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Relationship between neck 
kinematics and neck dissability 
index. An approach based 
on functional regression
Elisa Aragón‑Basanta 1*, William Venegas 2, Guillermo Ayala 3, Alvaro Page 1 & 
Pilar Serra‑Añó 4

Numerous studies use numerical variables of neck movement to predict the level of severity of 
a pathology. However, the correlation between these numerical variables and disability levels is 
low, less than 0.4 in the best cases, even less in subjects with nonspecific neck pain. This work aims 
to use Functional Data Analysis (FDA), in particular scalar‑on‑function regression, to predict the 
Neck Disability Index (NDI) of subjects with nonspecific neck pain using the complete movement 
as predictors. Several functional regression models have been implemented, doubling the multiple 
correlation coefficient obtained when only scalar predictors are used. The best predictive model 
considers the angular velocity curves as a predictor, obtaining a multiple correlation coefficient of 
0.64. In addition, functional models facilitate the interpretation of the relationship between the 
kinematic curves and the NDI since they allow identifying which parts of the curves most influence 
the differences in the predicted variable. In this case, the movement’s braking phases contribute to 
a greater or lesser NDI. So, it is concluded that functional regression models have greater predictive 
capacity than usual ones by considering practically all the information in the curve while allowing a 
physical interpretation of the results.

Neck pain is a complex condition that can be caused by multiple factors, and it is a significant issue in mod-
ern society. It is the second most common musculoskeletal pain condition worldwide, and its prevalence has 
increased significantly over the last three  decades1. The economic burden of neck pain is remarkable and includes 
treatment costs, reduced productivity, and job-related  problems2,3. Therefore, finding a cost-effective diagnostic 
method is important to better characterize the consequences of pain and manage the patients who suffer it.

Neck kinematics analysis is helpful in assessing the severity of neck injuries since pain and functional losses 
are related to mobility impairments. Traditionally, mobility has been quantified by the cervical range of motion 
(CROM), the reduction of which is associated with numerous  pathologies4.

However, CROM provides incomplete information about kinematics and fails to explain how movement 
occurs within the joint range. To address this limitation, other studies have focused on measuring continuous 
motions, capturing angular positions, speeds, accelerations and other kinematic parameters related to mobility 
and motor coordination. Generally, reduced range, slower speed, less smoothness, and decreased reproduc-
ibility of movements are often associated with pain and disability. There is a wealth of information available on 
kinematic studies, which has been recently  reviewed5.

Despite their potential interest, the variables extracted from kinematic studies, such as CROM, maximum 
speeds, accelerations, and smoothness of movement, exhibit high variability. While differences between the 
means of these variables for healthy individuals and those with pathology have been observed, these differences 
are not as pronounced at the individual level. Consequently, establishing cut-off values becomes challenging, 
limiting the clinical utility of these  techniques5.

The relationship between the kinematic variables and the assessment obtained with other widely used and 
documented clinical assessment tools, such as self-reported disability questionnaires, is generally weak. These 
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tools, including questionnaires such as the Neck Disability  Index6, the Visual Analogue Scale (VAS)7, the TAMPA 
scale for  kinesophobia8, among others, have good reliability values and are widely used in the clinical  setting9,10.

Some studies have been carried out that analyze the relationship between scale scores and kinematic variables. 
Most studies use CROM as a reference variable using other measurement methods such as  inclinometers11–13, 
 goniometers14–16 or  radiographs17,18. Although most studies report a decrease in CROM as pain score or disability 
index increases, correlations are low, with absolute values between 0.1 and 0.4 in most  studies9. However, it is 
difficult to compare the studies because they use different measurement techniques and are applied to patients 
with varying types of injuries and levels of severity.

Less numerous are those that analyze the relationship between the kinematic variables obtained from con-
tinuous movements and the  questionnaires19–24. These studies offer scattered results due to the variability in the 
type of tests carried out and the differences in the pathologies analyzed. However, there is evidence that as pain 
or disability increases, movements are slower, and the correlations are not too high either, generally less than 0.4, 
except in some studies with a small number of samples and subjects with acute pain or high levels of disability.

It is therefore worth considering the reason why variables associated with the movement have such low rela-
tionships with disability indices whose reliability and clinical utility have been  proven9.

One possible cause is the dispersion in the individual response in kinematic tests, which involve voluntary 
movements with notable variability, leading to high values of the minimum detectable  difference25. This disper-
sion is even more significant in the case of variables such as speeds and  accelerations26. On the other hand, the 
reliability of the ROM is not better than that reported for scales such as the NDI, whose Intraclass Correlation 
Coefficient (ICC) values exceed the value of 0.9 in many  pathologies27,28. These values are never reached for 
variables such as speeds or accelerations in kinematic  tests26,29.

