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Abstract
Given a polynomial map F : C

n −→ C
p with finite zero set, p � n, we introduce the

notion of global multiplicity m(F) associated to F , which is analogous to the multiplicity of
ideals in Noetherian local rings. This notion allows to characterize numerically the Newton
non-degeneracy at infinity of F . This fact motivates us to study a combinatorial inequal-
ity concerning the normalized volume of global Newton polyhedra and to characterize the
corresponding equality using special closures. We also study the Newton non-degeneracy at
infinity of gradient maps.
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1 Introduction

The study of algebraic, geometrical and topological aspects of polynomial maps is one of the
cornerstones of singularity theory, as can be seen in a wide family of articles with different
purposes, someof themare [1, 8, 10–12, 14–16, 18].Related to this fact,wehighlight the result
of Kouchnirenko [15] where the author shows an estimation of the global Milnor number of
a given polynomial function f ∈ C[x1, . . . , xn] with finite singular set. This estimation is
made by using the combinatorial information supplied by the global Newton polyhedron of
f (see Theorem 2.12). Moreover, in [15] a sufficient condition for the corresponding equality
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is given via the Newton non-degeneracy at infinity of f , which is actually a condition on the
map (x1

∂ f
∂x1

, . . . , xn
∂ f
∂xn

) : C
n −→ C

n . In [6] and [7] we explored this notion when extending
it to arbitrary polynomial maps C

n −→ C
p (see Definition 2.10 (h)).

In [6] we characterized the Newton non-degeneracy at infinity of a given polynomial map
F : C

n −→ C
p by means of the maximality of the special closure of F , which is a notion

introduced in [5] (seeDefinition 2.14) inspired by the integral closure of ideals. Aswe showed
in [7], in the case p = n, the Newton non-degeneracy of F can be characterized numerically
in terms of the colength in C[x1, . . . , xn] of the ideal generated by the components of F (see
Theorem 3.8); this characterization does not hold in general if p > n. This fact motivated us
to investigate which is the correct numerical invariant of F leading to the characterization of
this important property of F .

Let us denote by μ(F) the colength in C[x1, . . . , xn] of the ideal generated by the com-
ponents of F (see (1)). This number is the tool to define the global Milnor number μ∞( f )
of any given polynomial function f ∈ C[x1, . . . , xn] with finite singular set (see (3)). The
global Milnor number of f is also called the total Milnor number of f in [8] and [14], since
it is equal to the sum of the (local) Milnor numbers of f at each isolated singular point of
f . Given a polynomial map F : C

n −→ C
n , the number μ(F) also plays an important role

in the general problem of the effective computation of the zero set of F , which in turn is a
problem with a wide variety of applications in engineering and other scientific disciplines
(see for instance [25]).

Supportedby theworks [25] and [26] ofSommese andWampler, in this articlewe introduce
the notion of global multiplicity m(F) for any given polynomial map F : C

n −→ C
p with

finite zero set and p � n. This number allows us to characterize numerically the Newton
non-degeneracy at infinity of F . This characterization has also motivated us to show an
easily computable lower bound for the normalized n-dimensional volume of a given Newton
polyhedron ˜�+ ⊆ R

n
�0. We characterize the corresponding equality by means of the notion

of special closure, thus leading to a significant class of global Newton polyhedra. Given a
polynomial function f ∈ C[x1, . . . , xn], the normalized n-dimensional volume of the global
Newton polyhedron attached to the gradient of f (instead of the global Newton polyhedron of
f ) also encodes valuable information. In viewof this fact and the relevance of having effective
methods to compute global Milnor numbers, we also analyze the Newton non-degeneracy at
infinity of the gradient map associated to any given f ∈ C[x1, . . . , xn] and compare it with
the Newton non-degeneracy of the map (x1

∂ f
∂x1

, . . . , xn
∂ f
∂xn

) : C
n −→ C

n .
The article is organized as follows. In Sect. 2, which in turn is subdivided into three

subsections, we expose the fundamental results that we need in the subsequent sections. In
particular, we define the above-mentioned notion of global multiplicity and we recall some
basic facts regarding the notion of Newton non-degeneracy at infinity. In the same section we
also review some fundamental properties of the notion of special closure (of a polynomial
map) and relate it with the integral closure of ideals and the class of tame polynomial functions
(in the sense of Broughton [8] and Némethi–Zaharia [14]).

Using the results of Sect. 2 and [7], in Sect. 3 we show the characterization of the Newton
non-degeneracy at infinity of a given polynomial map C

n −→ C
p , for p � n, in terms

of its global multiplicity (see Theorem 3.8 and Corollary 3.9). In the same section we also
introduce the notion of global reduction, with analogy with the usual notion of reduction of
an ideal in a local ring (see for instance [17, §1]).

Section 4 is devoted to showing the said combinatorial inequality regarding the normalized
volume of global Newton polyhedra. The corresponding equality can be characterized in
terms of global reductions (see Theorem 4.2). In Sect. 5 we study the condition of Newton
non-degeneracy at infinity on a given gradientmap, thus leading to a substantial class of global
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Newton polyhedra (characterized in Proposition 5.12) for which this condition is generic.
We also characterize the class of global Newton polyhedra supporting a polynomial whose
gradient is Newton non-degenerate at infinity (Proposition 5.15).

We highlight that, as we indicate in Remark 5.13 (c), the condition of Newton non-
degeneracy at infinity of ∇ f , for a given polynomial f ∈ C[x1, . . . , xn] with finite zero
set, allows to compute effectively the Łojasiewicz exponent at infinity of ∇ f (we refer to
[16] for an introduction of Łojasiewicz exponent at infinity and their applications in many
contexts, as the Jacobian conjecture or the effective Nullstellensatz).

2 Global multiplicity and the special closure of polynomial maps

2.1 Global multiplicity

Let us fix a polynomial map F = (F1, . . . , Fp) : C
n −→ C

p . Given an integer n ∈ Z�1,
let us denote {1, . . . , n} by [n]. If A ∈ Mp×n(C), A = [ai j ], then we denote by FA the
polynomial map C

n −→ C
n whose i-th component function is equal to F1a1i + F2a2i +

· · · + Fpapi , for all i ∈ [n]. That is, considering F and FA as row matrices, the map FA

is equal to the product FA. Equivalently, FA = L ◦ F : C
n −→ C

n , where L denotes the
linear map C

p −→ C
n determined by A. Clearly we have F−1(0) ⊆ F−1

A (0). The relation
between the sets F−1(0) and F−1

A (0), for a generic matrix A ∈ Mp×n(C), has been an object
of study in the works [25, §13.5] and [26] of Sommese and Wampler. In these articles, the
maps FA are also called randomizations of F . We will be particularly interested in the case
p > n.

Let us consider the number

μ(F) = dimC

C[x1, . . . , xn]
I(F)

(1)

where I(F) denotes the ideal of C[x1, . . . , xn] generated by the components of F . When
p = n, we refer to this number as the multiplicity of F (as in [7]). This denomination is
motivated by the fact that, as explained in (4), in any given Cohen-Macaulay local ring R,
the multiplicity (in the sense of Samuel) of any parameter ideal I of R equals the colength
of I (see [21, Theorem 17.11]). The number μ(F) is also usually called the degree of F .

We recall the well-known fact that if F−1(0) is finite, then

dimC

C[x1, . . . , xn]
I(F)

=
∑

x∈F−1(0)

dimC

On,x

Ix (F)
(2)

where On,x is the ring of analytic function germs (Cn, x) −→ C and Ix (F) is the ideal of
On,x generated by the germs at x of the components of F (see [9, p. 150]). We denote On,0

simply by On .
If f ∈ C[x1, . . . , xn], we denote by∇ f the gradientmap of f . That is, themapC

n −→ C
n

given by

∇ f =
(

∂ f

∂x1
, . . . ,

∂ f

∂xn

)

.
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The zeros of ∇ f are usually called singular points of f . If f has a finite number of singular
points, then the global Milnor number of f , that we denote by μ∞( f ), is defined as

μ∞( f ) = dimC

C[x1, . . . xn]
〈

∂ f
∂x1

, . . . ,
∂ f
∂xn

〉 = μ(∇ f ). (3)

Let F : C
n −→ C

p be a polynomial map with p > n. As shown in [25, Theorem
13.5.1] or in [26, Proposition 2.2.1] (which, in turn, are direct applications of the techniques
developed in [22]), there exists a non-empty Zariski open subset U ⊆ Mp×n(C) such that,
for all A ∈ U , the sets F−1

A (0) and F−1(0) have the same irreducible components of positive
dimension. As a direct consequence we obtain the following result.

Corollary 2.1 Let F : C
n −→ C

p be a polynomial map such that F−1(0) is finite. Then,
there exists a non-empty Zariski open subset U ⊆ Mp×n(C) such that F−1

A (0) is finite, for
all A ∈ U.

Definition 2.2 Given a property or condition (PA) depending on a matrix A ∈ Mp×n(C),
for some p, n � 1, we say that (PA) holds for a generic A ∈ Mp×n(C), when there exists a
non-empty Zariski open set U ⊆ Mp×n(C) such that (PA) holds, for all A ∈ U .

Analogously, if (R,m) denotes a Noetherian local ring whose residue field k = R/m is
infinite and I is an ideal of R of finite colength, then we say that a given property holds for
sufficiently general elements h1, . . . , hd ∈ I if there exists a generating system g1, . . . , gr of
I and a non-empty Zariski-open setU in krd such that the d-tuple (h1, . . . , hd) ∈ I ⊕· · ·⊕ I
satisfies the said property provided that

(a) for all i ∈ [d]: hi = ∑

j ui j g j , where ui j ∈ R, for all j ∈ [r ], and
(b) the image of (u11, . . . , u1r , . . . , ud1, . . . , udr ) in krd belongs to U .

As a consequence of the lower semicontinuity of the number defined in (1), Corollary 2.1
also tells us that, if F : C

n −→ C
p is a polynomial map such that F−1(0) finite, then μ(FA)

remains constant, for a generic A ∈ Mp×n(C), and equal to the maximum possible value of
μ(FA)whenever F−1

A (0) is finite. Let us denote this constant by m(F). We will usually refer
to m(F) as the global multiplicity of F . Obviously, we have μ(F) = m(F) if p = n.

Example 2.3 Let us fix an integer a � 2. Let us consider the polynomial map F : C
2 −→ C

3

given by F(x, y) = (xa, xy, ya). Then μ(F) = 2a − 1 and m(F) = a2. When a = 1, then
μ(F) = 1 and m(F) = 2.

If F : C
n −→ C

p is a polynomial map, let us denote by L(F) the C-vector subspace of
C[x1, . . . , xn] generated by the component functions of F .

Lemma 2.4 Let F : C
n −→ C

p be a polynomial map such that F−1(0) is finite. If
dimC L(F) = n, then m(F) = μ(F).

