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Abstract: The use of alternative energy in agricultural production is desired by many researchers,
especially for protected crops that are grown in greenhouses with photovoltaic panels on the roofs.
These panels allow for the passage of varying levels of sunlight according to the needs of each type of
crop. In this way, sustainable and more economic energy can be generated than that offered by fossil
fuels. The objective of this work is to review the literature regarding the applications of selective
shading systems with crops, highlighting the use of photovoltaic panels. In this work, shading
systems have been classified as bleaching, mesh, screens, and photovoltaic modules. The search was
conducted using Web of Science Core Collection and Scopus until February 2018. In total, 113 articles
from scientific journals and related conferences were selected. The most important authors of this
topic are “Yano A” and “Abdel-Ghany AM”, and regarding the number of documents cited, the most
important journal is Biosystems Engineering. The year 2017 had the most publications, with a total of
20, followed by 2015 with 14. The use of shading systems, especially of photovoltaic panels, requires
more crop-specific research to determine the optimum percentage of panels that does not reduce
agricultural production.
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1. Introduction

Depending on the latitude, the weather conditions (temperature, humidity, and CO,) often are
not optimal for crops. For this reason, crops are usually protected by structures (greenhouses). Even
so, climate control becomes necessary—in winter/fall due to low temperatures during the night and in
spring/summer due to high temperatures during the day (Callejon-Ferre et al. [1]; Castilla [2]). A clear
example of this situation occurs in Mediterranean countries.

To correct high and low temperatures, several shading systems in greenhouses are available:
bleaching, mesh, screens, and photovoltaic panels (Figure 1).

Bleaching is the simplest and most economical technique that is used as a shading system.
It consists of applying a solution of water and calcium carbonate to the roof of the greenhouse [1].
The other systems that were used (mesh and screens) can be used inside or outside of the greenhouse,
and can be permanent (fixed) or mobile (displaceable; Figure 1).

Recently, photovoltaic panels have been used on the roofs of the greenhouses. These can be
opaque, semi-transparent, or transparent, allowing for less solar radiation to pass through, which
can intentionally affect or not affect the crop development. This situation, supposedly, would allow
for the compatible generation of electrical energy and agricultural production (Urefia-Sanchez et al. [3]).
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The integration of semi-transparent photovoltaic panels can decrease the solar irradiation and the
internal air temperatures, as well as generate electric energy for environmental control systems
(Hassanien et al. [4]).

Some concern remains about the impact that solar panels could have on crop yield and fruit quality,
as a direct relation exists between the solar radiation that is received by the plants and decreased crop
yields (kg-m~2) and smaller fruit sizes [5].

The objective of this work is to review the literature for applications of selective shading systems
on crops, highlighting the use of photovoltaic panels.
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Figure 1. Shading systems in greenhouses typical of Mediterranean countries.

2. Material and Methods

The analysed articles were obtained electronically from the Library of the University of Almeria
with a license from the Spanish Foundation for Science and Technology (FECYT) of Web of Science
Core Collection (Wos) provided by Clarivate Analytics [6] and Scopus [7]. Through the ‘Advanced
search’ option, terms such as ‘greenhouse’, ‘solar’, ‘roof’, ‘energy’, ‘covering material’, and ‘shading’
were used. A total of 113 articles (articles from scientific journals and conferences) that were directly
or indirectly related to the previous terms have been analysed in the period from January 1990 to
February 2018.

Only two databases have been used, which could limit the number of bibliographic citations
obtained. Likewise, because only articles and congresses were considered, information from books,
book chapters, and other similar formats is excluded.

3. Shading, Mesh, Screens and Others

Shading produced by different systems and used in greenhouses has been investigated by
numerous authors, mainly from the 1990s to the present (Table 1).

Table 1. Studies related to shading in greenhouses.

Authors Location Observations

Cockshull et al. (1992) [5] United Kingdom Shading nets and whitewashing on tomato

Abdel-Mawgoud et al. (1996) [8] Egypt Effects of shading
Papadopoulos y Pararajasingham (1997) [9] Canada Plant spacing
Klaring (1998) [10] Germany Shading on broccoli
Kittas et al. (1999) [11] Greece Shading on the spectral distribution of light
Araki et al. (1999) [12] Belgium Shading nets on spinach
Abreu y Meneses (2000) [13] Portugal Effects of whitewashing on tomato

Kittas et al. (2003a) [14] Greece Aluminized thermal shading screen on roses
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Table 1. Cont.

