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A B S T R A C T

Researchers increasingly use electrodermal activity (EDA) to assess emotional states, developing novel appli-
cations that include disorder recognition, adaptive therapy, and mental health monitoring systems. However,
movement can produce major artifacts that affect EDA signals, especially in uncontrolled environments where
users can freely walk and move their hands. This work develops a fully automatic pipeline for recognizing and
correcting motion EDA artifacts, exploring the suitability of long short-term memory (LSTM) and convolutional
neural networks (CNN). First, we constructed the EDABE dataset, collecting 74ℎ EDA signals from 43 subjects
collected during an immersive virtual reality task and manually corrected by two experts to provide a
ground truth. The LSTM-1D CNN model produces the best performance recognizing 72% of artifacts with
88% accuracy, outperforming two state-of-the-art methods in sensitivity, AUC and kappa, in the test set.
Subsequently, we developed a polynomial regression model to correct the detected artifacts automatically.
Evaluation of the complete pipeline demonstrates that the automatically and manually corrected signals do
not present differences in the phasic components, supporting their use in place of expert manual correction.
In addition, the EDABE dataset represents the first public benchmark to compare the performance of EDA
correction models. This work provides a pipeline to automatically correct EDA artifacts that can be used
in uncontrolled conditions. This tool will allow to development of intelligent devices that recognize human
emotional states without human intervention.
1. Introduction

Electrodermal activity (EDA) is a non-stationary signal that in-
dicates electrical potential via the sweat glands on the surface of
the skin (Boucsein, 2012). EDA represents a quantitative functional
measure of sudomotor activity and, therefore, an objective assess-
ment of emotional arousal (Ellaway, Kuppuswamy, Nicotra, & Mathias,
2010). An EDA signal can be decomposed into two different and
non-redundant components: a phasic and tonic component (Benedek
& Kaernbach, 2010). The phasic component is the decomposition of
the rapid movements of the signal, known as the skin conductance
response (SCR), which commonly provides the features used in EDA-
based studies to provide valuable information for many scientific re-
search fields (Posada-Quintero & Chon, 2020). Special attention has
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been given to the approach by psychology and health-related stud-
ies (Dawson, Schell, & Filion, 2000). In clinical analysis, SCR is used to
assess pain, stress, schizophrenia, and peripheral neuropathy (Benedek
& Kaernbach, 2010; Ellaway et al., 2010). In neuroscience and psy-
chology, it is used to assess the subject’s arousal levels (Greco, Valenza
and Scilingo, 2016). For example, Anusha, Jose, Preejith, Jayaraj, and
Mohanasankar (2018) used EDA signals to assess the stress of subjects
in emulated real-life job scenarios, and Zangróniz, Martínez Rodrigo,
Pastor García, López Bonal, and Fernández-Caballero (2017) studied
EDA to distinguish between stressful and calm conditions. Liu and Du
(2018) also analyzed the stress levels of a subject using the signal.
Elsewhere, studies related to mental illness have utilized EDA signals,
vailable online 1 June 2023
957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.eswa.2023.120581
Received 26 March 2023; Received in revised form 10 May 2023; Accepted 27 Ma
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

y 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
https://data.mendeley.com/datasets/w8fxrg4pv5
mailto:jllajur@upvnet.upv.es
mailto:lcarrasco@idiapjgol.info
mailto:malcaniz@i3b.upv.es
mailto:emilio.soria@uv.es
mailto:jamarmo@i3b.upv.es
https://doi.org/10.1016/j.eswa.2023.120581
https://doi.org/10.1016/j.eswa.2023.120581
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120581&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 230 (2023) 120581J. Llanes-Jurado et al.

t
m
t
d
a
a
i
s
e

with Greco, Valenza, Lanatà, Rota, and Scilingo (2014) finding statisti-
cal evidence concerning the relationship between healthy patients and
patients with bipolar disorder using features of EDA signals and Perugia
et al. (2017) discovering significant correlations between EDA signals
and engagement in dementia patients.

Most previous research has collected EDA signals in laboratory
environments (Shukla, Barreda-Ángeles, Oliver, & Puig, 2018), where
subjects are usually seated and often cautioned not to move the hand to
which the electrodes are attached. However, recent applications have
recorded EDA in environments where the users can walk freely and
move their hands, such as daily-life settings and virtual reality (VR)
environments. Notably, many wearable devices have been developed to
enable the possibility of acquiring EDA signals in a daily-life scenario,
leading (Malathi, Jayaseeli, Madhuri, & Senthilkumar, 2018) to pro-
pose a wearable EDA sensor for detecting drowsiness in drivers, Leite,
Henriques, Martinho, and Paiva (2013) to analyze the affective state
of children in everyday situations when interacting with robots, and
Kim and Fesenmaier (2015) to measure traveler emotions in real time
during a four-day visit. Meanwhile, VR has been used to simulate en-
vironments where subjects can freely move and interact, which creates
the sensation of being in the real world (Chicchi Giglioli, Pravettoni,
Sutil, Parra, & Alcañiz Raya, 2017). VR can display different scenarios
to evoke emotions or provoke cognitive processes in the subject (Marín-
Morales et al., 2019; Raya, Baños, Botella, & Rey, 2003) and has
been used in case studies of, for example, social adaptation in social
phobia contexts, the reduction of anxiety and pain, rehabilitation,
and neurological diagnosis (Bekele, Bian, Peterman, Park, & Sarkar,
2017; Li, Montaño, Chen, & Gold, 2011; Maskeliunas, Šalkevicius,
Damaševičius, Maskeliunas, & Laukienė, 2019; Matijević et al., 2013;
Tarrant, Viczko, & Cope, 2018). EDA has been used in VR experiments
to examine sudomotor activity and arousal levels to assess anxiety and
stress (Kritikos, Tzannetos, Zoitaki, Poulopoulou, & Koutsouris, 2019),
conduct emotional assessments (Salgado et al., 2018), and diagnose
autism (Alcañiz Raya et al., 2020).

However, among the most significant issues concerning the use of
EDA signals in daily-life and VR environments is the subject’s move-
ment during data collection. Although these technologies can offer an
accurate environment for recording subject responses, the absence of
control over the environments can impact EDA records. Most move-
ments can cause interferences in the contact between the skin and the
recording electrodes, producing major artifacts in EDA recordings (Tay-
lor et al., 2015). Shukla et al. (2018) suggested that artifacts in EDA
signals may conceal the existence of important correlations between
the signal and the subject’s arousal levels due to their heavy influence
on the phasic component. Therefore, ensuring the quality of the signal
in uncontrolled environments represents a critical challenge.