Proof Since F−1(0) is finite, we have p � n. Let us suppose that dimC L(F) = n. Then for
any matrix A ∈ Mp×n of rank n we have L(F) = L(FA). In particular I(F) = I(FA) and
therefore μ(F) = μ(FA). Since the equality m(F) = μ(FA) holds, by definition, for any A
in a non-empty Zariski-open subset of Mp×n(C), we conclude that m(F) = μ(F). 	


We characterize the equality μ(F) = m(F) in Corollary 2.9.
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Remark 2.5 Let F = (F1, . . . , Fn) : C
n −→ C

p be a polynomial map with p > n and let
us take a matrix A ∈ Mp×n(C). Let us denote by B the n × n submatrix of A formed by the
first n rows and first n columns of A and let us suppose that B is invertible. Let us consider
the maps F and FA as row matrices. Hence, multiplying both sides of the equality FA = FA

by B−1 (on the right), we obtain a row matrix G of the form
[

F1 + cn+1,1Fn+1 + · · · + cp,1Fp · · · Fn + cn+1,n Fn+1 + · · · + cp,n Fp
]

for some matrix of coefficients C = [ci j ] ∈ M(p−n)×n(C). Let us consider the above row
matrix as a polynomialmapG : C

n −→ C
n . Obviously, for a generic A ∈ Mp×n(C), we have

I(G) = I(FA) ⊆ I(F) and μ(FA) = m(F). In particular μ(F) � μ(FA) = μ(G) = m(F).

Let (R,m) be a Noetherian local ring and let I be an ideal of R of finite colength. Let d
denote the dimension of R.We denote by e(I ) themultiplicity of I , in the sense of Samuel (see
for instance [17, §11], [21, §14] or [29, §2]). By the theorem of existence of reductions (see
[21, Theorem 14.14]), we have that e(I ) = e(h1, . . . , hd), for sufficiently general elements
h1, . . . , hd ∈ I . We recall that if J ⊆ I is an ideal of R generated by d elements and
e(I ) = e(J ), then J is called a minimal reduction of I . If in addition we assume that R is
Cohen-Macaulay then, by [21, Theorem 17.11], we obtain that

e(I ) = e(h1, . . . , hd) = �(R/〈h1, . . . , hd〉) � �(R/I ) (4)

where �(M) denotes the length of any given R-module M .
Therefore, we find that if F : C

n −→ C
p is a polynomial map such that F−1(0) is finite

and A ∈ Mp×n(C) verifies that F−1
A (0) is finite, then

μ(F) =
∑

x∈F−1(0)

dimC

On,x

Ix (F)
�

∑

x∈F−1(0)

e
(

Ix (F)
)

(5)

�
∑

x∈F−1(0)

dimC

On,x

Ix (FA)
�

∑

x∈F−1
A (0)

dimC

On,x

Ix (FA)
= μ(FA) � m(F). (6)

If f ∈ K[x1, . . . , xn], where K = R or C, then we denote by deg( f ) the degree
of f . If F = (F1, . . . , Fp) : K

n −→ K
p is a polynomial map, we define deg(F) =

max{deg(F1), . . . , deg(Fp)}. We denote by d(F) the vector formed by the degrees of the
components of F .

Example 2.6 Let us consider the map F : C
2 −→ C

3 given by

F(x, y) = (

x2 − y2, xy(x − y), x2 − 3y
)

for all (x, y) ∈ C
2. It is easy to see that F−1(0) = {(0, 0), (3, 3)}. By using Singular [13],

we have μ(F) = 3. In order to obtain the value of m(F) we apply Remark 2.5. That is, let
us consider the map G : C

2 −→ C
2 given by

G(x, y) = (

x2 − y2 + α(x2 − 3y), xy(x − y) + β(x2 − 3y)
)

for generic α, β ∈ C. We observe that this map can be rewritten as the sum H1 + H2, where
H1 and H2 are given by

H1(x, y) = (

x2 − y2 + αx2, xy(x − y)
)

H2(x, y) = ( − 3αy, β(x2 − 3y)
)

.

The map H1 is homogeneous with finite zero set, d(H1) = (2, 3) and d(H2) = (1, 2).
Therefore m(F) = μ(G) = 6, by [7, Corollary 4.10].
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Remark 2.7 Let F = (F1, . . . , Fn) : C
n −→ C

n be a homogeneous map with F(0) = 0. We
recall that if F−1(0) is finite, then the homogeneity of F forces that F−1(0) = {0}. Therefore
μ(F) = dimC On/I , where I is the ideal of On generated by F1, . . . , Fn .

Example 2.8 Let F = (F1, . . . , Fp) : C
n −→ C

p be a polynomial map, p � n, and let
d ∈ Z�1. Let us suppose that Fi is a homogeneous polynomial with deg(Fi ) = d , for all
i ∈ [p]. If F−1(0) is finite (which is equivalent to saying that F−1(0) = {0}, since F is
homogeneous), then m(F) = dn .

Moreover, let us assume that each Fi is a homogeneous polynomial with di = deg(Fi ),
for all i ∈ [p], and d1 � · · · � dn > dn+1 � · · · � dp . Let G = (F1, . . . , Fn), that is, G is
the map formed by the first n components of F . If G−1(0) is finite, then m(F) = μ(G) =
d1 · · · dn , by [7, Corollary 4.10].

Corollary 2.9 Let F : C
n −→ C

p be a polynomial map such that F−1(0) is finite. Then
μ(F) = m(F) if and only if for any A ∈ Mp×n(C) such that F−1

A (0) is finite we have
m(F) = μ(FA), F−1(0) = F−1

A (0) and Ix (F) = Ix (FA), for all x ∈ F−1(0).

Proof Let us suppose that m(F) = μ(F) and let A ∈ Mp×n(C) such that F−1
A (0) is finite.

Then all inequalities of (5) and (6) become equalities, in particular μ(FA) = m(F). Let us
remark that Ix (FA) is contained in the maximal ideal of On,x for all x ∈ F−1

A (0), hence
dimC On,x/Ix (FA) � 1, for all x ∈ F−1

A (0). Therefore F−1(0) = F−1
A (0) and moreover

dimC

On,x

Ix (F)
= e

(

Ix (F)
) = dimC

On,x

Ix (FA)
(7)

for any x ∈ F−1(0). In particular, Ix (F) = Ix (FA), for all x ∈ F−1(0).
Moreover, by the theoremof existence of reductions (see [21, Theorem14.14]) and relation

(4), we conclude that (7) implies that Ix (F) is equal to any of its minimal reductions, for all
x ∈ F−1(0).

The converse follows easily by applying the chain of inequalities (5) and (6). 	


2.2 The Newton non-degeneracy at infinity

Let us fix coordinates (x1, . . . , xn) ∈ K
n and let f ∈ K[x1, . . . , xn], where K = R or C. We

denote by ∇ f the gradient map of f . That is, the map K
n −→ K

n given by

∇ f =
(

∂ f

∂x1
, . . . ,

∂ f

∂xn

)

.

We also define the map G( f ) : K
n −→ K

n given by

G( f ) =
(

x1
∂ f

∂x1
, . . . , xn

∂ f

∂xn

)

. (8)

Let us observe that

(∇ f )−1(0) ⊆ G( f )−1(0)

(∇ f )−1(0) ∩ (

C � {0})n = G( f )−1(0) ∩ (

C � {0})n . (9)

If k = (k1, . . . , kn) ∈ Z�0, then we denote the monomial xk11 · · · xknn simply by xk .
For the sake of completeness, here we recall some basic definitions from [6] and [7].
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Definition 2.10 (a) Let A ⊆ R
n
�0 be a finite set. The global Newton polyhedron determined

by A, denoted by ˜�+(A), is the convex hull of A ∪ {0}. We say that a given subset
˜�+ ⊆ R

n
�0 is a global Newton polyhedron when there exists some finite A ⊆ Z

n
�0 such

that ˜�+ = ˜�+(A).
(b) Let˜�+ ⊆ R

n
�0 be a global Newton polyhedron. If 〈, 〉 denotes the standard scalar product

inR
n and v ∈ R

n , thenwe define �(v,˜�+) = min{〈v, k〉 : k ∈ ˜�+}. Let�(v,˜�+) denote
the set of points of ˜�+ where the minimum �(v,˜�+) is attained. A face of ˜�+ is any
subset of ˜�+ of the form �(v,˜�+), where v ∈ R

n
� {0}. If � is a face of ˜�+, then the

dimension of� is defined as the minimum among the dimensions of the affine subspaces
of R

n containing �. Hence the dimension of ˜�+, denoted by dim(˜�+), is the maximum
of the dimensions of the faces of ˜�+ not passing through the origin.

(c) The global boundary of˜�+, denoted by˜�, is the union of the faces of˜�+ not containing
the origin.

(d) The 0-dimensional faces of˜�+ are called vertices of˜�+ and the faces of dimension n−1
of ˜�+ are the facets of ˜�+. We denote by v(˜�+) the set of vertices of ˜�+.

(e) We say that ˜�+ is convenient when for any i ∈ [n], there exists some r > 0 such that
rei ∈ ˜�+, where {e1, . . . , en} denotes the canonical basis of R

n .
(f) Let f ∈ K[x1, . . . , xn], let us write f = ∑

k ak x
k . The support of f is supp( f ) = {k :

ak �= 0}. If A denotes any compact subset of R
n
�0, then we denote by f A the sum of

all terms akxk such that k ∈ A, whenever supp( f ) ∩ A �= ∅. If supp( f ) ∩ A = ∅, then
we set f A = 0. The global Newton polyhedron of f , also called Newton polyhedron at
infinity of f , is ˜�+(supp( f )), which we will also denote simply by ˜�+( f ).

(g) If F = (F1, . . . , Fp) : K
n −→ K

p is a polynomial map, the support of F is defined as
supp(F) = supp(F1)∪ · · · ∪ supp(Fp). The global Newton polyhedron of F , denoted by
˜�+(F), is the convex hull of supp(F) ∪ {0}, which in turn is equal to the convex hull of
˜�+(F1) ∪ · · · ∪ ˜�+(Fp). If A denotes any compact subset of R

n
�0, then we denote the

map ((F1)A, . . . , (Fp)A) : K
n −→ K

p by FA.
(h) Let F : K

n −→ K
p be a polynomial map, p � 2. We say that F is Newton non-

degenerate at infinity, when for any face � of ˜�+(F) not passing through the origin we
have F−1

� (0) ⊆ {x ∈ K
n : x1 · · · xn = 0}.

(i) Given a polynomial f ∈ K[x1, . . . , xn], we say that f is Newton non-degenerate at
infinity when the map G( f ) : K

n −→ K
n is Newton non-degenerate at infinity. We

remark that ˜�+(G( f )) = ˜�+( f ).
(j) If V denotes a finite-dimensional vector subspace of K[x1, . . . , xn] and F : K

n −→ K
m

is a polynomial map whose component functions generate V , then the global Newton
polyhedron of V is defined as˜�+(V ) = ˜�+(F). It is immediate to see that the definition
of ˜�+(V ) does not depend on the chosen generating system of V .

