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ABSTRACT The LMS algorithm is widely employed in adaptive systems due to its robustness, simplicity,
and reasonable performance. However, it is well known that this algorithm suffers from a slow convergence
speed when dealing with colored reference signals. Numerous variants and alternative algorithms have been
proposed to address this issue, though all of them entail an increase in computational cost. Among the
proposed alternatives, the affine projection algorithm stands out. This algorithm has the peculiarity of starting
from N data vectors of the reference signal. It transforms these vectors into as many data vectors suitably
normalized in energy and mutually orthogonal. In this work, we propose a version of the LMS algorithm
that, similar to the affine projection algorithm, starts from N data vectors of the reference signal but corrects
them by using only a scalar factor that functions as a convergence step. Our goal is to align the behavior
of this algorithm with the behavior of the affine projection algorithm without significantly increasing the
computational cost of the LMS.

INDEX TERMS Adaptive filters, affine projection algorithm, variable step-size.

I. INTRODUCTION
The LMS algorithm [1] is one of the most widely used
adaptive algorithms in signal processing and other fields to
iteratively reach the solution of a mimicking problem. This
algorithm has become the reference algorithm for problems
that allow an iterative solution, as it is a simple and efficient
method. However, a notable drawback emerges when the input
signal is colored, leading to a reduction in its convergence
speed [2]. Consequently, alternative algorithms or modified
LMS versions have arisen, aiming to enhance its robustness
and speed in the presence of colored signals. Among these
alternatives is the Affine Projection (AP) algorithm [3], which
allows the algorithm’s behaviour to be adjusted through the
parameter projection order, denoted as N . As N increases,
so does the computational cost, with the cost increasing in a
cubic fashion with N . However, this increase in computational

demand is justified by the significantly improved convergence
speed, achieved by using a matrix correction in the coeffi-
cient fitting to orthogonalize the reference signal data, even
when the reference signal is colored. Several AP-based al-
gorithms have been proposed to overcome its computational
burden, [4], [5], [6], [7], or other issues as the trade-off be-
tween convergence speed and misadjustment, [8], [9], or its
robustness against impulsive noise, [10], [11], [12], [13], [14].
Our objective is to enhance the performance of the LMS algo-
rithm in a similar way to the affine projection algorithm, but
without incurring a significant increase in computational cost.
To this end, we introduce an extended LMS algorithm that
operates on N vectors from the reference signal. We achieve
this with reduced computational cost by using only a single
scalar to control its adaptation equation, which could be un-
derstood as a variable step-size algorithm. Several approaches
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of variable step-size algorithms have been proposed for the
LMS, [15], [16], [17], [18], and for the AP, [8], [19], [20],
[21]. Our proposal integrates elements from both algorithms.

The outline of this paper is as follows: In Section II,
we review the algorithms and versions of the algorithms
most related to the new approach. The proposed algorithm
is described in Section III, followed by a discussion on its
performance in Section IV. The theoretical mean convergence
analysis and its mean square performance are both presented
in Sections V and VI, respectively. Finally, some simulation
results and conclusions are included in Sections VII and VIII,
respectively.

II. LMS, NLMS, AFFINE PROJECTION AND AFFINE
PROJECTION LIKE ALGORITHMS
Given a system in which the goal is to estimate a desired signal
d (n) from the filtering of a reference signal x(n) by an FIR
filter with L coefficients (w(n)), the LMS algorithm proposes
to find the solution to this problem by iteratively adjusting the
coefficients of the filter w(n) according to:

w(n) = w(n − 1) + μxL (n)ea(n), (1)

where xL (n) is a vector containing the last L samples of the
reference signal, and ea(n) = d (n) − xL

T (n)w(n − 1) is usu-
ally called the a priori error signal. μ is a positive constant
that controls how fast the algorithm can modify its current
solution, related to the speed and convergence conditions of
the algorithm, and is usually called the convergence step.
This equation allows, under certain conditions, to estimate the
optimal coefficients wopt (n) that minimise the mean power of
the error signal, defined as e(n) = d (n) − xT

L (n)w, which is
expressed as

wopt = min
w

{
1

2
E

{
(d (n) − xT

L (n)w)2}} . (2)

The LMS algorithm avoids the direct solution of (2), which
requires knowledge of signal statistics. Instead, it achieves
an iterative solution through a stochastic gradient algorithm,
relying only on the instantaneous data of the signals to it-
eratively approach the optimal solution of the problem. The
use of instantaneous data to solve a statistical problem has
the disadvantage of its variance, but it can be shown that on
average the solution obtained by the LMS algorithm coincides
with the optimal solution given by (2).

