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A B S T R A C T   

Pavement management systems (PMS) were typically developed to manage interurban networks. This paper 
presents an urban pavement management system (UM-PMS) that integrates all the modules of a PMS considering 
the particularities of the urban context. The tool uses a Geographic Information System (GIS) to import, analyze, 
and manage the data of the urban road network. The inspection data is obtained by an automatic equipment 
composed by a video camera installed on a vehicle. Images are analyzed by deep learning techniques based on 
Convolutional Neural Networks. Further, appropriate decisions on maintenance treatments are made by inte-
grating multi-objective optimization and multi-criteria decision-making methods to plan efficient maintenance 
strategies considering economic, environmental, social, and performance objectives. Finally, the tool is applied 
to an urban case study to illustrate its applicability. Outcomes indicate that the proposed framework can obtain a 
sustainable short-term plan without losing sight of the long-term efficiency.   

1. Introduction 

Pavement management systems (PMS) provide the necessary 
framework for assessing pavement condition and selecting the adequate 
strategic decisions on maintenance activities to minimize the required 
funds and enhance road network performance (Chen & Zheng, 2021; 
Peraka & Biligiri, 2020). For an efficient PMS, modules for pavement 
inspection, condition assessment, condition prediction, optimization, 
and decision-making of maintenance actions must be integrated (Donev 
& Hoffmann, 2020). The first step is to determine pavement condition, 
using from manual to fully automated techniques, with the aim of 
minimizing subjectivity and improving efficiency (Coenen & Golroo, 
2017; Ragnoli et al., 2018). Condition prediction is a necessary module 
for identifying the appropriate timely maintenance considering a long- 
term approach (Dong et al., 2015; Hassan et al., 2017). The optimiza-
tion and decision-making of maintenance are crucial tasks for Highway 
Agencies and Operators, that is to determine the best maintenance and 
rehabilitation applications to preserve the road network condition under 
restrictive budgets (De La Garza et al., 2011). In addition, demands for a 
more sustainable development of the road transport system are forcing 

road managers to incorporate sustainability criteria in the decision- 
making process (Santos et al., 2019), as pavement maintenance has 
significant impacts on society and the environment (Chong et al., 2018). 

Most of the PMS are designed for the management of interurban 
roads as they account for the main large corridors (Loprencipe et al., 
2017). However, municipalities are increasingly demanding an effective 
tool to optimally allocate their budget on their road network (Zhang 
et al., 2013). These tools must be adapted to the urban context and 
overcome the lack of automatic inspection systems suitable for the urban 
context (Almuhanna et al., 2018; Loprencipe et al., 2017). To this re-
gard, several considerations must be taken into account. 

On the one hand, urban networks are characterized by numerous 
intersections, speed variability, and important traffic flow changes 
(Llopis-Castelló et al., 2021; Wang et al., 2013). Due to these charac-
teristics, as well as the high cost needed to evaluate the total length of 
the road network, high performance equipment is not used in urban 
areas (Loprencipe et al., 2017; Wang et al., 2013). For instance, the 
International Roughness Index (IRI) is a well-known pavement index 
obtained by an automatic equipment, but it can only be used on roads 
with speed limits above 80 km/h (Loprencipe et al., 2017). Therefore, 
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visual inspection is still the most common inspection method for distress 
identification in urban environments. Authors are claiming that manual 
pavement inspection is subjective, labor-intensive, and suffers from 
traffic disruptions (Coenen & Golroo, 2017; Gouda et al., 2021); thus, 
researchers are increasingly proposing Artificial Intelligent techniques 
to identify and quantify pavement distresses (Hadjidemetriou et al., 
2018; Llopis-Castelló et al., 2021), yielding promising results to solve 
the inefficiencies of manual techniques. All this leads to the conclusion 
that there is a need to incorporate automatic techniques into the urban 
PMS to provide updated data of pavement condition (Peraka & Biligiri, 
2020). 

On the other hand, despite the differences in road operation and 
users between interurban and urban roads, the same optimization and 
decision-making modules are currently being used (Almuhanna et al., 
2018). Regarding user cost, this objective largely depends on the traffic 
conditions and speed (Chen & Zheng, 2021; Mohamed et al., 2022), 
being these aspects very variable in urban areas. In addition, the eval-
uation of user delays during urban maintenance activities is more 
complex as alternative routes are different for each closed road (Chen & 
Zheng, 2021). Besides, PMS needs to consider the characteristics of the 
urban roads for a more accurate recommendation, since the urban road 
network plays an important role in the development of a city. At the 
same time, a recent review (Chen & Zheng, 2021) pointed out that little 
attention has been paid to the establishment of multiple indicators in 
multi-objective optimization (MOO) and the definition of decision- 
making models. This concern is shared by other researchers that claim 
that sustainability criteria are not commonly included into the pavement 
maintenance, as many studies focused on economic and performance 
optimization of maintenance scheduling (Denysiuk et al., 2017; Hamdi 
et al., 2017; Hankach et al., 2019), omitting the environmental and 
social dimensions of sustainability. 

Therefore, it can be concluded that there is a need to develop an 
integrated PMS with a particular focus on urban networks. This urban 
PMS must solve the two main gaps highlighted above: (1) the inspection 
method must be improved by automatic and objective techniques that 
enables to assess the distresses of the pavement (Almuhanna et al., 2018; 
Coenen & Golroo, 2017; Loprencipe et al., 2017); and (2) the mainte-
nance optimization system must be combined with a flexible decision- 
making approach that considers the sustainability aspects of the urban 
road network tailored to the requirements of the administration (Chen & 
Zheng, 2021; Loprencipe et al., 2017; Mohamed et al., 2022). 

Thus, this paper presents an urban multi-objective pavement man-
agement system (UM-PMS) that fulfills these gaps through a holistic 
approach. This system integrates several modules based on deep 
learning techniques for assessing pavement condition and selecting 
maintenance activities under the premises of efficiency, sustainability, 
and objectivity. Pavement inspection is performed by an automatic 
equipment composed by a video camera installed on a vehicle. The 
images taken with this equipment are analyzed by Convolutional Neural 
Networks to identify, classify, and quantify the distresses in each image. 
Thus, this innovative inspection technique provides updated data of 
pavement distresses without the need for visual inspection. This infor-
mation is used by the multi-objective optimization and decision-making 
module to provide a detailed maintenance plan according to the urban 
manager’s needs. These modules are defined to reach the economic, 
environmental, social, and performance objectives of an urban road 
network. Therefore, this study solves the lack of urban tools to manage 
pavement maintenance (Almuhanna et al., 2018; Grilli & Balzi, 2023; 
Loprencipe et al., 2017) through an effective tool that enables urban 
managers to measure the road condition with the use of scarce economic 
resources and evaluate the most sustainable maintenance plan. This is 
the first tool that uses an automated technique to identify and quantify 
urban pavement distresses, to the best of the authors’ knowledge. This 
step is crucial to evaluate PCI and obtain an objective indicator to 
compare the road network condition. In addition, this tool provides a 
complete planning module that considers economic, environmental, 

social, and performance objectives according to the urban context. 
The paper is structured as follows. Section 2 analyzes the current 

literature on the three main aspects that this system must address: (i) 
techniques to detect and evaluate pavement distresses; (ii) objectives 
used for sustainable pavement management; and (iii) Multi-Criteria 
Decision-Making methodologies that can be integrated in the optimi-
zation tool to align the objectives with those of the urban managers. 
Based on the literature review, the methodological framework of the 
UM-PMS is presented in Section 3, including the input data of the tool 
and the results that users can visualize. Then, Section 4 is focused on the 
implementation of the UM-PMS for a case study in an urban district. 
Finally, Section 5 displays the concluding remarks, limitations, and 
further work. 