Given a subset I ⊆ [n], we define R
n
I = {x ∈ R

n : xi = 0, for all i /∈ I}. Hence, if
S ⊆ R

n , we set SI = S ∩ R
n
I. In particular S[n] = S and S∅ = S ∩ {0}. Depending on

the notation involved, we will also denote SI by SI, as can be seen in (10) and in Corollary
4.4 (b).

If P ⊆ R
n , then we denote by Vn(P) the n-dimensional volume of P . Given a finite set

X , we denote the cardinal of X by |X |.
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Definition 2.11 [15, p. 4] Let ˜�+ ⊆ R
n
�0 be a global convenient Newton polyhedron. The

Newton number of ˜�+ is defined as

ν(˜�+) =
n

∑

r=0

(−1)n−r r !
∑

I⊆[n]
|I|=r

Vr (˜�
I+). (10)

For instance, let ˜�+ ⊆ R
3
�0 be the global Newton polyhedron given by

˜�+ = ˜�+(xa, yb, zc, xa yb, xazc, ybzc, xa ybzc),

for some a, b, c ∈ Z�1. That is, ˜�+ is the rectangular cuboid determined by the points
ae1, be2 and ce3. Then ν(˜�+) = 6abc − 2(ab + ac + bc) + a + b + c − 1. If we take
˜�′+ = ˜�+(xa, yb, zc, xa ybzc), then ν(˜�′+) = 3abc − ab − ac − bc + a + b + c − 1.

Theorem 2.12 [15, 1.15] Let f ∈ C[x1, . . . , xn] with a finite number of singular points and
such that˜�+( f ) is convenient. Then μ∞( f ) � ν(˜�+( f )) and equality holds if f is Newton
non-degenerate at infinity.

If ˜�1+, . . . ,˜�
p
+ are global Newton polyhedra in R

n
�0, then we denote by P(˜�1+, . . . ,˜�

p
+)

the set of polynomial mapsC
n −→ C

p for which˜�+(Fi ) = ˜�i+, for all i ∈ [p]. In particular,
for a fixed global Newton polyhedron˜�+, we have P(˜�+) = { f ∈ C[x1, . . . , xn] : ˜�+( f ) =
˜�+}.

Let P1, . . . , Pn be a collection of polytopes of R
n . We denote by MVn(P1, . . . , Pn) the

mixed volume of P1, . . . , Pn (see for instance [9, p. 337]). Let us recall that if λ1, . . . , λn ∈
[0,+∞[, then Vn(λ1P1 + · · · + λn Pn) is a homogeneous polynomial function in λ1, . . . , λn
and that MVn(P1, . . . , Pn) is defined as the coefficient of λ1 · · · λn in this polynomial (see
[9, p. 337]). The mixed volume MVn(P1, . . . , Pn) admits the following expression:

MVn(P1, . . . , Pn) =
n

∑

r=1

(−1)n−r
∑

1�i1<···<ir�n

Vn(Pi1 + · · · + Pir ).

(see for instance [9, p. 338]). In particular, when P1 = · · · = Pn , then MVn(P1, . . . , Pn) =
n!Vn(P1). If P is a polytope, then we refer to n!Vn(P) as the normalized n-dimensional
volume of ˜�+, which is always an integer (see [9, p. 336]).

Theorem 2.13 [24] Let ˜�1+, . . . ,˜�n+ be a family of n global Newton polyhedra in R
n
�0 and

let ˜�+ be the convex hull of ˜�1+ ∪ · · · ∪ ˜�n+. Let F : C
n −→ C

n be a map belonging to
P(˜�1+, . . . ,˜�n+) such that F−1(0) is finite. Then

μ(F) � MVn(˜�
1+, . . . ,˜�n+) � n!Vn(˜�+).

As a direct consequence of the previous result we have that if f ∈ C[x1, . . . , xn] has a
finite number of singular points, then

μ∞( f ) � MVn

(

˜�+
(

∂ f

∂x1

)

, . . . ,˜�+
(

∂ f

∂xn

))

� n!Vn
(

˜�+(∇ f )
)

.

Comparing the above relation and Theorem 2.12 there arises the problem of comparing the
numbers n!Vn

(

˜�+(∇ f )
)

and ν(˜�+( f )). We analyze the relations between them in Sect. 5.
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2.3 The special closure

Let K = R or C. If (Px ) denotes a condition depending on x ∈ K
n , then we say that (Px )

holds for all ‖x‖ � 1 when there exists a constant M > 0 such that (Px ) holds for all
x ∈ K

n such that ‖x‖ � M . Analogously, we say that (Px ) holds for all ‖x‖ � 1 when there
exists some open neighbourhood of 0 ∈ K

n such that (Px ) holds for all x ∈ U . Along this
subsection we fix coordinates (x1, . . . , xn) inK

n . The following definition was introduced by
the authors in [5] motivated by the notion of integral closure of ideals and its characterization
in terms of analytic inequalities proven by Lejeune and Teissier in [19] (see also [20]).

Definition 2.14 Given a polynomial map F = (F1, . . . , Fp) : K
n −→ K

p and h ∈
K[x1, . . . , xn], we say that h is special with respect to F when

|h(x)| � C‖F(x)‖ (11)

for all ‖x‖ � 1 and some constant C > 0.
We denote by Sp(F), or by Sp(F1, . . . , Fp), the set of all polynomials h ∈ K[x1, . . . , xn]

such that h is special with respect to F . We will refer to Sp(F) as the special closure of F .
We remark that Sp(F) is a K-vector subspace of K[x1, . . . , xn] containing L(F). Analogous
with the usual notion of integrally closed ideal, if L(F) = Sp(F) then we say that F is
specially closed.

More generally, if V denotes any K-vector subspace of K[x1, . . . , xn] and F1, . . . , Fp is
any generating system of V , then we define the special closure of V as Sp(V ) = Sp(F),
where F denotes the map F = (F1, . . . , Fp). If G : K

n −→ K
q is any other polynomial

map such that L(G) = V , then it is easy to prove that there exist constants C, D > 0 such
that ‖F(x)‖ � C‖G(x)‖ � D‖F(x)‖, for all x ∈ K

n . Therefore the definition of Sp(V )

does not depend on the chosen generating system of V . It is immediate to check that Sp(V ) is
a K-vector subspace of K[x1, . . . , xn] containing V . We say that V is specially closed when
V = Sp(V ).

Obviously, if V and V ′ are K-vector subspaces of K[x1, . . . , xn] such that V ⊆ V ′,
then Sp(V ) ⊆ Sp(V ′). Moreover, if F : K

n −→ K
p is a polynomial map, then Sp(F) =

Sp(L(F)).
Before stating the next result, we introduce some fundamental definitions. If X ⊆ R

n ,
then we denote by Conv(X) the convex hull of X in R

n .
Let us fix coordinates (x1, . . . , xn) in K

n . If F = (F1, . . . , Fp) : K
n −→ K

p is a
polynomial map, then we denote by S(F) the set of those k ∈ Z

n
�0 such that xk ∈ Sp(F).

We remark that the set S(F) depends on the given coordinate system. We will refer to S(F)

as the monomial zone of Sp(F). Obviously, if S(F) contains some point different from 0,
then there exists an M > 0 such that

F−1(0) ∩ {x ∈ K
n : ‖x‖ � M} ⊆ {x ∈ K

n : x1 · · · xn = 0}. (12)

We denote by S′(F) the set of those k ∈ Z
n
�0 such that xk ∈ Sp(F, 1). That is, S′(F) =

S(F, 1). Since 1 ∈ Sp(F, 1), it follows that 0 always belongs to S′(F). Obviously S(F) ⊆
S′(F) and equality holds if and only if 0 ∈ S(F).

In the next result we summarize some of the main properties of Sp(F).

Theorem 2.15 Let F = (F1, . . . , Fp) : K
n −→ K

p be a polynomial map.

(a) supp(h) ⊆ ˜�+(F), for any h ∈ Sp(F). In particular S(F) ⊆ ˜�+(F), ˜�+(F) =
˜�+(Sp(F)) and Sp(F) is a finite-dimensional K-vector subspace of K[x1, . . . , xn].
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(b) S(F) = Conv(S(F)) ∩ Z
n
�0.

(c) If G : K
n −→ K

q is another polynomial map, then the following conditions are equiv-
alent:

(a) Sp(F) ⊆ Sp(G).
(b) Fi ∈ Sp(G), for all i ∈ [p].
(c) there exists a constant C > 0 such that ‖F(x)‖ � C‖G(x)‖, for all ‖x‖ � 1.

(d) Given any h ∈ K[x1, . . . , xn], we have h ∈ Sp(F) ⇐⇒ Sp(F) = Sp(F, h).
(e) Sp(F) = Sp

(

Sp(F)
)

.
(f) If K = C, p = n, F−1(0) is finite and h is any non-zero polynomial of C[x1, . . . , xn],

then h ∈ Sp(F) if and only if μ(F) = μ(F + hα), for all α � 1.

Proof Items (a) and (b) are in [6, Lemma 3.4]. Items (c), (d) and (e) follow as direct appli-
cations of the definition of special closure. Item (f) is in [6, Theorem 3.8]. 	


By Theorem 2.15 (a), we have dimK Sp(F) � |˜�+ ∩ Z
n
�0|. When equality holds, that is,

when S(F) = ˜�+(F), then we will say that F has maximal special closure.
In the following result we relate the notions of special closure of a polynomial map and

integral closure of an ideal. Let g ∈ K[x1, . . . , xn] and let d be an integer with d � deg(g).
Let xn+1 a variable independent from x1, . . . , xn . We define the homogenization of g of
degree d as the polynomial Hd(g) ∈ K[x1, . . . , xn, xn+1] such that

Hd(g)(x1, . . . , xn, xn+1) = xdn+1g

(

x1
xn+1

, . . . ,
xn
xn+1

)

for any (x1, . . . , xn, xn+1) ∈ K
n+1 with xn+1 �= 0. Once the number d is fixed, we will also

denote Hd(g) simply g∗. Let us remark that Hd(g)(x1, . . . , xn, 1) = g(x1, . . . , xn), for all
(x1, . . . , xn) ∈ K

n .
Let F = (F1, . . . , Fp) : K

n −→ K
p be a polynomial map.We recall that deg(F) denotes

the maximum of the degrees of the components of F . If d is an integer with d � deg(F), then
Hd(F) is the map K

n+1 −→ K
p given by Hd(F) = (Hd(F1), . . . ,Hd(Fp)). Analogously,

we will also denote the map Hd(F) by F∗.
Given any d ∈ Z�1, let Kd [x1, . . . , xn] denote the vector space of all homogeneous

polynomials of K[x1, . . . , xn] of degree d . As usual, if I is an ideal of the ring of analytic
germs (K, 0) −→ K, we denote by I the integral closure of I (see [6, Remark 3.2]).

