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ABSTRACT

Content-based classification of manuscripts is an important task that is generally carried out by expert
archivists. Nevertheless, many historical manuscript collections are so vast that in most cases this task
is hardly feasible, even for large, well staffed archives. Nowadays, manuscripts are generally preserved
in the form of sets of digital images. Therefore, the technical problem we are interested in is automatic
classification of “image documents”, each consisting of a set of untranscribed handwritten text images,
by the textual contents of the images. The traditional Pattern Recognition classification paradigm does
provide the basic tools to deal with this problem. However, in practice, the set of relevant classes of a
large documental series is seldom known in advance. Therefore, a classifier trained with a predefined
set of classes will systematically fail when new image documents arrive which do not belong to any of
the classes assumed in training. Here we adopt the “Open Set Classification” framework to extend and
consolidate our previous work on image document classification in order to adequately handle new doc-
uments from unknown classes. The proposed approaches are based on a relatively novel technology for
text image representation known as “probabilistic indexing”, which proves very effective to characterise
the intrinsic word-level uncertainty exhibited by historical handwritten text images. We assess the per-
formance of this approach on a moderately sized but representative dataset extracted from a huge series
of complex notarial manuscripts from the Spanish Archivo Histérico Provincial de Cddiz, with good results.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Huge amounts of digital images of important historical
manuscripts are preserved in archives and libraries. Many of these
manuscripts are records of daily life affairs. Specifically, we are in-
terested in historical notarial deeds, which make up perhaps the
vastest sort of documentary series in archives worldwide. Individ-
ual deeds in these series are generally piled up into large bundles
or boxes, each typically containing hundreds of deeds and thou-
sands of page images. For series of documents so massive, it is gen-
erally difficult or impossible for archives to provide detailed meta-
data to adequately describe the contents of each bundle, let alone
of each individual deed.

Thereupon, bundles, boxes, books, or folders of manuscript im-
ages are called “image bundles” or just “bundles”. A bundle may
contain several, often many “image documents”, also called “files”,
“acts” — or “deeds” in the case of notarial image documents con-
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sidered in this work. Image documents are assumed to belong to
“types” or classes, which are perhaps the most important informa-
tion needed to describe a manuscript.

So, the task we are interested in is to classify a given untran-
scribed image document, which may range from a few to a few
tens or hundreds of handwritten text images, into a set of classes
or types, associated with the topics or (semantic) contents con-
veyed by the text written in the images. We will refer to this task
as content based image document classification (CBIDC).

Existing approaches for content-based document classification
(DC) assume documents are made up of electronic text, so char-
acters, words and paragraphs are unambiguously given. Therefore
the current wisdom to address the proposed CBIDC task would
be to first transcribe the images and then apply off-the-self DC
techniques. However, manual transcription is not an option and,
on the other hand, achieving sufficiently accurate automatic tran-
scripts is generally unfeasible or elusive for large sets of historical
manuscripts.'

T HTR word recognition accuracies as low as 40-60% are reported in [1-3] for
historical manuscripts similar to those considered in this work.

0167-8655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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As proposed in previous works [3-5], to overcome these is-
sues we rely on a relatively novel image representation technology
called probabilistic indexing (PrIx) [6-9]. It has proved very effective
in dealing with the intrinsic word-level uncertainty generally ex-
hibited by handwritten text and, more so, by historical handwrit-
ten text images. PrIx was primarily developed to allow search and
retrieval of textual information in large untranscribed manuscript
collections [3,7,10,11].2 However, it has also proved very versatile
to properly approach many other tasks (see [8,10,12], e.g.) where
text images need to be represented not by “visual features” but by
the uncertain textual contents of the different image regions. One
of these tasks is CBIDC, considered in this work.

In our proposal, Prix provides the probability distribution of
words which are likely written in the images, from which statis-
tical expectations of word and document frequencies are estimated.
These estimates are then used to compute well-known text fea-
tures such as Information Gain and Tf.Idf, which are in turn con-
sidered inputs to a Neural Network classifier.

Note that the CBIDC task here considered is very different from
other related tasks, which are often called with similar names.
To name a few: “document classification” (DC, mentioned above,
which only applies to unambiguous electronic text), “content-
based image classification” (applied to single pictures of natu-
ral scenes - not text), or “document image classification” (where
classes are associated with the visual appearance or page layout
of single images). See [4] for a more detailed discussion on these
differences, as well as references to previous publications dealing
with related problems, but mainly aimed at printed text.