Authors Location Observations
Kittas et al. (2003b) [15] Greece Aluminized thermal shading screen on roses
Sandri et al. (2003) [16] Brazil Effects of shading screen on tomato
Medrano et al. (2004) [17] Spain Mobile shading on tomato
Bartzanas y Kittas (2005) [18] Greece Shading and evaporative cooling system
Lorenzo et al. (2006) [19] Spain Mobile shading on tomato
Rosales et al. (2006) [20] Spain Temperature and solar radiation
Gent (2007) [21] United States Reflective-aluminized shading screen on tomato
Callejon-Ferre et al. (2009) [1] Spain Reflective-aluminized shading screen on tomato
Abdel-Ghany y Al-Helal (2010) [22] Saudi Arabia Shading nets
Sato et al. (2010) [23] Japan Effects of shading

Shading using a retractable liquid foam on

Aberkani et al. (2010) [24] Canada
tomato and pepper
Abdel-Ghany y Al-Helal (2011) [25] Saudi Arabia Shading nets
Al-Helal y Abdel-Ghany (2011) [26] Saudi Arabia Shading nets
Chen et al. (2011) [27] Taiwan Shading nets
Garcia et al. (2011) [28] Spain Mobile shading and fog system
Abdel-Ghany y Al-Helal (2012) [29] Saudi Arabia Shading nets
Holcman y Sentlhas (2012) [30] Brazil Shading screens of different colors
Tlic et al. (2012) [31] Serbia Shading nets
Abdel-Ghany et al. (2015) [32] Saudi Arabia Shading nets
Hernandez et al. (2015) [33] Spain Shading and increased N doses
Ahmed et al. (2016) [34] Saudi Arabia Shading nets and whitewashing on tomato
and pepper
Nagy et al. (2017) [35] Hungary Shading nets on pepper
Murakami et al. (2017) [36] Japan Shading nets on melon
Yasin et al. (2017) [37] Denmark Shading nets on Grass Weeds
Costa et al. (2017) [38] Brazil Reflective-aluminized shading screen on tomato
Holcman et al. (2017) [39] Brazil Thermo-reflective shading screen on tomato
Priarone et al. (2017) [40] Italy Benefits of shading
3.1. Mesh

Cockshull et al. [5] explain that shading can reduce the average tomato size, but in turn favours a
more homogeneous ripening in summer.

Araki et al. [12], in a plantation of spinach, observed that shading of 45% is optimal for growth in
the months of June, August, and September, but 60% is optimal for the month of July.

Abdel-Ghanyand Al-Helal [22] claim that the diffusion of solar radiation occurring with shading
mesh is related to the colour, texture, and porosity of the mesh; however, they caution that the methods
used to measure the porosity of shading mesh may have an estimated error of 14% to 38% [25].
In addition, they revealed that shading mesh behaves like translucent materials, and the colour
and solidity of the mesh influence heat transfer [26]. Later, they confirmed that the temperature and
porosity of the mesh are more relevant parameters than texture and colour when radiative transmission
and reflection are measured [29].

Chen et al. [27] developed a model to evaluate the performance of shading mesh and to predict
air temperature in greenhouses.

In Serbia, Ilic et al. [31] observed that shading with coloured mesh in a tomato plantation reduced
the amount of fruit with cracked skin and increased the commercial production by 35%, although the
fruits had a lower beta-carotene content.

Abdel-Ghany et al. [32] compared upper exterior shading of the greenhouse with interior shading,
finding that interior shading increases the thermal radiation by 147% and daytime air temperatures,
whereas this increase is not seen with exterior shading.

Ahmed et al. [34] claim that shading methods reduce energy and water consumption, and increase
fruit productivity and quality.

Nagy et al. [35] conducted a study of the production of pepper plants grown in a greenhouse
under white, red and green shading and determined that the content of ascorbic acid increased even
more in the fruits of plants grown with white shading.
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Murakami et al. [36] state that the use of mesh in a melon crop reduced the leaf temperature of
greenhouse plants by approximately 5 °C, and the size of the fruit was not affected, although the sugar
accumulation in the fruit did increase.

3.2. Screens

In rose cultivations in glass greenhouses in Greece, Kittas et al. [14,15] reported that the aluminized
thermal screens achieved a more homogeneous microclimate and increased the winter air temperature,
thus achieving energy savings of approximately 15%.

Sandri et al. [16] verified that the number of fruits per square metre did not differ in shaded
tomato plantations (52%) when compared with those that were unshaded.

