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ABSTRACT This paper presents a theoretical derivation of two new graph-based regularization methods for
fusing the individual results of multiple detectors (two-class classifiers). The proposed approach considers
linear combination of the individual detector statistics and its extension to a general nonlinear fusion method
known as α-integration. A cost function that includes a mean-square error and a regularization term is
minimized. The inclusion of the regularization term, which is based on graph signal processing, reduces the
dispersion of the fused statistics, and thus improves the separation between the fused statistics corresponding
to every detection hypothesis. The proposed methods (linear and non-linear regularized α-integration) are
experimentally compared with commonly used classification methods (random forest, linear and quadratic
discriminant analysis, and naive Bayes) and competitive fusion methods (Dempster-Shafer, copulas, behav-
ior knowledge space, independent component analysis mixture modeling, majority voting, the mean, and
α-integration). Two challenging problems were approached using simulated and electroencephalographic
data, respectively: (i) detection of ultrasound pulses buried in high noise, and (ii) detection of changes in
electroencephalographic signals for neuropsychological test staging. An experimental convergence analysis
of the proposed regularized method for these two applications is included. Besides, the proposed methods
were tested using several benchmark datasets. Results on the basis of classification accuracy, kappa index,
F1 score, and receiver operating characteristic curve analysis demonstrate the superiority of the proposed
regularized fusion methods.

INDEX TERMS Graph regularization, detector fusion, alpha integration, graph signal processing, electroen-
cephalographic signal processing, ultrasounds, two-class classification.

I. INTRODUCTION
The fusion of information from several sources is a booming
research area that has been increasingly studied as a suit-
able method to solve many complex problems. The great
development of sensor capabilities and facilities to acquire
data from several modalities as well as the availability of
hardware of low-cost high-computational performance have
paving the way to the advance of fusion methods. This
broad research area has been named in different ways, for
instance, sensor data fusion, decision fusion, multimodal
fusion, heterogeneous sensor fusion, mixture of experts,
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classifier combination, and multiway signal processing. The
applications of fusion methods cover a large number of
interesting problems including emotion recognition, fall
detection, daily activity recognition, and hand movement
recognition [1]; social networks [2]; Alzheimer’s disease [3];
automatic sleep staging [4]; image object classification [5];
multi-media [6]; brain computer interfacing [7]; archaeolog-
ical ceramic provenance [8]; object detection fusing infrared
and visible images [9]; banking customer classification [10];
stock movement prediction [11]; maritime tracking [12]; and
several benchmark datasets [13], [14].

Detector fusion refers to the combination of different
detectors, all of them deciding about the same two hypothe-
ses H1 and H0 with the aim of improving the individual
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performance. Detector fusion can be broadly classified into
hard and soft fusion. In hard fusion, the individual binary
decisions are combined to obtain a final decision. In soft
fusion, some continuous statistics generated by the detec-
tors are combined to obtain one fused statistics, which are
considered to obtain the final decision. Detector fusion has
been implemented in several areas using different terminolo-
gies [15], [16], [17]. All of them share the need for optimum
methods. In principle, the definition of optimality regards to
minimizing the probability of error or maximizing the prob-
ability of detection. Hence, the joint probability masses of
the individual decisions (hard fusion) or the joint probability
density of the individual statistics conditioned to H1 and H0,
must be estimated. This is in general a complex problem; an
alternative is to predefine a reasonable fusion rule (hard) or
function (soft) which normally incorporates some parameters
which are to be optimized from training samples [18], [19].

The design of optimum fusion rules uses to be simpler
than the design of an optimum fusion functions, although
possible detector statistical dependence must be taken into
account [20], [21]. However, whenever possible, soft fusion is
preferable as hard fusion produces a loss of information due
to the previous thresholding. When the statistics generated
by the individual detectors are normalized between 0 and 1,
soft detector fusion may be considered a fusion of scores,
a terminology largely used, e.g., in biometrics [17]. However,
considering the normalized statistics as posterior probabil-
ities, the soft detector fusion also fall into the machine
learning and classification areas [22], [23], for the two-class
classification problem.

In this paper, we will consider soft detector fusion. First,
the linear combination of the individual statistics will be
considered and then extended to a general nonlinear fusion
function known as α-integration [24], [25], [26], [27]. The
optimization of those functions considers minimizing a prop-
erly defined cost, which includes a mean-square error term
plus a regularization term. This later, will correspond to the
so called ‘‘smoothness’’ in graph theory, a quadratic form of
the Laplacian matrix [28], [29], [30], [31], [32]. Smoothness
constraints have been used in different problems of semi-
supervised learning [33], [34], it is of increasing interest in
the emerging field of signal processing on graphs [35], [36].
The rest of the paper is organized as follows. In Section II,

we propose a graph regularized linear combiner that includes
a regularization term derived from a graphmodel. Theoretical
derivation of the cost function is included. Section III extends
the method of Section II to a non-linear combination of
the statistics considering the function named α-integration.
Section IV includes practical experiments with competitive
comparison of the proposed methods to solve the following
detection problems: ultrasound pulse detection; neuropsy-
chological test staging from electroencephalographic (EEG)
signals; and classification of six benchmark datasets (Univer-
sity of California, Irvine, UCI - Machine Learning Reposi-
tory). Finally, Section V contains the conclusions and future
work derived from this work.