Note also that recent works on document classification, includ-
ing those based on multimodal approaches and visual transform-
ers [13,14] are far from being applicable to our CBIDC task, where
the nature and size of the textual visual objects considered (maybe
hundreds of page images) is very different and/or exceedingly large
as compared with the single-image objects considered in these
works.

On the other hand, it is important to realise that document
types do change over the years and, in a realistic scenario, we need
to handle image document of classes that had never been seen
before. In the traditional classification framework, all these new
image documents would be systematically misclassified. Therefore,
to properly deal with the proposed task, new image documents
which are not of any known class should be detected; that is, the
system should refuse or “reject” their classification. One key contri-
bution of the present work is to explicitly address this full-fledged
CBIDC problem and provide satisfactory solutions within the so-
called “Open Set Classification” (0SC) framework [15-17].

This work continues research started in [3-5]. After a first, ten-
tative approach to the problem [3], in [4] we distinctively intro-
duced the CBIDC task and explored several ideas to address the
underlying basic classification problem. The application considered
in [4] was rather artificial and also maybe too ambitious to allow
drawing sound conclusions from the empirical results. Then in [5],
we selected the most promising methods studied in [4] and ap-
plied them to a more focused and realistic CBIDC task. The en-
couraging results of those studies led to the present work, where
we consolidate previous results through wider and more reliable
experiments and, as mentioned above, we assume the OSC frame-
work to support the ultimate needs of the practical application of
our methods.

0SC has been considered in several recent works, such as [18-
23]. While most approaches proposed in these works can hardly
be applied to our CBIDC task, we have been able to adapt ideas

2 See http://prhlt-carabela.prhlt.upv.es/PrixDemos for a list of public search inter-
faces based on Prix
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from [22,23] and compare the resulting methods with the other
approaches we propose.

The rest of the paper is organised as follows: in Secs. 2 and
3 we outline the key concepts and details needed to understand
Prix and the approach we propose to embed image documents into
a vector space. In Section 4 the proposed techniques for Closed and
Open Set classification are presented. Section 5 is devoted to dis-
cuss in detail the data set and the empirical settings adopted for
the experiments, which are themselves presented in Section 6. Fi-
nally Section 7 draws conclusions and suggests further research av-
enues based on the results of this paper.

2. Probabilistic indexing of handwritten text images

The Probabilistic Indexing (Prix) framework was proposed to
deal with the intrinsic word-level uncertainty generally exhibited
by handwritten text in images and, in particular, images of histori-
cal manuscripts. In this framework, any element in an image which
is likely enough to be interpreted as a word is detected and stored,
along with its relevance probability (RP) and its location in the im-
age. These text elements are referred to as “pseudo-word spots”.

Following [6,9], the RP for an image-region x and a pseudo-
word v is denoted as P(R=1 | X=x, V=), but for the sake of con-
ciseness, the random variable names will be omitted and, for R = 1,
we will simply write R. As discussed in [24], this RP can be approx-
imated as:

P(R|xv)=) PR b|xv)~ TSXXP(V | x,b)

bcx

(1)

where b is a small, word-sized image sub-region or Bounding Box
(BB), and with b= x we denote the set of all BBs contained in
x. Note that P(v | x, b) is just the posterior probability needed to
“recognise” the BB image (x,b). Therefore, assuming the compu-
tational complexity entailed by (1) is algorithmically managed [9],
any sufficiently accurate isolated word classifier can be used to ob-
tain P(R | x, v). Here we use the methods described in [9], as out-
lined in [4].

This word-level indexing approach has proved to be very ro-
bust, and it has been used to very successfully index several large
iconic manuscript collections, such as the French CHANCERY collec-
tion [7], the BENTHAM PAPERS [10], and the Spanish CARABELA col-
lection considered in this paper.’

3. Feature selection and extraction for CBIDC

Traditional methods to select and extract text features for
DC [25] apply only to plain text. For CBIDC, instead, we rely on
image PrIx’s to estimate, rather than compute these features.

Since R is a binary random variable, the RP P(R | x, v) can be
seen as the statistical expectation that v is written in x. As dis-
cussed in [4,10], the sum of RPs for all the pseudo-words indexed
in an image region x is the expected number of words written in x.
Following this estimation principle, all the document and word fre-
quencies needed to select and extract the textual features required
for CBIDC can be estimated. This is thoroughly discussed in [4,5];
so only the essential concepts and equations are summarised here-
after.