2. Literature review 

2.1. Evaluation of pavement distresses 

Pavement distresses along the urban network are identified and used 
to estimate pavement condition in order to perform a general pavement 
condition analysis (Coenen & Golroo, 2017). In this regard, Pavement 
Condition Index (PCI) (ASTM, 2018) was defined as a standard alter-
native measure of the structural integrity and surface operational con-
dition (García-Segura et al., 2022), which is calculated based on the 
identification and quantification of 19 types of pavement distresses. 
Pavement Condition Index (PCI) is adequate for urban networks as this 
indicator provides an overall measure of structural integrity of the 
pavement based on the severity and extent of the distress observed on 
the urban pavement (Almuhanna et al., 2018; Arhin et al., 2015; Augeri 
et al., 2019). 

For assessing pavement distresses, the literature review points out 
that, in recent years, important steps have been taken on their auto-
mated detection and classification. Methods have evolved from tradi-
tional approaches, such as machine learning techniques and image 
processing, to modern techniques based on deep learning. Convolutional 
Neural Network (CNN) is a typical deep neural network that has natural 
advantages in computation efficiency (Hou et al., 2021). Several appli-
cations of CNN can be found in the literature during the last few years to 
detect distresses (Hou et al., 2021; Park et al., 2019; Zhou & Song, 
2020). However, several review papers on automated inspection 
methods highlighted that most of the studies focus on crack classifica-
tion, while few authors analyze other types of distresses (Coenen & 
Golroo, 2017; Peraka & Biligiri, 2020). In addition, in terms of distress 
quantification, most research aims at detecting and classifying distresses 
without calculating the severity and extension of distresses (Coenen & 
Golroo, 2017; Llopis-Castelló et al., 2021). In response to these gaps, a 
previous study introduced methodologies based on CNN for the identi-
fication, classification, and quantification of multiple urban flexible 
pavement distresses (Llopis-Castelló et al., 2021). 

Therefore, pavement inspection must be designed according to the 
data required for pavement condition assessment. In the case of urban 
PMS, the identification and quantification of distresses is needed for 
performing a PCI analysis (Almuhanna et al., 2018; Arhin et al., 2015; 
Augeri et al., 2019). PMS require an automated and objective technique 
to detect the distresses of the pavement and quantify their severity and 
extension (Coenen & Golroo, 2017; Llopis-Castelló et al., 2021). This can 
be solved by obtaining images of the pavement and analyzing them by 
CNN (Hou et al., 2021; Park et al., 2019; Zhou & Song, 2020). This 
technique must be used not only for the identification and classification 
of the distresses, but also for their quantification (Llopis-Castelló et al., 
2021). 

2.2. Objectives for a sustainable pavement management 

The optimization needs to integrate multiple objectives to consider 
the different goals of pavement maintenance management. Previous 
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research pointed out that the economic dimension of the sustainability is 
always considered to achieve an efficient maintenance management 
(Denysiuk et al., 2017; Hankach et al., 2019). In addition, this objective 
must be taken into account as budget limitations are imposed by ad-
ministrations (De La Garza et al., 2011). Within this dimension, agency 
cost and user cost can be evaluated. Agency cost considers the cost of 
maintenance and rehabilitation activities during the planning horizon. 
User cost is commonly evaluated by vehicle operation and travel delay 
costs (Mohamed et al., 2022). Vehicle operation cost assesses the user 
cost according to the pavement roughness and the average vehicle 
speed. Travel delay cost considers the cost increase caused by the par-
tial/total road closure during the maintenance action. While agency cost 
is always considered, user cost is not always taken into account due to its 
difficulty in obtaining accurately and impartially results, and the ten-
dency to dominate the decision process when considered (Golabi & 
Pereira, 2003; Wang et al., 2003; Wu & Flintsch, 2009). 

Moreover, other objectives such as performance, environmental 
impact, and social impact, must also be considered to foster sustain-
ability. The performance is usually included as one objective in multi- 
objective optimization, being the area between the post-treatment per-
formance curve and the do-nothing performance curve the most used 
criterion (Chen et al., 2017; Khurshid et al., 2015; Mohamed et al., 
2022). Regarding the environmental aspects, these are increasingly 
considered to find the best maintenance strategy that not only reduces 
the required budget, but also minimizes the environmental impact 
(Torres-Machi et al., 2017). Although different gas emissions can be 
evaluated to assess the environmental impact, a recent review pointed 
out that most researchers consider CO2 emissions as the most significant 
(Mohamed et al., 2022). With respect to the social criteria, this dimen-
sion of sustainability is lesser extend in pavement management systems 
(Chen & Zheng, 2021; Mohamed et al., 2022). Furthermore, other 
studies have considered the impacts of construction and maintenance 
activities on the workers, local community, large society, and com-
muters (Zheng et al., 2019, 2020). 

Summarizing, the objectives presented can be considered to develop 
more efficient systems that optimally achieve the sustainability objec-
tives. Some of these objectives have been used for urban applications, 
like road condition, economic cost, and greenhouse gas emissions 
(Chong et al., 2018; Saha & Ksaibati, 2018; Sun et al., 2020; Torres- 
Machi et al., 2018). However, to achieve an urban UM-PMS that un-
dertakes the strategic goals of the sustainability development, the multi- 
objective optimization need to simultaneously consider the cost, per-
formance, environment, and social objectives (Chen & Zheng, 2021; 
Mohamed et al., 2022). In addition, further work is needed to adapt the 
objectives to the characteristics of the urban networks (Llopis-Castelló 
et al., 2021; Wang et al., 2013). 

2.3. Multi-Criteria Decision-Making: Integrated value model for 
sustainable Assessments 

Multi-criteria decision-making methods (MCDM) have been widely 
used over the past few years to help project managers in the selection 
processes related to the construction (Jato-Espino et al., 2014). Some 
authors point out that the integration of the multi-objective and the 
MCDM methodologies is the need-of-the-hour to provide tailor-made 
solutions to the global pavement maintenance crisis (Chen & Zheng, 
2021). The decision-making techniques can be used not only to compare 
or rank a set of alternatives, but also to incorporate the decision-maker 
preferences into the searching for the more optimal maintenance plan. 

Among these techniques, the Integrated Value Model for Sustainable 
Assessments (MIVES) has demonstrated its potential when managing 
sustainable problems in complex scenarios (Aguado et al., 2012; Jato- 
Espino et al., 2014). MIVES is part of the group of the utility and 
value methods, which are used to convert the quantitative and quali-
tative assessment of criteria into a degree of satisfaction (Penadés-Plà 
et al., 2016). This method was designed to incorporate value function 

and satisfaction concepts in the MCDM process (Pons & De La Fuente, 
2013), especially for the sustainability evaluation (Jato-Espino et al., 
2014; Pujadas et al., 2019). Therefore, this method can be used to 
provide the decision-maker preferences regarding quantitative and 
qualitative sustainability criteria. 

MIVES is characterized by following these three steps: (1) designing 
a hierarchical scheme for determining the relative importance among 
the elements of each level; (2) selecting the shape of the value functions 
for transforming the value of each objective into a normalized value 
between 0 and 1 according to the satisfaction grade; and (3) assessing 
the alternatives by aggregating the results of each objective multiplied 
by the weights for each level. The first step is particularly suitable for 
dealing with sustainability problems, as the evaluation of the most 
sustainable alternative is done by aggregating the economic, environ-
mental, social, and technical criteria. The second step focuses on the 
intra-criterion evaluation which uses value functions to provide a 
normalized value from the evaluation of the objectives. In this regard, 
value functions can be increasing functions (Equation (1) and (3) or 
decreasing functions (Equation (2) and (3). These functions are defined 
assigning a numerical value to the parameters, which determine how 
each value of the objective corresponds to the dimensionless scale (Pons 
& De La Fuente, 2013). 