Most EDA-based experiments manually remove major artifacts using
a human expert, because there is no robust and established methodol-
ogy for automatically recognizing and correcting EDA signals. Artifacts
can be manually corrected using various software, including Ledalab
(www.ledalab.de) and SCRalyze (Bach, 2014). However, manual cor-
rection has several disadvantages. First, it is a time-consuming and
tedious task. Second, manual correction can introduce subjective hu-
man bias, with different experts correcting different signals. However,
most critically, it cannot be applied in real-time or for short time
periods without human intervention, as there is a demand for in-
telligent wearable devices that need to integrate a fully automated
pipeline into the sensors. Examples of such systems include automatic
systems for disorder recognition (Alcañiz Raya et al., 2020) adaptive
therapies (Maskeliunas et al., 2019), mental health monitoring systems
at home (Zangróniz et al., 2017), driver drowsiness detection (Malathi
et al., 2018), and aesthetic evaluations (Marín-Morales et al., 2019).

Therefore, algorithms that can quickly detect and correct artifacts,
ensuring data quality, appear essential for future applications of intel-
ligent EDA-recording devices. However, works that develop automatic
2

methods for removing artifacts remain limited (Chen et al., 2015; Hos-
sain, Posada-Quintero, Kong, McNaboe and Chon, 2022; Shukla et al.,
2018; Taylor et al., 2015; Zhang, Haghdan, & Xu, 2017) and present
several limitations (see Section 2 for further details): (i) The works that
recognize artifacts detect whether a segment of a signal did or did not
contain an artifact, but did not provide a continuous clean signal, which
is needed to compute the phasic component and assess arousal, (ii) the
works that corrected signals did not compare their results with signals
manually cleaned by experts, the most common method for removing
artifacts, (iii) previous works did not assess the impact of the correction
on the phasic component, which is related to the emotional arousal
dimension and represents the most important feature in the state-of-
the-art approach, and (iv) the performances of the different methods
are not comparable because there is no public data benchmark. That
is, no extant research has considered the development of a model that
removes major EDA artifacts to provide a clean signal that does not
have differences in terms of the phasic component with the signal that
was cleaned manually by an expert.

This work develops an automatic recognition and correction algo-
rithm for EDA signals, thus providing an artifact-free corrected sig-
nal that can be used in uncontrolled environments where users can
freely walk and move their hands. This involves exploring two novel
approaches: a long short-term memory neural networks (LSTM) in
combination with a 1D convolutional neural networks (CNN), and a
2D CNN for spectrogram analysis. We compare these approaches with
two state-of-the-art methods. A total of 74.46 h of EDA signal recordings
were collected in a VR environment in which the 43 participants had to
perform different tasks that required hand and body movements. The
signals were manually corrected by two experts, generating an artifact-
free signal for use as a ground truth. The labels obtained from the
manual correction procedure were used to train and test the artifact
recognition models. Next, automatic correction was performed on the
artifacts detected. Finally, to measure the quality of the automatic
corrections, the phasic component was evaluated pairwise with the
automatic correction, the manual correction, and the original raw
signal using two different decomposition algorithms, namely, CDA and
cvxEDA.

The rest of this paper is organized as follows. Section 2 introduces
the related literature. Section 3 describes the dataset’s construction
and the proposed methods for recognizing and correcting the artifacts.
Section 4 presents the experimental results and provides a performance
analysis of the proposed model. Section 5 discusses the findings, and
Section 6 concludes the research.

2. Related work

Several studies have considered EDA artifact recognition. For ex-
ample, the work of Kleckner et al. (2018) explored the recognition
of EDA artifacts using a model based on four rules derived from
the minimum and maximum range of the EDA signal or its temporal
variation. However, the research on automatic detection of artifacts on
EDA signals employing ML methodologies remains limited. Adopting
a sampling frequency of 8 Hz, Taylor et al. (2015) detected motion
artifacts in 5 s EDA segments and extracted different features from
he raw EDA signal, including statistical variables (e.g., the mean, the
aximum and minimum values of the data, and wavelet coefficients)

o distinguish between artifacts and non-artifacts. A dataset with a
uration of 130 min is used. The method achieved 96% accuracy using
support vector machine (SVM) model. However, the proportion of

rtifacts was not reported, and it should be considered when interpret-
ng the performance of the model. Gashi et al. (2020) employed the
ame methodologies and objectives but used a larger dataset than other
xperimentations, including a total of 107.56 h between 13 participants.

The data collected were based on ambulatory EDA signals with a

sampling frequency 32 Hz that was later resampled to 8 Hz. Validation

http://www.ledalab.de
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revealed a 98% true positive rate (TPR). However, the approach fol-
lowed had certain limitations, such as recognizing artifacts using 5 s
egments, a lack of evaluation of artifacts in the whole signal, and
ot providing a final corrected signal. In addition, the final dataset
as an artifact percentage of 48.96%, which differs from the initial
nbalanced percentage of artifacts (17%). Zhang et al. (2017) adopted
different approach, studying the use of unsupervised learning to

dentify artifacts from the raw signal, achieving competitive results
ompared to supervised learning. In addition, Subramanian, Tseng,
arbieri, and Brown (2022) also analyzed an unsupervised approach
sing synthetic data as groundtruth. Hossain, Posada-Quintero, Kong
t al. (2022) presented recently a model that recognize segments of
s affected by artifacts with 94.7% of accuracy based on a ML model

eeded by a new set of hand-crafted features. They compared the
ethod with the methodologies of Kleckner et al. (2018) and Taylor

t al. (2015), outperforming the previous results. They collected both
lean and corrupted EDA signal from immobile and moving hands,
espectively, and their differences were used to create the groundtruth.
owever, they did not perform a correction of the artifacts providing

econstructed signals, which are needed for intelligent device systems,
nd did not analyze the implication of the artifact recognition on the
hasic component.