II. GRAPH REGULARIZED LINEAR COMBINER
Let us assume that we have d different detectors (two-class
classifiers) working on the same hypotheses H1 and H0,
everyone contributes with a statistic si (score), which is a
normalized value between 0 and 1. The individual statistics
are linearly combined to obtain a fused statistic x.

x=
∑K

k=1
sk · wk = sTw. (1)

where s = [s1. . .sK ]T and = [w1 . . .wK ]T , K is the num-
ber of classifiers and T means transposition. This statistic
will have conditioned probability densities p

(
x
/
H1
)
and

p
(
x
/
H0
)
, that can be used to implement a likelihood ratio test

(LRT) to yield a final decision. Considering that the scores sk
are posterior probabilities generated by each of the individual
detectors, the statistic x could be explained as a final posterior
probability from the fusion.

In addition, we assume the availability of a set of labeled

samples
{
s(n), y(n)

}
n = 1 . . . N where s(n) =

[
s(n)1 . . . s(n)K

]T
is the vector formed by the statistics provided by the detec-
tors, and yn is the corresponding known binary decision
(y(n) = 1 if H1 is true and y(n) = 0 if H0 is true). Given
some coefficient vector, the fused statistics corresponding
to the labeled samples will be x(n) = s(n)Twn = 1 . . .N .
Let us define the vectors x =

[
x(1) . . . x(N )

]T
and y =[

y(1) . . . y(N )
]T
. The optimum coefficients w = [w1 . . .wK ]T

will be obtained by minimizing a cost function

wlin
opt = min

w

(
∥y− x∥2 +βxTLx

)
. (2)

The first term of (2) is proportional to the mean-square
error (MSE) between the fused statistic x(n) and the true
label y(n). Notice that, ultimately, the performance of the
final detector will depend on p

(
x
/
H1
)
and p

(
x
/
H0
)
. Thus,

by minimizing the MSE, p
(
x
/
H1
)
is shifted to 1, while

p
(
x
/
H0
)
is shifted to 0. The second term is a regularization

of the MSE derived from a graph model with Laplacian
matrix L as detailed below. As we will see, minimizing
this term will reduce the dispersion of the fused statistics
corresponding to the same hypothesis, and thus improving
the separation between p

(
x
/
H1
)
and p

(
x
/
H0
)
. The real

and positive constant β defines a trade-off between both
terms.

Let us consider the undirected and weighted graph,
G {V ,A} where V represents the set of N vertices of the
graph; and A is the adjacency matrix. The element anm of A
is the weight corresponding to the edge connecting vertex k
and vertex j. We assign x(n) to vertex n, n = 1 . . .N , thus
forming a graph signal [35], [36]. On the other hand, let us
connect with a weight = 1 those vertices of G correspond-
ing to the same true hypothesis, while keeping disconnected
(weight = 0) those vertices corresponding to different true
hypothesis, i.e.,

anm = amn =

{
1 if y(n) = y(m)

0 if y(n) ̸= y(m).
(3)
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The Laplacian matrix is defined as L = D−A, where D is
a diagonal matrix with diagonal elements dnn =

∑N
m=1 anm.

It is straightforward to demonstrate that

xTLx =

∑N

n=1

∑N

m=1
anm

(
x(n)

− x(m)
)2

, (4)

so the Laplacian quadratic form is normally considered a
measure of the smoothness of the signal x on graphG. In fact,
smoothness 0 is obtained if and only if x is a constant signal.
Considering the definition in (3), the equation (4) can be
expressed in the form:

xTLx =

∑N

n=1

∑
m|ym=yn

(
x(n)

− x(m)
)2

. (5)

Hence, by minimizing the second term in (2), the statistics
corresponding to the same true hypothesis will reduce its dis-
persion, and thus reducing the overlapping between p

(
x
/
H1
)

and p
(
x
/
H0
)
.

Let us compute the optimum coefficient vector wlinopt .

We define the matrix S =
[
s1 . . . sN

]T
so that we can express

x = STw. Hence, the objective cost function forminimization
is

J =

∥∥∥y− STw
∥∥∥2 + βwTSLST

w = yT y− 2wTSy+ wTS (I + βL)STw, (6)

and the corresponding derivative

δJ
δw

= −2Sy+ 2S (I + βL)STw. (7)

We can solve it by equating (7) to 0

wlinopt =

(
S (I + βL)ST

)−1
Sy. (8)

The parameter β defines the degree of importance given
to the smoothness of the fused statistics with respect to the
MSE. To establish an effective balance between both figures,
we need some reference values to fit a reasonable interval
for β. We consider the [K × K] matrix to be inverted in (8):
M = S (I + βL)ST = M I