The LMS algorithm gives rise to a large family of vari-
ants, most notably its normalised version, NLMS (Normalised
Least Mean Square Algorithm) [22]:

w(n) = w(n − 1) + 1

xT
L (n)xL (n)

xL (n)ea(n). (3)

The NLMS algorithm can be understood as the LMS, where
the convergence step used in (1) is the one that minimises the
instantaneous power of the a posteriori error signal, defined
as ep(n) = d (n) − xT

L (n)w(n). This version of the LMS al-
gorithm makes it possible to automatically adjust the value
of the convergence step, thereby maximising its convergence

speed and enhancing the algorithm’s adaptibility to poten-
tial changes in the energy of the reference signal. It can be
shown that when the data between xL (n) and xL (n − 1) are
orthogonal (xT

L (n)xL (n − 1) ≈ 0), the convergence speed of
this algorithm is maximal. However, when there is a correla-
tion between them, the convergence speed decreases.

Among the many alternatives proposed to address the con-
vergence speed issue in LMS-derived algorithms, especially
when dealing with highly colored reference signals, the AP
algorithm proposed in [3] stands out. This algorithm solves
the problem of modeling the variation of the coefficients be-
tween iterations, denoted as ‖w(n) − w(n − 1)‖2, subject to
the N constraints given by d (n − k) = xT

L (n − k)w(n) (for
0 ≤ k ≤ N − 1). It is sometimes considered an extension of
the NLMS algorithm, as when N = 1, it coincides with that
algorithm. Both the AP algorithm and its variants are widely
used in several applications, such as: echo cancellation [23],
[24], active noise control (ANC) [25], [26], [27], [28], noise
reduction [29], system identification [30], [31], beamform-
ing [32], [33], [34] and acoustic feedback cancellation [35],
[36], [37], among others.

Equation (4) represents the equation used to update the
coefficients of the AP algorithm. It is worth noting that this
expression entails much higher computational cost compared
to the expressions of the LMS, as shown in (1), and the NLMS,
as shown in (3):

w(n) = w(n − 1) + X(n)
[
XT (n)X(n)

]−1
ea(n). (4)

The a priori error vector used in (4) is defined as
ea(n) = d(n) − XT (n)w(n − 1), being d(n) a vector with
the last N (N ≤ L) samples of the signal d (n) and X(n) =
[xL(n), xL (n − 1), . . . , xL (n − N + 1)] a data matrix of size
L × N . The convergence speed of the AP algorithm increases
with N , but so does the computational complexity and numer-
ical instability of the computation (XT (n)X(n))−1. Equation
(4) is usually modified by introducing two parameters with
practical meaning: a convergence step 0 < μ ≤ 1 and a reg-
ularisation factor δ. The modified equation is then given by

w(n) = w(n − 1) + μX(n)
[
XT (n)X(n) + δIN

]−1
ea(n),

(5)
where IN is the identity matrix of size N × N . The regular-
isation factor is necessary to avoid instability in the matrix
inversion, especially when the data in the columns of X(n)
are closely related to linear combinations of other columns,
resulting in an ill-conditioned matrix that is challenging to
invert numerically (or even non-invertible) in practice. This
may happen when dealing with highly correlated signals. If
the value of δ required to guarantee matrix inversion is large,
regularised matrix inversion introduces a bias in the optimal
solution for the filter coefficients and also a deviation in the
behaviour of the algorithm during convergence, which may
require the use of a value of μ < 1 to avoid divergence.
For small δ, the algorithm usually converges for μ = 1. The
consequences of using the regularisation factor are analysed
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in [38], [39], [40], [41]. These works also proposed several
strategies to identify the regularisation factor by optimising
the behaviour of the AP algorithm.