In addition to these causes, associated with the limited reproducibility of kinematic techniques, it is also 
worth asking what information is extracted from the continuous movement records and what use is made of 
said information. Most studies reduce the motion curve information to just a few parameters, such as maximum 
or minimum speed, acceleration, or a mean value. Using the ranges or the maximum values is an easy way to 
obtain numerical values from a curve. Still, it supposes a loss of important information since a few values reduce 
the kinematic information of each curve. Furthermore, such variables are chosen in a possibly arbitrary manner, 
generally at points that are easy to identify.

The movement of a joint is described by the curves of positions, speeds, and accelerations that, from the 
mathematical point of view, can be described and treated as functional variables within the framework of the 
so-called Functional Data Analysis (FDA). This branch of Statistics extends and generalizes the classical methods 
of numerical variables to functional  variables30,31. The use of FDA techniques has essential advantages over the 
classical description of the movement since it maintains all the information contained in the curves (and in their 
derivatives) without reducing them to a set of numerical values (maxima, minima, event durations) that do not 
represent the relationships associated with motor coordination and movement dynamics.

There have been numerous studies in the field of FDA-based  biomechanics32,33 that include generalizations 
of classical techniques to describe the variability of curves using functional principal component  analysis34,35, 
analyze the differences associated factors using functional  ANOVA36,37, the shape variation of curves associated 
with numerical variables through functional  regression38,39 and curve-based classification  techniques40,41.

We have not found any studies that examine the correlation between movement curves and clinical indices 
that represent pain or disability. In the clinical setting, there are multiple indices to evaluate pain or disability 
caused by pain. The NDI is the most commonly used tool to assess self-rated disability in patients with neck pain. 
This instrument encompasses various clinical domains, such as pain intensity and the ability to perform basic and 
instrumental daily activities. To explore the relationship between movement curves and this neck clinical index, 
a variant of functional regression with numerical response (for example, the NDI) and functional predictors 
(motion curves) i.e. scalar-on-function regression could be used. The general mathematical approach was pro-
posed by Ramsay and  Silverman30. However, there are a few medical applications of this type of  regression42. As 
far as we know, it has never been used to interpret the relationship between motion curves and disability indices.

The subject of this paper is to use functional regression to identify the functional relationship between move-
ment curves and NDI scores in a sample of subjects with non-specific neck pain. It will be verified how the cor-
relation between the kinematic variables and the NDI is improved using all the information on the movement 
curves. It also provides a way of interpreting the contribution of each part of the movement to the increment or 
decrement of the given response i.e., the index considered.

Materials and methods
Materials
The data on neck movement kinematics correspond to a previous study designed to analyze the effect of a 
manipulation session in patients with non-specific neck  pain43. In said study, only conventional numerical 
variables (ranges of movement and velocity) were analyzed, although complete movement functional data were 
recorded, which are the ones analyzed in the present study.

Twenty-eight subjects participated in the study. Participants eligible for inclusion met the following criteria: 
a primary complaint of neck pain characterized by a non-traumatic onset and a mechanical nature (i.e., pain 
exacerbated by mechanical factors and alleviated in specific positions). Additionally, identifiable symptoms were 
produced through local clinical provocation tests. Exclusion criteria for the participants encompassed a history 
of neck surgery, the presence of radiological findings such as vertebral fractures or tumors, radiating neck pain 
or pain coupled with vertigo, diagnosed psychological disorders, and red flags such as night pain, severe muscle 
spasm, and involuntary weight loss. Symptom mismatch, defined as unexplained symptoms outside the clinical 
context, was also considered in the exclusion criteria. Measures of movement and functional status were obtained 
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for each subject before and after treatment, giving a total set of 56 observations. Both measures were used for each 
subject due to significant differences in NDI values before and after treatment and because they were obtained 
in different sessions. For this sample size, a power of 0.8 is obtained (with α = 0.05 ) for correlation coefficients 
greater than r = 0.2244.

All the participants signed an informed consent, and the study protocols were approved by the Ethics Com-
mittee of the University of Valencia (H1450106985729). All procedures were performed in accordance with the 
latest revision of the Declaration of Helsinki.

The kinematic study performed neck flexion-extension tests according to the protocol described in Venegas 
et al.26, whose general lines are described below. The subject sat in a chair designed for this purpose, which allows 
fixing the position of the trunk and legs so that only neck and head movement is allowed. Said movement was 
recorded using a video-photogrammetry system (Kinescan-IBV) using eight reflective markers on a headband 
attached to the subject’s head. As a starting reference position, the participants were asked to look at their eyes in 
a small mirror ( 3× 8 cm.) placed 2.5 m. in front of them at eye level. An additional calibration measurement was 
performed to define an anatomical reference system in this position. This system was defined by an additional set of 
5 markers located on the left and right tragus of the ear, on the nasal bone, and the left and right infra-orbital bones; 
the latter three markers were mounted on a spectacle frame. After calibration, the anatomical markers were removed.