Medrano et al. [17] found that the use of external mobile shading reduced the transpiration rate
in tomato plants.

Lorenzo et al. [19] explained that, in hot climates with sparse water sources, mobile shading can
improve tomato quality and water-use efficiency.

In the north-eastern United States, Gent [21] achieved 9% more commercial tomato production
with a 50% shade based on aluminized cloth; the shade only reduced the size of the fruits one of the five
years that were studied; in addition, the amount of tomatoes with cracked skin was reduced by 10%.

Callejon-Ferre et al. [1] found that tomatoes have less °Brix when aluminized screens with 60%
shading are used instead of traditional bleaching, but no difference was observed with a lower
percentage shading.

Garcia et al. [28] explain that mobile shading and misting are equally efficient in reducing high
air temperatures.

Yasin et al. [37] studied how the use of greenhouse climate screens affected the growth and
development of three common weeds; shade substantially reduced the height of the plant, the number
of leaves, and the index of foliar chlorophyll content.

Costa et al. [38] evaluated the growth parameters of the tray seedlings, as well as the growth and
production of plants in pepper pots in greenhouses with three different types of shading—transparent
low-density polyethylene and reflective aluminized screen under the film, black filament with 50%
shade, and aluminized screen—with better yields being obtained with the first method.

Holcman et al. [30] comment that in cherry tomato crops, a greater yield of the plant and greater
average weight of the fruits are obtained with a diffusive plastic than with the use of a thermoreflective
shading screen.

3.3. Others

Klaring [10] found that broccoli yield is reduced by 1% for every 1% reduction in irradiation
by shading.

Abdel-Mawgoud et al. [8] found that, in tomatoes with 30% shade, the yield was not reduced,
although the total dry matter did decrease; the shade can serve to improve the commercial quality of
the fruit by reducing burns.

Rosales et al. [20] comment that the increase in temperature and solar radiation in the cherry
tomato during May in Spain diminishes the nutritional quality of the fruits.

Sato et al. [23] claim that as the shading level increases, the dry weights of tomato plants decrease,
but no differences occur in the distribution of the organic dry matter.

Hernandez et al. [33] state that in tomatoes with 50% of the sunlight attenuated by shading,
a higher yield, as well as a higher concentration of lycopene, was obtained with lower doses of
irrigated nitrogen (7 mM of N), regardless of the doses of N to tomatoes without shade.

Papadopoulos and Pararajasingham [9] explored the consequences of spacing between plants
and light penetration for tomato productivity.
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Kittas et al. [11] evaluated the quality of light that is received by plants by comparing three types
of shading: bleaching, external mesh, and internal aluminized screens. Their results indicate the need
to better control the characteristics of the light that is caused by the shading system used.

Abreu and Meneses [13] assert that roof bleaching reduces radiation transmission by 50%, which
in turn reduces periods with temperatures above 30 °C.

Bartzanas and Kittas [18] took different measurements in a partially shaded greenhouse with a
cooling system, finding that in the shaded part, greater transpiration occurred.

Aberkani et al. [24] comment that differences in air temperature of up to 6 °C, a humidity increase
of 10% and reduction in the need for ventilation are possible when polyethylene liquid foam is used in
greenhouse ceilings.

Holcman and Sentelhas [39] maintain that the lowest transmission of solar radiation is achieved
with black polyethylene sheets ascompared with the use of red or blue sheets or with thermo-reflective
sheets; the highest temperatures are reached with blue sheets.

Priarone et al. [40] investigated the selection of the most favourable solutions for ventilation,
heating, cooling and thermo-hygrometric control of a greenhouse, and they propose, as optimal,
the shading of the glazed surfaces, the natural ventilation and the forced convection of the external air.

4. Photovoltaic Modules in Greenhouses

The application of photovoltaic modules (PM) to agricultural environments has been analysed by
a large number of authors (Table 2).

Table 2. Studies related to photovoltaic modules in agriculture.