In contrast, several works have studied the automatic correction of
DA signals without directly recognizing the artifact. That is, these
ethods modify the whole signal without needing to identify the

rtifact. Most contributions arrive from the field of signal processing,
hich has proposed using low-pass filters or exponential smoothing

or artifact correction such as Hernandez, Morris, and Picard (2011).
owever, these approaches can modify certain segments of an EDA

race, which affects genuine physiological responses, creating more
rtifacts (Shukla et al., 2018). Other studies have used Stationary
avelet transform models to automatically remove artifacts in EDA

ignals. For example, the work of Chen et al. (2015) models wavelet
oefficients using a Gaussian mixture distribution. Their model required
stimating three parameters using the expectation–maximization al-
orithm. Elsewhere, Greco, Valenza, Lanata, Scilingo and Citi (2016)
ade a breakthrough by studying the automatic model cvxEDA, which

inearly decomposed the EDA signal into tonic components, phasic
omponents, and a Gaussian noise term that represents the signal’s
hite noise. Therefore, this algorithm enabled the direct decomposition
f the EDA signal into two main components while simultaneously
emoving the noise term. This model is based on Bayesian statistics
nd convex optimization. Greco, Valenza, Lanata et al. (2016) showed
hat cvxEDA outperforms CDA in terms of finely discriminating arousal
evels. Furthermore, its low computational cost and efficiency has led
o its use in other experiments e.g. Can, Chalabianloo, Ekiz, and Ersoy
2019) and Ganapathy, Veeranki, and Swaminathan (2020). Mean-
hile, Shukla et al. (2018) proposed a wavelet-based transformation
ased on the Stationary wavelet transform that used a zero-mean
aplace distribution to model the wavelet coefficients and only required
stimating a single parameter. More recently, Hossain, Posada-Quintero
nd Chon (2022) used a deep convolutional autoencoder for automatic
ignal correction, which more effectively demonstrated the signal-to-
oise ratio than previous methods. According to that work, ‘‘the ideal
cenario would be having an extra reference clean EDA signal which
hen can be matched with the reconstructed signal to evaluate whether
he reconstructed signal accurately recovers the underlying SCRs in the
DA signals without any distortions’’. However, only five subjects and
9 segments of the work include a clean EDA signal for evaluation, and
he validation focused on the signal-to-noise ratio. Therefore, none of
hese works analyzed the implication of the correction in the phasic
omponent of the signal to recover the underlying SCRs.

Although the correction methods used in previous works produced
mprovements in signal-to-noise quality, none of those studies validated
heir findings by using an EDA signal manually corrected by an expert
3

s a ground truth. Having the clean signal as a reference can critically
mprove automated approaches by enabling not only the quantification
f the existing artifacts via a comparison of raw and clean signals but
lso the evaluation of the correction via a comparison between the
utomatically corrected signal and the manually cleaned signal. Fur-
hermore, this approach can compute the underlying phasic component
f the clean signal and evaluate how the automatic correction impacts
his component, the most important and common feature used in
uch studies. As such, emulating the manual corrections performed by
xperts must be the ultimate goal of ML and DL models given that most
tudies use manual correction for artifact correction (Posada-Quintero

Chon, 2020).
Meanwhile, no previous research has combined artifact identifica-

ion followed by signal correction in the same pipeline. In addition,
one has been found that presented a precise characterization of motion
rtifacts (e.g., total number, duration, and percentage of the signal
ffected), which is especially important to characterize the noise levels
f the signal used in each study and understand the differences on the
esults between studies. This might be due to the need for a manually
leaned signal to quantify the artifacts, a reconstruction that no study
as included. Finally, previous studies have not made their models
vailable for use by the scientific community, which limits the ability
o produce comparisons between models. Furthermore, there is no
enchmark public data, which would enable the same test data to be
sed in comparisons of novel methods with the state-of-the-art. As such,
here are limitations when comparing the performances reported as the
erformances is related to the type and number of artifacts and the
ethodology used.

. Materials and methods

.1. Participants

A group of 43 volunteers (13 females and 30 males) was recruited to
articipate in the experiment. The mean age of the group was 37.52 (SD
8.38). The following inclusion criteria were applied: age between 18

nd 50 years, Spanish nationality, and no previous VR experience. Be-
ore the subject’s participation, they received documentary information
bout the study and gave their informed consent for their involvement.
ll methods and experimental protocols were performed according to
he Code of Ethics of the World Medical Association (Declaration of
elsinki), and the experimental protocol was approved by the ethics
ommittee of the Universitat Politècnica de València (P4_18_06_19).

.2. Data collection: EDABE dataset

We collected and published the Electrodermal activity artifact cor-
ection benchmark (EDABE) dataset (Llanes-Jurado, Carrasco-Ribelles,
lcañiz, & Marín-Morales, 2023), which includes raw electrodermal
ctivity signals and the signals reconstructed via manual correction for
se as a ground truth. To the best of our knowledge, this is the first
ublic dataset, enabling comparison of methods. The EDABE dataset
ncludes a total of 74.46 h of EDA recording affected by motion artifacts

from the 43 subjects. It is divided into a training set with 33 subjects
(56.27 h) and a test set with 10 subjects (18.19 h). We propose the
adoption of the Area Under the Curve (AUC) metric for evaluation on
the test set. Given the dataset includes unbalanced classes, the AUC
metric provides a more robust measure for future comparisons utilizing
this dataset.

The data were collected during a VR study that had the objective of
inducing stress in the subject by simulating daily situations at work in a
virtual environment. The participants had to perform different tasks in
the virtual scenario to achieve this objective. First, subjects were placed
in an office setting, where they talked to a virtual avatar about issues
related to work and personal life. Then, the subjects were moved to
another scenario, a meeting with five virtual avatars in which they had

to actively participate in decision making.
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In all the settings that required conversations with the avatars, the
subjects were able to choose between the four options displayed on the
lower part of the screen. Finally, the participants played three different
minigames. The first minigame involved extinguishing a fire in a virtual
forest as fast as possible. The second minigame entailed reorganizing
a pipe to allow water to flow through it in the minimum possible
time. In the last minigame, the subjects had to complete a maze while
simultaneously solving simple arithmetic equations as a parallel task.
The faster the subjects solved both problems, the higher their score. In
all three minigames, the participants had to move both of their hands
to complete the games. As such, the EDA signal became noisier in the
minigames section due to the induced stress and the subjects’ rapid
movements.

The subjects performed the VR scenario with a HTC Vive Pro-eye
head mounted display working at 90 Hz refresh rate with 1440 × 1600
ixels per eye and a field of view of 110◦. EDA data were recorded
t a sampling frequency of 128 Hz using a Shimmer3 together with the
onsensys software. A total, 43 EDA signals were collected. The average
xperiment duration was 104 ± 8 min, producing a total of 74.46 h of
ignals. The virtual environment is developed in Unity3D platform.