Let n(x) be the total (or “running”) number of words written
in an image region x and and n(X) the running words in an im-
age document X which typically encompasses several pages. Let
n(v,X) be the frequency of a specific (pseudo-)word v in X. And
let m(v, X) be the number of documents in a collection, X, which
contain the (pseudo-)word v. The expected values of these counts

3 See AHPC in http://prhlt-carabela.prhit.upv.es/carabela
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are [4,10]:

E[n(x)] =Y PR |xv), E[n(v,X)] =) P(R|x,v)

xcX

E[n()] =) E[n(], Elm(v, )] =} maxPR | x,v) (2)

XCX XCcx

The contribution of a word v to the contents of an (image) doc-
ument X can be characterised by the so-called “term frequency -
inverse document frequency”, Tf-1df(v, X) [25]. Let M be the total
number of documents in X. Using the above count estimates, Tf-Idf
can be computed as follows [4]:

E[n(v,X)]
EmeO] 8 Eim(v. 0] 3)

One of best known approaches for document representation
in DC (and CBIDC alike), is the bag of words (BOW) or vector
model [25]. In this model, a document X is represented as a feature
vector, X € RV, indexed by the N words of an adequate vocabulary
Vy where, typically, Vv € Vy, X, = Tf.1df(v, X).

Clearly, not all the words of an (image) document collection
X are equally informative about the contents or the class of the
different X € X. Therefore information gain (IG) is commonly used
to rank all the (pseudo-)words in X in decreasing order of their
IG [25]. Then Vy is built up by simply selecting the N (pseudo-
ywords with higher values of IG. The probabilities required to com-
pute the IG for all v in & (see [4]) can be estimated using the sta-
tistical expectations in Egs. (2):

Tf.1df(v, X) =

P(ty) = 1-P(t), P(cm):% @

where X; is a subset of documents in X which belong to class ¢
and M. is the number of documents in X.

The notation t, in Eq. (4) stands for the value of a boolean
random variable that is True iff, for some random X, the word v
appears in X. Therefore, P(t,) is the probability that 3X € X such
that v is written in X, and P(t,) is the probability that no doc-
ument contains v. Similarly, P(c | t,) (resp. P(c | t,)) is the condi-
tional probability that the class of some document is c if it con-
tains (resp. does not contain) the word v.

4. Image document classification

Let us first consider the most conventional Pattern Recognition
(PR) classification paradigm where each image document X in X is
assumed to belong to one of C known classes. We will refer to this
setting as “Closed Set Classification” (CSC).

Using the Tf-Idf vector representation X of X, under the
minimume-error risk statistical framework, an optimal prediction of
the class of X is [26]:

¢(X) =argmaxeq,. qP(c | X)

(5)

The posteriors P(c | X) can be computed following several well-
known approaches, some of which were discussed and tested
in [4,5]. Following the results reported in these papers, only the
Multi-Layer Perceptron (MLP) is adopted in the present work. The
input to the MLP is X, the output is a softmax layer with C units,
and training is performed by backpropagation using the standard
cross-entropy loss. Under these conditions, it is well known that
the each output of the MLP, ¢, approaches P(c | X), 1 < c < C. Thus
Eq. (5) directly applies.

Such a CSC classifier is typically evaluated by its probability of
error, estimated as the Error Rate ke/K, where k. is the number of
wrong predictions made on a test set of K image documents from
the same C classes considered for training [26].
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4.1. Open set classification

In the practical application of the methods discussed in this
paper, a complete set of classes (i.e., typologies of notarial deeds,
such as Will, Debenture, etc.) is seldom known at the training time.
Moreover, many of the classes represented in the available ground
truth (GT) often contain just one, or maybe a few samples (deeds)
which are hardly enough for training or testing. Clearly, these
classes should be set aside in the above CSC paradigm. But, in prac-
tice, new image documents do arrive which need to be processed
anyway and the classical CSC paradigm proves inadequate. Instead,
our problem naturally falls under the so called “Open Set Classifi-
cation” framework [15-17,23], where a larger number of (possibly
unknown or uncertain) classes, € > C, is assumed to exist in X.

Consider first a setup where the system can be trained with
samples of all the C known classes plus an additional “REjEcTclass”
which encompasses the remaining ¢ — C unknown classes. Clearly,
all the GT classes with too few samples can be properly included
in this “class”. This is still a fairly traditional PR setting, which
amounts to training and classification with ¢’ =C+ 1 classes [26].
Minimum error-risk classification is also given by Eq. (5), changing
C with C, and the traditional “Error Rate” can still be reasonably
used for OSC evaluation.