Authors Location Observations
Kozai et al. (1999) [41] Japan Electricity generated using photovoltaic cells
Yano et al. (2007) [42] Japan Applications of photovoltaic power systems
Campiotti et al. (2008) [43] Italy Prototype of photovoltaic greenhouse
Yano et al. (2009) [44] Japan Photovoltaic modules mounted inside the roof
Minuto et al. (2009) [45] Italy Semi-transparent photovoltaic systems
Yano et al. (2010) [46] Japan Configuration of photovoltaic modules
Qoaider y Steinbrecht (2010) [47] Germany The economic feasibility of photovoltaic technology
Carlini et al. (2010) [48] Italy Performance analysis of greenhouses with PV
Sonneveld et al. (2010) [49] Netherlands Hybrid system with PV and thermal energy
Dupraz et al. (2011) [50] France Agrivoltaic system
Campiotti et al. (2011) [51] Italy Photovoltaic system on tomato
Pérez-Alonso et al. (2011)[52] Spain Flexible solar panels and shading
Ganguly et al. (2011) [53] India Floriculture greenhouse by solar photovoltaic
Carlini et al. (2012) [54] Italy Photovoltaic system on tomato
Kadowaki et al. (2012) [55] Japan Configuration of photovoltaic modules on onions
Marucci et al. (2012) [56] Italy Semi-transparent photovoltaic systems
Pérez-Alonso et al. (2012)[57] Spain Evaluation of a photovoltaic system
Poncet et al. (2012) [58] France Agrivoltaic system
Klaring y Krumbein (2013) [59] Germany PM and permanent shading
Marrou et al. (2013) [60] France Agrivoltaic system
Castellano (2014) [61] Italy Configuration of photovoltaic modules
Juang y Kacira (2014) [62] South Corea PM in an arid environment
Cossu et al. (2014) [63] Italy PM and shading
Tani et al. (2014) [64] Japan PM and light diffusion on lettuce
Pérez-Alonso et al. (2014) [65] Spain PM and shading on tomato
Pérez-Garcia et al. (2014) [66] Spain Evaluation of a photovoltaic system
Serrano et al. (2014) [67] Spain PM and shading
Yano et al. (2014) [68] Japan Semi-transparent photovoltaic systems
Fatnassi et al. (2015) [69] France Configuration of photovoltaic modules
Marucci et al. (2015) [70] Italy Prototype of dynamics photovoltaic greenhouse
Bulgari et al. (2015) [71] Italy PM and shading on tomato
Yang et al. (2015) [72] China Transparent photovoltaic systems
Castellano y Tsirogiannis (2015) [73] Italy Configuration of photovoltaic modules
Cossu et al. (2016) [74] Japan Semi-transparent photovoltaic systems

Marucci y Capuccini (2016a) [75] Italy PM and energy efficiency
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Table 2. Cont.

Authors Location Observations
Marucci y Capuccini (2016b) [76] Italy PM and energy efficiency
Hassanien et al. (2016) [77] Egypt The challenges for photovoltaic systems
Buttaro et al. (2016) [78] Italy Semi-transparent photovoltaic systems
Castellano et al. (2016a) [79] Italy PM and photosynthetic photon flux
Castellano et al. (2016b) [80] Italy PM and shading
Cuce et al. (2016) [81] United Kingdom PM and energy consumption
Saifultah et al. (2016) [82] South Corea Semi-transparent photovoltaic systems
Dinesh y Pearce (2016) [83] United States Agrivoltaic system
Cossu et al. (2017) [84] Japan PM and radiation
Cossu et al. (2017) [85] Japan Configuration of photovoltaic modules
Carrefio-Ortega et al. (2017) [86] Spain Environmental and socioeconomic development
Marucci et al. (2017) [87] Italy Photovoltaic greenhouse tunnel
Valle et al. (2017) [88] France Agrivoltaic system
Trypanagnostopoulos et al. (2017) [89] Greece PM and shading
Loik et al. (2017) [90] United States PM and energy balance
Yildirim et al. (2017) [91] Turkey PM and economic and environmental evaluation
Trypanagnostopoulos et al. (2017) [92] Greece Electricity generated using photovoltaic cells
Kavga et al. (2017) [93] Greece PM and shading
Marucci et al. (2018) [94] Italy Photovoltaic greenhouse tunnel
Liu et al. (2018) [95] China PM and shading

Kozai et al. [41] explain that considerable amounts of electricity can be generated without
significantly affecting the transmission of solar radiation if the number of photovoltaic modules
and the orientation of the greenhouse are correctly chosen for the latitude and the time of year.

Yano et al. [42] made use of the energy that is generated by photovoltaic modules to operate an
autonomous lateral ventilation system. Later, Yano et al. [44] verified that when photovoltaic modules
are mounted on the interior surface of greenhouses in Japan, greater energy efficiency is obtained with
inclination angles of 20 degrees than with angles of 28 degrees.

Campiotti et al. [43] describe a prototype photovoltaic greenhouse being built in southern Italy.