.3. Methodology overview

The proposed methodology is summarized in Fig. 1. First, two
xperts corrected the EDA signals to provide the ground truth. Next,
wo state-of-the-art and two new models fitted over the training set
ere developed: (i) Taylor et al. (2015), (ii) Hossain, Posada-Quintero,
ong et al. (2022), (iii) an LSTM with a 1D CNN, and (iv) a 2D CNN that
nalyze the signal’s spectrogram. Following training and validation, the
odels were evaluated using the test set, with different classification
etrics evaluated over each test signal. The algorithm that achieved

he highest Kappa and TPR was selected as the best model.
Second, a fully automatic signal correction pipeline was developed.

rtifacts were identified among the EDA signals using the best model.
hen, a regression model was used to correct the detected artifacts
o provide a final clean signal. Finally, the phasic component was
alculated using the CDA and cvxEDA algorithms.

Validation of the complete pipeline involved comparing the phasic
omponent of the three signals, namely, the raw signal, the automatic
orrection, and the expert manual correction (i.e., the ground truth).
he similarity between the three signals was analyzed over the re-
ults of different regression metrics applied to each signal, namely,
oot mean square error (RMSE), mean absolute error (MAE), and
ross-correlation. An ANOVA with a post-hoc analysis evaluated the
ifferences between the phasic component of the signals.

.4. Expert artifact correction

The following procedure was used to obtain the manual correction
f the signal. The expert cleaned the signal using Ledalab software,
hich allowed them to visualize the complete EDA signal and indicate,

n the signal itself, in which sample the artifact started and ended.
edalab allows the manual correction through different interpolations
s linear or spline, allowing the expert to choose between the one that
est suits the segment signal affected. The expert then performed an
utomatic interpolation on the signal, correcting the parts of it that
ere determined to be artifacts according to their own criteria. Ledalab

ecorded the corrected samples, thereby collecting the artifact samples.
hese data were subsequently used as labels to perform a binary
lassification that divided the samples into ‘‘artifact’’ and ‘‘non-artifact’’
amples.

One expert corrected 21 signals and the other corrected 22 signals,
f which 33 were randomly assigned to the training set and 10 to the
est set, representing 56.27 h and 18.19 h of EDA signal. The labels
or each corrected signal were used to produce a descriptive-artifact
nalysis table.
4

3.5. Artifact recognition models

This work proposes four ML and DL classification algorithms. The
first two methods replicates the methodology described by Hossain,
Posada-Quintero, Kong et al. (2022) and Taylor et al. (2015). The four
methodologies share the same target processing, assigning artifact or
non-artifact label according with the percentage of artifacts in a 0.5 s
segment. If more than 50% of the segment was labeled as an artifact,
the sample of 0.5 s was labeled as an artifact; otherwise, it was labeled
as non-artifact. All the models were fitted using the training set. As
a filter, signals with an artifact percentage below 1% were removed,
leaving 51.35 h of EDA signal to train the three models.

Upon training all four models, we conducted a test evaluation of the
models that collected the mean values of different metrics, including
accuracy, Kappa, TPR, and true negative ratio (TNR). Due to the
considerable imbalance between the proportion of artifacts and non-
artifacts, the Kappa score and TPR were selected to evaluate artifact
detection performance. Once the best model was selected, we applied
post-processing to the labeling provided by the model. This involved
re-labeling the signal segment between two artifacts as an artifact if
they were separated by less than a certain time threshold, with the
aim of merging nearby artifacts. The time threshold used was fixed at
2 s. Subsequently, an additional metric was implemented, namely, the
percentage of artifacts detected. This metric was used because artifacts
are not single points but sets of samples with a time duration. As such,
this metric measures the percentage of artifact detection. To consider
a detection valid, we analyzed the percentage of the duration of the
artifact that the model labels an artifact. If this percentage exceeded a
threshold value, the corresponding detection was considered correct.

3.5.1. Taylor et al. model
The first method (Taylor et al., 2015) is based on the extraction of

several hand-crafted features from the raw EDA. The segments of 0.5 s
are processed obtaining several types of features. The first is statistical
features such as the minimum, maximum, mean, median, standard
deviation and range. These statistical features were also computed over
the first and second derivative of the segment. The same process is
repeated for a low-pass filter of the signal with a frequency threshold of
16 Hz and to its first and second derivative. The last set of features was
achieved from the computation of wavelet decomposition using Harr
window of level three. From each level, the mean, median, maximum,
standard deviation and number of coefficients above zero is computed.
A total set of 62 features were obtained.

A backward feature selection (BFS) method based on SVC was used
to select the best 40 features. Afterwards three different models were
used, Logistic regression (LogR), Random Forest Classifier (RFC) and
SVC. A parameter tunning was performed over each model to obtain the
best hyperparameters, validating it through a group cross-validation of
5 folds. This type of cross-validation method was selected to ensure that
the samples that belong to the same subject were not simultaneously
present in train and validation split. The parameters used in the grid
were 0.01, 0.1, 1, 10 and 100 for C in LogR; 200, 400 and 600
estimators, 10, 30 and 50 max. depth for RFC model; 1, 10, 100 and
1000 for C and 0.001, 0.01, 0.1, and 1 for Gamma in SVM model. The
model with highest accuracy was selected as the best model.

3.5.2. Hossain et al. model
The second model reproduces (Hossain, Posada-Quintero, Kong

et al., 2022) methodology. In our case, the model extracted the features
and recognized whether or not an artifact was present in a signal
segment of 0.5 s instead of 5 s to produce comparable results. The
computed features can be divided into three groups. First, statistical
features such as the mean, median, standard deviation, minimum,
maximum, range and shannon entropy from the raw signal and its first
and second derivatives. These characteristics are also computed from
the phasic component of the EDA signal. Second, autoregresive features
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Fig. 1. Schematic representing the artifact recognition and correction pipeline.
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ere obtained from the coefficients of an autoregressive model over
he 0.5 s signal segments, excluding the interception coefficient but
dding the error variance. These type of features had also been used
n other works related with time signal analysis (Hajj-Ahmad, Garg, &

u, 2015; Moon, Hossain, & Chon, 2021). Finally, time–frequency fea-
ures that were based in two different time–frequency transformations:
ariable frequency complex demodulation (VFCDM) (Wang, Siu, Ju, &
i, 2006) and wavelet. VFCDM was applied to the signal segment using
our different frequencies: 64 Hz, 48 Hz, 32 Hz and 16 Hz. Standard
eviation and mean were computed from this decomposition. From
he wavelet decomposition, a three-level wavelet decomposition using
aar window is used. Mean, median, standard deviation and range of
ach level is obtained for each level. A total of 50 characteristics were
btained.