Considering that the most significant computational cost
in (4) and (5) lies in the matrix inversion, it is desirable to
either avoid or optimise this process. There are a number of
proposals in this regard, including methods for obtaining the
exact matrix inversion [42], [43], [44], [45], [46] as well as
for introducing certain approximations [47], [48], [49], [50],
[51]. In [52], an alternative class of algorithms called affine
projection-like (APL) is proposed. In these algorithms, the
update equation avoids matrix inversion and is given by

w(n) = w(n − 1) + μ(n)X(n)ea(n). (6)

This update expression is obtained by solving a minimisation
problem similar to (2), but considering instantaneous values
and a number of samples of the signal d (n) and vectors of the
reference signal equal to N , i.e:

wopt
APL = min

w

{
1

2

[
d(n) − XT (n)w

]T [
d(n) − XT (n)w

]}
.

(7)
We can interpret this solution as an extension of the LMS
algorithm using more than one dimension (N > 1), or as a
version of the unconstrained affine projection algorithm. It
can also be considered as an approximate version of the AP
algorithm by replacing the matrix [XT (n)X(n)]−1 with the
identity matrix IN . This approximation is quite accurate when
the reference signal is white noise of unit average power.

Although (6) can converge faster than the NLMS, its
convergence speed is limited by the dispersion of the N non-
zero (and positive) eigenvalues of the [L × L]-size matrix,
X(n)XT (n). It is suggested in [52] that:

0 < μ(n) < μmax(n) = 2

λmax(n)
, (8)

where λmax(n) is the maximum eigenvalue of X(n)XT (n),
which can be bounded by the sum of the non-zero eigenvalues
of X(n)XT (n), given by λ� (n) = ∑N

l=1 λl (n). Although sat-
isfying the upper bound of (8) is not a necessary condition to
guarantee convergence, it is a sufficient condition.

When the signal is highly colored, λmax(n) → λ� (n), while
when the signal is white, λmax(n) → λ� (n)/N . That is, the
maximum convergence step that would give the highest con-
vergence speed while satisfying a sufficient stability condition
must be in the range:

2

λ� (n)
≤ μmax(n) ≤ 2N

λ� (n)
. (9)

Therefore, the APL reduces the computational cost of the AP
at the expense of slower convergence as the reference signal
becomes more colored (up to a maximum of N times).

The calculation of λ� (n) can be performed using the refer-
ence signal data as:

λ� (n) = Tr
{
XT (n)X(n)

} =
N−1∑
p=0

xT
L (n − p)xL (n − p), (10)

where the operator denoted by Tr{A} gives the trace of a given
matrix A.

The APL algorithm applies a μ(n) value of μmax(n)/2
when N = 1, which aligns it with NLMS (when dealing
with white signals, λ� (n) ≈ NxT

L (n)xL(n), with μmax(n) =
2/xT

L (n)xL(n)). In the event that the nature of the reference
signal is unknown, it is imperative to limit the convergence
step to the worst-case scenario. This leads to a slower con-
vergence rate compared to its maximum speed when the
reference signal lacks coloration, as well as a slower rate
compared to the AP algorithm. It is suggested in [52] to
use the value of μ(n) that minimises the squared 2-norm of the
a posteriori error vector (‖ep(n)‖2) to address this reduction
in convergence speed (the a posteriori error vector is equal to
zero in the AP algorithm). This means

μI (n) = min
μ(n)

{
1

2

∥∥d(n) − XT (n)w(n)
∥∥2

}
, (11)

which is given by

μI (n) = ‖X(n)ea(n)‖2

‖XT (n)X(n)ea(n)‖2
, (12)

and defines the algorithm called affine-like-I (APL-I) [52].
The affine-like-I algorithm requires 2LN + 3 N multipli-

cations to update the coefficients, which is an intermediary
cost between the NLMS algorithm (2 L) and the exact AP
(N3 + N2(L + 1) + LN). It is considered that the calculation
for matrix inversion with a size of N × N requires N3 multi-
plications.