Vob,i = Bi⋅

⎡

⎣1 − e
− ki

(
|X− Xmin |

Ci

)Pi ⎤

⎦ (1)  

Vob,i = Bi⋅

⎡

⎣1 − e
− ki

(
|Xmax− Xi |

Ci

)Pi ⎤

⎦ (2)  

Bi =

⎡

⎣1 − e
− ki

(
|Xmax − Xmin |

Ci

)Pi ⎤

⎦

− 1

(3)  

where X is the value of the indicator, Xmin is the minimum value 
adoptable by the objective; Xmax is the maximum value adoptable by the 
objective; Pi is a factor that determines the shape of the function; and Ci 
and Ki are respectively the values of the abscissa and the ordinate in the 
inflection point of the function. 

In case of the objectives are preferably normalized without shaping 
the value of the indicator, a linear relationship can be calculated for 
increasing (Equation (4) and decreasing (Equation (5) functions. 

Vob,i =
Xi − Xmin

Xmax − Xmin
(4)  

Vob,i =
Xmax− Xi

Xmax − Xmin
(5) 

Finally, the third step defines the inter-criteria evaluation to obtain 
the global evaluation. The global evaluation of an alternative (Vi) is 
obtained adding the value of the objectives (Vob,i) multiplied by the 
corresponding weights (Wob,i), as Equation (6) expresses. 

Vi =
∑n

i=1
Wob,i⋅Vob,i (6) 

Based on the above, MIVES technique can be integrated in the multi- 
objective optimization to incorporate the decision-maker preferences 
into the searching for the optimum timely maintenance. This would 
provide a flexible decision-making tool that would solve the need of 
tailor-made solutions (Chen & Zheng, 2021). For that, the value func-
tions and the weights must be defined according to the requirements of 
the administration. 
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3. Urban Multi-objective pavement management system 

The UM-PMS was designed to integrate the basic components of a 
PMS into a flexible and easy tool to be used by urban managers for 
controlling the pavement condition and providing the optimal mainte-
nance plan according to their needs. The components of the UM-PMS 
were defined after analyzing the literature review and pointing out the 
current weaknesses that must be solved. The tool follows a framework 
based on the steps needed from the creation of the urban road network 
map to the delivery of the planning results. This framework is summa-
rized in Fig. 1. The first step focuses on the development of the urban 
map, integrating the road network information and traffic data for 
subsequent analyses. The tool uses a Geographic Information System 
(GIS) to analyze and display the geographically referenced information. 
Then, an automatic inspection is developed through a videorecording of 
the pavement which is decomposed into images. These images are 
analyzed by two CNN. The first CNN identifies all urban pavement 
distresses that are present in each image. The second CNN aims at 
quantifying the identified distresses. The geographical information of 
each image and the results of the CNNs are used to estimate the severity 
and extension of distresses. Based on this, the PCI of each segment is 
evaluated. Next, the condition is predicted over the planning horizon 
according to the urban characteristics. A multivariable regression model 
for flexible urban pavements considering the combined influence of 
climate and traffic conditions is incorporated into the tool. Finally, a 
holistic approach combines the MCDM and multi-objective methodolo-
gies. The decision-making parameters are firstly defined into the MCDM 
framework. MIVES technique is used to provide the decision-maker 
preferences and obtain a global objective evaluation. Then, the multi- 
objective optimization uses Simulated Annealing algorithm to obtain 
an optimum and sustainable maintenance plan that defines the main-
tenance schedule during the planning horizon. Table 1 summarizes the 
methods of all the UM-PMS modules, as well as their advantages and 
disadvantages. The following sub-sections explain in detail these 
methods. 

According to the conclusions of the literature review, there is a need 
to consider sustainability objectives that represent the urban needs and 
define the MCDM parameters to provide the decision-maker preferences. 
Following this, an expert panel in pavement management was invited to 
participate in a focus group. The focus group technique was selected to 
integrate the opinions of experts (Montalbán-Domingo et al., 2021), as 
this method promotes the discussion of different stakeholders to 
generate a consistent and holistic viewpoint (Yu et al., 2017) and the 
creation of new data based on the expertise of the participants (Xenarios 
& Tziritis, 2007). 

To carry out the focus group, it is important to define a representa-
tive group according to their expertise (Bhandari & Hallowell, 2021). 
Accordingly, four types of stakeholders were defined to cover all the 
agents involved in the urban pavement maintenance management: 
Stakeholder 1 - engineers of the urban maintenance division of a con-
struction company; Stakeholder 2 - engineers of the urban maintenance 
division of a consulting company; Stakeholder 3 - local road managers of 
public-sector; and Stakeholder 4 - researchers with doctoral degree and 
more than three peer-reviewed journal articles in road maintenance 
field. Two experts of each profile were invited to the focus group, 
considering that all experts must have at least 10 years of professional 
experience and a BSc degree (Montalbán-Domingo et al., 2021). The 
following sub-sections describe the tool framework, the input data, and 
the results displayed by the user interface. 

3.1. Road network creation and data integration 

The first step aims to develop the road network with the information 
needed for the following modules (characteristics of roads and traffic). 
The UM-PMS tool uses GIS to import, analyze, and manage the data of 
the urban road network. GIS displays the geographically referenced 
information creating a map from the location data (Almuhanna et al., 
2018; Debnath, 2022). Specifically, the urban road network is repre-
sented by a graph. The user of the tool must obtain the graph from 
OpenStreetMap; this digital map database contains the data needed to 

Fig. 1. Urban pavement management system: tool framework, input data, and user interface.  
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create the urban map. In addition, the file format is compatible with GIS. 
The nodes of the graphs are generated at the intersection between urban 
roads. Thus, the road segments are defined as the elements between two 
nodes. Each segment contains attributes, such as the name of the street 
and the type of road (primary road, secondary road or highway). These 
attributes can be obtained directly from OpenStreetMap. The UM-PMS 
tool also provides the option of dividing the segments longer than a 
maximum value proposed by the user. 

In addition to the road network map, the traffic information must be 
imported to the model. In this case, the Annual Average Daily Traffic 
(AADT) and Annual Average Daily Truck Traffic (AADTT) are down-
loaded from local administrations and imported to the UM-PMS using 
GIS. Besides, the tool allows the modification of the attributes of the 
segments. The user can download a csv file with the data of the segments 
and modify its content. Then, this csv can be uploaded to the UM-PMS to 
update the data. 

Therefore, this step provides the parameters related to the charac-
teristics of roads and traffic that will be relevant inputs for the following 
steps. The user interface shows the urban road network and its infor-
mation in layers. A layer controller is available on the right side to 
activate or deactivate the different layers. 

3.2. Inspection 

The inspection focuses on obtaining the images that will be analyzed 
to detect the pavement distresses. This is carried out by a Garmin Virb 
Ultra 30 video camera, which is mounted on the rear of a vehicle by a 
gripper suction system suitable for installation on any vehicle (Fig. 2). 
This inspection technique is low cost, easy to install, and requires short 
inspection time (Coenen & Golroo, 2017; Mei & Gül, 2020; Peraka & 
Biligiri, 2020). A video is recorded from a zenithal position at 1.4 m 
high. The vehicle must be traveling at 50 km/h maximum speed, which 
is consistent with the maximum speed allowed within city limits. 
However, this technique provides lower resolution than professional 
sensors and has high dependency on lighting conditions. Therefore, the 
analysis method must be designed to overcome these limitations. 

Table 1 
Methods used for the UM-PMS: advantages and disadvantages.  