Yano et al. [46] and Fatnassi et al. [69] found that the arrangement of panels in the form of a
chessboard compared to panels placed in other arrangements improves the distribution of sunlight
within the greenhouses. Kadowaki et al. [55] found that the placement of photovoltaic modules in this
arrangement is desired to reduce the effects of shading. Additionally, Cossu et al. [85] suggest new
design criteria for PV greenhouses, concerning the decrease of the PV array coverage and different
installation patterns of the PV panels on the roof.

Qoaider and Steinbrecht [47] demonstrated that providing power for entire farming populations
is feasible with photovoltaic energy.

Carlini et al. [48] used TRNSYS 16 software to simulate temperatures and humidity in a
greenhouse with photovoltaic modules in order to determine the performance of the greenhouse.

Sonneveld et al. [49] developed a hybrid system of photovoltaic and thermal panels together with
the reflection of near infrared radiation to improve climate conditions in a greenhouse and avoid the
use of fossil fuels.

Dupraz et al. [50] propose that an agrovoltaic system (using agricultural land for the generation of
solar energy) may be the best solution in countries with few areas conducive to agriculture. One year
later, Poncet et al. [58] stated that the main challenge for the agrovoltaic systems is to achieve higher
productivity and quality, while reducing the environmental impact. However, Marrou et al. [60] note
that moving from an open crop to an agrovoltaic system requires small modifications focused on the
mitigation of shaded areas and the selection of plants adapted to fluctuating shadows. More recently,
Dinesh and Pearce [83] affirmed that the value of electricity that is generated by solar energy and the
production of shade-adapted crops creates an increase of more than 30% of the economic value of the
lands that deploy an agrovoltaic system.
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Campiotti et al. [51], in an experiment that was carried out in southern Italy with a greenhouse
with rooftop photovoltaic panels, found that the energy requirements of 21 tomato plants for 120 days
were 19.48 kW-h, and the modules produced a total of 333.6 kW h from September to December. Later,
Pérez-Alonso et al. [57] and Pérez-Garcia et al. [66] conducted two experiments in south-eastern Spain,
in which an annual energy yield of 8.25 kW-h-m~2 was achieved through 24 flexible modules.

Pérez-Alonso et al. [52] did not obtain significant differences between tomatoes shaded by flexible
photovoltaic panels and non-shaded tomatoes; however, Klaring and Krumbein [59] maintain that
restricting the intensity of solar radiation through permanent shading leads to a reduction in the
growth and yield of the tomato plant but not the quality of the fruit.

Ganguly et al. [53] managed to maintain an optimum temperature for the cultivation of flowers
in a greenhouse in India from energy provided by panels installed in the roof and a support system for
critical hours, providing a clear example of agronomic compatibility.

Carlini et al. [54] proved that solar greenhouses with photovoltaic modules manage to save energy
in both cooling and heating tasks.

Castellano [61] discusses different configurations for the placement of photovoltaic modules in
greenhouses and analyses some parameters with Autodesk Ecotect Analysis software.

In South Korea, Juang and Kacira [62] propose adding integrated photovoltaic systems to the
structure of greenhouses to alleviate the energy and food problems of certain populations that have
difficulty accessing electricity, fertilizers, or good quality water.

Cossu et al. [63], in a greenhouse with 50% of the roof surface being occupied by photovoltaic
modules, included supplementary lighting with the energy that was generated by the modules, but the
plantation was too shaded and did not obtain benefits.

Tani et al. [64] claim that light diffusion films can be applied to improve productivity in crops
shaded by photovoltaic panels.

Pérez-Alonso et al. [65] state that the commercial production of tomatoes is compatible with 9.8%
shading that is produced by flexible photovoltaic modules. Tripanagnostopoulos et al. [92] propose
that a PV system covering only 6.5% of the roof surface could be enough to completely cover the
electricity needs for the auxiliary processes of a greenhouse. Liu et al. [95] have developed new types
of photovoltaic sheets that shade on the field can be reduced.

Serrano et al. [67] made use of flexible panels to supply energy to autonomous systems and to
replace the shading elements, thus achieving normal crop development.

Marucci et al. [70] used dynamic panels, which move along the longitudinal axis, in order to vary
the degree of shading.

Bulgari et al. [71] reveal that the efficiency of the use of solar radiation by tomato plants is greater
in greenhouses with solar panel shading, but the fruit tends to have lower lycopene, beta-carotene,
sucrose, reducing sugars, and total sugar content.