+ βML , where M I
= SST and

ML
= SLST . The Laplacian matrix is real and symmetric,

so it can be diagonalized by a unitary transformation L =

U3UT , the columns ofU are the (orthonormal) eigenvectors
u(n)n = 1 . . .N and the main diagonal elements of the diag-
onal matrix 3 are the corresponding (real and nonnegative)
eigenvalues λ(n),n = 1 . . .N , which we assume sorted in

increasing order. Let us call sk =

[
s(1)k . . . s(N )

k

]T
to the vector

formed by the elements of the k-th row of matrix S, i.e., a vec-
tor formed by all the statistics afforded by the k-th detector in

the training set. We also define rk = Usk =

[
r (1)
k . . . r (N )

k

]T
,

the corresponding graph Fourier transform [35]. Thus, the
generic elements of the two matrices contributing to M can
be expressed in the form (notice that UTU = I)

mIkl = sTk sl = sTk U
TUsl = rTk rl =

∑N

n=1
r (n)
k r (n)

l

mLkl = sTk U
T3Usl = rTk 3rl =

∑N

n=1
λ(n)r (n)

k r (n)
l . (9)

Let us first concentrate on the main diagonal elements mLkk
and mIkk . In that case, the contributions in the summations are
all positive. Moreover, in any Laplacian matrix λ(1) = 0 [30].
Actually, in the particular type of Laplacian matrix here
defined, also λ(2) = 0, this is because we have a disconnected
graph: there is no path available to go from one vertex n
labeled with y(n) = 1 to a vertex m labeled with y(m) = 0
(we have two disconnected subgraphs). Hence it is evident
that

If 0 ≤ β≤
1

λ(N )
⇒βmLkk < mIkk , (10)

i.e., the contribution of the main diagonal elements intro-
duced by the regularization term in matrix M are bounded
by the contributions of the main diagonal elements of the
MSE term. Regarding the out diagonal elements we may
resort to the Schwartz inequality, and the result of (10),
thus

If 0 ≤ β≤
1

λ(N )
⇒

⇒ β

∣∣∣mLkl ∣∣∣ ≤

√
βmLkkβm

L
ll <

√
mIkkm

I
ll .

(11)

Notice that (11) is a general result which includes (10)
as a particular case for k = l. The lower limit β = 0
implies that no regularization term is considered and wlin

opt
will be the classical least MSE solution. For any other value
of β inside the proposed interval, the contribution of the
regularization term to the main diagonal of M is properly
bounded by the MSE term contribution. Certainly, we could
use higher values of β, but 1/λ(N ) may be considered a
reference about the importance given to every term of the cost
function.

III. GRAPH REGULARIZED ALPHA INTEGRATION
Regularization can be extended to nonlinear combination of
the statistics given by the individual detectors. We consider
here a general nonlinear function named α-integration. It was
originally proposed to integrate stochastic models [37], [38].
Then it was applied to the combination of positive numbers
in regression problems [24], to the fusion of scores in a detec-
tion context [25], and to multi-class classification [26], [27].
The general expression of the α-integration function is given
by

x =


(∑K

k=1
wk ·s

1−α
2

k

) 2
1−α

, α ̸= 1

exp
(∑K

k=1
wk · log (sk)

)
, α = 1

. (12)

Notice that if α = −1, we have the linear combiner.
To allow any other possible value, i.e., −∞ ≤α≤ ∞, it is
required that wk≥ 0 and sk≥ 0∀k . It is also convenient to
impose

∑K
k=1 wk = 1 to avoid scaling of the fused statistic.

With these constraints, other simple fusion functions are
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included for specific values of α and wk = 1/k∀k .

α= −1 →x =
1
K

∑K

k=1
sk

α= 1 →x =

∏K

k=1
s
1
K
k

α= 3 →x =

(∑K

k=1

1
sk

)−1

α = ∞ →x = min (s1 . . . sK )

α = −∞ →x = max (s1 . . . sK ) (13)

In addition to this generalization property, (12) notice that
the individual statistics are being observed through a nonlin-
ear, static and invertible function, namely f (sk) = s2/1−α

k if
α ̸= 1, f (sk) = esk if α = 1, which should be compensated
before a linear combiner could be effective. As the nonlinear
function is the same for all k , (otherwise, we will be introduc-
ing too many parameters) it seems convenient to normalize
the statistics before integration [39].

Optimum α and w values may be estimated from a set of
labeled samples

{
s(n), y(n)

}
n= 1 . . .N byminimizing the cost

function (2).

J (α,w) = ∥y− x∥2 + βxTLx (14)

Unfortunately, the presence of the nonlinearity in the fusion
function precludes obtaining a close form solution to this
optimization problem, but we can resort to iterative gradients
algorithms

α (i+ 1) = α (i) − ηα

∂J
∂a

(i) , (15a)

w (i+ 1) = w (i) − ηw
∂J
∂w

(i) , (15b)

Let us call ε (α,w) = ∥y− x (α,w)∥2 and R (α,w) =

βxT (α,w)Lx (α,w). Clearly, ∂J
∂α

=
∂ε
∂α

+
∂R
∂α

and ∂J
∂w =

∂ε
∂w +

∂R
∂w . The derivatives ∂ε

∂α
and ∂J

∂w have been calculated
in [25],
∂ε

∂α

= −

∑N

n=1

(
y(n) − x(n)

) ∂x(n)

∂α
(16a)

∂x(n)

∂α

=
2x(n)

1 − α

 log
(∑

k wk · fα
(
s(n)k

))
1 − α

+

∑
k wk ·

∂fα
(
s(n)k

)
∂α∑

k wk · fα
(
s(n)k

)


(16b)

and
∂ε

∂wk
= −2

∑N

n=1

(
y(n) − x(n)

) ∂x(n)

∂wk
(17a)

∂x(n)

∂wk
=


2

1 − α

 sα·fα
(
s(n)k

)
∑

k wk · fα
(
s(n)k

)
 , α ̸= 1

x(n)
· log

(
s(n)k

)
, α = 1.

