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Abstract: Green composites, with more than 78 wt.% of products obtained from linen linum 

usitatissimum, were developed in this research work. Epoxidized linseed oil (ELO) was used as bio-

based resin, a mix of nadic methyl anhydride (MNA) and maleinized linseed oil (MLO) were used 

as cross-linkers and finally, flax fabrics were used to obtain composite laminates by resin transfer 

molding (RTM). The flax fibers were modified using amino-silane, glycidyl-silane and maleic 

anhydride treatment in order to increase the compatibility between lignocellulosic fibers and the 

polymeric matrix. Mechanical and thermal properties were studied by flexural, tensile and impact 

test, as well as dynamic mechanical analyses (DMA) to study the viscoelastic behavior. Contrary to 

what could be expected, when fibers are previously treated in presence of MLO, a reduction of 

anchorage points is obtained causing a substantial increase in the ductile properties compared with 

composites without previous fiber treatment or without MLO. 

Keywords: polymer-matrix composites (PMCs); surface properties; resin transfer molding (RTM); 

mechanical testing 

 

1. Introduction 

Linum Usitatissimum, also known as linseed or common flax is one of the oldest fiber crops used 

by mankind [1]. In what is Georgia today, the earliest evidence of the use of flax fibers as textile was 

found, approximately 30,000 years ago [2]. Later, in ancient Egypt the mummies were wrapped with 

linen fabrics, where flax was considered as a symbol of purity [3]. In only 125 days the plant is able 

to complete its life cycle including, vegetative, flowering and maturation periods, which make it a 

plant of the family of linacea with greater production capacity [2]. 

In 2017, Canada was the largest producer of flaxseed in the world, representing about 40% of 

world production (exceeding 2.9 million tons). The joint production of China, the United States, and 

India represents another 40% of world production [4]. Flax is cultivated for multiple applications, 

such as, fiber, oil (linseed oil), food supplement, and as an ingredient of wood finishing products. In 

fact, the Latin term “usitatissimum” means “most useful” [5]. 

Today, due to the growing environmental awareness, the scientific community and 

manufacturers have focused their attention on flax fiber, as it is the most widely used bio-fiber in 
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composite materials [6]. Flax fibers and other bio-fibers are used as ecological alternatives to glass 

fiber in composites for engineering applications [7]. In 2010, 13% of the total reinforcement materials 

were bio-fibers, while a forecasting up to 2020, states that this percentage will be higher than 28% [8]. 

Bio-fibers, such as flax, have a potential as a raw material in composites used in building industries, 

sport equipment, packaging, paper, furniture, and automotive industries [9]. The chemical 

composition of flax fiber, as reported by several authors (about 64%–74% cellulose, 11%–17% 

hemicellulose, 2%–3% lignin, and 1%–2% pectin, 1.5% waxes, and 8%–10% water) allows an optimal 

equilibrium between mechanical and ductile properties [10,11]. 

If flax fibers are compared with E-glass fibers (Table 1), one of the most common fibers used in 

composites, it is possible to realize that flax fibers have the capability to replace glass. If we also take 

into account their low price, low toxicity, high strength to weigh ratio, and the possibility of 

recovering energy at the end of the life cycle, it is clear that flax fibers are highly promising fibers [12–

15]. 

Moreover, the possibilities of Linum usitatissimum in bio-composites do not only comprise its use 

as reinforcement fiber. The oil obtained from the seed, commonly known as linseed oil, is a 

triglyceride whose composition depends on the type of plant and growing conditions. Traditionally, 

this oil has been used as a binder in paint formulations and wood finish due to its drying ability [16]. 

Despite this, the high unsaturation degree (carbon–carbon double bonds) present in the major fatty 

acids, such as linoleic and linolenic fatty acids with two and three unsaturations respectively, allows 

the possibility of converting this vegetable oil into thermosetting resins. To achieve this, 

polymerization can take place thorough reactions involving these double bonds [17,18]. Although 

this direct polymerization, (homopolymerization) is feasible and technically viable, the most widely 

used route is the conversion of double bonds into functional groups that can then be easily 

polymerized due to an increase in reactivity. This is the case of the epoxidation process, which 

converts double bonds contained in the different fatty acids into oxirane rings by reaction of the oil 

with peroxoacids. Epoxidized linseed oil (ELO) has been used in the last decade as bio-based 

thermoset polymer in multiple studies [16,19–22]. 

Table 1. Comparison between natural flax fiber and glass fiber. Adapted from [23]. 