A different way to deal with test samples of unknown classes
is to train the system using only samples of the Cknown classes. A
threshold t is then needed to establish a class posterior probability
below which any test sample should be rejected; i.e., considered

to belong to a REJECT class. Formally, let Q (X) def max ¢ P(c | X).
Then:

c(X) ={

Following this scheme, several approaches can be used for OSC
with REJECT and training with only the C known classes. In addition
to directly using a MLP, trained with Tf.Idf input vectors from the
C known classes as discussed at the beginning of this section, we
have adapted the ideas of [23] and [22] to our OSC CBIDC task.

In the model proposed in [23], called “one versus rest” (1-vs-
rest), the output layer of a neural network is configured as a vec-
tor of C sigmoid activation functions. That is, each output c corre-
sponds to a Bernouilli distribution, P(b, |X'), 1 < c< C, where b,
is the value of a binary random variable, which is 1 if the class
of X is ¢ and 0 otherwise. Here, we have applied this idea to our
MLP architectures by simply changing the SoftMax output layer
(which corresponds to the categorical distribution P(c | X)), with a
1-vs-rest layer and using the corresponding C-variate binary cross-
entropy loss for training, as in [23]. This model will be referred to
as “binary-outputs MLP” (bMLP).

On the other hand, in [22] a Convolutional Prototype Network
(CPN) is proposed as a general approach for OSC (and CSC alike).
In that work, an input convolutional stack is devoted to feature ex-
traction from the input objects which generally consist of simple
(and single) images. In our CBIDC task an input consists of multiple
(from a few to hundreds) complex handwritten text images - an
input that a conventional convolutional stack would hardly be able
to handle. But CBIDC feature extraction is already largely and sat-
isfactorily solved by representing these sets of images with Tf-Idf
vectors computed from image Prix’s, as discussed in Secs. 2 and 3.
Therefore we kept the Tf-Idf input and MLP layers of our main ap-
proach and adopted from [22] only the prototype and output lay-
ers, along with the corresponding training rules. Such an architec-
ture is called MLP-PN. As in the other approaches, two types of
loss were used for MLP-PN: A classical discriminative loss, called
Distance-based cross-entropy (DCE) [22] and a “One Vesus All” loss
(OVA) [22], similar to the 1-vs-rest binary cross-entropy proposed
in [23] which, as discussed above, we refer to as “binary-outputs

argmaxceq,..jP(clX) if QX) = ¢
REJECT otherwise

(6)
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Fig. 1. Example of page images from JMDB_4949 and JMBD_4950.

MLP”. We will hereafter refer to the resulting models as pMLP and
bpMLP, respectively.

If a single, fixed threshold t can be assumed or somehow esti-
mated,* both bMLP and pbMLP can straightforwardly implement
0SC with RgJEcT, exactly as in Eq. (6), by assuming that P(c |
X),1 < ¢ < C, are the output probabilities yield by bMLP or pbMLP.
Also, the OSC Error Rate can be straightforwardly measured for in
the same way for MLP, bMLP and pbMLP.

Letting the user adjust the reject threshold is a convenient,
practical option to help tailoring a trained system to the rejection
needs of each specific batch of test data. To assess rejection per-
formance in this scenario, a ROC curve [25] can be plotted to char-
acterise the system for all the possible thresholds. The area under
this curve, called AUROC, is a commonly accepted scalar measure
that adequately assesses the system’s overall performance for all
reject thresholds. A ROC curve assumes binary decisions. In our
case, the task is to decide whether a test deed is or is not from
one of the C known classes.

5. Dataset and experimental settings

In this section, we provide details of the dataset and the empiri-
cal framework adopted for the experiments presented in Section 6.
To allow reproducibility, we make publicly available all the re-
quired data and code.”

5.1. A Handwritten Notarial document dataset

The dataset considered in this work is a small part of a
huge series of historical notarial documents held by the Spanish
Archivo Histérico Provincial de Cadiz (AHPC). It consists of 16 849
manuscript bundles or “protocol books”, containing in total more
than 4.2 million deeds or files and 25 million pages.

50 of these bundles were included in the collection compiled in
the Carabela project [3], where the corresponding Prix’s were also
produced.’ In the present work we selected two of these books,
JMBD_4949 and JMBD_4950, dated 1723-1724. Fig. 1 shows exam-
ples of page images of these books.