(17b)

where we have defined

fα (sk) =

{
s
1−α
2

k , α ̸= 1
log (sk) , α = 1

∂fα (sk)
∂α

= −
1
2
log (sk) · s

1−α
2

k . (18)

It remains to compute ∂R
∂α

and ∂R
∂w . Considering (4) it fol-

lows that
∂R
∂α

=β
∑N

n=1

∑N

m=1
anm · 2

(
x(n)

− x(m)
)(∂x(n)

∂α
−

∂x(m)

∂α

)
.

(19)

And we can make use of (16b) and (18) to compute ∂x(n)

∂α

and ∂x(m)

∂α
. Equivalently

∂R
∂wk

=β
∑N

n=1

∑N

m=1
anm · 2

(
x(n)

− x(m)
)(∂x(n)

∂wk
−

∂x(m)

∂wk

)
.

(20)

Andwe can use (17b) and (18) to compute
(

∂x(n)

∂wk
−

∂x(m)

∂wk

)
.

IV. EXPERIMENTS
A. SYNTHETIC DATA – ULTRASOUND PULSE DETECTION
The simulation experiment consisted of flaw detection in
materials using ultrasounds. We have assumed that the reflec-
tivity of the material tested by ultrasounds returns a measured
signal that contains information on the microstructure and
defects inside the material. Thus, the ultrasound signal is a
summation of echoes from backscattering noise of the homo-
geneous part and echoes from reflections of sufficiently large
internal inhomogeneities of the material. Reflections induce
changes during signal traveling that should be measured in
the features extracted from the ultrasound signals. This is a
challenging problem considering the low signal to noise ratio
(SNR) of the measured signal, i.e., the strong contribution of
the homogeneous part of the material masks the relatively
weak contribution of the defects. Fig. 1 shows an example
of the simulated ultrasound signals where the locations of the
defects are highlighted in the noisy signal.

In this experiment, the data consisted of ultrasound targets
buried into background noise. The targets were modeled
using Gaussian-modulated tones with random initial phase,
i.e., x (t) = A·sin(2π fct+∅0) · exp[−(2(t − τ )/T )γ ], where:
A is the peak amplitude; fc, τ and T are respectively the
central frequency, time center, and duration of the tone; and γ

is an even number that determines the shape of the envelope of
the pulse. We used fc= 20kHz, T = 1ms, γ= 4, τ =20, 100,
150 ms, ∅0 was randomly drawn from a uniform distribution
in the range [0, 2π ), and A was calculated to obtain a specific
peak signal-to-noise ratio (PSNR). The background noise was
modeled by a K-distribution as in (21), which can describe
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FIGURE 1. Example of the simulated ultrasound data with ultrasonic
pulses (marked in color) buried in background noise for a 6 dB PSNR.

realistically the statistics of the envelope of the backscattered
ultrasonic echo from a scattering medium [40]. The shape
parameters of the K-distribution were set to µ = L = 1 and
v= 10, thus

p (X) =
2
x

(
LνX
µ

) L+ν
2 1

0 (L) 0 (ν)
Kν−L

(
2

√
LνX
µ

)
(21)

Finally, it was assumed that the data were sampled at
50 kHz. For each iteration of the experiment, we generated
a signal filled with background noise during 200 ms to obtain
a total of 1000 samples. Then, three ultrasound targets were
buried into the noise at 20, 100 and 150 ms from the start of
the simulated signals. The targets were obtained by mixing
four Gaussian-modulated tones with random initial phases.
Thus, the areas of the simulation with background noise
corresponded to a different model than the areas with both
noise and ultrasound targets. Note that the targets in Fig. 1
(P1, P2, and P3, marked in red, yellow, and purple, respec-
tively) are hardly distinguishable from the background noise,
which shows the difficulty of the problem. The ultrasound
experiments were repeated four times with different values
of peak SNR (PSNR): 3, 6, 10, and 15 dB. These values
were selected in order to simulate interesting detection cases,
where targets are difficult to distinguish from background
noise.

After data generation, the simulated ultrasonic signals
were split into overlapped epochs that were labeled into two
classes: 0 (noise background) and 1 (ultrasound pulse), i.e.,
a two-class classification problem. Hereinafter, we will use
detector or classifier (two-class classifier) interchangeably.
We estimated the epoch size and the overlap between consec-
utive epochs usingMonte Carlo (MC) experiments. The value
of the parameters were tuned in order to obtain the maximum
accuracy in classification. The tuned parameters were epoch
size = 256 samples (5 ms) and overlap = 50%.The features
extracted from every signal epoch were the following: mean,
mean absolute value, standard deviation, skewness, kurtosis,

maximum frequency, centroid frequency, and average
negative envelope.

