

gestion costs were multiplied by a hundred, whereas the

Table 6 Solution quality

comparison for problems solved

with the Greedy Solver and the

BRFP

Greedy solver BRFP

Congested agents Congested agents

Problem P/A Mean total cost Road Power Mean total cost Road Power

p20–60 3 77.07 0 0 71.45 0 0

p20–80 4 138.39 0 16 123.95 2 8

p20–100 5 200.33 0 17 182.42 0 14

p50–150 3 69.81 1 10 66.30 8 0

p50–200 4 126.96 2 27 114.65 0 14

p50–250 5 203.89 5 44 182.70 3 30

p100–200 2 30.62 0 0 29.63 0 0

p100–300 3 70.90 0 19 65.51 0 0

p100–400 4 131.03 0 70 118.10 0 38

p150–300 2 33.04 0 0 31.78 0 0

p150–450 3 72.99 0 33 67.29 0 0

p200–400 2 31.70 0 0 30.58 0 0

p500–1000 2 32.07 2 0 31.00 2 0

The problems present different values for the average total cost and the number of congested agents. The

mean total costs of the fleet’s transports as well as the number of congested agents are generally lower with

the BRFP

Table 7 Greedy solver versus

BRFP costs reduction

percentages

Congested agents

Problem P/A Total cost (%) Traveled kms Road Power Waiting cost

p20–60 3 7.29% 4.04% 0.00% 0.00% 7.35%

p20–80 4 10.43% 3.54% �200.00% 50.00% 10.46%

p20–100 5 8.94% 5.18% 0.00% 17.65% 8.91%

p50–150 3 5.03% 2.10% �700.00% 100.00% 5.08%

p50–200 4 9.70% 3.43% 100.00% 48.15% 9.67%

p50–250 5 10.39% 5.51% 40.00% 31.82% 10.36%

p100–200 2 3.23% 1.48% 0.00% 0.00% 5.46%

p100–300 3 7.60% 3.70% 0.00% 100.00% 7.66%

p100–400 4 9.87% 5.44% 0.00% 45.71% 9.75%

p150–300 2 3.81% 2.59% 0.00% 0.00% 3.85%

p150–450 3 7.81% 5.06% 0.00% 100.00% 7.79%

p200–400 2 3.53% 2.00% 0.00% 0.00% 3.56%

p500–1000 2 3.34% 1.98% 0.00% 0.00% 3.39%

Columns 5 and 6 show a reduction in the number of congested agents (instead of costs)
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road network congestion ones were multiplied by fifty.

With this, we achieve congestion costs whose order of

magnitude is comparable to the waiting cost of customers.

7.3.1 Resource bound variation

For the first round of experiments, we executed problem

p20–100 with values for the resource bounds ranging from

0 (any simultaneous use congests the resource) to 1 (the

resource will only be congested if all agents are using it

simultaneously). The relevant results are presented in

Table 8. As can be seen, with a bound of 0, most agents get

involved in congestion at some point in their plans. The

number of congested agents decreases as the bound is

incremented until no agent gets congested. The cost

increments associated with congestion are higher according

to the number of agents involved. That is reflected in both

the congestion cost and the total cost, which are reduced as

the bound increases and fewer agents get congested.

On the other hand, it can also be observed in Table 8

that there is much more congestion on the power network

than on the road network when the bounds are between 0.1

and 0.25. This occurs because transports can coincide in

time using the power network more easily than the roads

since there is only one power network, while the roads that

agents can take are less likely to coincide.

7.3.2 Agent behavior analysis

Following the trend of researching the effect of congestion,

in this experiment, we analyze the change in agent

behavior (reflected in their plans) once higher congestion

costs are introduced to the system. With our base modeling,

the plan building is mainly motivated by the agent’s

waiting cost. In other words, agents prioritize on-time

delivery and thus reduce the customer’s waiting time.

Congestion costs may appear, and the agent will be

inclined to avoid them when possible. However, when

avoiding congestion involves an increase in waiting cost

that overcomes the congestion cost increment, the agent

will decide to assume the congestion in favor of faster

delivery since it implies a lower cost.

The behavior described above is intended and achieved

thanks to the higher value of waiting costs with respect to

congestion cost increments. For the following experiment,

we cause a change in agent behavior by increasing con-

gestion costs, making them overcome waiting costs. With

this, the agent’s primary motivation will be to avoid con-

gestion. To study such a setting, we built a small problem

configuration, with ten transport agents, three delivery

tasks each, and five charging stations, all belonging to the

same power network, with two charging poles each. The

transport agents had an initial travel capacity of 20 km out

of a maximum travel capacity of 30 km. Because of that

some agents will need to recharge their batteries at some

point in their execution to complete their delivery tasks.