Following the original work, a BFS based on RFC was used to select
he best 40 features. The input data were processed using standard
caler and min–max normalization. Parameter tuning was implemented
sing group cross-validation of 5 folds. The studied models were SVM,
radient Boosting classifier (GBC), RFC and LogR. The parameters used

n the grid were 0.01, 0.1, 1, 10 and 100 for C in LogR; 200, 400 and
00 estimators, 0.01 and 0.1 learning rate and 3, 5 and 10 max depth
or GBC; 200, 400 and 600 estimators, 10, 30 and 50 max. depth for
FC model; 1, 10, 100 and 1000 for C and 0.001, 0.01, 0.1, and 1 for
amma in SVM model. Highest accuracy defined the best model.

.5.3. LSTM-1D CNN
This section proposes a novel model that implemented artifact

etection in the last 0.5 s of a 5 s signal segment. This model’s main pur-
ose is to learn from the signal’s temporal evolution. The architecture
f this model was inspired by the work of Antczak (2018) and Bento,
elo, and Gamboa (2020), who both used CNN and LSTM to extract
eatures from a raw ECG signal. Our work uses a set of LSTM layers in
ombination with 1D CNN layers.

Fig. 2 details the model architecture. Its first two layers were LSTM
ayers of 16 neurons that returned the hidden state output for each
nput time step. Subsequently, the network included four convolutional
evels, each of which featured three convolutional layers with a batch-
ormalization operation performed after each convolution. Finally,
ach level included a dropout value of 0.05 and a max-pooling op-
ration of size 2. The numbers of filters in each level were 32, 64,
28, and 256; kernel size was 5. Finally, the model featured two fully
onnected layers of 256 and 16 neurons and a final fully connected
ayer comprising a single perceptron with a sigmoid activation function.
5

he model was trained with the rmsprop optimizer at a learning rate of
×10−5 and a batch size of 16. Due to the imbalance, the cost function
sed to train the model was the Dice-Sørensen coefficient (DSC). The
odel had an early stopping threshold of 30 epochs. The percentage

f artifacts in the training set was 12.60%. No filter was applied to the
aw signal. For each 5 s segment, min–max scaling was applied.

.5.4. Spectrogram and 2D CNN
The last proposed approach involved studying the recognition of

rtifacts via spectrogram artifact classification and segmentation. First,
spectrogram of each segment of 32 s of signal was created using Fast
ourier Transform (FFT) with size 4096. Then, two consecutive models
ere used for the temporal segmentation of artifacts. The first model
as an image classification model that classified a spectrogram as
aving an artifact or not. The second model was an image segmentation
odel that created a temporal segmentation inside the spectrogram

o find the artifacts. This second model only studied the spectrograms
lassified as containing an artifact by the first spectrogram classification
odel. This model combination was based on the work of Kyathana-
ally, Döring, and Kreis (2018), and both models were based in 2D
NN layers. An overview of the pipeline appears in Fig. 3.

To obtain the spectrogram of a signal segment, the FFT algorithm
as used. Using an FFT of size 4096, a resolution of 64 samples was
chieved. To obtain the squared matrix, the time segments of each
ignal were divided into 32 s segments. A matrix representation with the
imensions 64 × 64 was obtained. In these representations, the vertical
xis represents the frequencies in Hz, and the horizontal axis shows the
emporal information in seconds. The spectrograms were obtained with
50% overlap.

The classification model was a set of CNN layers used to perform
mage artifact recognition. The spectrogram was classified as contain-
ng an artifact if this percentage exceeded 0% based on a comparison
ith the ground truth. Otherwise, the spectrogram would be classified
s clean. This binarization was used for labeling by the spectrogram
lassification model. The model architecture comprised four convolu-
ional levels featuring between 16 and 128 filters, as Fig. 4(a) shows.
he fully connected layers in the last two levels of the model had a
ropout rate with a value of 0.5. The model’s cost function was binary
ross-entropy.

In contrast, the segmentation model followed a U-Net architecture,
s Fig. 4(b) shows. The target image was a binary image in which the
abel 1 indicated an artifact. Therefore, the artifact was represented as a
ertical segment in the spectrogram, with the width being the temporal
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Fig. 2. Schematic representation of the architecture used for raw signal classification and LSTM-1D CNN model.
Fig. 3. Scheme of the followed methodology for the detection and segmentation of EDA artifacts in the spectogram.
Fig. 4. Architecture of the two models included in the spectrograms and 2D CNNs. Image (a) shows the artifact classification model, and image (b) shows the model that achieved
the segmentation of the artifacts in the spectogram.
segmentation of the artifact demonstrated by Fig. 3. This pre-processing
procedure produced the binary artifact mask image that was model’s
target. A maximum of 256 filters was used by the segmentation model.
The kernel size for all CNNs was set to 5 × 5, and the dropout rate of
the convolutional levels was set to 0.05. The model’s cost function was
calculated as the mean of DSC and binary cross-entropy. Using Adam
optimizer with a batch size of 4, the learning rate for both models was
1×10−4, and both models had an early stopping threshold of 30 epochs.

The total percentage of spectrograms with artifacts in the training
set of the classification spectrogram model was 45.38%. Considering
the spectrograms that contained an artifact, the total number of pixels
identified as belonging to an artifact produced a total percentage of
artifact pixels of 39.80%. The data introduced in the two models was a
6

set of min–max normalized spectrograms with the dimensions 64 × 64.
To increase the size of the training dataset and achieve a higher degree
of model generalizability and robustness, the two models were trained
using data augmentation technique (Ghosh, Das, Das, & Maulik, 2019).
For this, we implemented two different types of transformation. The
first involved defining random vertical or horizontal lines equal to zero
that hide – at random – certain pixels in the spectrogram. The minimum
and maximum threshold numbers of hidden pixels were 256 and 1024.
The second transformation was the translation of the spectrogram im-
age via a random vertical and horizontal pixel distance. The minimum
and maximum threshold distances defined were 4 and 16 pixels. All the
images in the dataset suffered both types of transformation, increasing
the size of the dataset three times.
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Table 1
Descriptive features for the artifacts extracted from all signals. Metrics are shown as mean and standard deviation per participant.