Note that no typical GT annotations (such as text lines or tran-
scripts) are available for these manuscripts. As explained below,
only coarse-grained GT annotations aimed at bundle segmentation
and deed classification were produced.

The bundles were manually divided into sequential segments or
sections, each corresponding to a single deed, which was then an-

4 In some of our experiments we have adopted the heuristic method proposed
in [23], which can be used to estimate C different thresholds, one per class. How-
ever, since we have not observed any improvement by using multiple thresholds, in
this work we stick with the simpler single-threshold setting.

5 https://github.com/JoseRPrietoF/docClassPrix

6 The images of this collection and a search interface based on Prix are available
at http://prhlt-carabela.prhlt.upv.es/carabela
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Table 1
Number of documents and page images for JMBD_4949 and
JMBD_4950: per class, per document & class, and totals.

Class Deeds  Pages

ID’s Avg Min Max  St-dev  Total
PA 240 33 2 24 35 803
LP 72 4.8 2 30 5.4 345
DB 44 4.8 2 32 5.6 212
LE 32 4.8 2 16 2.6 152
TE 29 8.6 4 48 9.4 248
SA 21 229 4 122 29.8 480
RI 17 4.0 4 4 0.0 68
CS 12 115 2 26 9.0 138
DP 10 3.8 2 8 1.9 38
ST 9 2.4 2 4 0.8 22
CN 6 5.3 2 14 39 32
TF 6 53 4 8 1.9 32
Reject 57 9.2 2 70 12.2 526
Total 555 5.6 2 122 9.2 3096

notated with a class label. A first section of about 50 pages, which
form a kind of table of contents, was also identified in each book,
but these sections were not used in the present work. It is worth
noting that each deed may contain from two to dozens of pages,
and separating these deeds is not straightforward. In future works,
we plan to develop methods to also perform this task automati-
cally but, for the present work, we take the manual segmentation
as given.

The experts found 95 deeds in JMBD_4949 and 260 in
JMBD_4950, a total of 555 deeds, belonging to about 41 differ-
ent types or classes. However, the classes of some deeds were not
clear and, for many of the clearly identified classes, only very few
deeds were available. To allow the classification results to be suffi-
ciently reliable, only those classes having at least one deed in each
book and six deeds in total were taken into account. This way, 498
deeds were retained from 12 classes considered sufficiently repre-
sented and all the other, belonging to 29 unclear or poorly rep-
resented classes, were collectively deemed to belong to a special
“class” called REJecT (R]).

The twelve well-represented classes are: Power of Attorney
(PA), Letter of Payment (LP), Debenture (DB), Lease (LE), Testament
(TE), Sale (SA), Risk (RI), Census (CS), Deposit (DP), Statement (ST),
Cession (CN) and Treaty of Fact (TF). See details of this dataset are
in Table 1.

The Closed Set machine learning task consists in training a
model to classify a deed known to belong to one of the C =12
proper classes into one of these same classes. The corresponding
Open Set task is to also let the system reject samples (deeds) from
the remaining 29 classes. That is, C = 12 + 29 = 41 and the propor-
tion of known classes is 29.3%.

5.2. Empirical settings

Prix’s typically contain huge amounts of different pseudo-word
hypotheses. However, many of these hypotheses have low rele-
vance probability and most of the low-probability pseudo-words
are not real words. Therefore, as a first step, entries with less than
three characters, as well as those with too low RP (P(R|x,v) <
0.1), were pruned out. This reduced the original set of 809 787 dif-
ferent pseudo-words to a vocabulary V of 55927 pseudo-words for
the two bundles considered.

Then, as discussed in Section 3, the pseudo-words in V were
sorted by decreasing IG and the first N entries were selected to
define a BOW vocabulary Vy. Exponentially increasing values of N
from 16 up to 16384 were considered in the experiments.

Finally, a Tf-Idf N-dimensional vector was calculated for each
deed, X € x. For experimental simplicity, Tf-Idf(v,X) was esti-
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mated just once for each v € V, using a normalising factor E[n(X)]
(see Eq. (3)) computed for all v € V, rather than just v € Vyy for ev-
ery N considered in the experiments.’

Tf.1df deed vectors were further normalised by subtracting the
mean and dividing by the standard deviation, resulting in zero-
mean and unit-variance input vectors.