Theorem 2.16 Let F = (F1, . . . , Fp) : K
n −→ K

p be a polynomial map. Let d = deg(F)

and let f ∗ = Hd( f ), for any given polynomial f ∈ K[x1, . . . , xn] such that d � deg( f ).
Let I be the ideal of On+1 generated by the polynomials F∗

1 , . . . , F∗
p . Given an h ∈

K[x1, . . . , xn], if h∗ ∈ I , then h ∈ Sp(F). In particular we have the following inclusion
{

g(x1, . . . , xn, 1) : g ∈ 〈F∗
1 , . . . , F∗

p 〉, g ∈ Kd [x1, . . . , xn+1]
}

⊆ Sp(F). (13)

Proof Let us consider the map ρ : K
n −→ K

n+1 given by

ρ(x1, . . . , xn) =
(

e−‖x‖x1, . . . , e−‖x‖xn, e−‖x‖)

for any x = (x1, . . . , xn) ∈ K
n . Let us observe that this map verifies

lim‖x‖→+∞ ‖ρ(x)‖ = 0. (14)
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By definition, the condition h∗ ∈ I says that there exists an open neighbourhoodU of 0 ∈ K
n

for which there exists a constant C > 0 such that

|h∗(x1, . . . , xn, xn+1)| � C‖F∗(x1, . . . , xn, xn+1)‖
for all (x1, . . . , xn+1) ∈ U . By (14), let M > 0 such that ρ(x) ∈ U , for all x ∈ K

n with
‖x‖ � M . Hence

|h∗(ρ(x))| � C‖F∗(ρ(x))‖ (15)

for all x ∈ K
n such that ‖x‖ � M . Since h∗ and the components of F∗ are homogeneous

polynomials of degree d , we conclude that

h∗(ρ(x)) = h∗(e−‖x‖x1, . . . , e−‖x‖xn, e−‖x‖) = e−d‖x‖h∗(x1, . . . , xn, 1) = e−d‖x‖h(x1, . . . , xn)

F∗(ρ(x)) = e−d‖x‖F∗(x1, . . . , xn, 1) = e−d‖x‖F(x1, . . . , xn).

Substituting the above relations in (15) and cancelling the term e−d‖x‖, we conclude that
|h(x)| � C‖F(x)‖, for all x ∈ K

n such that ‖x‖ � M .
The inclusion (13) is a direct application of the implication h∗ ∈ I �⇒ h ∈ Sp(F). 	

As shown in the following example, the converse of Theorem2.16 does not hold in general.

Example 2.17 Let F : C
2 −→ C

2 be the polynomial map with deg(F) = 4 given by
F(x, y) = (x3y, xy3) = xy(x2, y2). Let g∗ = H4(g), for any g ∈ C[x, y] with deg(g) �
4. We observe that the homogenized map F∗ : C

3 −→ C
2 is given by F∗(x, y, z) =

(x3y, xy3). Let h = xy ∈ C[x, y]. It is straightforward to see that h ∈ Sp(F). We observe
that h∗ = xyz2, which does not belong to the Newton polyhedron of the ideal I of O3

generated by the components of F∗. In particular, h∗ /∈ I .
It is easy to see that Sp(F) is equal to the vector subspace of C[x, y] generated by the

monomials xy, xy2, xy3, x2y, x2y2, x3y (see also [6, Lemma 4.11]). Therefore the inclusion
(13) can be strict.

The following equivalence was proven in [6, Proposition 4.8].

Proposition 2.18 Under the conditions of Theorem 2.16, given a polynomial h ∈ K[x1, . . . ,
xn], the following conditions are equivalent:

(a) h ∈ Sp(F, 1)
(b) h∗ ∈ J , where J is the ideal of On+1 generated by F∗

1 , . . . , F∗
p , x

d
n+1.

As a consequence

Sp(F, 1) =
{

g(x1, . . . , xn, 1) : g ∈ 〈F∗
1 , . . . , F∗

p , x
d
n+1〉, g ∈ Kd [x1, . . . , xn]

}

. (16)

Remark 2.19 It is known that, in general, if f ∈ On and f (0) = 0, then f ∈ I ( f ), where
I ( f ) denotes the ideal of On generated by

x1
∂ f

∂x1
, . . . , xn

∂ f

∂xn
.

The proof of this fact can be found in [17, p. 144] and [28, p. 290]. In particular, f is integral
over J ( f ). In view of this result and the existing analogies between the notions of special
and integral closures, we would expect that any f ∈ K[x1, . . . , xn] such that f (0) = 0 is
special with respect to ∇ f , but this is not the case, as the following example shows. Let
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f (x, y) = x3 + y2 + x4y5 ∈ C[x, y]. We observe that ˜�+(∇ f ) = ˜�+(x2, x3y5, y, x4y4).
Hence ˜�+( f ) is not contained in ˜�+(∇ f ), which shows that f /∈ Sp(∇ f ), by Theorem
2.15(a).

We also remark that if f ∈ C[x1, . . . , xn] then f is not special over G( f ) in general, as
the function f (x, y) = xy + x2y2 ∈ C[x, y] shows.

We end this subsection relating the notion of tame map with the special closure. We
remark that tameness is an important condition on the gradient of a given polynomial function
f ∈ C[x1, . . . , xn] leading to results about the bifurcation set B f and the homotopy type of
the generic fiber of f (see [8] and [14]).

Definition 2.20 If F : K
n −→ K

p is a polynomial map, p � 1, then we say that F is a
tame map when there exists some δ > 0 and a compact set U such that δ < ‖F(x)‖, for all
x ∈ K

n
� U . In other words, F is tame if and only if there exists some δ > 0 such that the

set {x ∈ K
n : ‖F(x)‖ � δ} is compact.

We remark that, given a polynomial f ∈ C[x1, . . . , xn], when the gradient map ∇ f :
C
n −→ C

n is tame then in [8, Definition 3.1] the function f is also called tame.

Corollary 2.21 Let F : C
n −→ C

p be a polynomial map. Then the following conditions are
equivalent:

(a) F is a tame map.
(b) 1 ∈ Sp(F).
(c) 0 ∈ S(F). When p = n, then the above conditions are equivalent to the following:
(d) μ(F) is finite and μ(F) = μ(F + (α1, . . . , αn)), for all sufficiently small α ∈ C

n.

Proof The equivalence between (a), (b) and (c) follows as a direct consequence of the corre-
sponding definitions. The equivalence between (b) and (d) is a direct application of Theorem
2.15(f). 	

Remark 2.22 Let f ∈ C[x1, . . . , xn]. If we apply Corollary 2.21 to the gradient map of f we
deduce the characterization of the tameness of∇ f already obtained in [8, Corollary 3.1]. That
is:∇ f is tame function if and only ifμ∞( f ) < ∞ andμ∞( f +α1x1+· · ·+αnxn) = μ∞( f ),
for all sufficiently small (α1, . . . , αn) ∈ C

n .

3 Maps withmaximal special closure

Let us recall that if F : K
n −→ K

p is a polynomial map, then S′(F) denotes the set of
exponents k ∈ Z

n
�0 for which xk ∈ Sp(F, 1). We also recall the following result, which is

contained in [6, Theorem 4.9].

Theorem 3.1 Let F : K
n −→ K

p be a polynomial map. Then the following conditions are
equivalent:

(a) F is Newton non-degenerate at infinity.
(b) S′(F) = ˜�+(F) ∩ Z

n
�0.

Remark 3.2 (a) Let us observe that, under the conditions of the above result, the equality
S′(F) = ˜�+(F) ∩ Z

n
�0 is equivalent to the equality Sp(F, 1) = {

h ∈ K[x1, . . . , xn] :
supp(h) ⊆ ˜�+(F)

}

, by Theorem 2.15 (a).
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(b) Moreover, if we assume that F is tame, which is equivalent to the condition 1 ∈ Sp(F)

(see Corollary 2.21), then we conclude that F is Newton non-degenerate at infinity if
and only if S(F) = ˜�+(F) ∩ Z

n
�0, which in turn is equivalent to Sp(F) = {

h ∈
K[x1, . . . , xn] : supp(h) ⊆ ˜�+(F)

}

.

Corollary 3.3 Let F : K
n −→ K

p be a convenient polynomial map. If F is Newton non-
degenerate at infinity, then F is tame. In particular, if K = C, then F−1(0) is finite.

Proof Since F is convenient, for all i ∈ [n] there exists some ri ∈ Z�1 such that xrii ∈
Sp(F, 1), by Theorem 3.1. Let r0 = min{r1, . . . , rn}. Then there exists some constants
C, M > 0 such that ‖x‖r0 � C‖(F(x), 1)‖, for all x ∈ K

n with ‖x‖ � M .

Let N > max{M, (C
√
n + 1)

1
r0 , 1}. Let us suppose that there exists some x ∈ K

n for
which ‖x‖ � N and ‖F(x)‖ < 1. In particular ‖(F(x), 1)‖2 = ∑n

i=1 |Fi (x)|2 + 1 � n + 1.
Moreover

Nr0 � ‖x‖r0 � C‖(F(x), 1)‖ � C
√
n + 1 < Nr0 ,

which is a contradiction. Therefore, for any x ∈ K
n such that ‖x‖ � N we have ‖F(x)‖ > 1.

That is, 1 ∈ Sp(F), which means that F is tame, by Corollary 2.21. 	

Corollary 3.4 Let f ∈ C[x1, . . . , xn] be a convenient polynomial map. If f is Newton non-
degenerate at infinity, then the maps G( f ) and ∇ f are tame. In particular G( f )−1(0) and
(∇ f )−1(0) are finite.

Proof By Corollary 3.3 and Definition2.10 (i) we have that G( f ) is tame.
Since G( f ) is convenient and G( f ) is Newton non-degenerate at infinity, there exist

r1, . . . , rn ∈ Z�1 such that xrii ∈ Sp(G( f )), for all i ∈ [n] (see Remark 3.2 (b)). Therefore

‖(xr11 , . . . , xrnn )‖2 � C

∥

∥

∥

∥

(

x1
∂ f

∂x1
, . . . , xn

∂ f

∂xn

)∥

∥

∥

∥

2

= C
n

∑

i=1

∣

∣

∣

∣

xi
∂ f

∂xi

∣

∣

∣

∣

2

� C‖(xr11 , . . . , xrnn )‖2
n

∑

i=1

∣

∣

∣

∣

∂ f

∂xi

∣

∣

∣

∣

2

for all |x | � 1. By cancelling ‖(xr11 , . . . , xrnn )‖2 in the above chain of inequalities it follows
that 1 ∈ Sp(∇ f ). Hence the result follows. 	


Let us remark that, under the conditions of Corollary 3.4, the tameness of ∇ f is proven
in [8, Proposition 3.4] by applying a different argument.