Artifact
duration (s)

Number of
artifacts

Signal affected
(%)

First artifact (s) Minimum artifact
duration (s)

Time between
artifacts (s)

Total samples
with artifacta

Total
samplesa

Train 5.37 ± 3.59 113.48 ± 97.12 9.97 ± 11.80 86.13 ± 173.98 1.08 ± 0.7 169.35 ± 291.63 44 669 405 194
Test 5.14 ± 3.01 182.30 ± 86.71 12.81 ± 10.57 45.65 ± 22.36 0.73 ± 0.55 48.47 ± 44.01 18 246 130 962
Complete dataset 5.22 ± 3.56 129.49 ± 99.16 10.63 ± 11.59 76.72 ± 153.75 0.88 ± 0.53 89.74 ± 125.76 62 915 536 156

aSamples are computed considering a target each 0.5 s.
3.6. Artifact correction

Following the artifact recognition task, a regression model was
developed to correct the detected artifacts via the samples of signals
labeled artifacts. This automatic correction process combined two in-
terpolation methods. The first was a linear interpolation between the
beginning and the end of the artifact. The second involved obtaining
a polynomial of degree 8. The first and last samples of the artifact
were taken to obtain this polynomial, and six additional internal and
evenly spaced samples were considered. The methods produced a set
of points for each sample labeled an artifact. Finally, the techniques
were averaged for each point of the artifact to combine the corrections
performed using the linear and nonlinear approaches. This approach
partially reproduced the methodology involving the use of the Ledalab
software. The method used in this work combines the two approaches,
with the linear fit capturing the tendency of the artifact segment and
a 8th degree polynomial estimation to adjust the interpolation to the
non-linearity of the EDA signal. Subsequently, a simple moving average
of eight samples was implemented. The simple moving average was
applied from 0.125 s before the beginning of the corrected artifact to
.125 s after the end of the artifact to smoothen the joint between the
orrected artifact segment and the original EDA signal.

A set of metrics was computed to evaluate the quality of the
utomatic correction. We analyzed differences in terms of the phasic
omponent between (1) the raw signal, (2) the automatically corrected
ignal, and (3) the signal manually corrected by experts. We focused on
hasic component because it assessed the sympathetic activity and the
entral meaning of EDA is revealed by its peaks (Benedek & Kaernbach,
010). To probe the robustness of the proposed methodology, we
btained the phasic component using two different approaches: the
DA (using the Ledapy library) and the cvxEDA algorithms. The metrics
ompared the three phasic signals by pairs, and the computed metrics
ere the RMSE, MAE, cross-correlation, and the difference in the area
nder the curve (DAUC). Furthermore, the phasic components of the
ignals were segmented into intervals of 5 min, upon which the mean
ould be computed. We analyzed the distribution of the means among
he three signals using a one-way ANOVA test, performing a post-hoc
nalysis by pairs to observe statistical differences between them. The
ypothesis considered is that if the automatic correction simulates the
anual correction, no differences would be observed between them,
hile differences would be observed between the raw signal and the

wo corrections

. Results

.1. Signal and artifact description

Table 1 shows the descriptive analysis of the artifacts identified
onsidering the train and test sets, and the complete dataset. The mean
rtifact presence percentage was 10.63 ± 11.59%.

.2. Artifact recognition

Upon training and validating the four different approaches, the
odels were evaluated on the test set (18.19 h of recording), with the
7

performance calculated via a binary classification each 0.5 s. Therefore,
Fig. 5. Evolution of percentage of artifacts detected in terms of the overlap ratio
threshold. The line represents the average in the metric; its margin area, in light blue,
indicates the standard deviation above and below the mean of the metric.

the models were tested on 130 962 samples. The performance metrics
shown in Table 2 are averaged across the test set, providing the mean
and standard deviation for each metric.

Of the different ML models tested using the feature extraction and
ML approach, the RFC was the best model following the features
extracted from Taylor et al. (2015) whereas, the GBC outperformed
the other models following the set of features of Hossain, Posada-
Quintero, Kong et al. (2022). However, both performed worse than the
DL approaches in terms of Kappa, TPR and AUC. The spectrogram and
2D CNN approach produced the second-best performances, achieving a
TPR of 0.63 and a Kappa of 0.42. The best performance was achieved
by the raw signal and LSTM-1D CNN approach, which achieved a TPR
of 0.65 and a Kappa of 0.49. This performance is also corroborated
by the AUC metric (0.76). This led to the selection of raw signal and
LSTM-1D CNN approach as the model for recognizing artifacts to be
implemented in the final pipeline.

The predictions of the raw signal and LSTM-1D CNN model were
post-processed to render artifact recognition more accurate. This in-
volved merging the artifacts separated by under 2 s. Table 3 shows an
improvement in the mode’s performance, producing a TPR of 0.72, a
Kappa of 0.50 and an AUC of 0.79 in test set.

Next, we evaluated the percentage of artifacts detected in terms of
different overlap thresholds. Fig. 5 shows a decrease in the percentage
of detected artifacts according to the overlap ratio threshold. If we
consider a 50% overlap threshold – that is, considering identification
as valid if the model classified the artifact at least half of the time – the
model detected 59.88% of the artifacts. In addition, if we considered a
20% threshold the model identification increased to 81.39%.

4.3. Artifact correction

Using the LSTM-1D CNN model with post-processing, a fully au-
tomated pipeline was implemented to the test signal data to obtain
clean signals. This included a regression to interpolate the signal during
the artifacts and a decomposition of the signal into phasic and tonic
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Fig. 6. Automatic correction of a certain segment of an EDA signal. The blue line is the raw signal of the segment. The orange line is the manual correction performed by an
expert, and the red line is the automatic correction performed by the artifact recognition and correction algorithm.
Table 2
Evaluation of the different proposed approaches on the test set. Results appear as means and standard deviations. The model with the highest AUC, Kappa and TPR is highlighted
in bold.

Model Accuracy TPR TNR Kappa AUC DSC

Taylor et al. (2015) 0.91 ± 0.05 0.32 ± 0.13 0.98 ± 0.04 0.39 ± 0.09 0.65 ± 0.05 0.44 ± 0.12
Hossain, Posada-Quintero, Kong et al. (2022) 0.91 ± 0.05 0.38 ± 0.18 0.96 ± 0.08 0.42 ± 0.10 0.67 ± 0.06 0.47 ± 0.14
Raw signal and LSTM-1D CNN 0.88 ± 0.09 0.65 ± 0.16 0.89 ± 0.17 0.49 ± 0.08 0.76 ± 0.06 0.57 ± 0.07
Spectrogram and 2D CNN 0.87 ± 0.10 0.63 ± 0.17 0.87 ± 0.15 0.42 ± 0.09 0.75 ± 0.06 0.50 ± 0.11
Table 3
Evaluation of the raw signal and LSTM-1D CNN model predictions on the test set after artifact recognition post-processing. Results appear as means and standard deviations.