A total of 13 classification methods were implemented:
4 individual classifiers; 7 competitive fusion methods; and
the two proposed regularized fusion methods. The individ-
ual classifiers were the following: random forest (RDF);
linear discriminant analysis (LDA); quadratic discriminant
analysis (QDA), and naive Bayes (NB). All these methods
allow to obtain a normalized score value, between 0 and 1,
(sk ) of equation (1). The competitive fusion methods were the
following: Dempster-Shafer (DS) [41], copulas [42], behav-
ior knowledge space (BKS) [43], independent component
analysis mixture modeling (ICAMM) [44], majority voting
(MV) [45], the mean (average fusion [14]), and standard
α-integration (α-LMSE) [27]. Note that these fusion meth-
ods are state-of-the-art and are currently being employed
in various challenging applications. Finally, the proposed
implemented methods were the following: regularized lin-
ear α-integration (Linear LMSE (REG)); and regularized
α-integration (α-LMSE (REG)). Table 1 shows details of
the implemented methods, which parameters were tuned in
a rather experimental manner for the particular experiments
in Section IV.

TABLE 1. Details of the implemented methods.

In order to verify the performance of the considered clas-
sification methods, a series of MC experiments were run. For
each experiment, the available data samples were separated
equally into three sets: training, validation, and testing. The
training pieces were used to train the single classifiers, the
α integration-based and competitive fusion methods were
trained using the scores from the trained single classifiers on
the validation dataset. Finally, the performance was estimated
on the testing dataset. Three performance indicators were
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calculated: the classification accuracy (Acc); the kappa index
(Kap); and the F1 score (F1), i.e., the harmonic average of
precision and recall [46]. The results were obtained as the
average of 1000 MC experiments. We considered several
statistical tests on the results of theMC experiments for all the
experiments in Section IV. First, the Kolmogorov-Smirnov
test has been considered to verify that the results were
Normally-distributed (p≪ 0.05). Then, given the Normal dis-
tribution and the number of available samples, we considered
one-way analyses of variance (ANOVA) and nonparametric
Kruskal-Wallis ANOVAs to determine whether the differ-
ences in outcome were statistically significant.

Table 2 shows the average results of the classification,
which were estimated using a posterior probability thresh-
old of 0.5. The error variance in the classification results
measured by standard deviation (std.) was less than 2%.The
proposed α-LMSE (REG) method obtained the best results
for every PSNR value, yielding the smallest std. (0.4) and
therefore their results being the most stable.

TABLE 2. Classification results for the simulated experiment, ultrasound
pulse detection (values in %).

The result tables for all the experiments in Section IV has
been divided for readability in four zones: single classifica-
tion methods (LDA, NB, QDA, and RDF); standard fusion
methods (DS, copulas, BKS, ICAMM, MV, and Mean);
standard α-LMSE; and the proposed regularized methods α-
LMSE (REG), and Linear LMSE (REG). The best results for
standard fusionmethods and single classificationmethods are
highlighted by shadowing and the best results overall are in
bold.

The improvements are larger for kappa index than for
Acc and F1. It is because kappa index take into account the
possible bias in classification results due to the imbalance that
exists between the number of samples of the two classes, i.e.,
a priori probability of the classes (ultrasound pulse and noise
background). The results for every classifier improve when
the PSNR increases, except for NB which accuracy decreases

or does not improve for 10 and 15 dB. This is because the
statistics of the data move away from the statistical indepen-
dence among the extracted features assumed by NB.

In general, the classification results of the fusion methods
were better than the ones of the individual classifiers and
the results of the fusion methods based on α integration
overcame the ones of the competitive fusion methods (DS,
copulas, BKS, ICAMM, MV, Mean, and α-LMSE). Besides,
the proposed regularized α integration methods perform bet-
ter than the classic α integration. The improvement of the
results by the proposed methods were greater for lowest
values of PSNR, i.e., the most difficult classification cases.
For instance, the differences between α-LMSE (REG) and
the best of the competitive fusion methods that are not based
on alpha integration were 2.3% accuracy (Mean); 4% kappa
(DS); and 3.5% F1 (DS) for 3dB PSNR and were 2.2%
accuracy (Mean); 3.8% kappa (DS); and 3.2% F1 (DS) for
6dB PSNR. Regarding to the differences between α-LMSE
(REG) and the best of the single classification methods were
4.1% accuracy (RDF); 15.7% kappa (QDA); and 5% F1
(RDF) for 3dB PSNR and were 2.3% accuracy (RDF); 8.1%
kappa (RDF); and 3.5% F1 (RDF) for 6dB PSNR. With the
respect to the standard alpha integration (α-LMSE) method,
the improvement obtained by α-LMSE (REG) were the fol-
lowing: 2%, 5.4%, and 2.4% (Acc, kap, F1) and 1.8%, 4.1%,
and 2.1% (Acc, Kap, F1) for 3 dB PSNR and 6 dB PSNR,
respectively. These differences were statistically significant.