Module Method Advantages (A) and 
Disadvantages (D) 

References 

Road network 
creation and 
data 
integration 

GIS A: Enable to 
manage, analyze 
and display 
geographically 
referenced 
information 
D: Information must 
have a compatible 
file type 

(Almuhanna 
et al., 2018; 
Debnath, 2022) 

Inspection Videocamara A: Lower price, easy 
to install, short 
inspection time 
D: Lower resolution 
than professional 
sensors and high 
dependency on 
lighting conditions 

(Coenen & 
Golroo, 2017; 
Mei & Gül, 2020; 
Peraka & Biligiri, 
2020) 

Classification 
and 
quantification 
of distresses 

Convolutional 
Neural Network 
(CNN) 

A: CNN has natural 
advantages in 
computation 
efficiency and 
accuracy 
D: CNN cannot 
evaluate distresses 
under different 
conditions than 
those of data 
training 

(Hou et al., 2021; 
Park et al., 2019; 
Zhou & Song, 
2020) 

Pavement 
condition 
assessment 

PCI A: Provide a 
standard alternative 
measure of the 
structural integrity 
and surface 
operational 
condition 
D: The severity and 
extension of 
distresses must be 
evaluated 

(Almuhanna 
et al., 2018; 
Arhin et al., 
2015; Augeri 
et al., 2019) 

Condition 
prediction 

Multivariable 
regression model 

A: Considers the 
combined influence 
of the most 
influential factors 
related to climate 
and traffic 
conditions 
D: The model is 
limited to particular 
cases (flexible 
pavements in urban 
areas). Data of 
climate and traffic 
must be provided 

(Llopis-Castelló 
et al., 2020; 
Osorio et al., 
2014). 

MCDM 
definition 

Integrated Value 
Model for 
Sustainable 
Assessments 
(MIVES) 

A: Manage 
sustainable 
problems in 
complex scenarios. 
Convert the 
quantitative and 
qualitative 
assessment of 
criteria into a degree 
of satisfaction 
Incorporate the 
decision-maker 
preferences prior to 
the optimization 
D: Calibrate value 
functions and 
weights 

(Aguado et al., 
2012; Jato- 
Espino et al., 
2014; Pons & De 
La Fuente, 2013; 
Pujadas et al., 
2019). 

Maintenance 
optimization 

Simulated 
Annealing 

A: This algorithm 
avoids getting 
trapped in local 

(Goh et al., 2017, 
2019; Martínez- 
Muñoz et al.,  

Table 1 (continued ) 

Module Method Advantages (A) and 
Disadvantages (D) 

References 

optimum enabling 
the process to reach 
the global optimum 
D: It requires the 
calibration of the 
initial temperature, 
the Markov Chain, 
the cooling rate, the 
reheat threshold and 
the stop criterion 

2021; Paya- 
Zaforteza et al., 
2010).  

Fig. 2. Pavement inspection equipment.  
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When the inspection is finished, a compressed file is uploaded to the 
UM-PMS containing the video and the geographic information file. The 
tool carries out an internal process consisting in five stages (Fig. 3): (1) 
decompression of the file, (2) video processing and frames extraction, 
(3) association of each frame to the GPS information, (4) crop of the 
frames to remove the part of the vehicle captured in the frame, and (5) 
partition of the frames into three blocks of 256 × 256 pixels. This last 
step is implemented to minimize the number of distresses in each block 
and improve the accuracy of the automatic technique for distresses 
identification and quantification. To sum up, the inspection module only 
requires that users record the video and upload the file. Then, the tool 
automatically performs the internal process and returns the frames for 
the following step. 

3.3. Classification and quantification of distresses by CNN 

The objective of this step is to calculate the distresses of each 
segment of the road network for later assessing PCI. To this end, blocks 
obtained in the previous module are analyzed using Deep Learning 
techniques to identify, classify, and quantify the multiple urban flexible 
pavement distresses. The methodology proposed (Llopis-Castelló et al., 
2021) uses two types of Convolutional Neural Networks to characterize 
and quantify the damages detected in the images. This technique is more 
efficient and can obtain more accurate results than those achieved by 
methods based on other machine learning techniques (Hou et al., 2021; 
Park et al., 2019; Zhou & Song, 2020). This method can extract the 
morphological characteristics of the distresses through increasing levels 
of feature abstraction. Thus, this method can detect distresses under 
different situations such as uneven lighting condition, as long as the 
training data include all these situations (Zhou & Song, 2020). 

The first CNN (CNN1) allows for the identification of the most 
common types of distress in urban road networks: longitudinal cracking, 
transverse cracking, alligator cracking, raveling, potholes, and patching. 
CNN1 takes each image to detect every type of distress, reporting a 
multilabel of these six distresses, also including road markings and 
sewer traps. Then, a second CNN (CNN2) is implemented to quantify the 
distresses via image segmentation. Thus, CNN2 uses only those images 
with distresses detected by the first CNN to measure the severity and 
geometric dimensions of the distresses needed to assess the PCI, i.e., 
length, width, and area. In this regard, four CNN2 are used to evaluate 
the following distresses: (1) longitudinal cracking, (2) transverse 
cracking, (3) potholes, and (4) patching. In the case of alligator cracking 

and raveling, the whole image was considered as damaged because these 
types of distress usually took up a large area of the image (greater 
than80%). CNN2 of longitudinal and transverse cracking assesses the 
length and width of the crack. Regarding potholes and patching, CNN2 
provides the area of the distresses. To perform this module, it is 
important that frames were then resized to 256 × 256 pixels to meet the 
requirements of ImageNet configuration, which is an image database 
commonly used for object recognition research. 

CNN1 was designed on a ResNet architecture. Particularly, this 
model uses the ResNet34 architecture. Regarding CNN2, the architecture 
used for image segmentation is the U-Net. CNNs were trained to obtain 
accurate results of precision, recall, F1 score, and intersection over 
union (IoU). Results of CNN1 were: 0.9317 precision, 0.9252 recall, and 
0.9262 F1 score. Regarding CNN2, the global IoU was 0.6821 for lon-
gitudinal cracks, 0.6709 for transverse cracks, 0.8760 for patches, and 
0.6870 for potholes. The hole detail and justification of the CNNs can be 
found in Llopis-Castelló et al. (2021). 

Therefore, this step takes the frames of previous module and per-
forms these CNNs. Firstly, the frames are displayed on the road network 
map as each image is georeferenced. Then, the distresses and their 
quantification are associated with each frame. Thus, after implementing 
this module, users can see the frames and distresses of each segment on 
the road network. 

3.4. Pavement condition evaluation 

Pavement condition is estimated by the Pavement Condition Index 
(PCI). This index uses the information of the severity and extent of the 
distresses to provide an overall measure of the structural integrity of a 
segment. A value between 0 and 100 is obtained, being 100 the best 
pavement condition. The method for the calculation of PCI can be found 
in ASTM (2018). This model uses two relevant parameters: extension 
and severity of each distress. Therefore, this step calculates PCI based on 
the results of the identification and quantification of the distresses. This 
module aggregates all the distresses of a segment according to their 
severity to obtain the PCI of each segment. This output can be visualized 
in a layer of the GIS tool. PCI of each segment is displayed based on the 
PCI standard scale (ASTM, 2018). Therefore, the CNN results provide the 
data needed to evaluate the PCI of the road network. This solves the 
problem of traditional methods by reducing subjectivity, workload and 
traffic disruptions. 