III. VARIABLE STEP-SIZE LMS WITH MAXIMUM
SIMILARITY TO THE AP ALGORITHM
It may be inferred that an adaptive algorithm would exhibit
similar behaviour to a given one if its coefficients were very
close at each algorithm iteration. Therefore, we propose the
use of a variable convergence step that minimises the squared
2-norm of the difference between the coefficients of the exact
AP algorithm (with μ = 1 for clarity and without loss of
generality), denoted as wAP(n) and shown in (4), and the
approximate version, denoted as wAPL (n) and shown in (6).
This means

μ̃(n) = arg min
μ(n)

{‖wAP(n) − wAPL (n)‖2} , (13)

or equivalently

μ̃(n) = arg min
μ(n)

{‖X(n)(X(n)T X(n))−1

−μ(n)X(n))ea(n)‖2} , (14)

84 VOLUME 5, 2024



which is given by

μ̃(n) = (ea(n))T ea(n)

[X(n)ea(n)]T X(n)ea(n)
= ‖ea(n)‖2

‖ea(n)‖2
�(n)

, (15)

where �(n) = X(n)T X(n). Thus, the proposed approach uses
the update equation in (6), just like the AP and the APL-I,
except that the convergence step is obtained by solving the
minimization problem in (13). This approach would require
LN + 3 N multiplications for updating the coefficients, which
is a lower count compared to the AP and the APL-I algo-
rithms.

IV. CONVERGENCE DISCUSSION
Equation (15) is a generalised Rayleigh quotient [53]. When
�(n) is positive definite, its maximum and minimum bounds
are determined by the maximum and minimum eigenvalues of
(�(n))−1, which are equal to the inverses of the eigenvalues of
�(n). This ensures that the following boundaries are satisfied

1

λmax(n)
= λmin

(
�−1) ≤ μ̃(n) ≤ λmax

(
�−1) = 1

λmin(n)
. (16)

Equation (16) is also fulfilled by μI (n) suggested by APL-I in
(12), since the same relation can also be obtained through the
use of the generalized Rayleigh quotient with the eigenvalues
of (�2)−1� (which is equal to �−1).

The proposed convergence step, μ̃(n), cannot ensure that
(8) is fulfilled unless λmax(n)/λmin(n) < 2. Therefore, we can
only guarantee that (8) is fulfilled when the eigenvalues of
the matrix XT (n)X(n) are not sparse. Nevertheless the nature
of the reference signal and the values of L and N influence
these eigenvalues. This influence arises because the eigenval-
ues are computed from the N initial values of the temporal
autocorrelation of the reference signal, which is windowed
with a sliding rectangular window of size L. To reduce the
time dependency of (16) for stationary signals, a large L value
should be used.

However, the breach of λmax(n)/λmin(n) < 2 does not
indicate whether the convergence step satisfies (8) or not. Fur-
thermore, failing to satisfy (8) does not necessarily indicate
algorithm divergence. Consequently, analysing the long-term
convergence of the algorithm is challenging.

On the other hand, the similarity condition, given by the
difference between the coefficients of the proposed algorithm
and the AP (see (13)), can be considered as an indicator of
the deviation in the convergence behaviour of the proposed
algorithm and the AP. It can be shown that this difference can
be bounded by substituting (15) into (14) and calculating the
energy of this difference as

‖wAP(n) − wAPL (n)‖2 = (ea(n))T [
XT (n)X(n)

]−1
ea(n)

−
(‖ea(n)‖2

)2

(ea(n))T XT (n)X(n)ea(n)

≤ 2
‖ea(n)‖2

λmin(n)
. (17)

Therefore, as the minimum eigenvalue λmin(n) increases,
the difference between the coefficient vectors decreases.
Since the energy of the a priori error signal decreases over
time (indicating algorithm convergence), the algorithm be-
comes more sensitive to the appearance of small λmin(n)
values in the initial stages (during the transient period). When
the a priori error energy becomes small, the proposed algo-
rithm tends to exhibit behavior similar to the AP, regardless
of the reference signal. That is, the largest differences can
occur during the transient period when small λmin(n) values
appear. Note that for colored signals, increasing the value of
N does not necessarily improve the behavior of the proposed
algorithm. In such cases, the dispersion of the eigenvalues
may increase with higher values of N .

