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Abstract: The automation of railroad operations is a rapidly growing industry. In 2023, a new

European standard for the automated Grade of Automation (GoA) 2 over European Train Control

System (ETCS) driving is anticipated. Meanwhile, railway stakeholders are already planning their

research initiatives for driverless and unattended autonomous driving systems. As a result, the

industry is particularly active in research regarding perception technologies based on Computer

Vision (CV) and Artificial Intelligence (AI), with outstanding results at the application level. However,

executing high-performance and safety-critical applications on embedded systems and in real-time is a

challenge. There are not many commercially available solutions, since High-Performance Computing

(HPC) platforms are typically seen as being beyond the business of safety-critical systems. This work

proposes a novel safety-critical and high-performance computing platform for CV- and AI-enhanced

technology execution used for automatic accurate stopping and safe passenger transfer railway

functionalities. The resulting computing platform is compatible with the majority of widely-used AI

inference methodologies, AI model architectures, and AI model formats thanks to its design, which

enables process separation, redundant execution, and HW acceleration in a transparent manner.

The proposed technology increases the portability of railway applications into embedded systems,

isolates crucial operations, and effectively and securely maintains system resources.

Keywords: autonomous and driverless train operation; computer vision and artificial intelligence;

high-performance computing; safety-critical; AI hardware accelerator

1. Introduction

Users of the European rail industry are clamouring for a future Automatic Train
Operation (ATO) system since it provides advantages such as lower operating costs, longer
product life-cycles for railways and increased safety. Its definition is being worked on by
the European Shift2Rail standards group [1]. For fully autonomous train operation, various
rolling stock suppliers and stakeholders have already begun researching, developing and
testing technologies.

Similarly to other transport sectors, different computational issues are being faced by
numerous railway suppliers and stakeholders for CV- and AI-enhanced autonomous train
operation. The adoption of computer equipment capable of offering the performance of
high-end graphic-processor units while being able to simultaneously meet safety criteria
will be necessary for the future of CV and AI advances in the railway sector. These develop-
ments will increase the size, speed, and dependability of CV and AI processing calculations.
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Through the use of multi-cores, Graphic Processors Units (GPUs), and specialized ac-
celerators, a number of HPC commercial off-the-shelf platforms provide the calculation
capabilities required by autonomous systems in fields such as intelligent transportation
systems, space, and robotics [2].

However, because of the challenges or barriers that HPC platforms pose to the certifi-
cation process, such as support for functional and timing isolation and testability, the use of
these platforms has historically been viewed as being beyond the reach of the industry of
safety-critical systems (i.e., controllability and observability). Therefore, the state-of-the-art
(SoA) safety-critical computing platforms cannot currently satisfy these demanding specifi-
cations.

The SELENE (Self-monitored Dependable Platform for High-Performance Safety-
Critical Systems) project [3] is a European R&D initiative that develops the research pro-
vided in this article as a use case demonstration. This work proposes a high-performance
platform with safety-related considerations as a main design goal in an effort to bridge
this gap. The SELENE platform is an open-source Reduced Instruction Set Computer
V (RISC-V) [4] multi-core processor with hardware acceleration for artificial intelligence
that supports multiple types of redundancy, real-time performance monitoring, and en-
forcement mechanisms to ensure that the safety objectives of the applications are satisfied.
Additionally, the design of this system-on-open-source chip makes it possible for it to easily
adapt to other safety domains. Apart from the use case presented in this article, three other
use cases from the automotive and space industries have been used to test this method.

The article is organized as follows: Section 2 gives an overview of some relevant
related works and highlights the main differences with our approach. Section 3 describes
the railway domain use case in which the approach is being tested. Section 4 presents
the use case deployment details analysing the new HW and SW modules included in the
platform and the platform architecture, taking into account the safety-related analysis of
our use case. Sections 5 and 6 define the test which was carried out and presents the
obtained results in order to demonstrate the performance of the solution. Finally, Section 7
presents the conclusions and future work.

2. Related Work

The use of artificial sense (in real-time and via onboard embedded hardware) has been
presented via a number of demonstrations in the railway industry.The Siemens autonomous
tramway pilot case [5] was one of the first demonstrations that continues to inspire re-
searchers today [6]. With this in mind, vision-based on-board obstacle detection and
distance estimation in railroads have become the most pertinent scientific approaches [7].
To test and validate an autonomous obstacle detection system, various experiments and
actual pilot cases have been implemented throughout the past few years, [8–13]. Other
applications have also been worked on, such as vehicle localization on light trains [14] or
railway lateral signalling detection on mainline trains [15,16].