Fig. 3. Flowchart of inspection and UM-PMS process to obtain the blocks from each frame.  
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3.5. Condition prediction 

This module evaluates the evolution of PCI according to the char-
acteristics of the road. Pavement condition prediction models are 
needed to know the future condition of the urban road network. This 
step is essential for the effective long-term budget planning and the 
coordination of maintenance actions in the network (Dong et al., 2015; 
Hassan et al., 2017). Without timely intervention, there is a high prob-
ability that maintenance treatments will be more expensive, incurring in 
additional risks (AASHTO, 2011). Most of the existing models have been 
calibrated to be used in interurban roads, so their application to urban 
environment can be unrepresentative because of the important differ-
ences in traffic demand, network characteristics, and pavement design 
(Llopis-Castelló et al., 2020; Osorio et al., 2014). 

Thus, this research used the prediction model proposed by Llopis- 
Castelló et al. (2020) which was defined for flexible urban pavements 
considering the combined influence of the most influential factors 
related to climate and traffic conditions based on the historic urban 
pavement data provided by the Long-Term Pavement Performance 
(LTPP) program. More specifically, the deterioration model depends on 
the age of the pavement (pa), calculated as the difference between the 
date of the current pavement assessment and the date of the pavement 
construction, the Equivalent Single Axle Load in thousands (KESAL), and 
the annual average temperature (AAT) (Equation (7). 

PCI = 137.43 − 6.60 • pa − 0.0196 • KESAL − 3.89 • AAT + 0.1847 • AAT2

(7)  

while KESAL and AAT must be provided as input data, pa is assessed 
adding the years of the prediction to the age of the pavement. 

Therefore, to execute this module, users must provide the annual 
average temperature. Traffic information is taken from the GIS infor-
mation. In this way, the evolution of PCI of each segment is provided as 
output. Note that this method is limited to flexible pavements in urban 
areas. 

3.6. MCDM definition 

UM-PMS combines the MCDM and multi-objective methodologies to 
consider the decision-maker preferences into the searching for the more 
optimal maintenance plan. Firstly, the MCDM module is used to define 
the urban manager parameters through the value function and satis-
faction concepts of MIVES. This method provides a global evaluation of 
an alternative, which is used in the objective assessment of the optimi-
zation. Therefore, the objective of this module is to provide the decision- 
makers preferences. In this regard, they take part in the initial stage 
introducing their preference to later obtain an optimum and sustainable 
maintenance plan according to their requirements. 

To define this module, the authors firstly analyzed the objectives 
published in the literature. Then, the expert panel selected and defined 
the objectives to address the urban requirements. The literature review 
pointed out that multiple objectives —economic, environmental, social, 
and performance objectives— must be used to address the overall aims 
of an urban network from a sustainable point of view. This way, the 
expert panel decided to include the cost of maintenance actions during 
the planning horizon (economic criterion), the CO2 emissions of main-
tenance actions during the planning horizon (environmental criterion), 
and the improvement of network condition as the area between the post- 
treatment performance curve and the do-nothing performance curve 
(performance criterion). However, the expert panel concluded that the 
user cost should not be considered using the equations proposed in the 
literature, as both vehicle operation and travel delay costs are calculated 
based on the traffic conditions, speed, and alternative routes, and these 
parameters are highly variable in urban areas (Chen & Zheng, 2021; 
Choi, 2019). Instead, they considered that the social impact of the 
inconvenience caused by maintenance actions to user should be 

considered using an intra-criterion evaluation. In addition, they 
concluded that social aspects such as the type of road (primary, sec-
ondary, etc.), the district or the neighborhood where the road segment is 
located can affect significantly on the decision about the maintenance 
strategy. Therefore, they included two objectives, which were called 
“impact on users” and “contribution to the social development”, to the 
three selected from the literature review. In conclusion, five objectives 
were proposed: (O1) cost, (O2) CO2 emissions, (O3) impact on users, 
(O4) contribution to the social development, and (O5) improvement of 
network condition. 

Based on MIVES methodology, the objectives are combined into a 
global evaluation using weights. In addition, value functions are used for 
transforming the value of each objective into a normalized value be-
tween 0 and 1 according to the satisfaction grade. Fig. 4 shows the user 
interface to provide the parameters needed. The relevant parameters 
are: the weights; the unit costs and emissions; and the parameters of 
value functions. These parameters are used to obtain the global evalu-
ation of each maintenance strategy. This model is integrated into the 
following module —multi-objective optimization— for assessing each 
maintenance alternative during the optimization process. The method-
ology to assess each objective and the parameters needed as input data 
are detailed below. 

3.6.1. O1: Cost 
The cost of each maintenance action is assessed according to the 

condition of the pavement and the distresses observed at the inspection. 
To define the most common treatments used in urban road networks, the 
expert panel decided to, firstly, differentiate local repairs from complete 
repairs. Local repairs are carried out on segments that only exhibit 
potholes or longitudinal and transverse cracking. As local repairs are 
applied on the damaged area, the cost is measured by aggregating the 
cost of each treatment multiplied by the area of each distress. When 
there are other types of distresses, a PCI evaluation is recommended 
distinguishing between surface treatment, surface and base treatment, 
and full-depth replacement. In addition, distresses can only be accu-
rately determined the year of the inspection (t = 0). Therefore, for 
subsequent years of the planning horizon, the treatment is also selected 
according to the PCI obtained from the prediction model. The ranges of 
the PCI for each treatment are proposed by the expert panel. The cost is 
calculated multiplying the unit cost of the treatments by the total area of 
the segment. In addition, a discount rate of 4% is considered (Deshpande 
et al., 2010; Yao et al., 2020). In this regard, the cost is calculated as 
follows (Equation (8): 

C =
∑T

j=1

∑N
i=1Cij*Ai

(1 + v)j (8)  

where C is the total cost, Cij is the unit cost of the treatment applied to 
the segment i at year j, Ai is the area or length repaired that should be 
considered according to the reference unit (Fig. 4), ν is the discount rate, 
N is the total number of segments that are repaired at year j, and T is the 
planning horizon. Unit costs were obtained from a Spanish database 
(ITEC, 2020). They were evaluated as the sum of the cost of material 
production, transport, and placement. 

Once the cost during the planning horizon is calculated, a linear 
relation is used to normalize the value of this objective (Equation (5), 
being X equal to the cost. The parameters needed to evaluate this 
objective are shown in Fig. 4. The expert panel provided some reference 
values for all of them, so the user can use or change them. 

3.6.2. O2: CO2 emissions 
This objective assesses the kilograms of CO2 emissions associated 

with the maintenance actions. The procedure used to evaluate this 
objective is the same as that of the economic cost, considering the unit 
emissions instead of the unit cost. A linear relationship (Equation (5) is 
also used to obtain the value of the objective, being equal to CO2 
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Fig. 4. Decision-making parameters: (a) weights, cost, and emissions; (b) value functions.  
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emissions. The reference values provided for the MCDM parameters 
(Fig. 4) were obtained from a national database (ITEC, 2020) consid-
ering the environmental impact of the extraction of raw material, 
transformation of materials needed for the treatment, transport, and all 
the construction activities including the equipment needed for the 
maintenance application. 

3.6.3. O3: Impact on users 
This objective evaluates the impact on users due to the closure of the 

road or the reduction of the speed during the maintenance activity. This 
objective is evaluated using the value functions (Equation (1) and (3) 
according to the main parameters influencing the valuation. The expert 
panel selected two main parameters: the type of treatment and the 
average annual daily traffic (AADT). The type of treatment influences 
the duration and the magnitude of the inconvenience that these treat-
ments cause to users. The AADT gives information about the number of 
users affected. According to this, the value functions are defined using 
the percentile of the AADT (PAADT) as an input variable. The type of 
treatment (local repair, surface treatment, surface and base treatment, 
and full-depth replacement) determine the shape of the value function. 
Therefore, the value of impact on users (Vusers) is calculated by Equation 
(1) and (3) considering that X is the percentile of the AADT, Xmin is 0, 
Xmax is 100, and Pi, Ci, and Ki are defined for each type of treatment. The 
values of the parameters that must be introduced are also suggested by 
the expert panel (Fig. 4). These were obtained considering that, for 
PAADT = 50, Vusers will be proportional to the duration of the mainte-
nance treatment. The graphic representation of the value functions is 
also provided in Fig. 4 for a better understanding. 