Let A ⊆ R
n
�0. If A ∩ Z

n
�0 �= ∅, then we denote by L(A) the vector subspace of

C[x1, . . . , xn] generated by all polynomials h ∈ C[x1, . . . , xn] for which supp(h) ⊆ A.
If A ∩ Z

n
�0 = ∅, then we set L(A) = 0. In particular, if ˜�+ denotes a global New-

ton polyhedron in R
n
�0, then L(˜�+) is a finite-dimensional subspace of C[x1, . . . , xn] and

dimC L(˜�+) = |˜�+ ∩ Z
n
�0|.

The notion of reduction of ideals (see for instance [17, §1] or [29, §1]) motivates us to
introduce the following definition.

Definition 3.5 (a) Let V and V ′ be vector subspaces of finite dimension of C[x1, . . . , xn].
We say that V is a global reduction of V ′ when V ⊆ V ′ and Sp(V ) = Sp(V ′). We will
write V ⊆red V ′ to indicate that V is a global reduction of V ′. In particular, if V ⊆red V ′
then ˜�+(V ) = ˜�+(V ′), by Theorem 2.15. We say that V is a minimal global reduction
of V ′ when V ⊆red V ′ and there is no global reduction of V ′ strictly contained in V .
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(b) If F and G are complex polynomial maps defined in C
n and if ˜�+ and ˜�′+ are global

Newton polyhedra in R
n
�0, then we denote the conditions L(F) ⊆red L(G), L(F) ⊆red

L(˜�+) and L(˜�+) ⊆red L(˜�′+) simply by F ⊆red G, F ⊆red ˜�+ and ˜�+ ⊆red ˜�′+,
respectively.

(c) If˜�+ ⊆ R
n
�0 is a globalNewton polyhedron, thenwe say that˜�+ ⊆ R

n
�0 is homogeneous

when there exist a polynomial map F = (F1, . . . , Fn) : C
n −→ C

n such that F ⊆red ˜�+
and Fi is a homogeneous polynomial of positive degree, for all i ∈ [n] (we remark that
the domain and codomain of F are equal to C

n).

Example 3.6 Let ˜�+ = ˜�+(y2, xy5, x2, x5y). Let F : C
2 −→ C

2 be given by F(x, y) =
(x2 + xy5, y2 + x5y), for all (x, y) ∈ C

2. We observe that F is Newton non-degenerate at
infinity and˜�+(F) = ˜�+. In particular Sp(F) is maximal, that is, S(F) = ˜�+(F)∩Z

n
�0. In

particular F ⊆red ˜�+. We remark that˜�+ is not homogeneous (this can be checked directly).

Example 3.7 Let˜�+ = ˜�+(xa, yb, xc yd) ⊆ R
2
�0, where a, b, c, d ∈ Z�1 and a, b � c+ d .

We observe that ˜�+ is homogeneous if and only if a = b. In this case, a homogeneous
reduction is given by the map F : C

2 −→ C
2 defined by F(x, y) = (xa + ya, xc yd), which

verifies μ(F) = a(c + d) = 2V2(˜�+).

Joining [6, Corollary 4.10] and [7, Theorem 3.2], we have the following characterization
of the Newton non-degeneracy at infinity of polynomial maps.

Theorem 3.8 Let F : C
n −→ C

n be a convenient polynomial map with finite zero set. Then
the following conditions are equivalent:

(a) F is Newton non-degenerate at infinity.
(b) S(F) = ˜�+(F) ∩ Z

n
�0.

(c) Sp(F) = {

h ∈ C[x1, . . . , xn] : supp(h) ⊆ ˜�+(F)
}

.
(d) μ(F) = n!Vn(˜�+(F)).

We remark that in [6, Corollary 4.10] we proved the equivalence of (a), (b) and (c) for any
convenient polynomial map K

n −→ K
p (without assuming that F−1(0) is finite).

Corollary 3.9 If F : C
n −→ C

p is a convenient polynomial map with finite zero set,
p � n, then Theorem 3.8 remains true when replacing item (d) by the condition m(F) =
n!Vn(˜�+(F)).

Proof Let us suppose that F is Newton non-degenerate at infinity. Let d = deg(F). Let us
consider the homogeneous map (Hd(F1), . . . ,Hd(Fp), xdn+1) : (Cn+1, 0) −→ (Cp+1, 0),
which we will denote by ˜F (as in [6, Theorem 4.9]).

We observe that the global boundary of˜�+(˜F) is formed by a unique face �0 ⊆ R
n+1
�0 of

dimension n, which is contained in the hyperplane of equation x1 + · · · + xn+1 = d . Let F
be the set of faces of ˜�+(˜F) not passing through the origin. Given any r ∈ {0, 1, . . . , n}, let
Fr denote the subset ofF formed by those� such that dim(�) = r . We denote byF 0

n−1 the
set of faces � ∈ Fn−1 for which den+1 /∈ � (that is, � does not contain the exponent of the
pure monomial xdn+1). Given any � ∈ F , we denote by C(�) the cone {λx : λ � 0, x ∈ �}
and byA� be the local ring formed by those function germs f ∈ On such that all monomials
xk in the Taylor expansion of f around the origin verify that k ∈ C(�). We also denote by
I� the ideal of A� generated by the component functions of ˜F�.

We remark that�0 is also equal to the union of the compact faces of theNewtonpolyhedron
of ˜F , when considering ˜F as an analytic map (see [6, Definition 4.4]). By [6, Theorem 4.9],
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the Newton non-degeneracy at infinity of F is equivalent to the Newton non-degeneracy (in
the local sense, as exposed in [6, Definition 4.4]) of the map ˜F . In turn this is equivalent
to the condition that each ideal I� has finite colength in A�, for any � ∈ F (see [15,
Théorème 6.2]). In particular, we can apply the theorem of existence of reductions (see [21,
Theorem 14.14]) to each ideal I�, where � ∈ F 0

n−1, so that we obtain a polynomial map
H : C

n+1 −→ C
n whose components are sufficiently general C-linear combinations of

{Hd(F1), . . . ,Hd(Fp)} and such that the ideal J� generated by the components of H� is
a reduction of I�, for all � ∈ F 0

n−1 (which, in particular, implies that J� is also an ideal
of finite colength, since J� and I� will have the same integral closure). In particular, the
map H is Newton non-degenerate (in the local sense, as exposed in [6, Definition 4.4]) and
˜�+(H , xdn+1) = ˜�+(˜F).

Hence, defining G : C
n −→ C

n by G(x1, . . . , xn) = H(x1, . . . , xn, 1), for all
(x1, . . . , xn) ∈ C

n , we obtain that the components of G are C-linear combinations of
{F1, . . . , Fp}, ˜�+(F) = ˜�+(G) and G is Newton non-degenerate at infinity (again by [6,
Theorem 4.9], since d = deg(G) and Hd(G) = (H , xdn+1)).

By [6, Corollary 4.10], we have S(G) = ˜�+(G) ∩ Z
n
�0, which in particular implies that

for each i ∈ [n], there exists some integer ri > 0 for which xrii ∈ Sp(G). Therefore G−1(0)
is finite (see also Corollary 3.3). Moreover we have that n!Vn(˜�+(F)) = n!Vn(˜�+(G)) =
μ(G) � m(F) � n!Vn(˜�+(F)). In particular n!Vn(˜�+(F)) = m(F).

Let us suppose now that n!Vn(˜�+(F)) = m(F). By the definition of m(F), let us consider
a matrix A ∈ Mp×n(C) for which m(F) = μ(FA). Let G = FA. We have˜�+(G) ⊆ ˜�+(F),
since the components of G are C-linear combinations of the components of F . Hence we
conclude that

n!Vn(˜�+(F)) = m(F) = μ(G) � n!Vn(˜�+(G) � n!Vn(˜�+(F)).

Thus ˜�+(G) = ˜�+(F) and μ(G) = n!Vn(˜�+(G)), which in turn implies that G is Newton
non-degenerate at infinity, by Theorem 3.8. If � denotes any face of ˜�+(F) not passing
through the origin, then the inclusion L(G) ⊆ L(F) implies that L(G�) ⊆ L(F�). In
particular F−1

� (0) ⊆ G−1
� (0) ⊆ {x ∈ C

n : x1 · · · xn = 0}. Therefore F is Newton non-
degenerate at infinity. 	


4 Homogeneousmaps and the Newton non-degeneracy at infinity

Let ˜�+ denote a convenient global Newton polyhedron in R
n
�0. In this section we show an

easily computable sharp lower bound for n!Vn(˜�+) and we characterize the corresponding
equality by using the notion of homogeneity (see Definition 3.5 (c)).

Given any k = (k1, . . . , kn) ∈ R
n , we will denote by |k| the sum k1 + · · · + kn .

Let f ∈ C[x1, . . . , xn], let us suppose that f is written as f = ∑

k ak x
k . Let us fix a

subset I ⊆ [n]. If supp( f ) ∩ R
n
I = ∅, then we set fI = 0. If supp( f ) ∩ R

n
I �= ∅ and we

write I = {i1, . . . , ir }, where 1 � i1 < · · · < ir � n, then we denote by fI the restriction
of f to R

n
I; that is, fI will denote the polynomial of C[xi1 , . . . , xir ] obtained as the sum of

all terms akxk with k ∈ R
n
I. If F : C

n −→ C
p is a polynomial map, then we denote by FI

the polynomial map C
r −→ C

p obtained from F by restricting to R
n
I componentwise. If J

denotes an ideal of C[x1, . . . , xn], then we denote indistinctly by JI or by JI the ideal of
C[xi1 , . . . , xir ] generated by all elements fI where f varies in J .

Definition 4.1 Let ˜�+ ⊆ R
n
�0 be a convenient global Newton polyhedron at infinity.
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(a) We define the degree of ˜�+ as deg(˜�+) = max{|k| : k ∈ ˜�+}.
(b) For any i ∈ [n], let us define

di (˜�+) = min
{

deg(˜�I+) : I ⊆ [n], |I| = n − i + 1
}

and d(˜�+) = (

d1(˜�+), . . . , dn(˜�+)
)

.

Let us fix a convenient global Newton polyhedron˜�+ ⊆ R
n
�0. It is immediate to see from

the definition of the numbers di (˜�+) that

deg(˜�+) = d1(˜�+) � · · · � dn(˜�+).

For each i ∈ [n], let ri ei be the point of intersection of the Newton boundary of˜�+ with the
xi -axis, where ri ∈ Z�1 and we recall that {e1, . . . , en} denotes the canonical basis in R

n .

Then deg(˜�{i}
+ ) = ri , for all i ∈ [n] and this implies that dn(˜�+) = min{r1, . . . , rn}.

The main result of this section is the following (this is inspired by the results of [3]).

Theorem 4.2 Let ˜�+ ⊆ R
n
�0 be a convenient global Newton polyhedron. Then

d1(˜�+) · · · dn(˜�+) � n!Vn(˜�+). (17)

Moreover, the following conditions are equivalent:

(a) equality holds in (17).
(b) there exists an integer s � 1 such that s˜�+ is homogeneous.
(c) there exists an integer s � 1 and a homogeneous polynomial map G = (G1, . . . ,Gn) :

C
n −→ C

n with deg(Gi ) = sdi (˜�+), for all i ∈ [n], such that G ⊆red ˜�+.