The majority of these demos, similarly to those for self-driving cars, concentrate
more on the computing capability of those systems rather than how these platforms
may be certified. However, certification of sophisticated computing systems is an active
area of study, such as those necessary for fully automated train systems [3]. Major chip
suppliers, such as Nvidia and Intel, are also creating particular platforms that support that
purpose [17], by including built-in fault-tolerant mechanisms such as lockstep execution or
error correction codes in memory structures. Finally, to certify complex systems affordably,
a more comprehensive and cutting-edge safety certification technique is required [18].

There are currently no commercial solutions that guarantee high-performance equip-
ment with the safety requirements to be met in the railway sector. This work aims to
be the first on-board HW prototype to execute AI functions safely (and in real time) in
railway operations.



Appl. Sci. 2023, 13, 9017 3 of 15

3. Use Case Definition

The use case presented in this paper, which is intended to validate the HPC SELENE
platform, has been titled as automatic accurate stopping and safe passenger transfer, and it
consists of automatic functionality collection based on CV- and AI-enhanced techniques.
Figure 1 shows the graphical representation of it. The use case specifically highlights the
following three features:

• Data collection and synchronization: this captures data from stereo vision-capable
cameras in real time and it synchronizes and rectifies data of both video stream signals.

• Automatic station detection and accurate stop aligning the vehicle and platform: this
detects the station platform and it accomplishes precise localization inside the platform
area by detecting, recognizing and tracking visual patterns. The visual landmarks
have been chosen to maximize the results of the detection and identification process
in any possible lighting conditions. Visual stereo sensors that have been properly
calibrated assess the physical distance.

• Safe passenger transfer: this captures data from rear cameras and it manages automatic
safe door functionality preventing (a) door opening operation if the train and platform
are not precisely aligned and (b) door shutting operations if any passengers are
entering or exiting.

SELENE
(VCU118)

Signalling
modules

Visual
Stopping
Landmarks

Figure 1. Physical set-up of the solution. Equipment distribution on the train.

Apart from the functional requirements, there are two key requirements to be met in
this use case. The first is to keep the processing time as low as possible, since the accurate
stop with a moving train (and its inertia) does not allow latencies that could turn the results
of the visual analysis into obsolete data, as these would not be useful for an accurate control
of the vehicle. On the other hand, the passenger detection functionality has to be secured
by combinations of redundant executions over isolated resources.

3.1. System Set-Up

As shown in Figure 1, the set-up consists of two cameras (located in the train cabin) in
properly calibrated stereo vision configuration, another two rear cameras (pointing at the
passenger doors) and the Xilinx VCU118 board which incorporates the SELENE platform.
Each camera sends a real time video stream into the system and all of these streams are
analysed using the CV- and AI-enhanced algorithms to extract valuable data and send
information to the next signalling equipment (decision making and actuators modules).
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3.2. System Workflow

The solution architecture contains three main logical modules. The first one captures
data coming from cameras and it synchronizes them in time. If the data comes from stereo
cameras, it also rectifies them. The second one performs a real time data analysis using
CV and AI techniques. The third collects the results of the analysis, and for those safety
functionalities the 2oo2 (two-out-of-two) RootVoter (RV) logic is applied.

The most demanding computer resource functionalities are concentrated in the second
logical module which is fully executed in the VCU118 board and SELENE platform:

• Platform landmark detection and identification: this detects the start/end landmarks
of the platform by a pre-trained AI model (YOLOv4 [19] architecture) inference process,
determining if the train is on the platform and establishing a reference point in the
approximation phase for the ultimate accurate stop.

• Distance estimation: this support the precise stop process in the platform area. The dis-
tance to station stopping landmarks is calculated updating the predicted remaining
distance of ATO. This calculus is based on a dense disparity map calculated by the
Semi-Global Block Matching (SGBM) method [20].

• Passenger detection: using the same techniques but a different AI model, it detects
passengers when they are boarding or exiting the train, managing the door opening
and closing commands.

4. Deployment on SELENE Platform

This section describes the use case deployment details and it focuses specifically on
four main contributions of this work: the HW accelerator, acceleration runtime, hypervisor
and rootvoter.

The SELENE platform builds upon a combination of a multi-core and accelerators,
which are prototyped on a FPGA System On a Chip (SoC), based on the non-proprietary
RISC-V instruction set architecture (ISA). Due to their open nature, the use of an open ISA
with a Linux OS and Jailhouse hypervisor [21] offers flexibility and an extension at the SW
level. All these features are made compliant with the highest safety integrity levels across
domains by building adequate safety measures such as monitoring, fault containment,
diverse redundancy (RV availability), ease for testability, etc., in the HW and SW layers.
The architecture of our railway use case and how it is implemented on top of this platform
is described below.