Castellano and Tsirogiannis [73] performed an analysis of different photovoltaic configurations in
the greenhouse to determine the effects of shading and energy efficiency.

Marucci and Capuccini [75] reported that it is possible to combine the production of electricity and
agricultural production if the type of crop, the latitude, and the characteristics of the greenhouse are
taken into account. That same year, Marucci and Capuccini [76] affirmed that the use of photovoltaic
panels is a viable alternative both for shading greenhouses and for electricity production in warm areas.

Hassanien et al. [77] conducted a small discussion on photovoltaic technology and the challenges
it faces in the agricultural environment.

Castellano et al. [79] used a model that predicts the density distribution of photosynthetic photons
in photovoltaic greenhouses with an error of 19%. That same year, Castellano et al. [80] developed a
model to predict the effect of shading within a photovoltaic greenhouse.

Cuce et al. [81] managed to save up to 80% in energy consumption in greenhouses by combining
solar and thermal energy with new insulation materials.
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Cossu et al. [84] developed an algorithm to estimate the global radiation that had accumulated
within photovoltaic greenhouses to aid in the selection of the most suitable plant species according to
their light needs.

Carrefio-Ortega et al. [86] estimated that the use of photovoltaic modules in the agricultural
environment can increase the profitability of the farms up to 52.78% and that environmental and
economic improvements would also be obtained.

Marucci et al. [87,94] analysed the shading variation produced by the application of flexible and
semi-transparent photovoltaic panels in a tunnel-type greenhouse, where the percentage of shading
during the year never exceeded 40%.

Valle et al. [88] demonstrated that an agrivoltaic system achieved high productivity per unit of
land area using solar trackers instead of stationary photovoltaic panels, whereas the production of
lettuce biomass was maintained close to or even similar to that obtained under full sun conditions.

Trypanagnostopoulos et al. [89,93] explained that the use of photovoltaic panels in a lettuce crop
produced a 20% shading of the greenhouse, and plant growth was the same as that of the reference
greenhouse, without photovoltaic panels on the roof.

Loik et al. [90] reported that in a trial conducted on a tomato crop, the wavelength-selective
photovoltaic systems produced a small decrease in water use, whereas minimal effects were observed
on the number and fresh weight of the fruit for several commercial species.

Yildirim et al. [91] conducted an economic and environmental assessment for tomato, cucumber
and lettuce crops using photovoltaic solar panels on the roof of the greenhouse and connected to the
grid to support a heat pump and generate electricity.

Minuto et al. [45] conducted an experiment with semi-transparent photovoltaic panels on a glass
greenhouse and did not find large differences in the behaviour of the tomato plants due to shade.

Marucci et al. [56] explored the possibility of using semi-transparent photovoltaic materials to
avoid the loss of solar radiation by shading.

Yano et al. [68] revealed that the electrical energy produced by semi-transparent modules with a
cell density of 39% is sufficient for regions with high demand in summer and low demand in winter.

Yang et al. [72] optimized the use of sunlight by manipulating the photonic crystals in transparent
organic photovoltaic cells.

Buttaro et al. [78], in a greenhouse arugula plantation, found that semi-transparent modules can
satisfy all of the required electricity demand and that the yield of the plantation decreases if traditional
modules are used.

Cossu et al. [74] claim that semi-transparent photovoltaic technology with spherical microcells
can be used to contribute to the sustainability of greenhouses.

Saifultah et al. [82] conducted a review of materials used for manufacturing
semi-transparent modules.

5. Other Related Studies

Table 3 shows articles that are related to greenhouses, renewable energies and/or shading but do
not fit into the categories described above.

Table 3. Other related studies.

Authors Location Observations
Bot et al. (2005) [96] Netherlands Energy saving
Marecelis et al. (2006) [97] Netherlands Effects of light quantity
Hemming et al. (2006) [98] Netherlands Effects of diffuse light
Suri et al. (2007) [99] Italy Solar energy in the European Union
Hemming et al. (2008) [100] Netherlands Effects of diffuse light
Sonneveld et al. (2010b) [101] Netherlands The feasibility of solar energy

Abdel-Ghany y Al-Helal (2011) [102] Saudi Arabia Thermal model
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Table 3. Cont.