In each measurement session (before and after treatment), subjects had to perform cyclical and continuous 
neck flexion-extension movement at the maximum speed they considered comfortable.

From the coordinates of the markers, the angles from the reference position and the velocities were calcu-
lated using the calculation process described in Page et al.45. A continuous record was obtained in each session, 
divided into complete extension-flexion cycles (7 per subject), of which the first and last were discarded, i.e., 
we have five cycles per individual. Subsequently, the time scale was normalized linearly so that all movements 
were represented as percentages of the cycle duration. Later, the functional mean of the five position and angular 
velocity curves was obtained and used as independent functional variables in this work. In addition, the ranges 
of motion (ROM) were calculated as the difference between the maximum and minimum angles and the cor-
responding ranges of angular velocity, which are the predictors for the regression model.

The Spanish version of the Neck Disability Index (NDI) was the dependent  variable46. This questionnaire 
assesses the ability of users to perform functional tasks of daily life. The NDI comprises ten questions catego-
rized into the following domains: Pain Intensity, Personal Care, Lifting, Reading, Headaches, Concentration, 
Work, Driving, Sleeping, and Recreation. Within each question, respondents choose from six possible answers, 
with scores ranging from 0 (indicating no disability) to 5 (reflecting complete disability). The individual scores 
for each section are then summed up. The overall scoring is presented on a scale of 0 to 50, where 0 represents 
the optimal score, indicating no disability, and 50 signifies the poorest score, indicating the highest level of 
disability. This questionnaire was filled before starting each measurement session (before and after treatment) 
so that a measurement of the numerical dependent variable is available for each observation of the functional 
independent variables.

Methods
Model
Our goal is to model the conditional distribution of a scalar given functions and scalars. A common practice 
just mentioned is to describe each functional predictor with some numerical descriptors such that functions 
and scalars are used together as scalars, resulting in loss of information. This practice allows us to use linear 
models and generalized linear models to model the distribution of the response conditional to given numerical 
predictors. This paper tries to widen the point of view and show how to use functional predictors on its own. Let 
us show the way from the simple regression model to functional regression.

If we have a unique scalar predictor, xi , and a scalar response, yi then our data set consists of (xi , yi) with 
i = 1, . . . , n where a given xi could correspond to different responses. The interest is to model the probability 
distribution of the random response Yi given the predictor xi , and the simplest regression model is

where the random errors ǫi ’s are assumed  independent and normally distributed with null mean and common 
variance σ 2 i.e., ǫi are i.i.d. (independent and identically distributed) with ǫi ∼ N(0, σ 2) . If several scalar predic-
tors, xi ∈ R

p , are used, then the multiple regression model assumes that Yi given xi is given by

where xTi  is the transpose of the column vector xi = (xi1, . . . , xip) and β = (β1, . . . ,βp) with ǫi ’s are i.i.d. with 
ǫi ∼ N(0, σ 2) i.e. it is assumed that Yi ∼ N(xTi β , σ

2).
If a functional predictor, xi , is available and a random scalar response, Yi , then the natural extension of the 

simple regression model is

with the random errors ǫi ’s i.i.d. with ǫi ∼ N(0, σ 2) . It is assumed that x ∈ L2 i.e., 
∫
T x2(t)dt < ∞ i.e. the square 

of the function is integrable. Let us remember that for two functions defined as a domain T, f , g ∈ L2(T) , the 
inner product is defined as < f , g >=

∫
T f (t)g(t)dt . The model (3) can be rewritten as

(1)Yi = β0 + β1xi + ǫi ,

(2)Yi =

p∑
j=1

xijβj + ǫi = x
T
i β + ǫi ,

(3)Yi = β0 +

∫
β1(t)xi(t)dt + ǫi ,
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A numerical coefficient corresponding to a scalar predictor is replaced by a functional coefficient corresponding 
with a functional predictor in the simple regression model given in (1). The functions xi and β1 are expressed in 
(possibly) different basis: xi(t) =

∑Kx1
r=1 cirψr(t) and β1(t) =

∑Kβ

s=1 bsθs(t) in such a way that

where vk1 =
∑Kx

k2=1
cik2 Jk1k2 is known. The multiple regression model would be

where the bj ’s are the coefficients. The coefficients cik are estimated using least squares. The basis chosen and the 
number of functions of this basis are fundamentals in the shape of the coefficient function.

If several functional predictors x(s)i  with s = 1, . . . , S are considered besides scalar predictors ui ∈ R
q then 

the functional regression model can be formulated as

It can be chosen different basis functions for the different coefficient functions βs . Additionally, note that the 
functional predictors have to be expressed in its own basis.