In the use case presented in this work, safety considerations are different for each
functionality. Automatic accurate stop is not a safety-related function since if the train stops
beyond the platform the doors are not opened. On the contrary, a safe passenger transfer
has safety implications since closing doors when passengers are still getting in/out of the
train might endanger their physical health.

Due to the need for high-performance (based on parallel executions) and function
separation, each task execution should rely on distinct RISC-V cores and isolated cells
(except NoSafety functions which can share the same cell but should be isolated from the
rest of the safety-related executions). This may be accomplished by utilizing the SELENE
platform HW/SW isolation features based on the Jailhouse hypervisor.

Figure 2 shows the SELENE platform architecture in the HW and SW domains incor-
porating the functionalities that need to be executed in the presented use case. In the HW
domain, the separation into different RISC-V CPU cores of the three main tasks can be seen.
The passenger detection function, being a safety function, is redundant and its two outputs
are managed by the RV of the SELENE platform. Three of the processes (two for passenger
detection and one for platform landmark detection) also use hardware acceleration for their
inferences. Finally, the accurate stop function requires two separate RISC-V CPU, one for
AI-model inference used for landmark detection and another for distance estimation based
on stereo matching algorithms. Both of them are very resource-consuming.
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Figure 2. HW and SW architecture of the proposed solution.

In the SW domain we can see the control of the different executions of the functionali-
ties through the creation of cells controlled by the Jailhouse hypervisor. Moreover, we can
also appreciate the different SW stack executed in each core depending on the task under
execution as well as the interrupts required to make use of HW acceleration.

The safe passenger transfer function, based on AI-enhanced passenger detection, is
developed in one core with a replica (in the second core) to build a 2oo2 redundant system,
such as those required to achieve high criticality in the railway sector [22]. A comparison of
the function results is carried out by the RV HW modules incorporated in the SoC. SELENE
hardware monitors make sure that safety properties are preserved.

In order to deploy this entire HW and SW architecture on the XIllinx VCU118 board,
some research and development was required beyond the SoA. The exact contributions of
this work with respect to the SoA are as follows:

• HLSinf HW Accelerator extension: the creation of new layers to support the YOLOv4
architecture: a Support Tensor Machine (STM) layer which is a grouping of the three
different layers (softmax, hyperbolic tangent and element-to-element multiplication),
and an ADD layer (element-to-element addition).

• New Acceleration Runtime: enabling HLSinf HW accelerator and Linux OS communi-
cations, accelerators control, memory allocation, and interruption manager.

• AI-inference SW library extension: a new compute service, called SELENE, to port
and extend the inference library, making the platform compatible with most known
AI architectures.

• Hypervisor new extension: a porting solution to RISC-V CPU and enabling process iso-
lation.

• RootVoter new extension: a porting solution to RISC-V CPU and enabling safety-
related executions on the SELENE platform based on redundant execution.

The AI hardware accelerator, AI-Inference library, and an acceleration runtime method
created in this work comprise the SELENE Accelerator Framework (SAF). It works as
follows: first, the European Distributed Deep Learning (EDDL) [23] inference library
initializes the HLSInf [24] HW accelerator using the generated JSON configuration file.
Next, the inference input data (i.e., the data to be processed) is loaded in the main memory
shared with the accelerator. For this purpose, a dedicated input buffer is allocated in the
memory using the Memory Allocation Driver. As soon as the input is loaded, the inference
library runs the accelerator and blocks the process until the accelerator has finished (or
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until the timeout has been reached). The final step for the EDDL is to read the output buffer
to retrieve the inference output data (i.e., the data processed by the accelerator).

4.1. SELENE AI HW Accelerator

The HLSinf accelerator is a high-level synthesis open-source FPGA accelerator which
creates an efficient hardware IP for ASIC or FPGA targets and is used for inference pro-
cesses of AI models based on convolutions. The central characteristic of this accelerator is
flexibility, as it allows a specific AI hardware accelerator to be designed and implemented
to the particular use case.

It is designed using the channel slicing concept, where a set of input channels are
processed in parallel, and a set of output channels are produced in parallel. This allows
the programmer to select the degree of parallelism at the design time, where a bigger
parallelism implies a bigger accelerator size and more FPGA resources. This speed-up
flexibility allows the user to define the best well-suited parallelism considering the available
FPGA resources and the degree of parallelism desired.