Parameter E-glass Flax Fiber 

Density (g cm−3) 2.5 1.4 

E-modulus (GPa) 76 50-70 

Specific E-modulus (GPa cm3 g−1) 30 36-50 

Tensile strength (GPa) 1.4-2.5 0.5-1.5 

Specific tensile strength (GPa cm3 g−1) 0.5-1 0.4-1.1 

Renewability No Yes 

Recyclability No Yes 

Disposal Biodegradable Not Biodegradable 

Health risk when inhaled Yes No 

ELO could be cross-linked with different curing agents, such as dicarboxylic acids [24,25] and 

cyclic anhydrides. It is important to take into account that basic cyclic anhydrides such as maleic 

anhydride (MA) and phthalic anhydride (PA) are solids at room temperature and, although they 

have been used in cross-linking epoxidized vegetable oils [21], it is worthy to note a particular family 

of cyclic anhydrides which are liquids at room temperature, which is a key feature in using them as 

curing agents [26]. Cyclic anhydrides such as methylhexahydrophthalic anhydride (MHHPA), 

methyltetrahydrophthalic anhydride (MTHPA), dodecenyl succinic anhydride (DDSA), methyl 

nadic anhydride (MNA), among others, are widely used as cross-linking agents in epoxy resins for 

high thermal performance [16,21,27]. It is necessary to take into account that the curing process of at 

thermosetting bio-resin with anhydrides is a complex reaction involving different chemical 

interactions, so that initiators and/or catalysts as imidazole and glycerol respectively are needed. The 

reactivity of a chemical compound involved in a cross-linking process is measured by the equivalent 

weight, which indicates the mass of a compound containing an equivalent gram of a reacting 
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chemical group. In epoxy-based materials the equivalent epoxide weight (EEW) is used, while for 

anhydrides the anhydride equivalent weight (AEW) gives the appropriate information about their 

ability to form cross-links. Among the liquid cyclic anhydrides, it is worthy to note the increasing use 

of methyl-5-norbornene-2,3-dicarboxylic anhydride or nadic methyl anhydride (MNA). This 

petrochemical hardener has an AEW of 178 g equiv−1 and its use as a hardener in epoxy resins gives 

cross-linked epoxy resins which are able to withstand high temperatures [26]. 

As an environmentally friendly alternative to petrochemical hardeners used in bio-resins, 

vegetable oils can also be chemically modified to introduce the maleic anhydride in its structure by 

reacting maleic anhydride (MA) with unsaturations contained in vegetable oils through a 

combination of Diels-Alder condensation and “ene” reactions. Whang et al. studied the use of 

maleated castor oil to produce biodegradable foam plastics [28], and Mistri et al. applied maleated 

castor oil to produce green composites with jute fabrics [29]. Maleated groups present in a chemically 

modified vegetable oil, can readily react with epoxy groups contained in epoxidized oil in the 

presence of initiators (polyhydric alcohols) and accelerators (imidazoles). Figure 1 shows the two 

different pathways to modify the basic triglyceride structure of linseed oil used to give both the base 

epoxy resin (epoxidized linseed oil, ELO) and maleic anhydride-derived hardener (maleinized 

linseed oil, MLO). Therefore, chemical compounds derived from vegetable oils are a good alternative 

to reduce environmental impact, thus contributing to a sustainable development by reducing 

petroleum dependency and giving a response to the growing demand for greener products [30]. 

 

Figure 1. Chemical pathways used to obtain the base epoxy (epoxidized linseed oil, ELO) and the bio-

based cross-linker (maleinized linseed oil, MLO). 

Finally, it is must be taken into account that one of the main drawbacks to manufacture bio-

composites using natural fibers, like flax, hemp, jute, kenaf and other lignocellulosic fibers, is the high 

intrinsic hydrophilicity due to presence of hydroxyl groups in the cellulose structure. This results in 

the possible formation of ineffective interfaces between the hydrophilic fibers and hydrophobic 

polymeric matrices. This poor (or lack of) interactions result in debonding problems and presence of 
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voids in the obtained composites [31]. An important method to improve the compatibility along the 

interface between the fiber and the polymeric matrix is the use of chemical treatments on the fiber. 

Different functional groups can react with hydroxyl groups in cellulose to minimize the intrinsic 

hydrophilicity. Among others, it is worthy to remark the use of mercerization sodium hydroxide, and 

the use of peroxides, organics acids and silanes [10,31–37] that can block hydroxyl groups. Although 

there is a wide variety of surface treatments, silanes have been the most widely used due to their 

effectiveness compared to other methods [38]. 