In order to show the proof of the previous result we need to recall some preliminary
concepts and result concerning the mixed multiplicity of ideals in local rings.

In [2] we studied the notion of Rees’ mixed multiplicity attached to a set of n ideals in
a local ring of dimension n, which generalizes the usual notion of mixed multiplicity of
n-tuples of ideals not having finite colength in general. Given positive integers d1, . . . dn , we
will apply this notion specially to the case where we consider n ideals J1, . . . , Jn ofOn such
that each ideal Ji is generated by monomials of degree di , for all i ∈ [n], as will be seen in
Corollary 4.4.

Let (R,m) be a local ring and let J1, . . . , Jn be ideals of R of finite colength of R. We
denote by e(J1, . . . , Jn) the mixed multiplicity of J1, . . . , Jn . We refer to [17, §17.4], [23]
or [27] for fundamental results concerning mixed multiplicities of ideals. If J1, . . . , Jn are
all equal to a given ideal J of finite colength of R, then we recall that e(J1, . . . , Jn) = e(J ),
where e(J ) denotes the Samuel multiplicity of J .

If J1, . . . , Jn denote arbitrary ideals of R, we defined in [2] the Rees’ mixed multiplicity
of J1, . . . , Jn , denoted by σ(J1, . . . , Jn), as

σ(J1, . . . , Jn) = max
r�1

e(J1 + mr , . . . , Jn + mr ).

We recall in Proposition 4.3 a characterization of the finiteness of σ(J1, . . . , Jn) and how
this number can be computed. Obviously, if Ji has finite colength, for all i ∈ [n], then
σ(J1, . . . , Jn) = e(J1, . . . , Jn).

Let us suppose that the residue field k = R/m is infinite and let us consider a generating
system {ai1, . . . , aisi } of Ji , for any i ∈ [n]. Let s = s1+· · ·+sn .We say that a property holds
for sufficiently general elements of J1 ⊕· · ·⊕ Jn if there exists a non-empty Zariski-open set
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U in ks such that all elements (g1, . . . , gn) ∈ J1⊕· · ·⊕ Jn satisfy the said property provided
that

gi = ui1ai1 + · · · + uisi aisi

with (u11, . . . , u1s1 , . . . , un1, . . . , unsn ) ∈ U , for all i ∈ [n]. It is immediate to check that
this notion does not depend on the chosen generating sets for J1, . . . , Jn .

Proposition 4.3 [2, 2.9] Let (R,m) be a Noetherian local ring such that the residue field
k = R/m is infinite. Let J1, . . . , Jn be ideals of R. Then σ(J1, . . . , Jn) < ∞ if and only
if there exist elements gi ∈ Ji , for i ∈ [n], such that 〈g1, . . . , gn〉 has finite colength. In
this case, we have that σ(J1, . . . , Jn) = e(g1, . . . , gn) for sufficiently general elements
(g1, . . . , gn) ∈ J1 ⊕ · · · ⊕ Jn.

In [3, Theorem 3.2], we showed that if J1, . . . Jn are monomial ideals of On , then
σ(J1, . . . , Jn) is finite if and only if for any I ⊆ [n] we have |{i : JIi �= ∅}| � |I|.
The following result is a particular case of this result.

Corollary 4.4 Let d1, . . . , dn be positive integers. Let �(di ) = {k ∈ R
n
�0 : |k| = di }, for all

i ∈ [n]. Let Ei be the convex hull of a finite subset of �(di ) ∩ Z
n
�0 and let Ji be the ideal

of On generated by the monomials xk such that k ∈ Ei , for all i ∈ [n]. Then the following
conditions are equivalent:

(a) σ(J1, . . . , Jn) is finite.
(b) For each non-empty I ⊆ [n], we have that |{i : EI

i �= ∅}| � |I|.
We remark that, under the conditions of the previous result, if σ(J1, . . . , Jn) < ∞, then

σ(J1, . . . , Jn) = d1 · · · dn .
Proof of Theorem 4.2. Let di = di (˜�+), for all i ∈ [n]. Let us define 
i = {

k ∈ ˜�+ : |k| =
di

}

, for all i ∈ [n]. By the definition of di (˜�+), we have 
i ∩ Z
n
�0 �= ∅, for all i ∈ [n].

Let us fix any subset I ⊆ [n]. Let r = |I|. We us observe that

deg(˜�I+) � dn−r+1 � dn−r+2 � · · · � dn .

In general, given any integer j ∈ {n − r + 1, n − r + 2, . . . , n}, the intersection 
I
j ∩ Z

n
�0

can be empty. However, since v(˜�+) ⊆ Z
n
�0, it is possible to find an integer s � 1 such that

{

k ∈ s˜�I+ : |k| = sdi
} ∩ Z

n �= ∅. (18)

We remark that di (s˜�+) = sdi (˜�+), for all i ∈ [n] and (s˜�+)I = s˜�I+, for all I ⊆ [n].
Let s be a positive integer verifying condition (18), for all I ⊆ [n]. Now, let us define

Ei = {

k ∈ s˜�+ : |k| = sdi
} ∩ Z

n, (19)

for all i ∈ [n]. Let us apply Corollary 4.4 to the family {E1, . . . , En}.
Again, given any subset I ⊆ [n], if r = |I |, we have

deg((s˜�+)I) = deg(s˜�I+) = s deg(˜�I+) � sdn−r+1 � sdn−r+2 � · · · � sdn .

In particular, relation (18) says that

{n − r + 1, n − r + 2, . . . , n} ⊆ {i : EI
i �= ∅}.
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Therefore: |{i : EI
i �= ∅}| � |I|. By Corollary 4.4, we deduce that σ(J1, . . . , Jn) < ∞ and

σ(J1, . . . , Jn) = snd1 · · · dn , where Ji denotes the ideal of On generated by the monomials
xk for which k ∈ Ei , for all i ∈ [n].

Then, for sufficiently general elements (F1, . . . , Fn) ∈ J1 ⊕ · · · ⊕ Jn , it follows that

snd1 · · · dn = σ(J1, . . . , Jn) = dimC

On

〈F1, . . . , Fn〉 = μ(F),

where F = (F1, . . . , Fn) : C
n −→ C

n and the last equality comes from Remark 2.7.
Let F : C

n −→ C
n be any of such homogeneous maps. Since Ei ⊆ s˜�+, for all i ∈ [n],

it follows that ˜�+(F) ⊆ s˜�+. Hence by Theorem 2.13 we have

snd1 · · · dn = μ(F) � n!Vn(˜�+(F)) � n!Vn(s˜�+(F)) � snn!Vn(˜�+). (20)

This shows relation (17).
Let us prove (a)�⇒ (b). Let us suppose that equality holds in (17). Then all inequalities of

(20) become equalities. In particular μ(F) = snn!Vn(˜�+) and Vn(˜�+(F)) = snVn(˜�+) =
Vn(s˜�+). Therefore˜�+(F) = s˜�+ and F is Newton non-degenerate at infinity, by Theorem
3.8. This means that s˜�+ is homogeneous, by definition.

In order to prove (b)�⇒ (c), let us suppose that there exists a map G : C
n −→ C

n such
that G is homogeneous and G ⊆red s˜�+, for some integer s � 1. Let ci = deg(Gi ), for all
i ∈ [n]. Reordering the components of G, if necessary, we can suppose that c1 � · · · � cn .
Let us see that ci = sdi , for all i ∈ [n].

Since ˜�+(G) = s˜�+ and S(G) = s˜�+ ∩ Z
n
�0, the zero set of G is finite, by Corollary

3.3. We deduce that

c1 · · · cn = μ(G) = n!Vn(˜�+(G)) = n!snVn(˜�+) � snd1 · · · dn . (21)

Let us fix an index i ∈ [n] and a subset I ⊆ [n] with |I| = n − i + 1. The fact that G
is homogeneous with finite zero set implies that the zero set of the map GI : C

n
I −→ C

n

is also finite. In particular, the number of non-zero functions in the set {GI
1 , . . . ,G

I
n } is at

least equal to n − i + 1. Since c1 � · · · � cn , this implies that deg(GI) � ci . Moreover, the
equality ˜�+(G) = ˜�+ implies that ˜�I+ = deg(GI). Hence we obtain the following:

sdi = min
{

deg(s˜�I+) : |I| = n − i + 1
} = min

{

deg(GI) : |I| = n − i + 1
}

� ci .

That is, sdi � ci , for all i ∈ [n]. Joining this fact with (21) we conclude that

c1 · · · cn = μ(G) = n!Vn(˜�+(G)) = n!snVn(˜�+) � snd1 · · · dn � c1 · · · cn,
which shows in particular that sdi = ci for all i ∈ [n].

The implication (c)�⇒ (a) follows easily by observing that anymapG satisfying (c) must
be Newton non-degenerate at infinity with finite zero set. 	

Remark 4.5 In the proof of (b)�⇒ (c) of the above result, we actually have shown that if
F : C

n −→ C
n is a homogeneous reduction of ˜�+, then the set formed by the degrees of

the components of F is {d1(˜�+), . . . , dn(˜�+)}.
Example 4.6 Let ˜�+ = ˜�+(xa, yb, zc, xr yr zr ) ⊆ R

3, where a, b, c, r ∈ Z�1, a � b � c,
and r( 1a + 1

b + 1
c ) � 1, that is, the point (r , r , r) is on or above the plane determined by

(a, 0, 0), (0, b, 0) and (0, 0, c). Then, an easy computation reveals that

3!V3(˜�+) = r(ac + bc + ab)

d1(˜�+)d2(˜�+)d3(˜�+) = 3rba.
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Hence ˜�+ is homogeneous if and only if r(ac + bc + ab) = 3rba, which is to say that
a = b = c. In this case a homogeneous reduction of˜�+ is given by the map F : C

3 −→ C
3

defined by F(x, y, z) = (xa + ya + za, xa + 2ya + 3za, xr yr zr ).

5 Newton non-degeneracy at infinity of gradient maps

Mainly inspired by [4], in this section we compare the conditions of Newton non-degeneracy
at infinity of the maps ∇ f and G( f ) (see (8)), for any given f ∈ C[x1, . . . , xn].

Let ˜�+ ⊆ R
n
�0 be a Newton polyhedron at infinity, for some n � 1. As a natural

attempt of establishing a canonical polynomial h ∈ C[x1, . . . , xn] such that h is Newton
non-degenerate at infinity and ˜�+(h) = ˜�+, we define h(˜�+) as the sum of all monomials
xk such that k ∈ v(˜�+).