This accelerator has been integrated into the SELENE SoC and interconnected with
memory and the RISC-V cores using an AXI interconnect. This HLSinf accelerator on
the SELENE platform can be customized to support specific data formats and Neuronal
Network (NN) layers and currently supports several well-known AI models such as
YOLOv3/4, Tiny-YOLO, or VGG16. The accelerator and the CPU cores share the same
memory, which minimizes the cost of data movement and allows fine-grain HW/SW
co-designs of the AI algorithms between the RISC-V cores and the AI accelerators to be
performed. In addition, HLSinf has been designed to run in the EDDL library, providing the
support needed to run offloaded AI model layers on the FPGA. It can configure and compile
a given subset of network layers for use in an inference process running with EDDL. HLSinf
and EDDL allow a perfectly coupled HW/SW co-design approach where some parts of the
model run in the FPGA, whereas the rest run in the CPU or GPU when available.

Figure 3 shows the design of the accelerator in the SELENE Platform. This has
been defined around the dataflow model using modules interconnected by data streams.
This dataflow model accelerates the overall throughput of the design as it enables task-
level pipelining, permitting several operations to start before the previous functions have
completed all of their operations.
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Figure 3. Design of the HLSinf accelerator (new contributions in green color).

4.2. Acceleration Runtime

This work also presents a new low-level runtime that allows the HW accelerators
included in the SELENE platform to communicate with the Linux operating system. The SE-
LENE Acceleration Runtime (SAR) is the lowest software level and it controls the accelera-
tors, ensures memory allocation, and manages interruptions. The runtime also interacts
with the EDDL inference library using an Open-CL-like Application Program Interface
(API). The EDDL and the low-level runtime are included in the SELENE Linux Image
deployed on the NOEL-V-based [25] platform. Thus, the final application running on
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the NOEL-V infers the AI algorithms and makes the deployment of the HW accelerators
transparent for the use case. The SAR can handle multiple kernels and is designed to easily
configure the control of all the kernels with a parametric register from a JSON file.

The accelerators require a contiguous physical memory block for data input and
output. As we are using the Linux OS and we cannot directly write to the main memory (it
would end in an OS crash), we use a kernel driver, called the Memory Allocation Driver,
to ensure the contiguous memory allocations. An API has been designed for interfacing the
SAR with the upper software level. This API contains a light OpenCL C++ compatibility
layer for easier operations.

4.3. AI-Inference SW Library

The EDDL library is a general-purpose, open-source, deep-learning library used for
the training and inference processes of NN models. One of the key features of EDDL is
its ability to work with a wide variety of hardware, including CPUs, GPUs or FPGA. This
allows users to take advantage of the best hardware for their specific use case and makes it
easy to switch between different hardware platforms. Interoperability is provided with the
EDDL Open Neural Network Exchange (ONNX) format support, as it allows pre-trained
models in ONNX format to be loaded and it ensures compatibility with other frameworks.

The SELENE platform relies on Linux as the default operating system. In particular,
it uses a Debian-based RISC-V Linux adaptation to NOEL-V. The AI software toolchain
integration is built on top of this Linux distribution. To deploy artificial intelligence models
on the SELENE platform, the EDDL library has been extended by including the SELENE
platform as a new computing target. The EDDL library is then deployed on top of the Linux
OS running on the NOEL-V processor. This allows for the inference process to be executed
entirely within the NOEL-V multi-core system. Additionally, SAF is used to offload heavy
computations to the SELENE AI hardware accelerators to speed up the inference process.

4.4. Jailhouse Hypervisor

Jailhouse is a partitioning hypervisor based on Linux. It configures CPU and device
virtualisation features of the hardware platform in such a way that none of the resulting do-
mains, called cells, can interfere with each other in an unexpected way. Jailhouse currently
officially supports the x86-64, ARMv7 32-bit and ARMv8 64-bit architectures. For the SE-
LENE SoC, which uses the NOEL-V processor, the code has been ported to the open RISC-V
ISA. The main implementation challenge has been the decoding of transformed/pseudo
instructions stored in dedicated system registers on processor exceptions (e.g., memory
access violations).

As shown in Figure 2, different cells have been created for different processes (even
for redundant ones) to isolate some functionality from the rest, avoiding the sharing of
resources and interruptions between them.