This work describes the manufacturing and characterization of high environmental friendly 

composites using different vegetable oil-derived products from linum usitatissimum. The base resin 

consisted in an epoxy resin derived from linseed oil (LO), namely, epoxidized linseed oil (ELO). The 

hardener was partially bio-based as it was composed of petroleum-derived methyl nadic anhydride 

(MNA) and bio-based maleinized linseed oil (MLO) with a weight fraction of 50:50. Finally, flax 

fabrics were used as reinforcements and were converted into high environmental efficiency 

composite materials by resin transfer molding (RTM). The overall bio-based content of these 

composites is close to 78% (as it can be seen in Figure 2 which shows the flax-derived components). 

Several surface treatments were carried out on fibers to overcome their intrinsic hydrophilicity. A 

surface treatment was carried with two different silanes, amino (I) and glycidyl (II) and a third 

treatment consisted on esterification of hydroxyl groups in cellulose by reaction with maleic 

anhydride (III). 

 

Figure 2. Multiple applications of linun usitatissimum in composite manufacturing. 

2. Materials and Methods 

2.1. Materials 

As bio-based epoxy matrix an epoxidized linseed oil (ELO) supplied by Traquisa S.A (Barberá 

del Vallés, Barcelona, Spain) was used. The main parameters of this epoxy resin are a molecular 

weight of 1037 g mol−1, containing ± 8% of epoxide oxygen and an average distribution of fatty acids 

as follows: 3%–5% stearic acid, 5%–7% palmitic acid, 14%–20% linoleic acid, 20%–26% oleic acid and 

50%–56% linolenic acid. As a hardener a liquid mixture (50 wt% : 50 wt%) from methyl nadic 

anhydride (MNA) and maleinized linseed oil (MLO) was used. MNA has an anhydride equivalent 

weight (AEW) of 178 g equiv−1 and, it was supplied by Sigma Aldrich (Sigma Aldrich, Madrid, Spain). 

On the other hand, MLO has an acid value comprised between 105–130 mg KOH g−1 and a maximum 
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viscosity at 20 °C of 10 dPa·s. MLO was supplied by Vandeputte Group (Mouscron, Belgium). As 

accelerator 2 wt.% of 1-methyl imidazole supplied by Sigma Aldrich (Sigma Aldrich, Madrid, Spain) 

was used. In the same way as the catalyst provider of hydroxyl groups, glycerol (0.8 wt.%) from 

Sigma Aldrich (Madrid, Spain) was used. These percentages were optimized in previous works [27]. 

Composites were manufactured with three layers with the same fiber orientation with a surface 

density of 200 g·m−2. Flax fiber was supplied by Hilaturas Ferre (Hilaturas Ferre S.A., Banyeres, 

Spain). Flax fabrics were subjected to a previous surface treatment to reduce hydrophilicity. Two 

different silanes and maleic anhydride supplied by Sigma Aldrich (Madrid, Spain) were used. The 

first silane an aminosilane: [3-(2-aminoethylamine) propyl]-trimethoxysilane while the second silane 

consisted on a glycidyl silane: [2-(7-oxabicyclo [4.1.0] hept-3-yl) ethyl] silane. 

2.2. Surface Treatment 

Treatment of flax fibers with different silanes was carried out to increase interfacial adhesion 

between the polymeric matrix and the hydrophilic fiber, thus leading to an improvement of 

mechanical performances of the resulting fiber/polymer composites. Initially, silanes are hydrolyzed 

resulting in silanols, which are adsorbed onto the fiber surface, acting as a chemical bridge in the 

interface after drying which allows chemical bonding of silanol groups with hydroxyl groups in 

cellulose [39]. Silane treatments were carried out as follows: first a solution of 1 wt.% silane in acetone 

was prepared and stirred until homogenization. The use of different solvents was broadly studied 

[38,40–47], however acetone is widely used to promote hydrolysis [31]. Pickering et al. reported that 

acetone improves the surface roughness of fibers, increasing their specific area [48]. Previous to 

immersion of flax fabrics into the corresponding silane solution (with amino- or glycidylsilane), pH 

was adjusted to 3.5 with acetic acid and stirred for 10 min. Then, flax fabrics were immersed in this 

solution during 1 h and after this, soaked fabrics were dried in an air oven at 65 °C for 12 h. After 

this, silanized flax fabrics were washed several times with distilled water (until pH = 7 was obtained) 

and dried in an air oven at 40 °C during 24 h in order to remove residual acetone solution by 

evaporation. 