Furthermore, the average receiver operating characteristic
(ROC) curve was calculated for each value of PSNR and for
every method implemented. This metric has been extendedly
used in many applications, see for instance [47], [48]. The
ROC curves for each of the PSNR values were similar, thus,
we show in Fig. 2, as an example, the results for 3dB PSNR.
Figures 2a and 2b show the ROC curves for the full range
of false positive rate (FPR) values and for low and very low
false alarm operating regimens (FPR ≤ 10%), respectively.
Note that the axes, true positive rate (TPR) and FPR are in
logarithmic scale.

The results of Fig. 2 are consistent with the ones of Table 2.
The difference between α-LMSE (REG) and the other meth-
ods were more important in the region of low FPR (less
than 10%). This region of FPR is particularly important in
many real-world applications where operative working with
relative high FPR is costly and unfeasible (e.g., credit card
fraud detection [49]). The ROC curve of α-LMSE (REG)
rose rapidly with FPR, yielding over 73% TPR with only
2% FPR, even in the case of PSNR = 3 dB. All the fusion
methods obtained better results than the ones obtained by
single classifiers. The best results were obtained for the
proposed regularized alpha integration methods, in order,
α-LMSE (REG) and Linear LMSE (REG).

Table 3 shows the values of area under the ROC curve
(AUC) corresponding to Fig. 2. The difference of AUC
between α-LMSE (REG) and the best (α-LMSE) and the
second best (DS) competitive fusion methods were 1.09 and
1.29 in the full range of FPR and 0.88 and 0.92 for
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FIGURE 2. ROC curves for the simulated experiment at PSNR = 3dB.
(a)FPR full range; (b) Low FPR ≤ 10%.

TABLE 3. AUC from ROC curves of Fig. 2.

FPR ≤ 10%, respectively. The best result of the single clas-
sification methods was obtained by RDF with difference of
3.12 and 1.91 AUCwith respect to α-LMSE (REG) in the full

range of FPR and FPR≤ 10%, respectively. These differences
were statistically significant.

Fig. 3 shows a convergence analysis of the proposed regu-
larized method (α-LMSE (REG) versus the non-regularized
α-LMSE for an ultrasound pulse detection experiment. It was
the normal behavior of the convergence for all the experi-
ments. This analysis allows to investigate the robustness and
stability of the methods across a range of parameter settings
to ensure their consistent performance. The convergence was
steady and achieved in a low number of iterations, at most
45 iterations. The considered regularization did not preclude
convergence, although it did increase the number of required
iterations on average, and its effect depended on the value
of the regularization term, βmax defined as 1/λ(N ), see
equations (10) and (11).

In addition, the regularized alpha integration tended to
allocate a higher weight to some classifiers over the others.
For this experiment, the higher weights were assigned to RDF
and LDA. It is because those classifiers yield scores that are
more concentrated for each of the classes in values close to
0 and 1, and thus, the histograms for each class will be less
overlapping. This is themain factor considered by the regular-
ized classifier fusion proposed here. In summary, the results
of the fusion demonstrated the capabilities of the proposed
method to find complementarities among the classifiers to
improve classification accuracy.

B. EEG DATA – NEUROPSYCHOLOGICAL TEST STAGING
FROM EEG SIGNALS
We implemented the proposed methods also for a challenging
real-data application, the automatic staging of EEG signals
from subjects performing a neuropsychological test. The data
from six epileptic patients were analyzed. The neuropsycho-
logical tests are essential to evaluate cognitive functions such
as learning and memory, which is a critical part of the patient
neuropsychological assessment.

The processing of information becomes impossible if the
brain is unable to store a sufficient amount in short-term
(working) memory or retrieves past experiences, events, and
strategies from long-term memory. Conversely, information
stored in short- or long-term memory is useless without the
means to properly access and activate it. The neuropsycho-
logical test was the visual paired associates subtest from the
Wechsler Memory Scale (WMS-R, [50]). This test considers
visual stimuli, and it consists of two stages, stimulus dis-
play (D) and subject response (R) that are repeated in several
trials changing the stimuli.

The EEG was composed of M = 19 EEG channels, using
the 10-20 electrode system, that were sampled at 500 Hz.
Fig. 4 shows an example of the EEG data measured for
one of the subjects; the profile of the classes changing from
‘‘Display’’ to ‘‘Response’’ and vice versa; and the 10-20
electrode system employed. The EEG signals were split into
epochs, which were labeled into two classes: 0 (display) and 1
(response). As in the previous experiment (Section IV-A),
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FIGURE 3. Convergence of alpha integration parameters with respect to
the number of iterations for the simulation experiment: a) convergence
error (LMSE); b) alpha value; c) weight of RDF; d) weight of LDA. The
weights of the other two classifiers (QDA and NB) were much lower than
those of RDF and LDA.

FIGURE 4. Example of the extracted data from one of the subjects: a) the
EEG signal channels considered at a time frame; b) real classes for that
time frame; c) diagram of the used 10-20 electrode system, with the
considered electrodes.

we estimated the epoch size and overlap between consecutive
epochs using MC experiments. The experimentally tuned
parameters were epoch size = 125 samples (0.25 s) not
overlapping. The features extracted from the EEG signals
were the following: frequency band power (delta, theta, alpha,
sigma, and beta); and Hjorth parameters (activity, mobility,
and complexity) [51]. The set of classification and fusion
methods; training-validation-testing methodology; and sta-
tistical significance evaluation of the results were the same
implemented in simulation experiments (Section IV-A).