3.6.4. O4: Contribution to the social development 
The goal of the fourth objective is to maximize the road contribution 

to the social development. One of the main objectives of an urban 
network is to connect strategic social points in a city and provide good 
services to road users. Hence, it is important to keep roads in good 
condition to guarantee their social function, especially in those segments 
that have a higher level of importance because they are vital for the 
social development of the city. To achieve this goal, two parameters 
were proposed: the minimum PCI (PCImin) of the segment during the 
planning horizon and the importance of the segment. The PCImin is 
calculated as the minimum value of PCI during the planning horizon. 

Regarding the importance of the segment, two levels were established 
by the expert panel: important segments and ordinary segments. The 
important segments are either those that are near a strategic point of the 
city or they have a principal role in the user mobility. The value of 
contribution to the social development (Vsd) is calculated by Equation (2) 
and (3) considering that: X is PCImin, Xmin is 0, Xmax is 100, and Pi, Ci, and Ki 
are defined according to the importance of the road. The values of the 
parameters are suggested (Fig. 4) considering that the increment in Vsd 
must be higher in important segments to encourage their improvement. 
Two procedures are provided to the decision-maker to select the impor-
tance of the roads: (1) selecting strategic points of the city and its radius of 
action to capture the segments which are prioritized, and (2) determining 
the strategic segments due to their primary role. Therefore, important 
segments are those that accomplish any of these requirements, while 
ordinary segments are those that do not fulfill any of them. 

3.6.5. O5: Improvement of network condition 
This objective measures the area between the post-treatment per-

formance curve and the do-nothing performance curve using Equation 
(9) (Chen et al., 2017; Khurshid et al., 2015; Mohamed et al., 2022). 

ob5 = APT − A0 =

∫ t=T

t=0
PCIPT,t −

∫ t=T

t=0
PCI0,t (9)  

where APT is the difference between the area bounded by the post- 
treatment performance curve, A0 is the area bounded by the do- 

nothing performance curve, PCIPT,t is the PCI of the post-treatment 
performance curve at t year, PCIo,t is the PCI of the do-nothing perfor-
mance curve at t year, and T are the years of the planning horizon. 
Finally, a linear relationship for the value function is considered using 
Equation (4), being X equal to ob5. 

3.7. Maintenance optimization 

The objective of this module is to determine the best maintenance 
plan; that is, the most sustainable treatment that must be applied to each 
segment during each year of the planning horizon. For this purpose, the 
maintenance optimization aims at maximizing the objective function F 
(Equation (10) while satisfying the constraints Gj (Equation (11). The 
objective function is the global evaluation obtained through the MCDM 
module. The constrains check whether the maintenance plan fulfils the 
minimum performance and budget conditions. This module also calls 
the condition prediction module to estimate the PCI evolution through 
the planning horizon. The objective functions and constraints depend on 
the variables xn and the parameters pm. The heuristic optimization al-
gorithm searches for candidate solutions, varying the value of the var-
iables, toward finding optimal or near-optimal solutions. These 
variables define the optimal maintenance plan. The parameters are 
those fixed values of the road network determined by the case study. The 
maintenance optimization takes the parameters from the GIS informa-
tion. Therefore, this module needs the support of the other modules to 
determine the objective function, the constraints, and the parameters. 

F(x1, x2,⋯., xn; p1, p2,⋯., pm) (10)  

Gj(x1, x2,⋯., xn; p1, p2,⋯., pm) ≤ 0 (11) 

The definition of variables is an essential step in the optimization 
model. The number of variables and their number of the possible values 
condition the size of the combinatorial problem. Usually, in pavement 
management, the decision variables define which treatment must be 
applied to each segment during each year of the planning horizon, entailing 
a complex combinatorial problem (Torres-Machi et al., 2017; Zhang et al., 
2013). However, this study proposes a change of focus based on condition- 
based maintenance (Alrabghi & Tiwari, 2015). Thus, the variables define 
the maintenance thresholds that triggers maintenance actions to restore the 
pavement condition to the initial condition (PCI =100). With this proposal, 
only one variable is needed for each segment with the consequent reduc-
tion in the computing time. Therefore, users must define the possible 
maintenance thresholds or strategies (hereinafter “strategy (S)”), so the 
algorithm will find the optimum one. The expert panel proposed three 
possible strategies for the variables: S70, S40, and S10. In this regard, 
maintenance treatment occurs at the end of each treatment range, guar-
anteeing that resources would not be wasted inefficiently. 

On the other hand, constraints limit the value of some indicators, 
reducing the solution space of feasible solutions. In maintenance plan-
ning, constraints commonly control the performance of the road 
network and budget (Chen & Zheng, 2021). Regarding the performance, 
most research studies impose the minimum condition level as a 
constraint. However, the approach proposed for defining the variables, 
determines the possible strategies of a segment. Therefore, this approach 
enables to eliminate the performance constraint, as the minimum con-
dition level would be the most restrictive strategy. For example, if the 
decision-maker defines three possible strategies for the variables (S70, 
S40, and S10), the performance threshold would be 10, as there cannot 
be a segment with a lower condition than 10. 

Concerning the budget constraint, a penalization technique is pro-
posed. Penalties are implemented for the infeasible solutions, worsening 
the aptitude of these solutions according to a penalty function (Alrabghi 
& Tiwari, 2015; Van Horenbeek & Pintelon, 2013). A penalty is pro-
posed for limiting the budget (Equation (12). 
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Pg = 1+
ΔC
Cmax

(12)  

where Pg is the penalty, Cmax is the maximum budget assigned by the 
user, ΔC is the difference between the cost of the analysis period and the 
maximum budget. 

The heuristic algorithm used in this research is simulated annealing 
(SA). SA bases its search strategy on the analogy of crystal formation. 
This algorithm avoids getting trapped in local optimum thanks to its 
ability to accept solutions that initially worsen the outcome but ulti-
mately enable the process to reach the global optimum (García-Segura 
et al., 2014; Goh et al., 2017). It has been proved that this algorithm can 
converge to its global optimality if enough randomness is used in com-
bination with very slow cooling (Yang, 2014). These characteristics 
make the algorithm appropriate to optimize engineering problems that 
require to solve combinatorial problems (Goh et al., 2017, 2019; Mar-
tínez-Muñoz et al., 2021; Paya-Zaforteza et al., 2010). This process is 
governed by the Boltzmann distribution exp(− ΔE/T), where ΔE is the 
change of energy, equivalent to variation of the objective function when 
evaluating a new configuration and T is the temperature. The initial 
temperature (Tini) is adjusted according to the method proposed by 
Medina (2001), which increases or decreases the initial temperature 
until the percentage of acceptances is between 20 and 40%. The tem-
perature is reduced once a Markov Chain ends according to the 
expression Ti+1 = kTi, where k is the cooling rate. Thus, the probability 
of accepting worse solutions drops with each Markov Chain (LMC) to 

reach the optimum solution. After each Markov chain, the algorithm 
checks whether the search is stuck in a local optimum, that is to say, the 
best solution is the same and the percentage of solutions accepted is less 
than a threshold Tr. In this case, the temperature is reheated according to 
F(current solution)⋅A, where A is obtained after the calibration of the 
initial temperature. A is calculated as Tini/F(initial solution), where Tini is 
the initial temperature and F(initial solution) is the value of the objective 
function of the initial solution. The algorithm ends when the number of 
Markov Chains without improvement reaches a value Nmax. The cali-
bration of the algorithm SA indicated that the best performance was 
obtained for LMC = 1000, k = 0.8, Tr. = 0.1, and Nmax = 10. 