As an alternative to silanization, a surface treatment with maleic anhydride on flax fabrics was 

also carried out. This is an effective method to modify the chemical composition of flax fibers and 

improve the adhesion between the hydrophilic flax fiber and the hydrophobic resin. The procedure 

proposed by Cantero et al. was followed to carry out the esterification process [49]. Briefly, maleic 

anhydride was applied in an amount of 10% in respect to the total fibers weight and with a 

fiber:solvent ratio of 1:25. Fibers were immersed for 24 h in boiling acetone. After this process, fibers 

were washed with cold water until stabilization of pH was achieved, and finally dried in air 

recirculating oven at 100 °C for 12 h. Table 2 provides a list of the materials developed in this research 

and their corresponding labeling. 

Table 2. Composition and coding of the flax fabric composites with epoxidized linseed oil (ELO) 

matrix and a mixture of maleinized linseed oil (MLO) and methyl nadic anhydride (MNA) as 

hardeners. 

No. Sample Epoxy resin Hardener Surface treatment Flax fabrics layers  Code 

1 ELO MNA  - 3 MNA 

2 ELO MNA:MLO  - 3 MNA:MLO 

3 ELO MNA:MLO  Amine silane 3 MNA:MLO:AMIN 

4 ELO MNA:MLO  Glycidyl silane 3 MNA:MLO:GLYC 

5 ELO MNA:MLO  Maleic anydride 3 MNA:MLO:MAL 

6 ELO MNA  Glycidyl Silane 3 MNA:GLYC 

2.3. Composite Manufacturing 

The manufacturing process used to develop composite laminates was resin transfer molding 

(RTM). The equipment consisted of a Hypaject MKII (Plastech, Thermoset Tectonics, Gunnislake, 

UK). In order to reduce the intrinsic viscosity of the ELO and MNA/MLO hardener and enable the 
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injection of the mixture into the mold, an injection temperature of 60 °C with a pressure of 100 kPa 

was used. The pressure in the mold cavity was 95 kPa and the selected curing cycle consisted of an 

isothermal process at 100 °C for 3 h, as optimized in previous works [22]. After the curing process, a 

demolding temperature of 30 °C was used. All composites were manufactured with the same stacking 

sequence of 3 layers of flax fabrics with an angle orientation of 0°/90°. 

2.4. Characterization of Composites 

The curing process of the ELO resin, with a mixture of MLO and MNA hardener, was carried 

out taking into account the main findings of previous works [23]. Dynamic Mechanical Analysis 

(DMA) was used to study mechanical properties of composites in dynamic conditions [22]. The 

storage modulus (G’) was determined by using de Hooke’s law for a viscoelastic material: 

�’ =  
�

�
cos(�) (1) 

where σ is the applied stress, ε is percentage deformation, and δ is the phase angle between stress 

and strain. Samples of 40 × 10 × 4 mm3 were analyzed in an AR G2 oscillatory rheometer from TA 

Instruments (New Castle, DE, USA) equipped with a special clamp for solid samples. This clamp 

system allows evaluating dynamic properties in a combination of torsion and shear. The heating rate 

was set to 2 °C min−1 and the temperature range was programmed from 25 °C to 150 °C using a 

constant frequency of 1 Hz and a maximum shear deformation (%γ) of 0.1%. As Gernaat et al. 

described, G’ is an excellent parameter to study the correlation of mechanical properties. It is also 

useful to evaluate the effect of temperature on mechanical properties [50]. 

The study of the mechanical properties of the different composites was completed by three 

different techniques. Tensile tests were carried out following the guidelines of ASTM D3039-08 on a 

universal testing machine Instron Model 3382. The load cell was 100 kN and a crosshead rate of 2 

mm·min−1 was used. On the other hand, flexural properties were also studied according the ASTM 

D790-10, using an universal testing model Lloyd 30 K with a crosshead rate of 1.7 mm·min−1 and a 

load cell of 500 N. Impact toughness of the developed composites was studied by the Charpy impact 

test on a pendulum model Metrotec S.A. with a maximum energy of 6 J. A minimum of five different 

samples was characterized and average values for each mechanical property were calculated. All 

mechanical tests were carried out at room temperature. 

The morphology of the fractured samples from impact tests was studied by scanning electron 

microscopy (SEM) in a Phenom (FEI Company, Eindhoven, The Netherlands) microscope. The 

coating process lasted 120 s using the model of sputter-coater Emitech mod. SC 7620 (Quorum 

Technologies, East Sussex, UK). SEM technique was mainly used to identify the fiber–matrix 

interactions achieved after the different surface treatments on flax fabrics. 