Equation (15) can be rewritten as

μ̃(n) = ‖ea(n)‖2

∑N
k=1 λk (n)

∣∣uT
k (n)ea(n)

∣∣2

= 1∑N
k=1 λk (n)(cos θk (n))2

, (18)

where λk (n) and uk (n) (1 ≤ k ≤ N) are respectively the
eigenvalues and eigenvectors of the �(n) matrix, which de-
pend only on the reference signal data at n time instant.
The angle θk (n) (for 1 ≤ k ≤ N) is the angle that creates the
a priori error vector with each of the eigenvectors of matrix
�(n).

When N = 1, the proposed convergence parameter coin-
cides with the NLMS and consequently only depends on
the reference signal data. In contrast, as N increases, its
dependence on the a priori error signal increases. This depen-
dence will be greater if the reference signal is highly colored
because the eigenvalues of �(n) will be more sparse. In
the particular case of a low colored signal, it is satisfied that
λk (n) ≈ λmax(n),∀k, and therefore:

μ̃(n) ≈ 1

λmax(n)
∑N

k=1(cos θk (n))2
= 1

λmax(n)
, (19)

being μ̃(n) dominated only by the data of the reference signal.
On the other hand, in the case of a highly colored signal,
it holds for small values of N that

∑N
k=1 λk (n)(cos θk )2 ≈

λmax(n)(cos θkmax )2, where kmax is the index that determines
the maximum eigenvalue and therefore:

μ̃(n) ≈ 1

λmax(n)(cos θkmax (n))2
. (20)

In this case, the value of μ̃(n) is found to be more dependent
on the a priori error, which can lead to undesired results in the
behaviour of the algorithm in time periods where the a priori
error is not small (during transients). This dependence on the
a priori error will be greater as N increases, since more angle-
dependent terms θk (n) will be included in the denominator of
(20). This circumstance can be minimised by pre-whitening
the reference signal or by adding a regularisation factor to the
calculation of the denominator of (15).
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Note that this dependence of the convergence step on the a
priori error is not as significant in the APL-I algorithm, where:

μI (n) =
∑N

k=1 λk (n)(cos θk )2∑N
k=1(λk (n))2(cos θk )2

, (21)

that for both low colored and highly colored signals provides
a convergence step value that depends only on the reference
signal as

μI (n) ≈ 1

λmax(n)
. (22)

Therefore, it is recommended to incorporate a regularization
factor 0 < α < 1 in the product XT (n)X(n) of the denomina-
tor of (15) for highly colored signals and high values of N .
This would give rise to the following equation:

μ̃α (n) = ‖ea(n)‖2

‖ea(n)‖2
�+αI

= ‖ea(n)‖2

‖ea(n)‖2
� + α‖ea(n)‖2

, (23)

and the convergence parameter boundaries in (16) can be
rewritten as

1

λmax(n) + α
≤ μ̃α (n) ≤ 1

λmin(n) + α
. (24)

Hence the difference between the algorithms given by (17) be-
comes less dependent on λmin(n) at the expense of decreasing
the convergence speed.