Let � be a face of ˜�+. If � is a d-dimensional face of ˜�+, where d ∈ {0, 1, . . . , n − 1},
we denote by P� the d-dimensional affine subspace of R

n containing � (which in turn is the
minimal affine subspace of R

n containing�). We say that� is a simplex, or a simplicial face
of ˜�+, when � equals the convex hull of d + 1 vertices of ˜�+. We say that ˜�+ is simplicial
when each face of ˜�+ not passing through the origin is a simplex. Obviously, if n = 1 or 2,
then ˜�+ is always simplicial.

Lemma 5.1 Let˜�+ ⊆ R
n
�0 be a global Newton polyhedron. Let� ⊆ R

n be a simplicial face

of ˜�+ of dimension d such that 0 /∈ �, where d ∈ {0, 1, . . . , n − 1}. Let v0, v1, . . . , vd be
the vertices of �. Then {v0, v1, . . . , vd} is linearly independent.
Proof Let us first observe that � = P� ∩˜�+, since � is a face of˜�+. Moreover, vi �= 0, for
all i ∈ {0, 1, . . . , n}, since 0 /∈ �.

The origin belongs to˜�+, so the condition 0 /∈ � implies 0 /∈ P�. Let α0, α1, . . . , αd ∈ R

such that α0v0 + α1v1 + · · · + αdvd = 0. We observe that

α1(v1 − v0) + · · · + αd(vd − v0) = (−α0 − α1 − · · · − αd)v0. (22)

If α0 + α1 + · · · + αd �= 0, and we denote this number by β, then (22) implies that

0 = v0 + α1

β
(v1 − v0) + · · · + αd

β
(vd − v0).

This means that 0 ∈ P�, which is a contradiction. Hence α0 +α1 +· · ·+αd = 0, that is, the
member of the right hand side of (22) is zero. The condition dim� = d is equivalent to saying
that {v1−v0, . . . , vd −v0} is linearly independent. Then (22) implies that α1 = · · · = αd = 0
and thus we also have α0 = 0. Therefore the result follows. 	

Proposition 5.2 Let ˜�+ be a simplicial global Newton polyhedron in R

n
�0. Let h = h(˜�+).

Then h is Newton non-degenerate at infinity. If, in addition,˜�+ is convenient, then G(h) has
finite zero set and μ(G(h)) = n!Vn(˜�+).

Proof Let � be any face of˜�+ not passing through the origin. Since˜�+ is simplicial, � is a
simplex. Let {k(1), . . . , k(r)} be the vertices of �. We have that h� = xk

(1) + · · · + xk
(r)
. We

need to check that the set of solutions of the system
(

x1
∂h

∂x1

)

�

(x) = · · · =
(

xn
∂h

∂xn

)

�

(x) = 0 (23)

is contained in {x ∈ C
n : x1 · · · xn = 0}.
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Let us write k( j) = (k( j)
1 , . . . , k( j)

n ), for any j ∈ [r ]. The system (23) can be rewritten as

k(1)
1 xk

(1) + · · · + k(r)
1 xk

(r) = 0
...

k(1)
n xk

(1) + · · · + k(r)
n xk

(r) = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(24)

which is a linear system in the unknowns xk
(1)

, . . . , xk
(r)
. By Lemma 5.1, the set of vertices

{k(1), . . . , k(r)} is linearly independent. In particular we conclude that r � n and therefore
the system (24) has only the trivial solution. That is, xk

(1) = · · · = xk
(r) = 0. In particular

x1 · · · xn = 0. Since we have fixed any face� of˜�+ not passing through the origin, it follows
that h is Newton non-degenerate at infinity.

If we add the condition that h is convenient, then the finiteness of the zero set G(h) follows
from Corollary 3.4. Moreover, the equality μ(G(h)) = n!Vn(G(h)) is a direct application of
Theorem 3.8. 	

Example 5.3 Let ˜�+ ⊆ R

3
�0 be the global Newton polyhedron given by the unit cube. That

is, ˜�+ = ˜�+(x, y, z, xy, xz, yz, xyz). So ˜�+ is not simplicial. Let h = h(˜�+). We observe
that the map G(h) is given by

G(h) = (

x + xy + xz + xyz, y + xy + yz + xyz, z + xz + yz + xyz
)

.

The set G(h)−1(0) is not finite, since G(h)−1(0) contains the points of the form (0, 0, 0),
(α,−1,−1), (−1, α,−1) and (−1,−1, α), where α ∈ C. Hence, we conclude that G(h) is
not Newton non degenerate at infinity, since ˜�+ is convenient (see Corollary 3.3).

Corollary 5.4 Let F : C
n −→ C

p be a polynomial map such that F(0) = 0 and F−1(0) is
finite. Let ˜�+ = ˜�+(F) and h = h(˜�+). Let us suppose that ˜�+ is simplicial. Then F is
Newton non-degenerate at infinity if and only if

m(F) = μ(G(h)).

Proof The polyhedron ˜�+ is convenient, since F−1(0) is finite and F(0) = 0 (see [5,
Lemma 2.7]). We suppose that ˜�+ is simplicial, hence the polynomial h is Newton non
degenerate at infinity and μ(G(h)) = n!Vn(˜�+), by Proposition 5.2. Hence the result is a
direct consequence of Corollary 3.9. 	

Remark 5.5 Let f ∈ C[x1, . . . , n] such that ˜�+( f ) is simplicial, f is convenient and
G( f )(0) = 0. Let h = h(˜�+( f )). As a consequence of Corollary 5.4, f is Newton non-
degenerate at infinity (see Definition 2.10 (i)) if and only if the zero set of G( f ) is finite and
μ(G( f )) = μ(G(h)).

Let f ∈ C[x1, . . . , n]. Let I ⊆ [n] and let r = |I|. If the polynomial fI : C
r −→ C has

a finite number of singularities, then we can speak about the global Milnor number μ∞( fI).
Of course, if (∇ f )−1(0) is finite, then (∇ fI)−1(0) is not finite in general. But ((∇ f )I)−1(0)
is. In the remaining section, the functions for which the maps ∇ fI and (∇ f )I are identical,
for any I ⊆ [n], will deserve special consideration.
Lemma 5.6 Let f : C

n −→ C be a polynomial map. Then

∂ fI
∂xi

=
(

∂ f

∂xi

)

I
, (25)

for all i ∈ [n] and all I ⊆ [n] such that i ∈ I.
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Proof Let {e1, . . . , en} denote the canonical basis in R
n and let us suppose that f is written

as f = ∑

k ak x
k . Let us fix any index i ∈ [n]. For an arbitrary non-empty I ⊆ [n] we have

that

∂ fI
∂xi

=
∑

k ∈ supp( fI)
ki>0

akki x
k−ei and

(

∂ f

∂xi

)

I
=

∑

k ∈ supp( f )
ki>0, k−ei ∈R

n
I

akki x
k−ei . (26)

Therefore, if i ∈ I, the polynomials of (26) are identical. That is, we obtain equality (25). 	

Remark 5.7 If f ∈ C[x1, . . . , xn] and I ⊆ [n] then obviously ∂ fI

∂xi
= 0, for all i /∈ I. This

fact and Lemma 5.6 show that

supp

(

∂ fI
∂xi

)

⊆ supp

((

∂ f

∂xi

)

I

)

, for all i ∈ [n] and all I ⊆ [n]. (27)

In particular ˜�+
(∇( fI)

) ⊆ ˜�+
(

(∇ f )I
)

, for all I ⊆ [n], and hence we have the inequality
V|I|

(

˜�+(∇( fI))
)

� V|I|
(

˜�+(∇ f )I
)

, for all I ⊆ [n].
As a direct consequence of Lemma 5.6 we also deduce that the following conditions are

equivalent:

(a)
∂ fI
∂xi

=
(

∂ f

∂xi

)

I
, for all i ∈ [n] and all I ⊆ [n].

(b)

(

∂ f

∂xi

)

I
= 0, for all i ∈ [n] and all I ⊆ [n] such that i /∈ I.

We will say that f is adjusted to the coordinate subspaces when any the above equivalent
conditions hold.

It is immediate to see that if f is adjusted to the coordinate subspaces, then

˜�+
(∇( fI)

) = ˜�+
(

(∇ f )I
)

(28)

for all I ⊆ [n], I �= ∅. As remarked in (27), in general we only have the inclusion ⊆ in (28).
This inclusion can be strict. For instance, let f = x2 + x6y2 + y3 + x4y ∈ C[x, y], then
˜�+(∇ f{1})) = ˜�+(x) and ˜�+

(

(∇ f ){1}
) = ˜�+(x4).

Theorem 5.8 Let f : C
n −→ C be a polynomial function such that f is adjusted to the

coordinate axis and G( f ) has finite zero set. If ∇ f is Newton non-degenerate at infinity and
∇ f (0) = 0, then G( f ) is also Newton non-degenerate at infinity.

Proof Let ˜�+ = ˜�+( f ). Let g ∈ C[x1, . . . , xn] such that g is Newton non-degenerate at
infinity and supp(g) = v(˜�+) (such a polynomial always exists, by [15, §6]). We have
supp(g) ⊆ supp( f ). This implies that

˜�+(∇gI) ⊆ ˜�+(∇ fI), for all non-empty I ⊆ [n]. (29)

Moreover, the zero set of the map G(g) is finite, by Corollary 3.3. Hence (∇g)−1(0) is also
finite. Let us also remark that, since (∇ f )−1(0) is finite and ∇ f (0) = 0, then ˜�+(∇ f ) is
convenient.

We deduce the following chain of inequalities

n!Vn(˜�+) � dimC

C[x1, . . . , xn]
〈

x1
∂ f
∂x1

, . . . , xn
∂ f
∂xn

〉 =
n

∑

r=1

∑

I⊆[n]
|I|=r

μ∞( fI) (30)

123



  121 Page 22 of 26 C. Bivià-Ausina, J. A. C. Huarcaya

=
n

∑

r=1

∑

I⊆[n]
|I|=r

μ((∇ f )I) =
n

∑

r=1

∑

I⊆[n]
|I|=r

r !Vr (˜�+(∇ fI)) (31)

�
n

∑

r=1

∑

I⊆[n]
|I|=r

r !Vr (˜�+(∇gI)) �
n

∑

r=1

∑

I⊆[n]
|I|=r

μ∞(∇gI) (32)

= dimC

C[x1, . . . , xn]
〈

x1
∂g
∂x1

, . . . , xn
∂g
∂xn

〉 = n!Vn(˜�+(g)) = n!Vn(˜�+). (33)

The inequality � of (30) is a direct application of Theorem 2.13. The equality of (30) is an
application of (2) and the additivity of the intersection index (see for instance [15, 3.2]).

Similarly to (28), since f is adjusted to the coordinate axis, we deduce that I(∇( fI)) =
I((∇ f )I), for any I ⊆ [n]. This proves the first equality of (31). The condition of Newton
non-degeneracy at infinity of ∇ f implies that, if we fix any I ⊆ [n], then the map (∇ f )I
is also Newton non-degenerate at infinity, as a map C

r −→ C
n , where r = |I|. In particu-

lar, μ((∇ f )I) = r !Vr (˜�+((∇ f )I)) = r !Vr (˜�+(∇ fI)), by Theorem 3.8 and relation (28),
respectively. This proves the second equality of (31).