3. Results and Discussion 

In the first part of this study, the mechanical properties, such as tensile and flexural test of the 

different composites have been exhaustively analyzed (Figure 3). The influence of MLO in the cross-

linking mixture and the effects of the different surface treatments are described in this section. 

MNA composite is taken as the reference material as it is cross-linked without MLO and, on the 

other hand, flax fabrics are not subjected to any surface treatment. As can be seen in Figure 3a, the 

flexural modulus of MNA composite is greater than 6600 MPa. If this value is compared with 

MNA:MLO composite it is possible to see that the presence of MLO results in a less rigid material 

(4480 MPa). In the same way, flexural strength of both samples (Figure 3c) suffers a decrease higher 

than 40%. Different authors such as Ray et al. and Lackinger et al. have reported this decrease in 

parameters related with resistant mechanical properties [51,52]. This behavior could be attributed to 

the presence of flexible MLO molecules, which reduce the rigidity of the cross-linked material. 

Therefore, replacing 50 EEW% of petrochemical hardener as MNA by MLO makes the material 

greener and more sustainable, but a decrease in mechanical resistant properties is observed while an 

improvement of ductile properties is expected. 
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It is possible to observe that, when flax fabrics are previously treated with amino- or glycidyl 

silane or subjected to a previous esterification with maleic anhydride, mechanical resistant 

parameters decrease considerably. While MNA composite has a flexural modulus greater than 6600 

MPa, composites with flax fabrics treated with amino silane, glycidyl silane and maleic anhydride 

have values 60.7%, 73.7% and 77.4% lower respectively. The same trend can be observed for flexural 

strength (Figure 3c), tensile modulus (Figure 3b) and tensile strength (Figures 3d). 

These unexpected results are in opposition to what coupling agents or previous esterification 

usually promote. Multiple studies have reported that the use of surface treatments such as silane 

coupling agents and maleic anhydride esterification increase the mechanical properties as the 

hydrophobicity of the lignocellulosic reinforcement decreases so that there is increased affinity with 

to polymeric matrix [21,31,49,53–56]. To elucidate this unusual behavior, an MNA:GLYC composite 

was manufactured. This composite is characterized by the absence of MLO as co-hardener. Thus, it 

is possible to determinate that the presence of MLO as a hardener has a direct influence of the 

behavior of surface-treated flax fabrics. The MNA:GLYC composite has higher mechanical properties 

than all other composites, including the MNA composite. Thus, this behavior allows obtaining a 

series of conclusions: 

(I) Samples cured with a 50 EEW% of MLO as hardener has greater ductile properties, due to 

the presence of long and flexible molecules. 

(II) When a surface treatment is carried out on fibers, the mechanical resistant properties will be 

higher, as long as MLO is not used as hardener. 

(III) If MLO is used as hardener, surface treatments produce an effect which is opposite to what 

is expected, leading to a decrease in the mechanical resistant properties. 

As indicated previously, all properties related with deformation are increased with MLO 

presence. It is possible to see that maximum deflection (Figure 3e) and elongation at break (Figure 3f) 

are clearly higher when 50 EEW% of MLO is added and a previous surface treatment of the flax 

fabrics is carried out. For this reason, it is possible to confirm a synergistic effect in ductile properties 

due to the combined effect of the addition of MLO as a co-hardener and previous treatments with 

silanes, or by maleic anhydride esterification. 
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Figure 3. Comparative bar plot of the flexural and tensile properties of composites based on ELO 

epoxy resin cross-linked with MNA/MLO mixture and flax fabric reinforcement with different surface 

treatments: (a) flexural modulus, (b) tensile modulus, (c) flexural strength, (d) tensile strength, (e) 

maximum flexural deflection, and (f) % elongation at break. 

Regarding the possible differences of the three surface treatments carried out, it should be noted 

that the composite material manufactured with MLO and a previous treatment of flax fibers with 

maleic anhydride, seems to give rise to the material with greater ductile properties. For example, the 

MNA:MLO:MAL composite has an elongation break 2.7 times higher than MNA composite and 1.9 

times higher than MNA:MLO composite. This behavior was previously detailed by other authors, 

such as Sawpan et al. [31]. However, surface treatment should promote a chain mobility restriction 

caused by intra- and intermolecular interactions between the polar groups of the epoxy resin and the 

organic components of the coupling agent [57], but in this case, the presence of MLO leads to the 
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contrary effect. With the aim to summarize this trend on of mechanical and ductile properties a plot 

representation of tensile strength and% elongation is done in Figure 4. 