4.5. RootVoter

The current version of SELENE SoC includes four RV cells, each has a maximum of
16 datasets to vote. The voting scheme MooN and the timeout interval are configured
during cell initialization. The RV driver for Linux enables (a) resetting and initializing each
RV cell, (b) loading the datasets to the dedicated RV registers, (c) polling the voting results
from each RV cell, (d) parsing voting results and diagnosing the errors (if any).

The voting logic assumes that the datasets are loaded during T clock cycles (configured
by software) after the configuration command. The voting starts when all N datasets are
loaded to the set registers, or when at least M datasets are loaded by the end of time interval
T. If at the end of this time interval less than M datasets are available, then the RV cell
reports a timeout.

Once the voting is completed the, RV reports an agreement status that indicates
whether at least M datasets (out of N) match among themselves and validity flags that
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indicate whether each particular dataset matches with the rest. The use case of this work
uses only one cell for RV and the chosen voting scheme is 2oo2.

5. Test Description

Several tests have been defined to validate the platform. The tests are centered
on critical requirements of the performance, process isolation and redundant execution,
and also on the integration of third party libraries such as OpenCV [26]. The tests have
also been found suitable to evaluate SELENE outputs in comparison to available market
solutions that have higher TRL in inference execution but lack safety in-built mechanisms
such as Alveo from Xillinx [27] and Jetson AGX Xavier from Nvidia [28].

In order to run the tests, part of a private CAF dataset [29] containing stereo images of
an urban railway environment has been used. The dataset contains 19 sequences on the
railway track. A sequence defines a record that starts at one station and spans the next
station or two until the train stops. The frames are rectified RGB colour images coming
from a stereo camera stored with lossless compression using 8-bit PNG files. The size of the
images is 1280 × 720 (HD). Only a sub-part of this database has been used, those frames
where landmarks and passengers are present. In total, 200 stereo image pairs from ten
different sequences were used.

• System workflow validation test: the entire workflow of the system has been validated
using dataset images. Apart from the correct functioning of the main functionalities,
special attention has been paid to the following two points:

– Back support libraries for the distance calculus: distance calculus requires an
available implementation for the SGBM algorithm [26]. This implementation is
ready in the OpenCV library but must be validated to ensure that the libraries
that compute stereo SGBM matching can be cross compiled and executed in the
SELENE platform with RISC-V architecture.

– Model parsing compatibility: the models used for the use case are trained using
the Darknet framework [30]. The Darknet output is not compatible with other
frameworks and, for that reason, ONNX has been chosen as the sharing format.
As ONNX establishes a standard format, but there are no standard parsers or
exporters, the compatibility of exported models with the EDDL ONNX parser
must be validated. Inference tests were used to validate this compatibility.

• AI models (passenger and landmark detectors) inference performance test: this test
focuses on the performance of the machine learning algorithm in the platform. In the
test, the Tiny-YOLOv4 inferences for landmark and passenger detection are executed
with different computing precision. The models are 608 × 608 RGB image input
models that were trained using transfer learning with a database labelled with railway
traffic signals, platform landmarks and people/passengers. In addition, the goal has
also been to compare the performance of the accelerator against SoA existing hardware
such as Xilinx Alveo and Nvidia AGX Xavier after normalising inference time with
respect to frequency.

– VCU118: this test aims to compare the performance executing the Tiny-YOLOv4
use-case model in the VCU118 SELENE platform using different accelerator con-
figurations (different NN layer distribution on CPU and HW accelerator and
different bit number precision). It also compares the performance of the accelera-
tor against the CPU on inference tasks to calculate the impact of implementing
the accelerator over the whole platform performance.

– Xilinx Alveo: this test is based on an inference benchmark (a technology-agnostic
evaluation) evaluating HLSinf in a Xilinx Alveo Board in order to validate and
evaluate the accelerator in an existing environment to isolate the results from the
custom SW stack that is required for VCU118 board. Tiny-YOLOv4 for railway
signalling detection was evaluated on a Xilinx Alveo with external Intel CPUs
facilitating the evaluation of the accelerator isolated from CPU performance.
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– Nvidia Jetson AGX Xavier: the same image inference test is executed in the GPU
of the SoA edge computing platforms.

• Distance calculus performance test: an evaluation on SGBM performance is also a
target for the test. The performance of the SGBM algorithm also allows a CPU speed
evaluation.