Family and number of basis functions
There are two procedures to estimate the coefficient function βs (3). Both procedures use basis expansions of βs 
with the following difference: The first one uses a low-dimensional basis for βs while the second uses a combina-
tion of a high-dimensional basis with a roughness penalty.

For this paper, the first option is preferred due to the fact of a better interpretation of the regression coef-
ficient function and the good results obtained, which will be explained later. A basis of functions for the coef-
ficient function is required. There are several possibilities: B-splines, Fourier, exponential, . . . For periodic data, 
such as the flexion-extension movement of the neck, the Fourier function basis is usually used. The B-splines 
function basis, also widely used, is more used for non-periodic functional  data30. Fourier basis has been chosen: 
{1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt), . . . }.

Then, it is required to establish a criterion to choose the optimal number of basis functions providing a good 
data approximation and a robust model. Obviously, more basis functions will correspond with a higher multi-
ple correlation coefficient but a less robust model. In addition, the coefficient function has a more complicated 
interpretation with respect to the movement analyzed. We will take into account three different criteria in order 
to choose the basis dimension. The first criterion is to achieve a good multiple correlation (denoted r). Secondly, 
it has been tested if all coefficients can be considered simultaneously null, i.e., the nested model with all predic-
tors and the model with just the constant are compared. The usual F statistic or the corresponding p-value can 
be used. Finally, the third criterion is the widely used Akaike Information Criterion (AIC)47, defined as minus 
twice the maximum loglikelihood of the model plus twice the number of parameters of the model.

A good number of basis functions will correspond with higher values of the correlation coefficient r, lower 
AIC and a reasonable value of F statistic. All calculations have been carried out with the functional regression 
model of velocity, which is the simplest one.

Statistical analysis
To test the hypotheses, the following regression models have been fitted. In all of them, the NDI is the response 
and the different predictors are shown in Table 1.

The position and velocity (numerical or functional) have been chosen because they are the most used in clini-
cal practice. In the case of the models with scalar and functional predictors, we have only considered the angular 
velocity as a functional variable because it offers better fits than the angle as will be verified later.

In the first analysis, each model has been evaluated using the multiple correlation coefficient, r, the deter-
mination coefficient R2 , the statistic F testing all coefficients except the constant as null and the p-value cor-
responding to this F statistic. The same basis has been used in all functional models selected according to the 
above mentioned criteria.

On the other hand, a nested model has been fitted to evaluate the improvement of functional models com-
pared to non-functional ones. In the first analysis, the improvement of the NDI vs. ω(t) model is analyzed when 
the two scalar variables RoM and RoV are added. Then, we study the improvement of adding the functional 
variable to the two scalar variables. A hypothesis test is carried out where the null hypothesis H0 is that both 
models are not different i.e. all coefficients in the more complex model and not in the simpler one are null. In 

(4)Yi = β0+ < xi ,β1 > +ǫi for i = 1, . . . , n.

(5)

∫
β1(t)xi(t)dt =

∫

T

Kβ1∑
r=1

brθr(t)

Kx∑
k2=1

cik2ψk2(t)dt =

Kβ1∑
k1=1

Kx∑
k2=1

bk1cik2

∫

T
θk1(t)ψk2 (t)dt =

Kβ1∑
k1=1

Kx∑
k2=1

cik2 Jk1k2bk1 =

Kβ1∑
k1=1

vk1bk1 ,

(6)Yi = β0 +

Kβ1∑
j=1

vjbj + ǫi ,

(7)Yi = β0 +

S∑
s=1

< x
(s)
i ,βs > +

q∑
r=1

β(u)
r uir + ǫi .
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this way, if the p-value is high, there is no evidence to reject the null hypothesis, so the variables of the more 
complex model do not improve the simpler model. On the other hand, if the p-value is small, there is evidence 
to reject the null hypothesis, then the coefficients are not null, and the variables added to the model M0 improve 
the results of the simplest model.

All analyses have been carried out with the R packages  fda48 and fda.usc49.

Results
Participants and kinematic data
Table 2 shows some numerical descriptions of the subjects participating in the study. There are 28 subjects (18 
women and 10 men) whose neck movement and NDI have been measured before and after treatment. Significant 
differences were found in the NDI means before and after treatment (p-value <0.001 obtained by a paired t-test). 
Therefore, there are 56 different observations, of which only 55 have been considered in this paper because one 
of the observations had errors in the measurements of the movement curves.

The curves of angle and angular velocity are shown in Fig. 1, where the curves of all observations (N=55) 
are represented, as well as the mean curve and the curves of the mean plus and minus one standard deviation, 
respectively.