 

Figure 4. Plot representation of tensile strength (MPa) vs. Elongation. 

Regarding impact properties, the main results obtained in the Charpy impact test obtained are 

summarized in Figure 5. In the first approach, by analyzing the influence of MLO as co-hardener it 

is possible to conclude that the MNA:MLO composite has an impact energy (kJ·m−2) 45.7% higher 

than the same material using only MNA as hardener (MNA composite). Secondly, previous surface 

treatments of flax fabrics with amino-, glycidyl silane and anhydride maleic esterification provides 

increased toughness of around 100.3%, 120.2% and 58.9% respectively with regard to the MNA:MLO 

sample. The presence of long fatty acid chains in MLO used as partial substitute of MNA (co-

hardener) increases considerably the impact properties of the developed composites. Finally, the 

comparison of results between MNA and MNA:GLYC composites allows demonstrating again that 

the surface treatment has been carried out in a correct way, and that it is effective only when MLO is 

not present. When MLO is not used as co-hardener, surface treatment leads to an increment of 

intermolecular bonding between ELO resin and flax fiber, thus leading to a stiffening effect on the 

composite (impact energy 1.77 kJ·m−2 respect 1.65 kJ·m−2). This typical trend has been reported by 

other authors such as Samper et al. [58]. 
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Figure 5. Variation of the impact energy (Charpy test) of composites based on ELO epoxy resin cross-

linked with MNA/MLO mixture and flax fabric reinforcement with different surface treatments. 

The dynamic mechanical analysis of the composites has been carried out to study the mechanical 

properties under dynamic loading and increasing temperature. Figure 6 shows a plot evolution of 

the storage modulus (G’) as a function of the increasing temperature. Firstly, it is possible to see that 

DMA curves for composites containing MLO as co-hardener are located below the curve of 

composites without MLO (MNA and MNA:GLYC). The elastic-vitreous behavior of all composites 

developed could be detected below the glass transition temperature (Tg), with high storage modulus 

values. Maximum G’ values are obtained in MNA and MNA:GLYC composites, as expected, with 

values around 3000 MPa at 30 °C. On the other hand, the increase in ductile properties provided by 

the use of MLO as co-hardener, can be observed in MNA:MLO composite, manufactured without 

any surface treatment, which has a G’ of 1000 MPa. Moreover, when a surface treatment is applied 

on flax fabrics, the storage modulus decreases to values below 350 MPa (in the case of a glycidyl 

silane treatment). This is in total agreement with previous mechanical results, which suggested a clear 

softening effect when MLO was used as co-hardener combined with a surface treatment on flax 

fabrics. Once the glass transition is overpassed the elastic-viscous of the composite provides lower G’ 

values. It is important to remark that composites without MLO co-hardener offer a sharp decrease, 

with G’ values around 100 MPa at 100 °C. Meanwhile, the decrease in G’ values for composites 

containing MLO is much lower, changing from values around 1000 MPa down to 150 MPa, which 

are even higher than those corresponding to composites without MLO. The influence of the presence 

of MLO in the mechanical behavior of composites it is considered as a stabilizing effect due to in 

samples with presence of MLO, the decrease in G’ values are lower, giving as result higher values at 

high temperatures, in a similar way that has been reported with different byproducts from vegetal 

oils [29,59,60]. 

Regarding the phase angle (δ), Figure 7 shows its evolution with increasing temperature. 

Composites cross-linked with MLO co-hardener provide a shift of the phase angle peak to lower 

temperatures. The temperature peak of the phase angle represents the glass transition (Tg), which 

involves the change of behavior from elastic to viscous. MNA and MNA:GLYC composites, both 

cured only with MNA as hardener, are characterized by a Tg value of 67.4 °C and 71.7 °C respectively. 

In absence of MLO co-hardener and no previous surface treatment on flax fabrics give high Tg values, 

which is in total agreement with the previous mechanical test. In this case, the use of glycidyl silane 

provides stronger interaction between flax fiber and the ELO-based epoxy resin. When MLO is used 

as co-hardener, together with MNA (MNA:MLO composite) the corresponding Tg value falls down 

to 52.4 °C, which represents a percentage decrease of about 22,2% with regard to MNA composite. 