Model Accuracy TPR TNR Kappa AUC DSC

Raw signal and LSTM-1D
CNN with post-processing

0.87 ± 0.10 0.72 ± 0.13 0.86 ± 0.18 0.50 ± 0.10 0.79 ± 0.06 0.58 ± 0.10
Table 4
Statistical metrics for the pairwise evaluation of the phasic components of the automatic corrections, the manually cleaned signals, and the raw signals. Results appear as means
and standard deviations for each participant.

Algorithm Phasic component RMSE MAE Cross correlation DAUC 𝑝-value

Automatic and manual 0.146 ± 0.096 0.054 ± 0.033 0.772 ± 0.229 0.194 ± 0.184 0.427
CDA Automatic and raw signal 0.171 ± 0.108 0.068 ± 0.071 0.743 ± 0.216 0.246 ± 0.247 <0.001(***)

Manual and raw signal 0.153 ± 0.102 0.064 ± 0.055 0.795 ± 0.186 0.377 ± 0.616 0.012(*)

Automatic and manual 0.339 ± 0.256 0.078 ± 0.039 0.633 ± 0.235 0.236 ± 0.168 0.246
cvxEDA Automatic and raw signal 0.929 ± 0.786 0.272 ± 0.437 0.609 ± 0.207 0.478 ± 0.230 <0.001(***)

Manual and raw signal 0.835 ± 0.809 0.255 ± 0.423 0.682 ± 0.278 0.317 ± 0.311 <0.001(***)
components. Fig. 6 shows the final interpolation result for a raw signal
segment after the automatic correction process. The supplementary
materials include the signals automatically corrected by the discussed
algorithm.

We validated the complete pipeline by comparing the phasic com-
ponent of three signals: (1) the raw signal, (2) the automatic correction,
and (3) the expert manual correction (as ground truth). This involved
a pairwise evaluation of the signals. Table 4 shows that automatic and
manual cleaning produced lower RMSE, MAE, and DAUC values accord-
ing to both decomposition algorithms (CDA and cvxEDA). The ANOVA
test did not find any statistical differences (𝑝-value > 0.05) between
automatic and manual corrections. In contrast, statistical differences
(𝑝-value < 0.05) were observed between the automatic cleaning and
aw signal and between the manual cleaning and the raw signal. Fig. 7
hows boxplots of the values of the phasic components for each signal
nd decomposition analysis. In accordance with posthoc analysis, both
ignals demonstrate a higher similarity in the distribution of automatic
nd manual clean signals compared with the raw signals.
8

5. Discussion

This work aimed to develop a fully automatic pipeline for recog-
nizing and correcting artifacts in EDA signals collected in uncontrolled
scenarios involving hand and body movements. The work applied two
new approaches using DL algorithms: an LSTM-1D CNN applied to the
raw signal and a 2D CNN applied to the spectrogram. The previous
works of Hossain, Posada-Quintero, Kong et al. (2022) and Taylor et al.
(2015) were used as a benchmark.

This research contributes several novelties that build upon the
state-of-the-art approaches. First, some previous research on artifact
recognition (Hossain, Posada-Quintero, Kong et al., 2022; Taylor et al.,
2015; Zhang et al., 2017) had detected whether a segments of a signal
contained an artifact. However, they did not provide a final clean
signal enabling computation of the phasic component. This could be
critical because, for example, Hossain, Posada-Quintero, Kong et al.
(2022) analyzed segments of 5 s and, considering that many artifacts

in our signals are shorter (see Table 1), this analysis could affect
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Fig. 7. Boxplot showing the distribution of different phasic values. Image (a) shows the comparison using the CDA decomposition method. Image (b) shows the results produced
y the cvxEDA algorithm.
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ong segments of uncorrupted signal. Meanwhile, other studies had not
ecognized artifacts, instead aiming to directly correct signals using,
or example, wavelet-based transformation (Chen et al., 2015) or con-
olutional autoencoders (Hossain, Posada-Quintero and Chon, 2022).
owever, these works did not use manually reconstructed signals as
ground truth, which represents the objective of this study, that is,

o emulate the reconstruction performed by an expert by providing an
rtifact-free signal.

This is the first work to develop a fully automatic pipeline with
hree steps: (1) artifact recognition each 0.5 s, (2) post-processing of
rtifact recognition, and (3) correction of the signal based on artifact
dentification. Meanwhile, by using as a ground truth a manual re-
onstruction of the signal, we have been able to assess the pipeline’s
erformance via a comparison of the automatic and manual corrections.
dditionally, the dataset created contains 74.46 h of raw and manually
econstructed data, indicating labeling of more than 500,000 samples
f 0.5 s. The data were collected from 43 different participants, ensuring
he capacity to perform inter-subject extrapolations. The uncontrolled
cenario used guaranteed the production of hand and body motion arti-
acts because participants needed to complete minigames causing major
otion artifacts and simulating the real implementation conditions of

ntelligent EDA devices.
Notably, no previous work had analyzed the implications of au-

omatic corrections for the phasic component of the signal, the most
ommon feature used in studies because it relates to arousal (Posada-
uintero & Chon, 2020). This may be due to the need for the recon-

truction of the signal to analyze the implications of the correction
or the phasic component, information not contained in the majority
f previous work. This work has analyzed the differences between the
hasic component derived from our pipeline and the manual correction,
emonstrating no differences between them. This novel result supports
ur pipeline as an emulation of human expert artifact correction.

Furthermore, this is the first artifact correction pipeline that is
vailable for the use (and testing) of the scientific community and the
irst work that includes a dataset featuring raw data, manual recon-
tructions, and automated corrections. Thus, it represents a benchmark
hat can be used by future researchers to compare new methods and
mprovements using the same data, a current limitation on the state-
f-the-art limitation that precludes comparison of the results because
ifferent data are used. These methodological improvements repre-
ent a breakthrough in the validation of recognition and correction
lgorithms for EDA signals.
9

p

We used two state-of-the-art methods as a benchmark. In the test
et, both achieve the highest accuracy, but they present the lowest
appa and AUC. It is because the TPR is relatively low, since Hossain,
osada-Quintero, Kong et al. (2022) and Taylor et al. (2015) detects
he 32% and 38% of the artifacts respectively. Notably, these results
ere worse than those presented by previous studies. There are two
otential reasons for this discrepancy. First, the type of labeling used
n the present work differs from that used in other studies. That is,
ther studies directly assigned a complete window of 5 s the label of
rtifact or not artifact, while we used the comparison with the manual
orrection to assign this label in segments of 0.5 s, which suppose an
mportant increasement of the precision of the correction. Second, the
mbalance of the current dataset (10.63%) exceeds that of previous
xperiments (e.g., 48.96% in the work of Gashi et al. (2020)). This
ould bias the performance and the results of previous works. Note
hat we use a dataset collected during a VR Serious Game, which is an
ctual use case of the pipeline, while as an example (Hossain, Posada-
uintero, Kong et al., 2022) create a specific protocol to generate the
rtifacts.