Therefore, the optimization parameters that users must introduce as 
input data are: (i) the possible strategies for the variables, (ii) the years of 
the planning horizon, and (iii) the maximum budget. These parameters are 
relevant to obtain the optimal maintenance plan that fits the infrastructure 
manager’s needs. This module takes these parameters and uses the infor-
mation of the condition prediction and MCDM modules to find the optimal 
maintenance plan. Results of the maintenance schedule, the objective 
functions, and the strategy of each segment are provided by UM-PMS. 

4. Case study 

The UM-PMS was implemented in an urban district of Valencia 
(Spain): L’Eixample. This district is characterized by its commercial area 
and historic buildings. In addition, it hosts the main transportation 
systems: multiple bus routes, the main railway station of the city, and 

Fig. 5. Valencia road network.  
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Fig. 6. Districts and neighborhood panel.  
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several primary roads essential for guaranteeing a proper road 
communication throughout the city. 

Following the tool framework, the urban road network of Valencia 
was created using OpenStreetMaps database. Fig. 5 shows the road 
network on the city map. Traffic information was downloaded from the 
local administration. Then, the corresponding district was selected to 
perform the following modules. Fig. 6 shows the user interface for 
selecting the district. The district contains 489 segments. 

The inspection module was performed for obtaining the images of 
the pavement. The inspection equipment recorded 700 min of videos, 
resulting in 600 k images. The videos and the GPS information were 
uploaded to the UM-PMS. The third module was processed for identi-
fying, classifying, and quantifying the multiple pavement distresses 
through the convolutional neural networks. The distresses were assigned 
to the corresponding segments considering the GPS information. Fig. 7 
shows the distresses displayed when selecting a road segment, indicating 
the type of distress, the severity and the quantity. Then, the Pavement 
Condition Index (PCI) was determined for each segment (Fig. 8). 

Once the condition of the network was known, the user introduced 
the annual average temperature of the city to complete the information 
needed to perform the prediction model. In addition, the decision- 
making parameters needed as input data were completed. In this case, 
the parameters proposed by the expert panel were considered (Fig. 4). 

Regarding the important segments, the railway station was selected as a 
strategic point considering a radius of 200 m. The important segments 
located inside the circle are shown in Fig. 9. Additionally, the primary 
roads were taken into account as strategic segments due to their primary 
role. Fig. 10 displays the segments considered as primary road based on 
the OpenStreetMaps information. 

Finally, all the previous information was used for identifying the 
optimum timely maintenance. Three optimizations were performed to 
analyze the results. The first optimization considered the five objectives 
equally weighted and 5 years of planning horizon (Smo,T5), which would 
be equivalent to a government period. The second optimization also 
analyzes a short-term period of 5 years, but considering the cost as the 
only objective for a mono-objective optimization (Scost,T5). This opti-
mization is performed to obtain information on the cheapest solution to 
maintain the condition threshold. Note that although the mono- 
optimization only considers the cost objective, the results of the other 
objectives are calculated to allow comparison with the multi-objective 
results. For the third optimization, a cost optimization is carried out 
considering an analysis period of 20 years (Scost,T20). The objective of 
this analysis is to obtain the cheapest long-term solution. Therefore, Smo, 

T5 is compared to Scost,T5 and Scost,T20 to verify whether multi-objective 
optimization improves the most economical solution both in the short 
term and in the long term. 

Fig. 7. Classification and quantification of distresses of a segment.  
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Fig. 8. PCI results.  
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Fig. 9. Important segments due to their proximity to a strategic point.  
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The optimization module provides the best maintenance schedule 
and the results of the objective functions. Table 2 shows the results of the 
objective functions: value of the cost (Vcost), value of the CO2 emission 
(VCO2), value of impact on users (Vusers), value of contribution to the 
social development (Vsd), and value of improvement of network condi-
tion (Vcond). These normalized values represent the extent to which 
these objectives are achieved. A value of 1 represents the best possible 
value of the objective considering all possible maintenance plans during 
the planning horizon. Results show that Smo,T5 achieve values between 
0.62 and 0.84, indicating that the multi-objective optimization of the 
five objectives finds a compromise solution that effectively meets the 
pavement management goals of urban networks. This result is compared 
to the mono-objective optimization of the cost (Scost,T5). Results reveal 
that the mono-objective optimization finds a good solution for the three 
first objectives leaving the value of social development and network 
condition below 0.10, which means that these objectives are closer to 
the worst possible values. However, when the analysis period is 
increased (Scost,T20), Vsd and Vcond obtain better results. One of the major 

findings of this analysis is that, although the values of social develop-
ment and network condition are inversely proportional to cost optimi-
zation, these values increase with extending the analysis period even 
though cost is the only optimization objective. This is explained by the 
fact that cost-optimization considering 5 years only performs the 
necessary maintenance treatments, leading to a poor network that 
would need a costly treatment after the analysis period. However, when 
20 years are considered as the planning horizon, the analysis reveals that 
the best long-term solution is to take some preventive interventions to 
avoid the network deterioration and thus, costly long-term treatments. 
This strategy improves the network condition and encourages the social 
development. 

To analyze the impact of these solutions, the following performance 
indicators are calculated: the average annual cost (AAC), the average 
annual emissions (AAE), the average annual treatments (AAT), the 
average minimum PCI reached by the important segments (APCImin,imp), 
and the average PCI at the end of the analysis period (APCIf). Findings 
indicate that Smo,T5 improves APCImin,imp and APCIf compared to the 
Scost,T5 (Table 3). The Smo,T5 results are in line with Scost,T20, as both have 
a similar number of annual treatments. These preventive interventions 
improve the network condition. However, Smo,T5 improves the condition 
of the important roads and achieves annual costs and emissions below 
those obtained with long-term optimizations. As a conclusion, the multi- 
objective optimization of the five objectives proposed can be used to 
guarantee a sustainable maintenance plan. In addition, results indicate 

Fig. 10. Primary roads.  

Table 2 
Value of the objectives.   

Vcost Vco2 Vusers Vimp Vcond 

Smo,T5  0.82  0.83  0.84  0.70  0.62 
Scost,T5  1.00  1.00  1.00  0.09  0.06 
Scost,T20  1.00  1.00  0.97  0.64  0.48  
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that considering all five objectives in a short-term optimization do not 
compromise the long-term results. 

Previous results considered the five objectives equally weighted. 
However, the weights should be adapted to local needs. To illustrate the 
impact of each objective on the results, a sensitivity analysis was per-
formed deactivating each objective (Table 4). For example, when cost 
objective is deactivated (DO1), this objective is not considered in the 
optimization (w1 = 0). Results show that, in this case, the best mainte-
nance solution is 38% more expensive, but APCImin,imp is improved by 
9% and APCIf by 12% because the number of maintenance treatments is 
increased. Regarding the environmental objective, if this objective is not 
considered (DO2), the result is very similar to the previous one with a 
39% increase in emissions. Therefore, these two objectives should be 
taken into account when looking for more cost-effective solutions with 
lower emissions, while minimizing the possible deterioration of the road 
condition. On the other hand, objective 3 seeks to minimize the impact 
on road users with more preventive treatments and less road closure. For 
this reason, if this objective is not considered (DO3), the number of 
treatments is increased by 30%, and also, these treatments are less 
preventive. Thus, the first three objectives work in a similar way, 
although objective 3 prioritizes preventive actions that reduce the 
impact on users and improve the road condition. The last two objectives 
perform inversely, if objective 4 is not taken into account (DO4), 
APCImin,imp is reduced by 16%. The last objective focuses on improving 
the overall condition, so if it is not considered (DO5), the final condition 
of the network worsens by 19%. In conclusion, these last two objectives 
should be considered to improve the condition of the network, despite 
increasing the number of treatments with their consequent increase in 
cost and emissions. 