Table 4 presents the average classification results esti-
mated for a posterior probability threshold of 0.5 in terms
of accuracy, kappa index, and F1 score. The error variance
in the classification results measured by standard deviation
(std.) was less than 3.2%. The proposed α-LMSE (REG)
method obtained the best results for the three performance
indicators, yielding the smallest std. (0.5) and therefore their
results being the most stable. The improvements are larger
for kappa index, which considers unbalancing of class sample
size, than for accuracy and F1. In general, the classification
results of the fusion methods were better than the ones of
the individual classifiers (RDF, LDA, QDA, and NB) and
the regularized fusion methods (Linear LMSE (REG) and
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TABLE 4. Classification results for the experiment on EEG data from the
visual associates subtest of WMS-R (values in %).

α-LMSE (REG)) outperformed the standard fusion methods
(DS, copulas, BKS, ICAMM, MV, Mean, and α-LMSE).
The proposed method, α-LMSE (REG), exhibited an

improvement in the three indices (Acc, Kap, F1) of 2.9%,
5.3%, and 3.3%, respectively, compared to the best standard
fusion method (α-LMSE). The differences with the second
standard fusion method with the best results (DS) were 3.2%,
6.2%, and 4.8%, (Acc, Kap, F1), respectively. The best result
of the single classifiers was obtained by QDA with differ-
ences of 3.2%, 6.3%, and 4.5%, (Acc, Kap, F1) with respect
to α-LMSE (REG). These differences were statistically
significant.

Thus, the results of the two regularized fusion methods
were better than the ones of standard α integration. This
shows the regularization methods were able to take advantage
from the complementarities between all the single classifiers.
Finally, NB obtained the worst results giving the statistical
independence assumed in this method.

Fig. 5 shows the estimated ROC curves for the experiment
with EEG data. Figures 5a and 5b show the ROC curves
for the full range of false positive rate (FPR) values and
for low and very low (FPR ≤ 10%) false alarm operating
regimens, respectively. Note that the axes, (TPR and FPR) are
in logarithmic scale. The results are consistent with the ones
of Table 4 and the simulated data results of Fig. 2. The differ-
ence between α-LMSE (REG) and the other methods were
more important in the region of low FPR (less than 10%).
The ROC curve of α-LMSE (REG) rose rapidly with FPR,
yielding above 77% TPR with only 2% FPR. The best results
were obtained for the proposed regularized alpha integration
methods, in order, α-LMSE (REG) and Linear LMSE (REG).
Table 5 shows the AUC values corresponding to the ROC

curves in Fig. 5. The difference of AUC between α-LMSE
(REG) and the best (α-LMSE) and the second best (DS) com-
petitive fusion methods were 1.12 and 1.18 in the full range
of FPR and 0.38 and 0.42 for FPR ≤ 10%, respectively. The
best result of the single classification methods was obtained
by RDF with difference of 1.66 and 0.81 AUC with respect
to α-LMSE (REG) in the full range of FPR and FPR ≤ 10%,
respectively. These differences were statistically significant.

TABLE 5. AUC from ROC curves of Fig.5.

FIGURE 5. ROC curves for the experiment on EEG data. (a) FPR full range;
(b) Low FPR ≤ 10%.

Fig. 6 shows a convergence analysis through iterations
of the proposed regularized algorithm, α-LMSE (REG),
versus the non-regularized α-LMSE for an EEG experi-
ment. It was the normal behavior of the convergence for
all the experiments. This analysis allows to investigate the
robustness and stability of the methods across a range of
parameter settings to ensure their consistent performance.
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FIGURE 6. Convergence of alpha integration parameters with respect to
the number of iterations for the experiment on real EEG data: a)
convergence error (LMSE); b) alpha value; c) weight of QDA; d) weight of
RDF. The weights of the other two classifiers (LDA and NB) were much
lower than those of QDA and RDF.

The convergence was steady and achieved in at most
100 iterations. The considered regularization did not preclude
convergence, although it did increase the number of required
iterations on average, and its effect depended on the value of
the regularization term, β.
For this experiment, the higher weights of the fusion were

assigned to QDA and RDF. As for the previous experiment
with simulations, fused results have also demonstrated for
EEG data the capabilities of the proposed method to find
complementarities among the results of the individual clas-
sifiers. Besides, the regularization term has allowed a higher
concentration of the fused scores in values close to 0 and 1.

C. CLASSICATION OF UCI DATASETS
In this section, we include several results from the applica-
tion of the implemented methods to six publicly available
datasets of the UCI repository. Thus, the generalizability and
validation of the effectiveness of the proposedmethods across
different applications is assessed.