Number of functions
Table 3 shows the results corresponding to the selection criteria for the number of functions of the Fourier basis: 
the multiple correlation coefficient r, the statistic F and AIC. Note that there is an odd number of functions 
because the Fourier basis has pairs of sine and cosine functions. Regarding the results in Table 3, the number of 
functions must be chosen considering the best criterion values as a whole since the improvement of some implies 
a worsening of others. Thus, although five functions provide the highest F value, they give the lowest multiple 
correlation value with little difference in the value of AIC if seven or nine functions are considered. Therefore, 
we choose nine functions as a compromise solution with a high multiple correlation value (0.64), an AIC similar 
to the one obtained with fewer functions, and a good F, not the highest value but not the lowest. In conclusion, 
we will consider nine functions to define our Fourier basis, i.e., the constant and four pairs of sines and cosines.

Table 1.  Four scalar-on-scalar regression models using the range of angle (RoM) and the angular velocity 
(RoV). Two scalar-on-function regression models consider the angle ϕ(t) and the angular velocity ω(t) . 
Two scalar on scalar and function regression models. The models are named using the R formula notation 
extended to include functional predictors. When there is a functional predictor then the corresponding 
function is indicated. For example, ndi ∼ RoM corresponds to ndii = β0 + β1RoMi + ǫi . The notation of 
ndi ∼ RoM + RoV + RoM : RoV  in the last non-functional model incorporates the interaction between both 
predictors.

Predictor type Model

Scalar

ndi ∼ RoM

ndi ∼ RoV

ndi ∼ RoM + RoV

ndi ∼ RoM + RoV + RoM : RoV

Function
ndi ∼ ϕ(t)

ndi ∼ ω(t)

Scalar and function
ndi ∼ ω(t)+ RoV

ndi ∼ ω(t)+ RoV + RoM

Table 2.  Some descriptions of the subjects studied: the sample size for women and men, the mean and 
standard deviation of age, weight, height, and NDI before and after treatment. There are significant differences 
in the NDI before and after the treatment (p-value<0.001).

VARIABLE

WOMEN (N=18) MEN (N=10) TOTAL

Mean (sd) Mean (sd) Mean (sd)

Age 35.8 (12.4) 33.3 (13.4) 34.9 (12.6)

Weight 64.9 (10.1) 83.6 (11.9) 71.6 (14.0)

Height 162.6 (6.8) 178.8 (7.35) 168.4 (10.5)

NDI (before) 13.6 (3.7) 9.7 (4.1) 12.2 (4.2)

NDI (after) 9.4 (6.2) 7.0 (3.5) 8.6 (5.5)
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Model comparison
Table 4 shows different measures of goodness for the fitted models: non-functional, functional, and scalar and 
functional. The non-functional models present poor multiple correlation values, r < 0.352 in the most complete 
model. The fit with RoV is much better than when using RoM ( r = 0.298 vs. r = 0.017 ), a model whose p-value 
is non-significant ( p = 0.902 ). Adding variables and interactions somewhat improves the correlation but at the 
cost of lowering the F statistic and the p-value.

Figure 1.  Curves of angle and angular velocity. Left, angle, right, angular velocity. The grey lines are the curves 
for each subject, black line is the mean functional curve, the dashed black line is the functional mean plus one 
standard deviation and finally, the dot-dashed black line is the functional mean minus one standard deviation.

Table 3.  Observed r, Akaike Information Criterion AIC, statistic F and p-value for different number of basis 
functions of βs using as predictor the angular velocity.

Number of basis r AIC F p value

5 0.58 160.47 4.88 0.001

7 0.60 161.62 3.88 0.002

9 0.64 161.68 3.48 0.003

11 0.64 165.43 2.75 0.009

Table 4.  Four non-functional regression models with different predictors, range of angle (RoM) and angular 
velocity (RoV), two functional models considering the curves of angle ϕ(t) and angular velocity ω(t) , and two 
functional models with scalar predictors. The notation used is the same as that of Table 1. The table also shows 
the values of multiple correlation r and coefficient of determination R2 of the model, as well as the statistic F 
and the p-value.

Type Model r R
2 F p value

Non-functional

ndi ∼ RoM 0.017 <0.001 0.015 0.902

ndi ∼ RoV 0.298 0.089 5.174 0.027

ndi ∼ RoM + RoV 0.349 0.122 3.597 0.034

ndi ∼ RoM + RoV + RoM : RoV 0.352 0.124 2.401 0.078

Functional
ndii ∼ ϕi(t) 0.563 0.317 2.322 0.031

ndii ∼ ωi(t) 0.640 0.410 3.475 0.002

Functional plus scalars
ndii ∼ ωi(t)+ RoV 0.640 0.410 3.060 0.005

ndii ∼ ωi(t)+ RoV + RoM 0.643 0.413 2.755 0.009
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The functional models improve the correlation with the NDI and present significant F values. Thus, the model 
that adjusts the angles ϕ(t) shows a multiple correlation r = 0.563 , compared to r = 0.017 when the RoM is used. 
The improvement is also notable in the case of angular velocity ( r = 0.640 in the functional case, compared to 
r = 0.298 in the RoV).