Therefore, this approach demonstrates that the integration of envi-
ronmental objectives can reduce the emissions of the maintenance 
program by 10 to 30% (Torres-Machi et al., 2017; Zhang et al., 2013). In 
addition to the economic, environmental, and performance objectives 
that are commonly used in pavement optimization studies (Chong et al., 
2018; Saha & Ksaibati, 2018; Sun et al., 2020; Torres-Machi et al., 
2018), UM-PMS proposes two new objectives: impact on users and 
contribution to the social development. The sensitivity analysis shows 
that impact on users can be used when the urban manager aims to 
reduce the impact on users due to the closure of the road, while main-
taining an appropriate condition of the road network. Regarding the 
contribution to the social development, this objective enables the urban 
manager to find an optimum maintenance program that improves the 
condition of important road segments. The optimization that includes 
the five objectives (Smo,T5) yields similar results to the best long-term 
optimization (Scost,T20) and in addition improves the condition of the 
important roads and reduces annual costs and emissions. 

4.1. Conclusions, limitations, and further research 

This paper presents the framework of an urban pavement manage-
ment system. This tool integrates the needs of the different components 
of an urban PMS overcoming the existing limitations for an automatic 
and objective assessment of the pavement condition. Firstly, GIS pro-
vides a visual interface platform for integrating the urban road map with 
the information needed for the pavement management. Then, pavement 
inspection is carried out by an automatic equipment composed by a 
video camera. The frames of the video are processed by two CNN to 
classify and quantify the urban distresses. This information is used to 
estimate the PCI in each road segment. The following module predicts 
the pavement condition through the planning horizon according to the 
road characteristics. Finally, MCDM and multi-objective methodologies 
are designed in a comprehensive manner to provide the optimal main-
tenance plan according to the decision-maker preferences. MIVES 
technique is used for introducing the urban manager parameters 
through the value functions. Then, the maintenance optimization 
identifies the optimum timely maintenance considering economic, 
environmental, social, and performance objectives. 

The application of the UM-PMS to a case study shows the potential of 
the tool to provide the information needed for an accurate management 
of the pavement. Furthermore, the results of optimization illustrate that 
the five objectives considered for the multi-objective optimization are 
convenient to obtain a sustainable maintenance plan that reduces 
maintenance costs, CO2 emissions, and impact on users, while 
improving the performance of the network, especially in those segments 
that have a higher level of importance to guarantee the social function of 
the urban network. Findings also indicate that this multi-objective 
optimization can determine a short-term plan for a government period 
in line with the best long-term results. 

Therefore, this paper presents an automatic and easy tool to help 
urban managers in the pavement maintenance management, providing 
accurate data for controlling and planning the urban road network. This 
tool can be adapted to the requirements of the administration, changing 
the planning horizon, the weights of the objectives or the treatment 
preferences. 

Regarding the limitations, UM-PMS is defined for flexible pavements 
located in urban areas. The prediction model and the pavement treat-
ments are adjusted to these characteristics. In addition, the inspection 
technique is limited to 50 km/h to guarantee an appropriate image 
quality. When blurred images are provided, the CNNs might not identify 
and quantify the distresses accurately. CNNs are trained to detect the 
most common distresses in urban road networks, which are longitudinal 
cracking, transverse cracking, alligator cracking, raveling, potholes, and 
patching. Therefore, other types of distresses are not assessed by the 
tool. 

Further research is needed to inspect arterial roads driving at a speed 
of more than 50 km/h. Additionally, other types of distresses can be 
considered collecting more images and training the CNNs to detect and 
quantify these distresses. Regarding maintenance optimization, 
Bayesian approaches can be incorporated to perform model updates 
when initial conditions change. Finally, additional work is needed to 
include more objectives considering the needs of other international 
countries. 
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DO2 37% 39% 35% 9% 12% 
DO3 22% 23% 30% 8% 9% 
DO4 − 28% − 29% − 40% ¡16% − 16% 
DO5 –33% − 34% − 48% − 15% ¡19%  

Table 3 
Performance indicators.   

AAC (€) AAE (kg CO2) AAT APCImin,imp APCIf 
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beams using a new hybrid glowworm swarm algorithm. Latin American Journal of 
Solids and Structures, 11(7), 1190–1205. https://doi.org/10.1590/S1679- 
78252014000700007 

Goh, S. L., Kendall, G., & Sabar, N. R. (2017). Improved local search approaches to solve 
the post enrolment course timetabling problem. European Journal of Operational 
Research, 261(1), 17–29. https://doi.org/10.1016/j.ejor.2017.01.040 

Goh, S. L., Kendall, G., & Sabar, N. R. (2019). Simulated annealing with improved 
reheating and learning for the post enrolment course timetabling problem. Journal of 
the Operational Research Society, 70(6), 873–888. https://doi.org/10.1080/ 
01605682.2018.1468862 

Golabi, K., & Pereira, P. (2003). Innovative pavement management and planning system 
for road network of Portugal. Journal of Infrastructure Systems, 9(2), 75–80. https:// 
doi.org/10.1061/(ASCE)1076-0342(2003)9:2(75) 

Gouda, M., Chowdhury, I., Weiß, J., Epp, A., & El-Basyouny, K. (2021). Automated 
assessment of infrastructure preparedness for autonomous vehicles. Automation in 
Construction, 129, Article 103820. https://doi.org/10.1016/j.autcon.2021.103820 

Grilli, A., & Balzi, A. (2023). Methodologic Recommendations to Implement Pavement 
Management Systems and Eco-Sustainable Solutions for Local Road Administrations. 
Infrastructures, 8(2), 25. https://doi.org/10.3390/infrastructures8020025 

Hadjidemetriou, G. M., Vela, P. A., & Christodoulou, S. E. (2018). Automated pavement 
patch detection and quantification using support vector machines. Journal of 
Computing in Civil Engineering, 32(1), 4017073. https://doi.org/10.1061/(ASCE) 
CP.1943-5487.0000724 

Hamdi, Hadiwardoyo, S. P., Correia, A. G., & Pereira, P. (2017). Pavement maintenance 
optimization strategies for national road network in Indonesia applying genetic 
algorithm. Procedia Engineering, 210, 253–260. doi: doi: 10.1016/j. 
proeng.2017.11.074. 

Hankach, P., Lorino, T., & Gastineau, P. (2019). A constraint-based, efficiency 
optimisation approach to network-level pavement maintenance management. 
Structure and Infrastructure Engineering, 15(11), 1450–1467. https://doi.org/ 
10.1080/15732479.2019.1624787 

Hassan, R., Lin, O., & Thananjeyan, A. (2017). A comparison between three approaches 
for modelling deterioration of five pavement surfaces. International Journal of 
Pavement Engineering, 18(1), 26–35. https://doi.org/10.1080/ 
10298436.2015.1030744 

Hou, Y., Li, Q., Zhang, C., Lu, G., Ye, Z., Chen, Y., … Cao, D. (2021). The state-of-the-art 
review on applications of intrusive sensing, image processing techniques, and 
machine learning methods in pavement monitoring and analysis. Engineering, 7(6), 
845–856. https://doi.org/10.1016/j.eng.2020.07.030 

ITEC. (2020). Catalonia Institute of Construction Technology. BEDEC PR/PCT ITEC material 
database. Barcelona, Spain. Retrieved from https://itec.es/servicios/bedec/. 
Accessed June 10, 2020. 

Jato-Espino, D., Rodriguez-Hernandez, J., Andrés-Valeri, V. C., & Ballester-Muñoz, F. 
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