V. MEAN CONVERGENCE ANALYSIS
Considering that d(n) = XT (n)wo, and defining w̃(n) = wo −
w(n), (6) can be rewritten for the proposed variable conver-
gence step as

w̃(n) = (
I − μ̃(n)X(n)XT (n)

)
w̃(n − 1). (25)

Taking mean values and assuming statistical independence
between the reference signal data and the shifted coefficient
vectors, w̃(n) and w̃(n − 1), we obtain

E{w̃(n)} = (
I − E{μ̃(n)X(n)XT (n)}) E{w̃(n − 1)}, (26)

where the mathematical expectation is denoted by E{·}.
We define E{μ̃(n)X(n)XT (n)} = Q�QT , being � a diago-

nal matrix with the eigenvalues of E{μ̃(n)X(n)XT (n)} along
its diagonal. Then the rotation of (26) by the unitary matrix
QT gives

w̃′(n) = (I − �) w̃′(n − 1), (27)

which can be recursively expressed starting from an arbitrary
initialisation of the weights as

w̃′(n) = (I − �)n w̃′(0). (28)

As discussed in Section II, (8) presents a sufficient con-
dition for the convergence of APL algorithms, which is
the type proposed here. This is because the eigenval-
ues of E{μ̃(n)X(n)XT (n)} will all be less than 2, and
limn→∞ w̃′(n) = 0 in (28). Using (16), the sufficient con-
dition in this case can be expressed as the quotient
λmax(n)/λmin(n) ≤ 2, or λmax(n)/(λmin(n) + α) ≤ 2 with

regularization. This condition is met for low colored signals,
since its eigenvalue ratio is close to one regardless of the value
of N , provided that L is sufficiently large. For colored signals,
it is not possible to approximate μ̃ using the equation given in
(19) and the sufficient condition cannot be guaranteed for all
values of n.

For small values of ea(n), it is possible to consider the error
as independent of the data, so that a statistical independence
can be assumed between the reference signal data and the
convergence step μ̃(n), that is

E
{
μ̃(n)X(n)XT (n)

} = E {μ̃(n)} E
{
X(n)XT (n)

}
. (29)

For these small values of ea(n) the values of μ̃(n) are small
and very close (always positive), so it is possible to make the
following approximation using (18) [54]:

E {μ̃(n)} ≈ 1

E
{∑N

k=1 λk (n)[cos(θk (n))]2
} . (30)

In this case of independence between the a priori error and
the reference signal data, θk (n) can be considered a random
variable uniformly distributed between −π and π and inde-
pendent of the reference signal, hence it follows that:

E {μ̃(n)} ≈ 2∑N
k=1 E{λk (n)} <

2

λmax
, (31)

where λmax is the maximum eigenvalue of E{X(n)XT (n)}. In
this way, the convergence in mean of the proposed algorithm
is proved in this case, since (28) tends to zero with n → ∞
when E{μ̃(n)} < 2/λmax.

In the case of large values of ea(n) and small values of N ,
the parameter μ̃(n) is governed by (20). Then the a priori error
can be considered to be highly data-dependent and is aligned
with the eigenvalue corresponding to the largest eigenvalue of
X(n)XT (n), accordingly:

μ̃(n) ≈ 1

λmax(n)
, (32)

which ensures convergence in this case.
Finally, when the signal is highly colored and N is large,

the algorithm’s behaviour may deviate from the desired out-
come during convergence. Unlike the AP algorithm, whose
behaviour remains stable as N increases for colored signals,
this algorithm may worsen its convergence during the tran-
sient phase as N increases above the value that saturates the
convergence speed of the AP algorithm. This effect is less
pronounced when regularisation is employed.

VI. MEAN SQUARE ERROR PERFORMANCE
The steady-state mean squared error (MSE) of the proposed
algorithm is defined as: MSE = limn→∞ E

{
(e(n))2

}
, where

e(n) is the first element of the error vector in (6), given by
e(n) = d (n) + v(n) − x(n)T w(n − 1). Here, v(n) is an addi-
tive zero-mean measurement noise that accounts for modeling
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errors. The error vector and the convergence parameter be-
come, respectively:

e(n) = d(n) − XT (n)w(n − 1) + v(n) (33)

and

μ̃(n) = eT (n)e(n)

eT (n)XT (n)X(n)e(n)
. (34)

Equation (6) can be expressed as a function of the coefficients
w̃(n), resulting in:

w̃(n) = w̃(n − 1) − μ̃(n)X(n)e(n). (35)

By defining ẽp(n) = XT (n)w̃(n) and ẽa(n) = XT (n)w̃(n −
1), the relationship between the error vectors becomes:

ẽp(n) = ẽa(n) − μ̃(n)XT (n)X(n)e(n), (36)

and

e(n) = ẽa(n) + v(n). (37)

After inserting the cleared value of e(n) from (36) into (35),
the following expression is obtained:

w̃(n) + X(n)(XT (n)X(n))−1ẽa(n)

= w̃(n − 1) + X(n)(XT (n)X(n))−1ẽp(n), (38)

and then, the following energy equality [55] should hold:

||w̃(n)||2 + (ẽa(n))T (XT (n)X(n))−1ẽa(n)

= ||w̃(n − 1)||2 + (ẽp(n))T (XT (n)X(n))−1ẽp(n). (39)

Assuming after convergence that limn→∞ ||w̃(n)||2 =
limn→∞ ||w̃(n − 1)||2, (39) becomes

lim
n→∞(ẽa(n))T (XT (n)X(n))−1ẽa(n)

= lim
n→∞(ẽp(n))T (XT (n)X(n))−1ẽp(n). (40)

Substituting (36) into (40) gives

lim
n→∞ μ̃(n) = lim

n→∞
2(ẽa(n))T e(n)

e(n)T XT (n)X(n)e(n)
, (41)

which, after specifying μ̃(n) to the value given by (34) and
taking mean values, yields

lim
n→∞ E

{
eT (n)e(n)

} = lim
n→∞ E

{
2(ẽa(n))T e(n)

}
. (42)

For convenience, we express eT (n)e(n) = Tr{e(n)eT (n)} as
in [55], and use (37) in (42) obtaining

lim
n→∞ Tr

{
E

{
ẽa(n)(ẽa(n))T }}

+ lim
n→∞ Tr

{
E

{
v(n)vT (n)

}} = lim
n→∞ E

{
2(ẽa(n))T ẽa(n)

}
,

(43)

where independence between the measurement noise, v(n),
and ea(n) has been considered. It can be assumed during
the steady-state that Tr{E{ẽa(n)(ẽa(n))T }} ≈ E{(ẽa(n))2} for
large convergence steps, whereas Tr{E{ẽa(n)(ẽa(n))T }} tends

to NE{(ẽa(n))2} for small values of the convergence steps, as
it is shown in [55]. Therefore (43) can be expressed as

lim
n→∞ E

{
(ẽa(n))2} + Nσ 2

v ≈ lim
n→∞(2N )E

{
(ẽa(n))2} , (44)

where σ 2
v is the mean power of the measurement noise.

The expression limn→∞ E{(ẽa(n))2} denotes the excess
mean squared error (EMSE) and, since e(n) = ẽa(n) + v(n),
its relation with the MSE is given by: MSE = EMSE + σ 2

v .
Hence, the MSE can be approximated finally as

MSE ≈ σ 2
v + σ 2

v
N

2N − 1
= σ 2

v
3N − 1

2N − 1
, (45)

and MSE < 2σ 2
v . This bound arises when only very small

values of the convergence steps are considered.

VII. RESULTS
The proposed algorithm has been employed on a system iden-
tification application. The system (shown in Fig. VII) has
been modelled with a FIR filter of 256 coefficients (although
its energy is concentrated within the first 200 coefficients)
and an adaptive filter of L = 250 coefficients is used for its
identification.

The performance of the proposed algorithm has been eval-
uated against the exact AP method (including projection order
N = 1, equivalent to NLMS) and APL-I algorithms. Simula-
tions were conducted with projection orders of N ∈ {1, 2, 4,
6, 8, 10, 20}. The reference signal, x(n), was white Gaussian
noise of unit power, n(n), filtered using the following AR
model: x(n) = n(n) − γ x(n − 1). The values of γ used were:
0 (white signal), 0.9, 0.99, 0.999 (low-pass signals, becoming
more low-pass as γ approaches unity), −0.9, −0.99, −0.999
(high-pass signals, becoming more high-pass as γ approaches
unity).