• Process isolation test: unfortunately, the process of porting the Jailhouse hypervisor
to the SELENE platform could not be completed in time before the end of the project
and is still ongoing. However, within this work, the correct functioning of hypervisor
has been tested over RISC-V architecture using a QEMU [31] machine emulator
and virtualizer. This consists of concurrently executing multiple applications of the
use case on a single RICS-V SoC allowing it to evaluate non-interference properties.
This also allows any impact on application precision to be evaluated as well as the
performance impact of shared/contended resources. First of all, each process has
been executed separately to obtain the performance data without interference from
other processes. Then, in a second cell, a workload is introduced incrementally based
on micro-benchmarks in interference analysis [32]. All combinations to two of the
four cells have been tested. The result of these tests has been compared to the initial
evaluation performed in isolation to check that performance degradation is bounded
and functional behavior remains unaffected. With this configuration, the impact of
several types of interference (shared memory, shared cache, shared buses) on each
selected algorithm has been studied.

• Redundancy and RV test: two different tests have been carried out for RV evaluation.
The first one at use-case level where PassengerDetector functionality is executed redun-
dantly on the SELENE platform. The RV is configured for a 2oo2 scheme. The PC is
used for interaction with the processes on the SELENE platform. Instead of the real
door-closing command system, a stub is running on the PC to receive the command
from the PassengerDetector.
Each PassengerDetector process sends a vote containing the command value to the RV.
In order to simulate the failure, a script has been developed enabling it to be injected
in order to vote failure, send a wrong vote and test the system. The RV checks whether
both of the two processes send the same vote. The master process checks the result
of the RV. If the check was successful, the master process sends a command with the
door-closing signal. If the check is not successful, it will send an order to keep the
doors opened.
The second one is related to low-level platform validation, where the RV subsystem
has been validated by means of FPGA-based Fault Injection (FFI). This application
performs a staggered redundant execution of a matrix multiplication kernel with two
replicated processes. At the end of the kernel execution, each redundant process
calculates the digest (CRC32) for the output results. These digests (from each process)
are loaded to the dedicated dataset registers of the RV cell. For the sake of simplicity,
this application uses only one RV cell. The voting scheme configured for the RV cell is
2oo2, and the configured timeout (maximum time to wait for the datasets) is 1 ms.
FFI experiments have been carried out using a customized version of DAVOS [33] fault
injection tool. Faults have been injected into the CPU cores: Cell C (which executes one
of the kernel replicas), and Cell B (which executes the monitoring process). The consid-
ered faultload comprises single bit-flips in those cells of FPGA configuration memory
that configure targeted SoC components (CPU cores). A total of ten thousand faults
have been injected during FFI experiments (5000 faults per each targeted CPU core).
The outcome of each individual injection run (fault effect) is described in terms of
failure modes. The fault is masked when it produces no effect on the system. The fault
leads to Replica fail when the RV raises the validity flag for one of the replicas. The fault
leads to replica timeout when the RV raises the timeout flag for one of the replicas.
Finally, the fault effect is double the modular redundancy fail when the RV is unable
to establish an agreement, and the kernel result does not match the fault-free run.
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At the end of the experiment, DAVOS calculates the percentage of each failure mode
as the ratio between the number of registered failure modes of each type and the total
number of injected faults.

6. Test Results

This section shows the results for the SELENE platform and compares the results with
SoA platforms.

6.1. AI Model Inference Performance Results

The results for the evaluation can be seen in Table 1, together with the evaluation results
printed on the input image in Figure 4. In the figure, we can see several columns of execution
times of the inference of one image using the Tiny-YOLOv4 model at different platforms.

Table 1. Tiny-YOLOv4 inference times on SELENE’s VCU118 board and the comparison with (a) the

inference when SELENE’s HW accelerator is executed at Xilinx Alveo (also using EDDL) (b) the

inference when the use case is executed on the GPU of AGX Xavier and (c) the inference at CPU

frequency downscaled AGX Xavier (in order to be able to set a same level comparison). “Transform”

and “Others” layers are executed in CPUs. All measurements are given in milliseconds (ms).

Tiny YOLOv4
Layers

VCU118 (100
MHz) (SELENE)

Alveo (250 MHz)
(HW-Acc of

SELENE)

AGX Xavier
GPU

(1.377 MHz)

AGX Xavier
GPU (250 MHz)

All executed on
CPU

45,685,922 - - -

FP32 HLSinf 1799 364

17 94
Transform 479 7

Others 4 0

Total 2282 371

FP16 HLSinf 1548 119

13 72
Transform 726 6

Others 4 2

Total 2278 127

INT8 HLSinf 796 66

N/A N/A
Transform 1135 15

Others 4 1

Total 1935 82

(a) (b)

Figure 4. Platform landmark (a) and Passenger (b) detectionsfor automatic accurate stopping and

safe passenger use case. Note: (b) image corresponds to a platform shot. It is an example that

emulates the images captured from the rear-view mirrors of the train, as the images captured for

these tests are not publishable due to GDPR issues.