Three MLP configurations with different numbers of layers were
considered. In all the cases, every layer except the last one is fol-
lowed by batch normalisation and ReLU activation functions [27].
The basic configuration was a plain C-class or C’'-class perceptron
where the input is totally connected to each of the C=12 or
C' =13 neurons of the output layer (hence no hidden layers are
used). For the sake of simplifying the terminology, here we con-
sider such a model as a “0-hidden-layers MLP” and refer to it as
MLP-0. The next configuration, MLP-1, was a proper MLP with one
hidden 128-neurons layer. This layer was expected to do some kind
of word clustering, hopefully improving the classification ability of
the output layer. Finally, an MLP-2 and a bMLP-2, with two hidden
128-neurons layers, were tested. Deeper models were tried too, but
they did not yield significant improvements.

The parameters of each MLP, bMLP, pMLP and bpMLP were
initialised following [28] and trained according to the standard
(MLP/pMLP) or binary (bMLP/bpMLP) cross-entropy loss for a mini-
mum of 20 and a maximum of 500 epochs, applying early stopping
with a patience factor of 50 epochs. For MLP-0, the RMSprop opti-
miser was used with a learning rate of 0.1, while for all the other
models the optimiser was SGD [29], with a learning rate of 0.01.
Specifically for pMLP and bpMLP, following [22],® a single proto-
type per class has been adopted and, after trying several sizes, the
best results are presented for a prototype size of 128.

As discussed in Section 4.1, to use models trained only with the
12 known classes for OSC, a threshold t is required which has to be
determined or somehow estimated. Two simple heuristic methods
were considered.

The first one is that proposed in [23], which we compute
as: t=1-,/>x(1—-P:(X))?/K, where the sum spans the K = 498
samples of known classes, P:(X) = P(¢(X) | X) for MLP or P:(X) =
P(bg(xy | X) for bMLP, and €(X) is the correct class of X according
to the GT.

The second, rather crude heuristic comes from the observation
that the exact value of t is not critical, provided it is around the
average values of the max class posteriors of the test samples (see
Section 6.2). So we can just set the threshold to this average. While
this estimate is based on test sample posteriors, it is totally fair,
since the class labels are not used at all.

As suggested by Table 1 (Section 5.1), we consider all the deeds
available in the bundles JMBD_4949 and JMBD_4950 as a single
dataset. This arrangement is different from the one we adopted
in [5], where each bundle was considered a (smaller) dataset by it-
self. Even though the number of samples is now much larger (498
in 12 classes for CSC and 555 in 41 classes for OSC), again they are
not enough to establish a fixed training/test partition. Instead, as
in [5], we adopt the leaving one out (LOO) protocol, which entails
certain issues in some of the experimental procedures.

First, to simplify the computation of IG and Tf-Idf, the calcu-
lations were performed only once for all the classes and samples,
because we have observed that leaving or not a single sample out
hardly changes the results of these calculations significantly. Sec-

7 E[n(X)] is the expected number of running words in V, which can be larger
than the same estimate if only the words in Vy are considered (in the summation
of the first equation of Eq. (2)). For every N, this normalising factor is thus the
same for all the components of the Tf-Idf vectors, and it has not been observed to
significantly affect the classification results.

8 We adapted the code provided by the authors of [30], available from: https:
//github.com/YangHM/Convolutional-Prototype-Learning.
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Fig. 2. Leaving-one-out classification error rate on JMBD_4949 and JMBD_4950
with three threshold-less MLP models, both for Closed and Open Set Classification.
OSC: training and testing with 12 known classes; OSC: training and testing with 12
known plus REJECT (13 “classes”). All the results are based on Prix document and
word frequency estimates. 95% confidence intervals (not shown for clarity) are all
smaller than +4.4% and smaller than +3.0% for all the error rates below 15%.

ond, for computing the first of the above explained threshold es-
timates, the posterior probabilities of all the 498 samples X € X
of known classes have been used. While this simplification breaks
to some extent the test-set independence principle, it should be
noted that the values of these estimates are not critical, as will be
discussed in Section 6.2.

6. Experiments and results

Results using the methods presented in Section 4 and the
dataset and empirical settings discussed in Section 5 are reported
below. First we focus on CSC and also on OSC methods which rely
on training with samples (deeds) of classes considered unknown
to avoid the need of a reject threshold. The second subsection is
devoted to OSC with models trained only with samples of known
classes — which thereby requires a threshold to reject test samples
deemed not to belong to any known class.