The angular velocity ω(t) model is better than the one based on the angle ϕ(t) in all indicators. It presents a 
higher multiple correlation (0.64 versus 0.563), a higher F value (3.475 versus 0.317), and a lower p-value (0.002 
versus 0.301). In addition to presenting worse fits, it should be noted that the function ϕ(t) is a geometric vari-
able that depends on the reference taken as the neutral position. On the contrary, ω(t) is a physical variable that 
takes values associated with the movement that do not depend on any geometric reference. Therefore, ω(t) has 
been used as the only functional predictor in the functional plus scalars models with the other scalar predictors.

Such functional plus scalars models do not substantially improve the simpler functional model based on 
angular velocity. Thus, the model that adds RoV presents the same r but lower F values (3.060 vs 3.475) and 
higher p-values (0.005 vs. 0.002). The model that uses ω(t) , RoV, and RoM barely increases the multiple cor-
relation coefficient by a few thousandths (0.643 vs. 0.640), with a notable reduction of F (2.755 vs. 3.475) and an 
increase in the p-value (0.009 vs. 0.002).

To test the hypothesis that the functional model based on angular velocity is better than the scalar models, 
the model that includes the functional predictor, ω(t) , and the two scalars RoM and RoV have been analyzed. 
This model, M1 , has been compared with two simple nested models (Table 5). The first model, M01 , is the simple 
functional model with ω(t) as the only predictor. The second, M02 , is the model with the two scalar predictors.

The results in Table 5 show that the improvement of the model by incorporating the two scalar variables is 
not significant (p-value= 0.884), which implies that it cannot be rejected that the coefficients corresponding to 
scalar predictors are null. Likewise, the improvement in the purely scalar model when adding the functional 
predictor is significant ( p = 0.028).

Interpretation of the coefficient function
In addition to improving the model’s predictive ability, functional regression can help interpret the relationship 
between the predictor curve and the scalar response. To do this, we will describe the contribution of each part 
of the curve ω(t) to the value of the NDI based on the value of the product β1(t)ω(t) throughout the movement 
cycle.

Figure 2 shows the curves corresponding to three cases with different NDIs (4, 9, and 14, respectively). Each 
graph shows the angular velocity curve ω(t) , dashed black, the adjustment coefficient curve β1(t) in blue, and 
the product curve β1(t)ω(t) in black and solid.

According to the functional setting, the value of NDI will be estimated from a constant β0 = 14.95 plus the 
integral 

∫
β1(t)ω(t)dt , which is given by the areas of green regions (positive values) and orange regions (negative 

values) in the examples in Fig. 2. As can be seen in this figure, in the three cases analyzed, there are three areas 
with a positive contribution and three with a negative contribution. Although we will make the description based 
on these three examples, the pattern is similar in all the records. If the areas marked green are higher than the 
orange ones, the predicted NDI will be greater than the average. Otherwise, it will be lower.

The main contribution to the increase in NDI is in the positive zone from the beginning of the cycle (maxi-
mum extension, until reaching the maximum extension velocity). Then, two other zones contribute to a much 
lesser extent, one around the middle of the cycle (maximum extension) and another small peak after passing 
through the neutral position after maximum flexion velocity. The zones of negative area and contribution to the 
decrease in the predicted NDI are also three and appear after the peak of extension velocity, during the accelera-
tion phase until after reaching the maximum at the end.

RoV is related to the maximum velocities in flexion and extension movements, which are correlated vari-
ables. Furthermore, their contributions to the estimated NDI are opposite. This is why the correlation between 
RoV and NDI is so limited. In fact, it is relatively common to find subjects with similar RoV values but with 
differences in the NDI, because they present different shapes of the curves. In Fig. 3, two pairs of subjects with 
these characteristics appear. We will use these examples to illustrate better the contribution of each part of the 
curve to the increase or decrease in NDI.

The black lines correspond to the subject with the lowest NDI (5 in the left and 4 in the right case), and the 
red lines correspond to the subject with the highest NDI (14 and 15, respectively). The dashed lines are the 
velocities of each subject. In solid lines are the product function β1(t)ω(t) , scaled for greater NDI with the RoV 
ratio. Three movement zones designated with A, B, and C have been shaded to better comment on the results. 

Table 5.  Values of statistic F and p value to compare the nested models to assess whether adding predictors to 
the simpler model M0 improves it. Two cases of nested models are compared, the first in which scalar variables 
are added to the functional velocity model M01 . The second one is when the functional velocity is added to the 
non-functional model M02 . The notation used in the model is the same used in Table 4.