The VCU118 (SELENE) corresponds to the SELENE platform, using the HLSinf acce-
lerator as the AI hardware accelerator of the platform, the EDDL library as an inference
library and the SAF as the interface between the HLSinf accelerator (100 MHz) and the
EDDL library. The Alveo corresponds to the inference time of the inference outside the
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SELENE platform, using an Intel i7-7800-X (3.45 GHz) for the non-supported HLSinf layers
and the HLSinf accelerator (200–250 MHz) deployed on the Alveo U200 board for the
supported HLSinf layers. The AGX Xavier GPU corresponds to inference on the GPU of
the Jetson family AGX board. Finally, the last column corresponds to the GPU downscaled
because the results needed to be adjusted for the frequency of the GPU (1377 MHz) to
equal the frequency of the Xilinx Alveo (200–250 MHz) in order to compare the perfor-
mance of the accelerator isolated from the underlying physical technology, which limits the
operation frequency.

The SELENE VCU118 platform results in Table 1 include different layer execution
configuration and bit precision levels. Note that the time for one forward operation in the
CPU is 4,568,592 ms, while in FP32 using the HLSinf accelerator the time lowers to 2282 ms.
This result means an acceleration factor of ×2002 that rises to ×2361 when running on
INT8 precision.

Comparing the GPU downscaled and the Alveo EDDL columns, the GPU behaves
better while using FP32 precision. On the FP16, the HLSinf accelerator achieves 119 ms
inference time per image. Taking into account that not all the layers are embedded in the
accelerator, it produces slightly more inference time than downscaled. When the precision
falls back to INT8, the inference time for HLSinf is 66 ms per image, together with the
CPU preprocessing time required, the time to execute a forward pass on one image is
82 ms. Unfortunately, the comparison at INT8 precision is not possible as the GPU available
drivers do not handle fewer than 16 bits per parameter.

6.2. Distance Calculus Performance Results

The results represented in Table 2 show that the actual inference time in the SELENE
platform (two cores RISC-V CPU) is much higher than in the AGX Xavier (eight cores ARM
CPU) but a direct comparison is not representative. Cumulative processing time over all
cores must be calculated to obtain the computing time for all processes. In the full process
time, the results show that the RISC-V CPU performance is 6.66% of the ARM performance,
however operation frequency is not the same in both platforms, so frequency normalization
shall be applied to obtain the actual performance for the CPU. SELENE platform CPUs run
at 100 MHz and the ARM CPU runs at 2.2 GHz. The results normalizing the frequency
show that the RISC-V CPU performance is actually greater than the ARM CPU.

Table 2. Depth map calculus execution times (OpenCV SGBM function in CPU). SELENE’s VCU118

and AGX Xavier. The last two columns show the comparison between both platform: Raw core

number normalization and Frequency Agnostic (F.A.) (100 MHz vs. 2.2 GHz) downscaled. All

measurements are given in seconds (s).

VCU118 w.r.t AGX Xavier

VCU118 (2 Core) SELENE AGX Xavier (ARM 8 Core) Raw Comp. F.A. Comp.

OpenCV
SGBM

Total time
Time Using
Single Core

Total time
Time Using
Single Core

% %

Matching
Time

48 96 0.8 6.4 6.66 146.67

Filtering
Time

20 40 0.3 2.4 6 132

This test has also been used to check OpenCV compatibility and performance of an
algorithm to estimate the distance from the train cabin to a stop signal on the platform.
After compiling and installing OpenCV for RISC-V 64-bit architecture, a performance test
consisting of the execution of the Semi-Global Block Matching (SGBM) function of OpenCV
was carried out. As shown in Figure 5, the OpenCV SGBM function takes two stereo images
(taken with a stereo camera, producing a left and right image) and tries to match the images
creating, as a result, a disparity map which represents the distance between the detected
landmarks or people to the cameras on the train.



Appl. Sci. 2023, 13, 9017 12 of 15

(a) (b) (c)

Figure 5. Distance calculusto platform landmark using stereo vision camera (left (a) and right (b)

images) and extracted depth map (c). Green frames represent detected landmark bounding box and

the red frame the landmark’s corresponding area in depth map. This are is used for distance calculus.