6.1. Threshold-less closed and open set classification

Fig. 2 shows two sets of results all obtained according to
Eq. (5) (Section 4.1). First, traditional CSC results achieved using
three MLP models trained and tested only with samples of the 12
known classes. Then OSC with the same models but now trained
with samples of the 13 classes: 12 known proper classes plus a
special REJECT “class”, which includes samples from 29 additional
classes. In both cases, results are shown for increasing dimension
(number of IG-selected words) of the Tf-Idf image document em-
beddings.

CSC results are obviously better than those of their OSC coun-
terparts. Under the traditional CSC framework, these results sug-
gest that, using MLP-1 and 512 words (or more) for Tf.Idf repre-
sentation, more than 93% of our image documents (deeds) could
be automatically tagged with the correct classes.

MLP-2 yields the best OSC and CSC results, with input image
documents embedded into a 2048-dimensional Tf-Idf vector space.
The first column of Table 2 summarises these results.

Table 2 also reports comparable results using a bMLP-2 classi-
fier (c.f., Section 4.1). Even though the bMLP-2 output layer and
training loss do not aim to maximise class discrimination, this
model achieves almost the same results as MLP-2. The classifica-
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Table 2

Classification error rate of threshold-less methods. CSC: training and test-
ing with 12 known classes; OSC: training and testing with 12 known plus
a REJECT “class”. Results are shown for n=2048 words and both Prix im-
age representations and plain text HTR image transcripts.

Images represented as: PrIx HTR
Classifier MLP-2  bMLP-2  pMLP-2  pbMLP-2  MLP-2
CSC (C =12) 6.2 6.2 7.0 11.7 8.0
0SC (C'=13) 105 11.0 10.8 18.2 12.3

tion accuracy achieved is remarkable, given the complexity of the
task: classify sets of images of untranscribed manuscripts (with as
many as 122 images per set, see Table 1) into 12 (or 12+1) different
classes, which only differ from each other in nuances characterised
by subtle combinations of words.

Results for the prototype network models (MLP-PN) pMLP-2
and pbMLP-2 discussed in Section 4.1 are also included in this
table. For pure CSC (12 classes), the results of pMLP-2 are com-
parable with those of MLP-2 and bpMLP-2, but the accuracy of
the pbMLP-2 model, trained is a similar way as bMLP-2, is clearly
lower. Results for these models trained with an additional REJECT
class (0SC, €' = 13) follow a similar tendency as all the other mod-
els, even though pbMLP-2 does not reach comparable accuracy.

For completeness, Table 2 also reports results obtained with
exactly the same MLP-2 classifier, but using state-of-the-art HTR
image transcripts [1,2], rather than Prlx, to represent the images.
In this case, documents and word frequencies needed for IG and
Tf.1df were naively computed (using Eq. (1-4) of [4]) from the noisy
plain-text HTR output. As expected, these results fall short of those
obtained with the proposed approach, where document and word
frequencies are estimated (rather than computed) using Prix image
representations.

Table 3 shows the confusion matrix and the error rate per class
for MLP-2 OSC. It is worth noting that the REJECT “class” is involved
in 38 out of the 58 total errors.

6.2. Threshold-based open set classification and rejection

Here models are trained only on samples of the 12 known
classes, but the test set includes samples both from these 12
classes and also from the other 29 classes considered unknown. So
the task entails both classification and rejection. OSC Error Rates
are reported in Table 4. As in the previous subsection, these error
rates include three types of errors: a) conventional known-class
misclassification, b) rejecting samples from known classes and c)

Table 3

Confusion matrix for Prix MLP-2 OSC with n = 2048 2048.
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Table 4

OSC classification + rejection bMLP-2 error rate for
different thresholds (t), using Prix and n=2048
words with the bMLP-2 model. It was trained with
C =12 classes and tested with samples of all € =
41 classes (12 known, plus 29 REJECT “classes”).
95% confidence intervals are within +3.2%, or
+2.2% for the lowest error rate.

Threshold estimate bMLP-2  (t)

Fixed 0.0 15.9 (0.00)
Fixed 0.5 16.4 (0.50)
1-0 [23] 6.5 (0.75)
Avg. max class posterior 7.2 (0.94)
Best on test (“oracle”) 6.5 (0.75)

Table 5

Rejection performance for bMLP-2 OSC with PrIx and n=2048 words. Training
with C = 12 classes, testing with samples of all € = 41 classes. AUROC values (%)
and rejection error rate (%) for various thresholds t.