Authors Location Observations
Abdel-Ghany (2011) [103] Saudi Arabia Solar energy and heat
Bibi et al. (2012) [104] Pakistan Effects of diffuse light
Verheul (2012) [105] Norway Light Intensity
Schuch et al. (2014) [106] Germany Solar energy and heating
Klaring et al. (2015) [107] Germany Heating and carbon dioxide emissions
Bian et al. (2015) [108] China Effects of light quality
El-Maghlany et al. (2015) [109] Egypt Solar energy and heating cost savings
Cakir y Sahin (2015) [110] Turkey Analysis of types greenhouses
Attar y Farhat (2015) [111] Tunisia Heating and costs
Shyam et al. (2015) [112] India Greenhouse dryer
Elkhadraoui (2015) [113] Tunisia Greenhouse dryer
Reca et al. (2016) [114] Spain The profitability of photovoltaic systems
Ziapour y Hashtroudi (2017) [115] Iran Solar energy and saving energy process
Arabkooshar et al. (2017) [116] Iran Hybrid solar-geothermal heating system
Xue (2017) [117] China Solar energy and costs
Anifantis et al. (2017) [118] Italy Heating

Reca et al. [114] verified that the profitability and energy efficiency of a photovoltaic system for
irrigation is relatively low, although it can be improved by using excess energy for other tasks.

Bot et al. [96] developed Dutch-type greenhouses that do not use fossil fuels, thus improving the
insulation value of the roofs and capturing solar energy for storage.

Marecelis et al. [97] showed that light has a positive effect on the yield and quality of greenhouse
crops, but this effect is more noticeable when the amount of light is lower.

Verheul [105] states that an increase in the intensity of the light increases the tomato yield, but not
the quality.

In Holland, Hemming et al. [98] observed that covering greenhouses with light-diffusing
materials led to increases in production in the summer months by 6%. Later, in Dutch greenhouses,
Hemming et al. [100] and Bibi et al. [104] obtained great results in cucumbers, proving that diffuse
light improves photosynthesis in the middle zones of plants.

Suri et al. [99] state that photovoltaic energy is already in a position to make a significant
contribution to the European Union’s energy landscape.

Sonneveld et al. [101] presented the possibility of taking advantage of excess solar energy in
summer to convert it into high-grade electricity and use it for cooling or heating.

Abdel-Ghanyand Al-Helal [102] developed an improved thermal model for greenhouses.

Abdel-Ghany [103] states that at a density of plants corresponding to a leaf area index of 3, 54%
of the solar radiation used by the greenhouse is converted into sensible heat and 46% into latent heat
through evapotranspiration.

Schuch et al. [106] reduced the consumption of fossil fuels by 81% with a system to capture solar
thermal energy in a tomato greenhouse.

Klaring et al. [107] reported that carbon dioxide emissions from tomato crops can be reduced by
lowering the heating temperature without affecting the fruit, but harvest times are increased.

Bian et al. [108] discussed the advantages of LED technology to modify the accumulation of
phytochemicals with light.

El-Maghlany et al. [109] performed an efficiency analysis of solar energy capture and energy
savings according to the type of greenhouse.

Cakir and Sahin [110] analysed different greenhouse types and found the elliptical greenhouse to
be the most appropriate for the cold climate and latitude of Bayburt, Turkey.

Attar and Farhat [111] explain that the cost of heating in a 1000-m> greenhouse can be reduced by
51.8% if a heated water system is integrated.
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Shyam et al. [112] and Elkhadraoui et al. [113] developed greenhouses as biomass dryers with
electricity that is supplied from solar panels.

Ziapour and Hashtroudi [115] modified the roof of a greenhouse to partially reflect sunlight in a
collector, and thus save on energy expenditure.

Arabkooshar et al. [116] used thermal panels and geothermal wells for heating, thus reducing the
diesel consumption in winter.

Xue [117] states that photovoltaic greenhouses that occupy a large area of land require large
outlays, which are not available to farmers or even to large companies.

Anifantis et al. [118] analyses the performance of an independent renewable energy system for
greenhouse heating by using photovoltaic panels that are connected to an electrolyser, which produces
hydrogen by electrolysis during the day and stores it in a pressure tank.

6. Studies Related to Shading and Photovoltaic Panels in Greenhouses by Country

The country of the main author of each of the publications analysed has been used to create

Figure 2.
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Figure 2. Publications by country.

The 113 publications analysed, which were related in some way to greenhouses, solar panels,
tomato, and/or shade, represent 27 countries. If we look at the number of investigations in each
country, the one with the most publications is Italy, with a total of 21, followed by Spain with 13; Japan
with 12; Saudi Arabia with 8; Greece with 7; Holland with 6; France and Germany with 5; Brazil and
China with 4; Egypt and the United States with 3; Canada, South Korea, India, Iran, United Kingdom,
Tunisia, and Turkey with 2, and Belgium, Denmark, Hungary, Norway, Pakistan, Portugal, Serbia, and
Taiwan with 1 (Figure 2).