Nested models Model F p value

M01 : Functional ndii ∼ ωi(t)
0.124 0.884

M1 : Functional and scalar predictors ndii ∼ ωi(t)+ RoV + RoM

M02 : Scalar ndi ∼ RoM + RoV
2.378 0.028

M1 : Functional and scalar predictors ndii ∼ ωi(t)+ RoV + RoM
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Figure 2.  Results for subjects with different levels of NDI: left, NDI = 4 ; middle NDI = 9 and right 
NDI = 14 . The dashed black line is the velocity with the corresponding NDI, the solid blue line corresponds 
to the scaled coefficient function, and the solid black line corresponds to the product of the velocity and the 
coefficients function. It is also filled in green (positive area) and red (negative), the regions corresponding to the 
product function obtained by multiplying the coefficients and velocity functions. The three subjects shown in 
the figure were selected by choosing three values of low, medium, and high NDI according to the available data 
whose residual is low, i.e., the predicted NDI is similar to the observed one.

Figure 3.  Scaled products functions of beta and velocity function for two subjects with different NDI but 
similar velocity range. The plotted function is scaled by the constant obtained dividing the maximum values 
of velocity of the subject with low and high NDI. Velocity functions of each subject are not scaled. Schematic 
drawings of head positions show as a guide the phase of the corresponding movement, however it is different 
between subjects due to the normalized time.
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Schematic figures of head movement have also been provided to help understand which movement phase cor-
responds to each zone.

As shown in Fig. 3, in the two graphs, the maximum and minimum of the scaled product function take similar 
values in each pair of subjects, although they have a very different NDI. Therefore, the contribution of the RoV 
to the differences in the NDI cannot be substantial. The differences between the β1(t)ω(t) curves are observed 
above all in the shaded areas A, B, and C. Areas A and C correspond to the braking phase of the extension and 
flexion movements, respectively. Here, the peak for subjects with a lower NDI is more prominent, so there is a 
larger area under the curve, and therefore, the total NDI value decreases. The shaded area B corresponds at the 
beginning of the flexion, and the subjects with a lower NDI have higher angular velocity than those with a high 
NDI, so they have a larger area in this area. These negative areas would explain the differences in the NDI more 
than the extremes of angular velocities.

Discussion
The analysis of cervical kinematics is helpful in evaluating the functional alterations associated with neck patholo-
gies. Numerous studies associate pain and injury severity with decreased ROM and slower  movements19.

However, surprisingly, the correlation between kinematics and the most commonly used assessment scales 
to quantify the level of pain or functional losses, such as the DASH, NDI, and other scales, is generally low, with 
values less than 0.411,12,14,19,21. Given that the aforementioned scales have good clinimetric characteristics and are 
widely used in clinical  practice9, it is worth asking what the reasons for this weak relationship are, which calls 
into question the clinical usefulness of kinematic techniques.

One of the possible causes is the way of representing the information contained in the movement curves, 
which is usually limited to extreme values or ranges, representing a loss of information. Furthermore, it is pos-
sible that the functional alterations are not related only to the extreme values but to other characteristics of the 
movement curves, which are lost when choosing only these extremes. This paper proposes a functional approach 
to establish the relationship between the kinematic variables (position and speed curves) and the functional 
state quantified using the NDI scale in a sample of patients with non-specific neck pain and moderate and low 
levels of disability.

Functional models involve a dimensionality problem since a continuous curve can contain hundreds of 
observations associated with sampling time instants. This problem is solved by representing the curves using 
functional basis. In our example, Fourier bases limit the dimensionality to the coefficients of a few functions 
without losing information from the original curves. We have developed a procedure to identify the optimal 
number of functions to preserve all the curve information, achieve a good model fit, and ensure its robustness.

The results of different regression models using numerical variables (RoM, RoV, RoM+RoV) have been 
compared with functional models based on angle, angular velocity and mixed numerical and functional models.

The results show that the functional models have a much closer relationship with the NDI scale than the cor-
responding ones based on numerical variables. Regarding numerical variables, the model based on the velocity 
range is better than the one using the RoM ( r = 0.298 vs. r = 0.017 ). These results are consistent with other 
studies, where movement velocity appears more related to disability or pain than  range20,22,23. However, the 
correlations with the NDI are much higher when the functional variables replace the ranges. Thus, based on 
the velocity curve, the simplest functional model presents a correlation with the NDI of r = 0.640 , more than 
double the model.

Furthermore, the fit is noticeably better, as shown by the F value and the significance level. On the other hand, 
the comparison of the nested models confirms that the functional model based on the velocity curve is signifi-
cantly better than any models based on ranges. Thus, adding the range variables to the functional model does 
not provide a significant improvement, but adding the velocity curve to a range model represents a substantial 
improvement in the fit (Table 5).

This result confirms that the maximum and ranges of motion or velocity are not necessarily the best param-
eters to represent the level of mobility or to establish relationships with disability. Considering the entire curve, 
more information is preserved, strengthening the relationship. Our values are higher than those obtained in other 
 studies11,12,14,19,21 in which patients with a much greater range in NDI values have been analyzed.