The first inequality (�) of (32) comes from (29). The second inequality (�) of (32) is
another application of Theorem 2.13. The first equality of (33) is analogous to the equality of
(30). SinceG(g) is Newton non-degenerate at infinity, we have thatμ(G(g)) = n!Vn(˜�+(g)),
by Theorem 3.8. The last equality of (33) is obvious, since supp(g) = v(˜�+). This completes
the proof of (30)-(33).

As a consequence of the above discussion, the inequality (�) of (30) becomes an equality
and, again by Theorem 3.8, we conclude that the map G( f ) is Newton non-degenerate at
infinity. 	


Given a global Newton polyhedron ˜�+ ⊆ R
n
�0, let us recall that P(˜�+) denotes the set

of those f ∈ C[x1, . . . , xn] for which ˜�+( f ) = ˜�+. Let us define the following subsets of
P(˜�+):

P0(˜�+) = {

f ∈ P(˜�+) : (∇ f )−1(0) is finite
}

B(˜�+) = {

f ∈ P(˜�+) : ∇ f is Newton non-degenerate at infinity
}

K (˜�+) = {

f ∈ P(˜�+) : G( f ) is Newton non-degenerate at infinity
}

.

We will discuss the inclusionK (˜�+) ⊆ B(˜�+) in Proposition 5.12. In general,K (˜�+)

andB(˜�+) constitute two different classes of polynomials, as we see in the following exam-
ples.

Example 5.9 Let˜�+ = ˜�+(x2, y2, x2y3, x4y2) ⊆ R
2
�0 and let h = h(˜�+). This polynomial

verifies h ∈ K (˜�+), by Proposition 5.2, but h /∈ B(˜�+), as is easy to check.

Example 5.10 Let ˜�+ = ˜�+(x3, y2, z4, x2y4, y3z) ⊆ R
3
�0. Let us consider the polynomial

g ∈ P0(˜�+) given by g(x, y, z) = x3 + y2 + z4 + x2y4 − 2xy3 + zy3. This polynomial is
not Newton non-degenerate at infinity, since

μ(G(g)) = 71, 3!V3
(

˜�+(g)
) = 76.

However, we have

μ∞(g) = μ(∇g) = 42, 3!V3
(

˜�+(∇g)
) = 42.
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So ∇g is Newton non-degenerate at infinity, that is, f ∈ B(˜�+) � K (˜�+).

Let ˜�+ ⊆ R
n
�0 be a global Newton polyhedron. We define the numbers

λ(˜�+) = max
{

n!Vn
(

˜�+(∇ f )
) : f ∈ P(˜�+)

}

λ0(˜�+) = n!Vn
(

˜�+(∇h)
)

,

where h = h(˜�+). Obviously we have λ0(˜�+) � λ(˜�+).
If η denotes the function obtained as the sum of all monomials xk such that k ∈ ˜�+ ∩Z

n
�0,

then the maximum λ(˜�+) is attained when computing n!Vn(˜�+(∇η)). In other words, let
us define Ai = {k − ei : k ∈ ˜�+ ∩ Z

n
�0, ki > 0} and ∂i˜�+ = ˜�+(Ai ), for any i ∈ [n].

Moreover, let J (˜�+) = Conv(∂1˜�+ ∪ · · · ∪ ∂n˜�+). Then λ(˜�+) = n!Vn(J (˜�+)).
By Theorem 2.12, the Newton number ν(˜�+) verifies

ν(˜�+) = max
{

μ∞( f ) : f ∈ P0(˜�+)
}

.

Theorem 2.13 shows that μ∞( f ) � n!Vn
(

˜�+(∇ f )
)

, for any f ∈ C[x1, . . . , xn] with a
finite singular set. Therefore, the inequality ν(˜�+) � λ(˜�+) holds. Let us remark that these
numbers are different in general, as the following example shows.

Example 5.11 Let ˜�+ ⊆ R
2
�0 be the global Newton polyhedron described in Example 5.9.

We have ν(˜�+) = 13. Moreover

∂1˜�+ = ˜�+(x, x3y2, xy3, y2)

∂2˜�+ = ˜�+(x3, x4y, x2y2, y)

J (˜�+) = ˜�+(x3, x4y, x3y2, xy3, y2).

Therefore λ(˜�+) = 2V2(J (˜�+)) = 17.

Proposition 5.12 Let˜�+ ⊆ R
n+ be a convenient global Newton polyhedron. Then the follow-

ing conditions are equivalent:

(a) K (˜�+) ⊆ B(˜�+)

(b) ν(˜�+) = λ(˜�+).

Moreover, if ˜�+ is simplicial, then condition (b) can be replaced by

(c) ν(˜�+) = λ(˜�+) = λ0(˜�+).

Proof Let us prove (a)�⇒ (b). Let us suppose that K (˜�+) ⊆ B(˜�+). By the genericity of
the Newton non-degeneracy at infinity (see [15, 6.1]), we can find a polynomial f ∈ K (˜�+)

such that λ(˜�+) = n!Vn(˜�+(∇ f )). Since ˜�+ is convenient, the zero set of G( f ) is finite,
by Corollary 3.3. So (∇ f )−1(0) is finite, by (9), and we have μ∞( f ) = ν(˜�+). On the
other hand, the inclusionK (˜�+) ⊆ B(˜�+) implies that ∇ f is also Newton non-degenerate
at infinity. In particular μ∞( f ) = n!Vn(˜�+(∇ f )). Joining these equalities we deduce that
ν(˜�+) = λ(˜�+).

Let us prove (b)�⇒ (a). Let us suppose that ν(˜�+) = λ(˜�+). Let f ∈ K (˜�+). Since˜�+
is convenient, the zero set of G( f ) is finite, by Corollary 3.3. This implies that (∇ f )−1(0)
is also finite. Then μ∞( f ) = ν(˜�+). Thus we deduce the following:

λ(˜�+) = ν(˜�+) = μ∞( f ) � n!Vn(˜�+(∇ f )) � λ(˜�+).

123



  121 Page 24 of 26 C. Bivià-Ausina, J. A. C. Huarcaya

Therefore μ∞( f ) = n!Vn(˜�+(∇ f ), which implies that ∇ f is Newton non-degenerate at
infinity. That is, f ∈ B(˜�+). Hence the inclusion K (˜�+) ⊆ B(˜�+) follows.

Let h = h(˜�+). If ˜�+ is simplicial, then h is Newton non-degenerate at infinity, by
Proposition 5.2. If (a) holds, then h ∈ B(˜�+), which leads to the following equalities:
ν(˜�+) = μ∞(h) = λ0(˜�+) � λ(˜�+) = ν(˜�+). Hence (c) follows. 	

Remark 5.13 (a) Let ˜�+ ⊆ R

n+ be a convenient global Newton polyhedron and let f ∈
K (˜�+). Then we observe that ν(˜�+) = μ∞( f ) � n!Vn(˜�+(∇ f )) � λ(˜�+). Then the
condition ν(˜�+) = λ(˜�+) forces that n!Vn(˜�+(∇ f )) attains the maximum λ(˜�+).

(b) By Proposition 5.12, for any polyhedron in R
2, the conditionK (˜�+) ⊆ B(˜�+) implies

λ(˜�+) = λ0(˜�+), which is a relatively simple condition to check in this case.
(c) By Theorem 3.8, if f ∈ C[x1, . . . , xn] verifies that ∇ f is convenient and Newton

non-degenerate at infinity, then the Łojasiewicz exponent at infinity of ∇ f , denoted
by L∞(∇ f ) (see for instance [16]) is equal to min{r1, . . . , rn}, where ri ei is the inter-
section of the global boundary of ˜�+(∇ f ) (see Definition 2.10 (c)) with the xi -axis, for
all i = 1, . . . , n. In particular, L∞(∇ f ) is a positive integer in this case.

Example 5.14 Let ˜�+ = ˜�+(x5, xy5, y3) ⊆ R
2
�0 and let h = h(˜�+). We have that

J (˜�+) = ˜�+(y5, xy4, x4) = ˜�+(∇h). Therefore λ(˜�+) = λ0(˜�+) = 21. Since h is New-
ton non-degenerate at infinity, we have μ∞(h) = ν(˜�+) = 21. Hence K (˜�+) ⊆ B(˜�+),
by Proposition 5.12.

Similarly, if we consider the global Newton polyhedron˜�′+ = ˜�+(x5, y5, x3y3) ⊆ R
2
�0,

then Proposition 5.12 also shows that K (˜�′+) ⊆ B(˜�′+).

By [15, 6.1], it is clear thatK (˜�+) �= ∅ for any global Newton polyhedron at infinity˜�+.
However, the family B(˜�+) is not always non-empty, as the following proposition shows.

Proposition 5.15 Let ˜�+ ⊆ R
n
�0 be a simplicial and convenient Newton polyhedron. Let

h = h(˜�+). Then B(˜�+) �= ∅ if and only if the polynomial map ∇h is Newton non-
degenerate at infinity.

Proof The if part is obvious. Let f ∈ B(˜�+). The condition ˜�+( f ) = ˜�+ implies that
supp(h) = v(˜�+) ⊆ supp( f ). In particular the inclusion ˜�+(∇h) ⊆ ˜�+(∇ f ) holds, which
in turn implies that

Vn
(

˜�+(∇h)
)

� Vn
(

˜�+(∇ f )
)

. (34)

The map G(h) is Newton non degenerate at infinity, by Proposition 5.2. By hypothesis
∇ f is Newton non-degenerate at infinity. Then, using (34) and Theorems 2.12 and 2.13, we
deduce that

ν(˜�+) = μ∞(h) � n!Vn(˜�+(∇h)) � n!Vn
(

˜�+(∇ f )
) = μ∞( f ) � ν(˜�+). (35)

Therefore, all inequalities in (35) become equalities. In particular, we obtain that μ∞(h) =
n!Vn(˜�+(∇h)), which implies that∇h is Newton non-degenerate at infinity, by Theorem 3.8.

	

Example 5.16 Let ˜�+ = ˜�+(x2, y2, x2y3, x4y2) ⊆ R

2 and let h = h(˜�+). The function
h is Newton non-degenerate at infinity, by Proposition 5.2. We observe that ˜�+(∇h) =
˜�+(x, x4y, x3y2, xy3, y) and ∇h is not Newton non-degenerate at infinity. Therefore, there
is not any function f ∈ P0(˜�+) such that ∇ f is Newton non-degenerate at infinity, by
Proposition 5.15.
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Example 5.17 Let us consider the Newton polyhedron ˜�+ ⊆ R
3
�0 and the function g ∈

P0(˜�+) of Example 5.10. Let h = h(˜�+). Since ˜�+ is simplicial and ∇g is Newton non-
degenerate at infinity, we conclude that ∇h is also Newton non-degenerate at infinity, by
Proposition 5.15.
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