In Figure 3, the research carried out in each section of the review by each country is indicated.
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7. Studies Related to Shading and Photovoltaic Modules in Greenhouses by Year
Figure 4 shows the number of studies per year, as well as the fields studied.
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A clear tendency to increase the number of publications can be observed. A notable difference
is apparent in the number of studies that have carried out since 2010, with the exception of 2013,
when only two studies that were related to the subject were analysed; however, 2017 had the most
publications, with a total of 20, followed by 2015 with 14.

8. Studies Related to Authors and the Number of Citations

Table 4 shows the authors that appear in at least two citations.

Table 4. Authors and the number of documents.

Authors Documents Authors Documents
Yano A 8 Onoe M 2
Abdel-Ghany AM 8 Cecchini M 2
Al-Helal IM 6 Trypanagnostopoulos G 2
Marucci A 6 Chessa F 2
Colantoni A 5 Deligios PA 2
Callejon-Ferre AJ 5 Marrou H 2
Kittas C 5 Murakami K 2
Pérez-Alonso ] 5 Poncet C 2
Castellano S 4 Hiraki E 2
Monarca D 4 Caparros 1 2
Pérez-Garcia M 4 Giménez M 2
Cossu M 4 Brun R 2
Serio F 3 Bibbiani C 2
Santamaria P 3 Incrocci L 2
Sanchez-Guerrero MC 3 Holcman E 2
Garcia ML 3 Furue A 2
Pazzona A 3 Sentelhas PC 2
Sirigu A 3 Carlini M 2
Ledda L 3 Fatnassi H 2
Murgia L 3 Sonneveld PJ 2
Noda S 3 Alonzo G 2
Cappuccini A 3 Campiotti C 2
Klaring HP 3 Farhat A 2
Carrefio-Ortega A 3 Krumbein A 2
Baille A 3 Dufour L 2
Katsoulas k 3 Swinkels GLAM 2
Ishizu F 3 Bot GPA 2
Medrano E 3 Cabrera FJ 2
Lorenzo P 3 Dueck T 2
Tripanagnostopoulos Y 3 LiM 2
Kadowaki M 3 Kavga A 2
Hemming S 3 Dondi F 2
Tanaka T 3 Capuccini A 2

If we observe the number of documents per each author, the ones with the most publications
are “Yano A” and “Abdel-Ghany AM”, with a total of 8, followed by “Al-Helal IM” and “Marucci A”

with 6 (see Table 4).

9. Studies Related to Journals and the Number of Citations

Table 5 shows the journals that appear in at least two articles.
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Table 5. Journals/Conferences and the number of documents.

Journals/Conferences Documents

Acta Horticulturae 19
Biosystems Engineering
Renewable Energy
Solar Energy
Renewable & Sustainable Energy Reviews
Applied Energy
Journal of Agricultural Engineering
ScientiaHorticulturae
Energy Conversion and Management
Solar Energy Materials and Solar Cells
Energies
Agricultural and Forest Meteorology
Journal of Renewable and Sustainable Energy
Mathematical Problems in Engineering

[e)

NINNDNDNWWER OO oo o

The most important conference document is Acta Horticulturae with 19 documents. The most
important journal is Biosystems Engineering, with a total of eight documents, followed by Renewable
Energy with 6; Solar Energy, Renewable & Sustainable Energy Reviews, Applied Energy and Journal
of Agricultural Engineering with five. It should be noted that Acta Horticulturae is not a journal in the
true sense of the word.

10. Conclusions of the Review

The countries with the highest number of publications concerning solar panels and crops were
Italy, with a total of 21; Spain with 13; and Japan with 12. During the past decade, the number of
relevant publications has increased. These three countries are in the same latitude range, although the
studies are very different depending on the type of crop selected and the type of greenhouse structure.

The most important authors of this topic are “Yano A” and “Abdel-Ghany AM”, and regarding
the number of documents that are cited, the most important journal is Biosystems Engineering.

Most of the studies justify the use of photovoltaic panels alongside agricultural production,
although others cast general doubt on the economics of using these panels. Further technological
development of photovoltaic panels with respect to transparency and energy efficiency could make
their coexistence with greenhouse crops more economically viable. The trend of research on this subject
is the search for the percentage of shading that makes the shading compatible for each type of crop.
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