The BRFP has solved the aforementioned configuration

in three different ways: (1) without considering charging

congestion costs (wp ¼ 0 in Eq. 1), (2) with the default

charging congestion cost increments (wp ¼ 1), and finally,

(3) with significantly higher charging congestion cost

increments (wp ¼ 100). The power network bound was

fixed at 0.5, its default value for the previous experiments.

Our results are presented both in Table 9 and in Figs. 3,

4, and 5, where the charging intervals of the agents are

represented on a timeline. For simplicity, the continuous

time has been discretized in the representations. Bear in

mind that as all charging stations are fed by the same power

network, the specific station in which agents are charging is

not relevant. Because of the same reason, any overlapping

interval indicates an increment in the power demand to the

power network. Power congestion will arise when such an

increment exceeds the power network bound.

Comparing executions (1) (Fig. 3) and (2) (Fig. 4), it

can be seen how the introduction of a mild congestion cost

can cause some agents to opt for a plan which avoids it. In

this case, agent 7 moved its charge action to the beginning

of its plan. With such a change, it is still available to

Table 8 Average costs and congested agents variation according to

resource bound

Power network congestion

Total cost Power congestion

Problem Mean Std Count Mean Std Power bound

p20–100 199.7 26.3 19.0 8.1 4.4 0

p20–100 196.7 26.9 18.0 5.9 3.2 0.1

p20–100 192.1 27.0 12.8 3.4 1.2 0.25

p20–100 189.4 26.3 0.8 1.9 0.0 0.5

p20–100 188.5 26.0 0.0 0.0 0.0 [ 0.5

Road network congestion

Total cost Road congestion

Problem Mean Std Count Mean Std Route bound

p20–100 207.4 29.3 20.0 15.3 7.6 0

p20–100 190.3 25.3 7.7 7.1 6.5 0.1

p20–100 186.2 25.5 0.3 0.3 0.0 0.25

p20–100 186.0 25.5 0.0 0.0 0.0 [ 0.25

count columns indicate the number of agents involved in congestion.

mean columns indicate the average cost increment and std columns

show the standard deviation
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complete every delivery task with only one charge, and, at

the same time, it avoids charging in the period in which the

network is overused. However, it is also clear that for most

agents, the cost increment of congestion is not high enough

to induce a change of plan. Agents 1, 3, 4, 5, 6, and 10

prefer to keep their charge schedule even though all of

them are affected by congestion (see instance (2) in

Table 9), which increases the price of their charge. This is

because, as we commented above, the rescheduling of their

charge would entail an increment in the customer waiting

time, which is the factor that contributes to the total cost

the most.

With a high congestion cost increment (Fig. 5), there is

an evident change in behavior, as agents are now interested

in avoiding congestions and, in case of being unable to do

so, minimizing the overlap of their charge with the charge

intervals of other agents. It can be seen how agent 4

decides to charge two times, only to avoid congestion.

Also, agent 8 delays its charge, as currently charging at the

start would provoke congestion with agents 4 and 7. In this

case, agent 8 gets involved in congestion, but it only par-

tially overlaps with two agents (1 and 3), so the cost

increment is not too high.

As it can be seen in Table 9, the customer waiting time

slightly increases for (3), as the charge actions are now

scheduled mainly to avoid congestion (in contrast with (1)

and (2), in which they were scheduled to reduce waiting

time). Nevertheless, the amount of congested agents is

Table 9 Mean costs and

congested agent number for the

different executions of the

problem configuration

Instance Total cost Congested agents Cong. cost Waiting cost

(1) 71.1 ± 16.2 – – 69.9 ± 16.0

(2) 71.4 ± 16.3 6 0.42 ± 0.05 70.0 ± 16.0

(3) 74.5 ± 18.1 4 3.60 ± 0.71 72.0 ± 17.7

Fig. 3 Timeline of transport agent charging intervals with no charging

congestion costs. Agents are represented by colored rectangles whose

length indicates the duration of the charge. Most of the agents

recharge their batteries between the 29th and the 51st time units, as

they have no incentives not to overcharge the power network

Fig. 4 Timeline of transport agent charging intervals with default

charging congestion costs. Agents are represented by colored

rectangles whose length indicates the duration of the charge. The

charging congestion cost is not enough to motivate the majority of the

agents not to overcharge the power network, resulting in most agents

recharging between the 29th and the 51st time units

Fig. 5 Timeline of transport agent charging intervals high charging

congestion costs. Agents are represented by colored rectangles whose

length indicates the duration of the charge. The high congestion costs

motivate the agents to schedule their recharge so as not to overcharge

the power network, thus splitting their charging intervals uniformly

over the simulation time
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reduced by 2, and, what is more relevant, the pressure on