On the other hand, the functional approach offers a way to interpret which parts of the movement curve 
are most related to the variation in the NDI index. Indeed, although, in general terms, higher NDI values are 
associated with lower values of peak flexion and extension velocity, this weak general trend does not explain 
why patients with similar RoV values have very different NDI values. On the other hand, such differences can be 
interpreted from a functional point of view. Thus, as mentioned in the results section, the areas of the β1(t)ω(t) 
curve that establish the differences appear immediately after the peak of extension velocity (zone A in Fig. 3) 
in the starting zone of the flexion movement (zone B in Fig. 3) and the braking at the end of the flexion cycle 
(zone C). Subjects with higher NDI have lower angular velocity after the peak of extension velocity (zone A, 
Fig. 3), start with lower angular velocity in the flexion movement (zone B, Fig. 3), and stop earlier at the end of 
the flexion movement (zone C). In the functional model, it is observed that the contribution of the maximum 
extension and flexion speeds contribute oppositely to the increase in NDI, which could explain the poor cor-
relation between RoV and NDI.

Scalar-on-function regression has been applied in medical  applications42,50, but, as far as we know, it is the 
first work where a functional approach is used to analyze the relationship between biomechanical variables 
and incidences of disability. The planted model can be found in different R packages and does not present any 
complexity or computational cost.

In this work, a simple movement has been analyzed, neck flexion, and in a specific pathology, nonspecific 
neck pain. The sample of patients surveyed corresponds to subjects with low NDI values, so it is expected that the 
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results will be better in others with a broader range of severity levels, as they are subjects with more variability 
in the kinematic variables and the NDI.

It is difficult to compare our results with those obtained in other studies due to the dispersion in the types of 
movements, pathologies analyzed, and levels of disability. Since we have not found any work using functional 
regression, we will limit the comparison of our numerical correlation coefficients between the NDI and the RoM 
or the RoV with those obtained in other studies where continuous movements have been analyzed to obtain 
this correlation.

Regarding the NDI-RoM correlation, our result ( r = 0.017 ) is similar, although slightly lower, to those of 
other studies where patients with chronic pain and similar levels of disability have been studied. For example, 
in another  study19 an r = 0.105 was obtained, and in  other22 r = 0.11 . Other studies have shown stronger cor-
relations, r = 0.24320 and ( r = 0.250)21. However, these studies focused on patients with other pathologies (neck 
cancer and migraines, respectively) and with a much wider range of NDI levels. In any case, the improvement 
in the correlation when applying functional regression is evident compared to that obtained with numerical 
variables in any of these studies.

Regarding the NDI-RoV correlation, our results align with those cited  previously19,21,22 with r values of 0.30 or 
lower. Those reported in other  study20 are somewhat higher ( r = 0.4 in slow movements), but it should be noted 
that this work analyzes patients with pathology and levels of disability very different from ours. The improvement 
when applying the functional method represents more than doubling the r with the RoV and is much higher 
than any of the r obtained in the studies cited.

In all the papers consulted, the correlation between the NDI and the RoV is higher than between the NDI 
and the RoM. This result also appears in a more detailed study with partial  correlations23 and it is consistent with 
our results from the numerical and functional approaches.

Finally, it should be noted that in the studies cited, continuous records of continuous movement are used, 
but only to obtain numerical variables corresponding to the extreme values, which, as shown in the results of 
our study, are not the characteristic most related to the disability levels measured with the NDI. On the contrary, 
the functional approach allows us to identify which characteristics of the movement curves are associated with 
differences in the NDI.

This study is groundbreaking in its use of all movement curve data to assess the degree of disability caused 
by pain, as indicated by the NDI. While the results are promising, there are some limitations to consider. Firstly, 
the study only evaluated one of the three planes of neck motion - the flexion-extension plane - as it is one of 
the most commonly used movements in daily life activities (DLA) and has a greater impact on these activities. 
However, future studies should also address cervical rotation movements, which are also common in DLA, as 
well as lateralization, which is often coupled with rotation. Additionally, the sample size could be expanded by 
specifying subgroups based on the type of pathology. Currently, the study includes various pathologies that 
share the same symptomatology of pain. By characterizing lesions or levels of affectation of a given pathology, 
this approach could be used to improve understanding of the specific types of pain experienced by patients.

Although the results of this preliminary study seem promising, it is necessary to verify whether the advantages 
described can be extrapolated to the study of other movements of clinical interest, such as gait analysis, where, 
in addition, movement patterns with more complex information appear than those analyzed here. In any case, 
it is logical to expect that the use of complete movement curves, which already contain in their information the 
maxima, ranges, and other numerical variables used in kinematic analyses, will contribute to improving the 
goodness of fits between kinematic variables and the assessment scales used in clinical practice.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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