As it has been suggested before, this decrease in Tg values could be attributed to presence of flexible 
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MLO molecules in composites, which reduce rigidity of the material under dynamic loading 

conditions [52]. All composites manufactured with a flax fabrics subjected to previous surface 

treatment, have lower Tg values, thus giving evidence of a synergistic flexibilization effect by 

combining MLO co-hardener and previous surface treatments on flax fabrics. The lowest Tg value is 

obtained for composites with flax fabrics subjected to silanization with glycidyl silane, with a 

percentage decrease in Tg of about 42% with regard to MNA composite. It is important to remark that 

phase angle peaks in composites cured with MLO as co-hardener, show a broadening effect in a 

similar way that Chem et al. have reported in polyurethane-modified. This phenomenon could be 

explained by the decrease in the cross-linking density of the epoxy using a MNA/MLO mixture as 

hardener, thus leading to a broader distribution and relaxation times of molecules in composite [61]. 

 

Figure 6. Comparative plot of storage modulus (G’) of different composites based on ELO epoxy resin 

cross-linked with MNA/MLO mixture and flax fabric reinforcement with different surface treatments. 

 

Figure 7. Comparative plot of the phase angle (δ) of different composites based on ELO epoxy resin 

cross-linked with MNA/MLO mixture and flax fabric reinforcement with different surface treatments. 

The morphology of the fracture surface of the composites (after Charpy impact testing) was 

studied by SEM (see Figure 8). It is possible to identify two different morphologies: a brittle fracture 

and ductile fracture morphology. With regard to brittle fractures, MNA and MNA:GLYC composites 

(Figure 8a and 8f) clearly show this brittle fracture morphology. These samples, both cured without 

MLO co-hardener are characterized by a homogenous fractured surface, without relevant changes in 

surface roughness. It can also be seen that the longitudinal surfaces of individual fibers are very clean, 

with no adhered matrix. This kind of surface is typical of a brittle fracture during impact test, with 

an associated impact energy value of 20 kJ·m−2. Impact test-absorbed energy is directly related to the 
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fragility of the material. However, with a more detailed analysis on these surfaces at higher 

magnifications (1000×) (Figure 9), it is possible to observe an improved fiber–polymer interaction, 

which can be seen by a reduction of the gap between lignocellulosic flax fiber and the ELO matrix, 

when flax fabric has been previously treated with glycidyl silane. It is possible to confirm that the 

interaction between the flax fiber and the surrounding polymeric ELO-based matrix has been 

improved, by reducing substantially the gap between them. This better fiber–matrix continuity is 

responsible for load/stress transfer from the matrix to the fiber. This phenomenon leads to a positive 

effect on mechanical performance of composites, as the Charpy’s impact energy showed. In fact, the 

impact-absorber energy for MNA:GLYC composite (with a previous silanization process with a 

glycidyl silane) is 19.6% than that of the MNA composite without any previous silane treatment). 

On the other hand, Figures from 8b to 8e show the fracture surface of composites cured with the 

presence of MLO as co-hardener. It is possible to observe differences with the abovementioned 

composites cured without MLO co-hardener. Gaps between fiber and polymeric matrix are reduced, 

which is a positive effect on the overall fiber–matrix continuity that allows improved load transfer. 

This good fiber–matrix interaction can be assessed by the presence of polymeric matrix chemically 

bonded to the fiber, which is not pullet out during the fracture process. As is shown in Figure 9b, the 

use of a previous silanization treatment on fibers improves the overall matrix–fiber interaction but 

does not justify the existence of these polymer residues in the fibers. In fact, in this image the fiber 

treated with glycidyl silane appears clean. This polymer residue located on the fiber gives a positive 

effect on the fiber–matrix interaction. Therefore, this could be attributed to the effects of MLO co-

hardener, which must be able to interact between both the flax fiber and the ELO matrix, leading to 

a synergistic effect: overall flexibilization as well as increasing the interaction. As we have 

demonstrated previously, these samples cured with MLO co-hardener are characterized by high 

ductile properties, with Charpy’s impact energy above 30 kJ·m−2, an elongation at break over 3% than 

and glass transition temperature lower than 50 °C. In view of the obtained results with these flax-

based composites, it seems that a pre-treatment on fibers (silanization or esterification by maleic 

anhydride) together the use of MLO as co-hardener play an essential role on final mechanical 

properties. 
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Figure 8. SEM micrographs (400×) of the fracture surfaces of composites based on ELO epoxy resin 

cross-linked with MNA/MLO mixture and flax fabric reinforcement with different surface treatments, 

(a) MNA, (b) MNA:MLO, (c) MNA:MLO:AMIN, (d) MNA:MLO:GLYC, (e) MNA:MLO:MAL, (f) 

MNA:GLYC. 
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Figure 9. SEM micrographs (1000×) comparing the gap along flax fiber in ELO-based composites 

cross-linked with (a) MNA and no previous surface treatment and (b) cross-linked with MNA + 

previous silanization with glycidyl silane on flax fabric. 