the power network is evenly divided along with the exe-

cution of the agents’ plans. Figures 6 and 7 present a

visualization of the power network usage, showing with

colorized intervals concurrent charges. Darker colors

indicate a higher number of overlapping charges. With the

default charging congestion costs (Fig. 6), the maximum

amount of overlapping charges is 7, whereas with high

congestion costs (Fig. 7) it is only 2.

In the proposed system, a cost variation can significantly

influence the agents’ actions, as they are mainly motivated

to reduce costs. These experiments show how the system

can be tuned to achieve solutions with higher global cus-

tomer satisfaction, as in (2), or reduce the simultaneous use

of a resource, such as the power network, in (3).

8 Discussion

This section enumerates current challenges in the field of

urban transportation and optimization. Then, it discusses

the application of the described system to other smart areas

and different problem domains, and describes the limita-

tions of our system.

8.1 Urban transportation challenges

The research field of urban transportation and optimization

faces various challenges. One of the most prominent issues

is traffic congestion, resulting from increasing urbanization

and the rising number of vehicles on the road. The adverse

effects of traffic congestion include significant economic

and environmental losses and a decline in the quality of life

for city residents. Another challenge is to make trans-

portation more sustainable and reduce greenhouse gas

emissions and air pollution. The development of intelligent

transportation systems has led to the use of sensors, data

analytics, and other technologies to optimize traffic flow

and reduce congestion, but their implementation can be

complex and costly. Autonomous vehicles have the

potential to revolutionize urban transportation, but safety

concerns, infrastructure requirements, and public

acceptance present significant challenges. Lastly, the

growth of e-commerce has created a major challenge for

urban areas regarding last-mile delivery. Addressing these

challenges and finding ways to optimize delivery routes

and reduce the environmental impact of delivery vehicles is

a crucial area of research in urban transportation and

optimization.

Our work addresses several of the aforementioned

issues. Specifically, we contribute toward reducing traffic

congestion and improving sustainability by modeling fleet

coordination as a congestion game. This approach moti-

vates each agent to optimize their use of city resources such

as roads and charging stations. Our approach is also rele-

vant to developing intelligent transportation systems, as it

relies on data estimates and sensor technology to improve

fleet operations and enhance the quality of life of city

residents. Additionally, our coordination principles of

decentralization, privacy, and agent autonomy contribute to

the development of autonomous transportation. Finally, our

work is applicable to the challenge of last-mile delivery, as

the domain we have developed addresses a problem within

this category.

8.2 Applicability of the proposal to other
domains

The main area of the city of Valencia, Spain, has been

chosen to illustrate the operation of the proposed system as

well as to perform its evaluation. From a general per-

spective, our system offers a solution for the coordination

of open fleets composed of autonomous, self-interested

agents, independent of the agents’ goals and the concrete

area where they are deployed. The coordination by means

of game theory, however, requires complete information

for the agents to make a strategic decision. In terms of the

deployment area, this implies having access to real-time

data and the computation of estimations. For the chosen

domain, parcel delivery, those estimations would be traffic

congestion, traveling times, and speed. Because of that the

presented system can be applied to any smart area that

fulfills its need for estimated data.

Fig. 6 Timeline of power network usage with default charging

congestion costs. Painted intervals illustrate concurrent charges.

Darker colors indicate a higher number of concurrent charges. The

power network is congested between the 32nd and the 51st time units,

showing a major congestion between 38th and the 40th
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Regarding the application domain, the present work

assesses traffic optimization by coordinating open delivery

fleets. For that, a so-called ‘‘ad hoc’’ planner is designed, as

commented in Sect. 5. The term ‘‘ad hoc’’ refers to the

design of the planner according to the domain; this is,

according to the specific actions, conflicts and utility

functions defined for the parcel delivery problem, descri-

bed in Sect. 4. If we separate the system from the domain

chosen in this work, it offers a general solution for coor-

dinating autonomous self-interested agents, regardless of

the agents’ concrete goals. The only essential requirement

for the described system to operate is the existence of a

mechanism that allows the agents to plan their actions

according to their objectives, hence the creation of the ad

hoc planner. Ultimately, this implies that with a few

adjustments, it is possible to modify the presented planner,

adapt it to a new domain, and thus develop a solution for

that domain without changing the workflow of the entire

system.