Model Threshold (t) AUROC

000 050 075 076 094 097 098

bMLP-2 10.3 112 22 2.2 3.2 3.6 4.1 98.3

failing to reject samples from unknown classes. Given that no RE-
JECT class is trained, OSC must follow Eq. (6) (Section 4.1), which
requires a threshold t. Table 4 reports results for two fixed thresh-
olds and for another two thresholds, estimated as discussed in
Section 5.2. An “oracle threshold” is also included which was just
determined as the one for which the test-set Error Rate was low-
est.

The four models whose results appear in Table 2 were tested in
this threshold-based, full OSC scenario. The oracle-threshold OSC
error rates achieved were as follows: MLP-2: 13.0%, bMLP-2: 6.5%,
pMLP-2: 16.57% and pbMLP-2: 18.37%. Given the great superior-
ity of bMLP-2, detailed results are shown in Table 4 only for this
model.

Results with the two estimated thresholds are similar and close
to the oracle. In fact, estimates are not critical for bMLP-2 because
similar error rates are observed for any threshold in the range
[0.70,0.97].

Overall we can conclude that bMLP-2 provides excellent ac-
curacy in full, threshold-based OSC, very close to the best result
achieved in basic CSC, but now including also the duty of rejecting
samples from unknown classes.

Table 5 shows the AUROC result (see Section 4.1), which assess
rejection performance taking into account all the possible thresh-
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olds. The table also shows the Error Rates of the corresponding bi-
nary classification task (REJECT - not-RgJEcT) for some thresholds.
The rejection performance achieved by bMLP-2 is close to perfect,
which explains the OSC superiority of bMLP-2 discussed above.

7. Conclusions

This work shows how to perform accurate content-based clas-
sification of untranscribed image documents (CBIDC). This task is
challenging because each image document typically encompasses
many images of handwritten text which are hard to read, even by
humans. Our approach is cost-effective, because it does not need
image transcripts. The only ground truth needed for model train-
ing is the class label of each training document and, once trained,
the models provide accurate automatic CBIDC for new, also untran-
scribed multi-page image documents.

Our methods overcome the need of explicit transcripts by rely-
ing on probabilistic indexing (Prlx), a technology which provides ro-
bust representations of text images in terms of textual rather than
visual features. We show that, using Prix representations, our clas-
sification models consistently provide better results than using a
popular, naive approach, where images are represented by their
noisy automatic HTR transcripts.

Extending our previous works, here we report consolidated re-
sults using a sufficiently large set of image documents which be-
long to a rich set of classes. Our present study includes both the
traditional classification viewpoint (CSC) and the “Open Set” (OSC)
framework which is much more realistic and close to practical re-
quirements.

Various OSC methods have been proposed or adopted and stud-
ied, all based on Prix image representation and image documents
embedding into a Tf-1df vector space. Some methods follow the
classical paradigm of training a CSC model with an additional class
which collects samples of what would be “unseen classes”. Other,
more interesting approaches only need training with samples of
known classes and use a rejection threshold on the class poste-
rior probabilities of known classes. Our results clearly show that,
among these later methods, the model referred to as bMLP greatly
outperforms all the others, achieving a combined classification and
rejection accuracy close to 94%.

According to the experts who annotated the GT data used in
our experiments, this accuracy is close to the limit of human-
labeling uncertainty. So we believe that no further efforts are de-
served to improve the technology (the OSC methods in particular),
until larger and more challenging data sets can be compiled and
annotated with the required GT — a task that will certainly be ex-
pensive.

To deal with increasingly challenging types of image docu-
ments, we believe that the internal structure of the documents will
need to be modeled. So, in future works we plan to explore other
classification models, such as recurrent neural networks, that can
account for the sequential regularities exhibited by textual con-
tents in successive page images of formal documents.

So far, all our studies on CBIDC have assumed the image doc-
uments are given. However, in real applications, these documents
are typically embedded into large bundles, without explicit separa-
tion of the specific page images encompassed by each document.
Therefore, in future research works we also plan to develop new
methods that allow not only to classify image documents, but also
automatically segment large document bundles into the individual
image documents they contain.

Finally, we know very well that our practical CBIDC OSC task
is in essence incremental [16,31,32]. Therefore, we will certainly
develop and/or adopt existing incremental learning techniques to
provide final practical solutions to the CBIDC needs of archives and
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libraries which hold and manage large historical manuscript collec-
tions.
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