The two models using DL architectures outperformed the feature
xtraction and classical ML approach, achieving higher TPR, Kappa,
UC, and DSC values in the test set. Inspired by prior research on
CG denoising (Antczak, 2018; Bento et al., 2020), we investigated the
se of a LSTM-1D CNN. Concurrently, the adoption of a 2D CNN was
xplored, drawing motivation from previous studies on Magnetic Res-
nance Spectroscopy denoising (Kyathanahally et al., 2018). The best
odel was the raw signal and LSTM-1D CNN model, which achieved
final accuracy of 0.88, a Kappa value of 0.49, and a TPR value of

.65. This represents a large increase in artifact detection performance
elative to previous methodologies. Meanwhile, the spectrogram and
D CNN model achieved a Kappa value of 0.42, a TPR value of 0.63,
nd total accuracy of 0.87. This model’s performance was inferior to
hat of the raw signal and LSTM-1D CNN model, likely because 2D
NN was not optimized for the study of spectrogram images due to the
on-local information that a spectrogram provides, with CNNs basing
heir knowledge on the local information contained in the data. More
pecialized models, such as spectral-CNN, could be implemented in
uture research to study the artifact detection problem in the EDA
ontext.

To improve artifact recognition, a post-processing method was ap-

lied to the predictions of the raw signal and LSTM-1D CNN model.
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This post-processing improved artifact detection, as demonstrated the
increased Kappa and TPR values (0.50 and 0.72, respectively). We also
analyzed the percentage of artifacts included in the test set that were
correctly identified by the model. Considering an identification valid if
the model correctly labeled 50% of the artifact, the pipeline recognized
59.88% of the artifacts, with detection increasing to 81.39% with the
use of a 20% threshold. Therefore, most artifacts were identified at least
partially correctly, potentially because the model identifies the most
aggressive segments of artifacts but not the entirety of the correction
made by human experts.

Finally, the EDA signal was corrected using linear and polyno-
mial regressions on the segments identified as artifacts. The automatic
correction algorithm used in this work was designed to be similar
to the type of manual correction enabled by Ledalab software. Al-
though the results obtained fulfilled the initial objective, the type of
automatic correction could be complemented or replaced by other
correction methodologies. For example, the methodologies suggested
by Chen et al. (2015) or Shukla et al. (2018), who implemented
wavelet transformation, lowpass filters (Hernandez et al., 2011), and
the cvxEDA algorithm (Greco, Valenza, Lanata et al., 2016) could
enrich the corrections made by the proposed algorithm.

The complete pipeline was evaluated based on the implications of
the corrections for the phasic component. This involved using a one-
way ANOVA with a post-hoc test to compare the three signals: (1) the
raw signal, (2) the automatic correction, and (3) the manual correction
by a human expert (ground truth). According to Table 4, there was no
statistical difference (𝑝-value > 0.05) between the phasic component
produced by the automatic correction and the manual correction for ei-
ther the CDA or cvxEDA algorithm. Furthermore, the type of correction
performed was robust against the type of signal decomposition applied,
showing similar results for the two algorithms. Meanwhile, statistically
significant differences (𝑝-value < 0.05) were observed between the
phasic component of the raw signal and the manual correction, as well
as between the raw signal and the automatic correction. This indicates
that the automatic correction features less artifact noise than the raw
signal (see Fig. 7). Other metrics, namely, RMSE, MAE, and DAUC, also
showed that the phasic component of the automatic correction was
closer to the phasic component of the manual correction than to the
phasic component of the raw signal. Therefore, the results suggest that
the automatic correction accurately simulates manual correction, inde-
pendently of the decomposition algorithm used. These results support
this paper’s main objective of providing an artifact-free corrected signal
that emulates manual correction by a human expert.

However, the study does have some limitations that must be ad-
dressed in future research. First, model results can be improved by
including more experts for manual correction to reduce human bias.
This would enrich the signal target and, therefore, the generalizability
of the models. Second, the visual inspection and manual reconstruction
can create an unrealistic morphology in the EDA signal, even if it is the
standard practice in experiments. The manual cleaning aims to reduce
the negative impact of the artifact on the signal and, in particular, on
the phasic component, but it is not capable of reconstructing the real af-
fected EDA. The alternative approach to obtain the artifact-free signal is
to create a protocol that forces one hand to generate movements while
the other is stationary, collecting data from both different locations
simultaneously, as performed by Hossain, Posada-Quintero, Kong et al.
(2022). Even if these protocols may have a low degree of ecological va-
lidity since it is an artificial task, and EDA signal can change depending
on the location (van Dooren, Janssen, et al., 2012), the model must be
tested considering this alternative groundtruth. Third, future research
should evaluate the model in other types of environments and tasks
because the specific movements performed can modify the form of the
artifacts. Validating the methodology for EDA signals collected during
10

other types of tasks would strengthen the model and demonstrate its ap-
plicability to other contexts as real-world experimentations. Moreover,
the procedure has not been tested for signals from different EDA devices
or those with frequencies below 128 Hz. The methods established here
could be studied at different sampling frequencies to review their
performance and generalizability. Finally, future experiments should
consider researching the development of fine-tuned architectures for
different models, which could improve their classification metrics. For
example, generative-adversarial networks and reinforcement learning
represent promising alternatives to the models demonstrated in this
work.

6. Conclusion

We have developed a fully automatic pipeline for recognizing and
correcting EDA motion artifacts, achieving a corrected signal that does
not differ from manual correction by human experts in terms of phasic
component. The recognition of the artifacts outperforms two previous
state-of-the-art methods. These results show that EDA signal correction
in scenarios that require body movements can be achieved automati-
cally, findings that can enhance the use of EDA signals in future exper-
iments conducted in uncontrolled environments, including immersive
VR and real-world settings. These findings also provide encourage-
ment for the development of intelligent devices for recognizing human
emotional states for healthcare services without human intervention,
including implementations in the contexts of disorder recognition,
adaptive therapy, remote mental health monitoring systems, and driver
drowsiness detection.
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