8.3 System limitations

The described approach, despite being highly configurable,

has a series of limitations that must be commented. On the

one hand, the planning of agent actions is performed stat-

ically before the agents’ execution. This requires that each

agent estimates their utility function. For the domain of

parcel delivery, the estimation includes traffic congestion

and traveling time and speed. Because of that the most

realistic application area of our system would be in a smart,

highly monitored closed area, where all components are

constantly sharing data. The implementation in an open

area with components or agents that are not willing to share

data would worsen the estimations and, thus, the operation

of the fleet.

On the other hand, the best-response coordination

requires that participants are willing to share their actions

with other agents. While the concrete goals may remain

private, the course of action toward such goals must be

disclosed. Since our system is thought to coordinate agents

in a non-cooperative but non-strictly competitive scenario,

some participants may have reservations about sharing

their plans. Notice, however, that the final objective of the

coordination is the optimization of the whole operation and

the usage of the area’s resources, and thus sharing infor-

mation would ultimately benefit all involved parties.

9 Conclusions

In this paper, we have presented a system for coordinating

urban fleets of self-interested agents using best-response

dynamics and multi-agent planning. The problem addres-

sed has been defined as an urban mobility domain in which

a set of transport agents, which may represent electric

vehicles, have to carry the parcels assigned to them from an

origin to their destination. To do so, each agent can

strategically decide the order in which it makes the deliv-

eries, as well as when and where to recharge the vehicle’s

batteries. These strategic decisions are made by each agent,

in particular, depending on the strategies (plans) of the

other agents to obtain the highest possible utility avoiding

the congestion of both the power network and the roads, as

well as conflicts due to lack of free poles in the power

stations.

To resolve this mobility problem with self-interested

agents, an ad hoc planner has been developed for this

domain. Each transport agent has its own instance of the

planner to obtain a plan that is the best response to the plan

of the other agents, i.e., the current joint plan. Thus, the

resolution of the complete problem is approached by a best-

response algorithm in which each agent, in turn, proposes its

best plan with respect to the current joint plan. This iterative

process ends when no agent changes its plan during a

complete iteration, in which case, the resulting joint plan is

guaranteed to be a pure-strategy Nash equilibrium.

We have tested our system’s performance for different

levels of complexity through extensive experimentation.

Using our own ad hoc planner is an advantage over similar

systems with general-purpose planners. The optimal plans’

obtention is achieved relatively quickly, even for the most

complex settings. However, one must take note of the

restrictions of our domain, which also help speed up the

search. In addition, we have also compared the quality of

the solutions obtained with our approach, which are Nash

equilibria, versus solutions obtained with a greedy

Fig. 7 Timeline of power network usage with high charging congestion costs. Painted intervals illustrate concurrent charges. The network does

not get congested, as the maximum number of concurrent charges is two
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approach. In this sense, the solutions of our system are

better (around 7% on average, and more than 10% in

several cases) from a global point of view by avoiding

congestion and unnecessary waits. Moreover, being equi-

librium solutions for self-interested agents, it can be

ensured that none of the agents is incentivized to change its

plan instead of other types of coordination solutions that

agents might not respect, causing conflict situations.

Our system, because of its characteristics, is not able to

adapt to new delivery tasks as fast as online approaches

would. In general, any change in the initial conditions of

the problem would require a new equilibrium, that is, a new

execution of the best-response algorithm. However, our

system would be adequate for problems in which the par-

cels to be delivered are not updated every few minutes

since delivery windows of 15, 30, or 60 min could be

assumed, depending on the needs. If the system were to be

implemented as a smart city solution, the computing power

would be much higher than that used in our tests with a

conventional computer. This would imply that solutions

could be computed in seconds or a few minutes.

In the future, we aim to overhaul the described system by

including a mechanism that detects and deals with incorrect

data estimations. One of the limitations of the system, as

discussed, is the reliance on data estimates. With this

improvement, wewould increase system reliability for use in

real-world scenarios. Also, in the line of fair and optimized

coordination of vehicle fleets, we would like to explore the

implementation of a task allocation algorithm that follows

the principles of privacy and decentralization established for

this work. Finally, a future development of greater magni-

tude would be the development of a digital twin representing

the deployment area of the open fleet together with its

resources and with the possibility to include new and dif-

ferent smart services. Such work would bring a tool for

significant research in smart cities and their optimization.
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