In order to explain the possible chemical interactions that occur with the presence of these 

components, Figure 10 shows a schematic representation of the chemical structures that take part in 

the cross-linking process and composite manufacturing. The mechanical results, as was proved 

previously, suggest that, like many other authors described, the use of silanes allows a better 

interaction between the flax fibers and the ELO-based polymeric matrix [39,62,63]. This is due to the 

chemical interaction between the –OH groups present on cellulose and the reactive groups present 

in the coupling agents. 

On one hand, the addition of MLO as co-hardener in a mixture with MNA, substantially 

improved the ductility of composites as it was expected. As Chern et al. and Balart et al. described 

[60,61], this is due to the presence of long fatty acid chains in MLO structure which increase 

considerably ductile properties as elongation at break, maximum deflection in flexural test, or a 

decrease on glass transition temperature. 

Unexpected results are obtained when both the MLO co-hardener and a previous surface 

treatment on flax fabric are combined. Composites manufactured with flax fibers previously treated 

and the use of MLO as a co-hardener have greater ductility than composites without previous surface 

treatment on flax fibers. In order to explain the possible chemical interaction, Figure 11a shows the 

possible reaction sites between cellulose and maleic anhydride-based hardeners. The multiple -OH 

groups naturally present in cellulose react with MLO and MNA by opening the maleic anhydride 

group, giving the corresponding esters and leading to multiple anchorage points. These reactions 

reduce molecular mobility and provide stiffness for composites. Figure 11b shows the possible 

interaction with a previous surface treatment on fibers. In this case, the hydrolyzed groups present 

in the silanes, directly interact with the –OH groups present in cellulose, thus blocking hydroxyl 

groups in cellulose. Consequently, available reactions sites for MLO and the MNA are remarkable 

reduced. This reduction of the potential anchor points limits the chemical interaction and, therefore, 

the composite materials have greater ductility. On the other hand, as Raza et al. have demonstrated 

[64] the use of maleinized vegetable oils provide hydrophobicity to cellulose fibers by attaching its 

nonpolar hydrocarbon chain on the surface of the fibers through its anhydride groups which can 

react to form a covalent ester bond at the interface. 
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Figure 10. Chemical structure and schematic representation of all components in ELO-based 

composites with MNA/MLO hardener and different surface treatments on cellulose from flax fiber. 

 

Figure 11. Potential chemical reactions that take place during manufacturing ELO-based composites 

(a) without previous silane treatment and (b) with a previous silanization surface treatment. 

4. Conclusions 

In this work, a new high environmentally friendly composites based on linen byproducts was 

obtained using industrial manufacturing by resin transfer molding (RTM). The developed material 

has a bio-based content of about 78%. As base epoxy resin, epoxidized linseed oil (ELO) was used 
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and composites with three plies of flax fabrics were manufactured by RTM. As hardener, a binary 

mixture (50:50) of methyl nadic anhydride (MNA) and maleinized linseed oil (MLO) was used to 

increase the overall bio-based content without compromising other properties. In general, in absence 

of MLO as co-hardener, composites with high mechanical resistant properties are obtained due to the 

rigid MNA molecule. On the other hand, when MLO is used as co-hardener, the presence of long 

fatty acid chains provided improved ductile properties in composites materials (a percentage increase 

of 42% and 43% in elongation at break and Charpy’s impact energy respectively). Nevertheless, an 

unexpected behavior was observed due to combined effects of using MLO as co-hardener and using 

previous surface treatments of flax fabrics. In this case, composites show more flexibility than 

composites without previous surface treatment (with a percentage increase in Charpy’s impact 

energy and elongation at break of 26% and 87% in respectively). A previous surface treatment on flax 

fabrics using silanes or maleic anhydride leads to reduce the reactions sites between the ELO-based 

epoxy resin and the flax fiber. SEM images demonstrated how presence of MLO and treated fibers 

provide better fiber–matrix interaction. On the other hand, if a previous surface treatment is not 

carried out, the –OH groups present in the cellulose provide enough active points to create chemical 

bonds with MLO used as co-hardener resulting in stiffer materials, as tensile, flexural, Charpy impact 

test and DMA studies demonstrated. Results also suggest that the use of maleic anhydride gives the 

composite materials greater ductility due to esterification of cellulose surface. By selecting the 

amount of MLO it is possible to tailor the desired properties in a high environmental efficiency 

composite material, thus giving new opportunities to these green materials in a wide range of 

industrial applications. 
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