The datasets were the following: (i) SPECTF: data on car-
diac single proton emission computed tomography (SPECT)
images. Each patient classified into two categories: normal
and abnormal. (ii) Bupa: blood tests of patients sensitive
to liver disorders that might arise from excessive alcohol
consumption. (iii) Wbdc: Breast Cancer Wisconsin (Diag-
nostic). Features computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass. (iv) Ionosphere:
classification of radar returns from the ionosphere. ‘‘Good’’
radar returns are those showing evidence of some type of
structure in the ionosphere. ‘‘Bad’’ returns are those that do
not; their signals pass through the ionosphere. (v) Sonar:
contains several patterns obtained by bouncing sonar signals
off ametal cylinder at various angles and under various condi-
tions. Discriminate between sonar signals bounced off ametal
cylinder and those bounced off a roughly cylindrical rock.
(vi) Magic: data are MC generated to simulate registration of
high energy gamma particles in an atmospheric Cherenkov
telescope. The events have to be classified background or
signal.

Table 6 shows the acronyms, number of attributes, and
number of instances for each of the six UCI repository
datasets.

TABLE 6. Datasets from the uci machine learning repository.

The methodology applied for classification and evalua-
tion of results was the same as explained in Sections IV-A
and IV-B. Tables 7 and 8 show the results for each of the six
UCI datasets in terms of Acc, Kap, and F1 score.
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TABLE 7. Classification results for UCI datasets - A (values in %).

TABLE 8. Classification results for UCI datasets - B (values in %).

The results in Tables 7 and 8 show that, in general, fusion
methods outperform the single classification methods and
the proposed regularized methods, in order, α-LMSE (REG),
and Linear LMSE (REG) yield the best results for all the
indicators and datasets. Therefore, the results obtained for the
UCI datasets were consistent with those explained in detail in
sections IV-A and IV-B.

D. DISCUSSION
The proposed method has demonstrated to yield better results
than the state-of-the-art methods with which it has was
compared in various applications in previous sections. The
improvement of the regularized alpha integration method
for late fusion of classifiers has been both in accuracy and
in the stability (standard deviation) of the results. Recently,
the differences between early and late fusion has have been
studied [18]. Theoretically, we can conclude that early fusion
is the best option assuming ideal data availability. However,
late fusion is the workable option considering real setups
where the number of samples is limited. This is because,
in late fusion, the number of parameters to be learned from
training data is small, in the case of α-integration only

K + 1 parameters are to be estimated. Thus, overfitting is
avoided and results are more stable.

Therefore, we can consider late fusion as an effort to
approximate ideal early fusion under the finite training set
size constraint. From that perspective, in general terms, any
reasonable modification of the mean-square error cost func-
tion could lead to a better approximation. In our case, the
inclusion of the regularization term should reduce the disper-
sion of the scores corresponding to the same class (intra-class
separation). This should have a significant effect in the reduc-
tion of the probability of error, even if some reduction of the
interclass separation would appear. The theoretical demon-
stration of this later is not straightforward (depending on
the specific statistical data models) and is out the scope of
this paper, however, we have demonstrated it, thoroughly,
in practice.

The proposed iterative gradient algorithm showed steady
convergence for minimizing the cost function. Gradient algo-
rithms are simple to implement and have reasonably good
convergence properties, particularly in combination with ad
hoc techniques to avoid blocking in local minima. To this end,
we used an annealing method in the implementation of the
algorithm. The step size or learning rate was annealing during
the adaptation process in order to provide faster and proper
convergence. However, in order to improve the convergence
to global minimum, there are other numerical approaches that
could be implemented [52].
In the optimization process, the starting values for the

parameters alpha and weights corresponded to the fusion by
mean, i.e. α = −1, wk= 1/k∀k . The fusion by mean usually
gives an improvement over the single classifier results, thus,
it was a good starting point for alpha integration. From this
approach, the regularized alpha integration method was able
to learn non-linear relationships between the random vari-
ables of the single classifier scores to improve the results.
Non-linearities depend on the particular geometry of the
score distributions, and their learning can lead to differences
in classification, which, even if they are small, can be impor-
tant from the point of view of the application.

V. CONCLUSION
Two new graph-based regularization methods for soft detec-
tor fusion have been theoretically derived and experimentally
tested. The methods consider the linear combination of the
individual detector statistics and their extension to a gen-
eral non-linear fusion function called α-integration. The cost
function formulated considers the mean-square error and a
regularization term based on graph signal processing. The
minimization of the regularization term reduces the disper-
sion of the fused statistics, and thus improves the separation
between the statistics corresponding to the different hypothe-
ses. The convergence of the proposed regularized methods
was experimentally studied showing the robustness and sta-
bility of the proposed methods across a range of parameter
settings, and thus, ensuring their consistent performance.
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The performance of the proposed method was evaluated
in a comparative analysis with competitive methods in two
challenging problems (detection of ultrasound pulses and
staging of neuropsychological tests) and six different appli-
cations from publicly available datasets. The superiority of
the proposedmethods over several state-of-the-art methods in
terms of classification accuracy, kappa index, F1 score, and
receiver operating characteristic analysis was demonstrated.
Thus, the generalizability and effectiveness of the proposed
methods were validated in an extensive range of datasets and
domains across different applications.

From the results of this work, several objectives of research
might be pursued such as the extension of the methods to
multi-class classification. Of course, other applications could
also be addressed.
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