Because OpenCV acceleration was not implemented in SELENE platform (it is planned
as future work), the SGBM algorithm is just executed in CPU. Table 2 shows the execu-
tion times of the SGBM function (divided in Matching Time and Filtering Time) and the
comparison with AGX Xavier board execution in its ARM CPU cores.

As expected, the Nvidia AGX Xavier with its eight cores at 2.2 GHz is much faster
than the two core SELENE VCU118 at 100 MHz, however, as previously mentioned in
this work, this direct comparison is not valid as the SELENE platform is an evaluation
HW FPGA board with a frequency much lower than an ASIC implementation. Therefore,
the comparison must be normalized to be agnostic of the frequency and the number of cores.
After normalizing the cores, the SELENE platform reaches just 6.66% of the performance of
the Nvidia AGX Xavier. However, after normalizing the frequencies, the RSIC-V CPU in
the SELENE outperforms the ARM, demonstrating that FPGAs can be a valid option from
the performance point of view.

6.3. Process Isolation Results

This Jailhouse hypervisor version was successfully executed on the QEMU, with exe-
cution of different Linux root (Safety and NoSafety) cells. The use of resources has been
monitored validating the isolation capabilities of SELENE platform (shared memory, shared
cache, shared buses).

Additionally, we created a simple inmate trying to escape its cell by accessing outside
of its allocated memory. This attempt was correctly caught by the hypervisor that sanctioned
the faulty access by a page fault exception.

6.4. Redundancy and RootVoter Results

At the use case level, all tests regarding the RV were successful. If the two scripts sent
the same vote, the door enable signal is activated. If the two scripts sent a different vote,
this failure is successfully detected by the RV and the doors remains closed and blocked.

At the platform level, the results of FFI show that the system has tolerated all faults
injected into the kernel replica (Cell C), i.e., 0.00% of 2002 failures. The replicas themselves
are quite sensitive to the injected faults: in 0.88% of cases the RV has reported a replica fail,
and in 0.16% other cases the RV has reported a replica timeout. The faults injected into the
monitoring process (Cell B) have not affected the behaviour of the kernel replicas, and only
one 2oo2 failure per 5000 faults has been detected (0.02%).

In such a way, the described experiment has shown that the RV meets its specified
functionality, i.e., it detects the errors and timeouts of replicated processes, and it establishes
an agreement following the configured voting scheme. Usage of RV in the redundant
applications efficiently protects the system against the faults of the replicated processes.

7. Discussion and Future Work

In this work, a new safety-critical and high-performance computing application for
real-time AI-enhanced railway use has been introduced. Its design allows process isolation,
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redundant execution, HW acceleration and abstraction making the platform compatible
for most widely used AI inference techniques and AI model architecture and formats
(including open standards such as ONNX).

It is worth highlighting the implementation of specific HW and SW modules for the
SELENE platform. A HW accelerator module, which can be customized to support specific
data formats and neural network layers, has been deployed. HLSinf accelerator shows great
performance on frequency agnostic evaluation. Using quantization and other AI model
optimisation methods, the performance improves SoA. Its implementation presents a very
high acceleration factor with respect to CPU execution for the Tiny-YOLOv4 algorithm. This
work also presents the performance and accuracy evaluation of the use case functionalities
over the SELENE platform, comparing it with executions carried out in the most widely
used commercial HPC platforms, such as Nvidia’s Jetson family boards or Xillinx’s FPGAs.

In addition, a custom AI runtime and adapted inference SW, which abstracts the user
application layer from platform specific HW configuration, has been carried out.

Finally, the rootover and Jailhouse hypervisor implementations for RISC-V based
system compatibility have also been successfully validated, making it possible to execute
safety-related functionalities on the platform. This solution guarantees isolating executions
of the different functionalities and allows the evaluation of redundant executions with
voting system when needed.

Regarding the use case, this work has demonstrated to be a valid HW platform for
equipping autonomous trains that require real-time execution of safety (precision stop
functionality) and non-safety (precision stop) functions based on CV and AI. With higher
maturity, ASIC implementation and railway certification, the SELENE platform could suit
railway industry requirements for both non-safety and safety level applications.

The next steps of the investigation will focus on improving real time execution perfor-
mance (reaching lower inference times) while keeping/increasing the detection accuracy.
New NN architectures will be taken into account as candidates to port them into the SE-
LENE board. OpenCV acceleration by HW should be implemented in order to speed up
basic computer vision algorithms such as SGBM. On the other hand, they will also focus on
more in-depth testing and validating the platform’s possibilities for redundant execution
(followed by different voting systems such as 2oo3) in order to increase the safety level.
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