The learning curves of the algorithms have been calcu-
lated by L(n) = 10 log10[e2

f (n)/d2
f (n)]. Power estimate val-

ues of the signals have been obtained through exponential
windowing given by e2

f (n) = βe2
f (n − 1) + (1 − β )e2(n) and

d2
f (n) = βd2

f (n − 1) + (1 − β )d2(n), where β = 0.999 has
been used. Furthermore, 50 independent trials have been av-
eraged to smooth these learning curves.

Fig. 2 displays the results for the different algorithms
when the reference signal is slightly colored (γ = 0.9) with
a medium-low projection order ((a) N = 4) and a high projec-
tion order ((b) N = 10). It can be observed that the proposed
algorithm performs similarly to the AP, substantially enhanc-
ing the convergence speed of the NLMS and, to a lesser extent,
that of the APL-I for N = 4. Furthermore, the proposed al-
gorithm improves the steady-state behaviour in both cases.
This behaviour becomes more evident when the reference
signal is highly colored, as depicted in Fig. 3, which presents
the same data as in Fig. 2 but for a reference signal with
γ = −0.999. Fig. 3 illustrates that for N = 4, the proposed
algorithm outperforms APL-I. However, for N = 10, APL-I
accelerates its convergence speed, while the proposed algo-
rithm does not (similar to the behavior of AP). This difference
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FIGURE 1. Impulse response of the system to be identified. Measured in a
9.36 m × 4.78 m × 2.63 m listening room.

FIGURE 2. Comparative learning curves and step-size values for: AP, APL-I
and the proposed algorithm using low colored reference signals, with
different projection orders: (a) N = 4 and (b) N = 10.

FIGURE 3. Comparative learning curves and step-size values for the AP,
APL-I and the proposed algorithm using high colored reference signals,
for: (a) N = 4 and (b) N = 10.

arises because the proposed algorithm is more reactive to the
a priori error signal for high projection orders and extremely
colored signals than APL-I. Nonetheless, the performance of
the proposed algorithm remains satisfactory, clearly outper-
forming the NLMS and APL-I and matching the performance
of the AP without requiring high values of N to achieve results
close to the best results of the AP.

Fig. 4 illustrates the learning curves of the proposed algo-
rithm for various projection orders for (a) a slightly colored
signal (γ = −0.9) and (b) a highly colored signal (γ =
0.999), thus showing the behaviour of the new approach based
on the nature of the reference signal. It is shown that the
proposed algorithm behaves similarly to the AP when the ref-
erence signal is slightly colored. It improves the convergence
speed with the projection order or saturates the convergence
speed from a certain order. Thus, in Fig. 4(a) (slightly colored
signal), the proposed algorithm achieves its maximum speed
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FIGURE 4. Learning curves and step-size values of the proposed algorithm
and different projection orders for: (a) slightly colored reference signal
and (b) highly colored reference signal.

for N = 4. Subsequently, it exhibits no visible improvement in
performance up to N = 20, but it does not deteriorate either.

However, the previous sections has shown that, as the signal
becomes highly colored, the sensitivity of the algorithm to the
a priori error signal becomes more critical, and the conver-
gence speed may deteriorate for high projection orders. This
is illustrated in Fig. 4(b) for a highly colored signal, where the
proposed algorithm accelerates its convergence up to N = 8.
Nevertheless, its performance slows down for large N values,
as explained in Sections IV and V.

Figs. 2 and 3 display the variable step-size for the APL-
I and the proposed algorithms. It can be observed that the
step-size of the proposed algorithm is slightly higher for low
projection order and high colored signals, whereas both step-
sizes are similar for high projection order and low colored
signals. Fig. 4 also illustrates the temporal evolution of the
variable step-size of the proposed algorithm. As expected, the
step-size exhibits a lower range between its highest and lowest
values when the projection order increases. This behavior
is more evident for low colored signals. It should be noted

FIGURE 5. Behaviour of the AP, APL, NLMS and proposed algorithm when
the reference signal is a speech signal and the unknown system is
suddenly modified at t = 1.4 s.

that the step-size shows different ranges during transient and
steady states for high colored signal and high projection order
in accordance with the convergence behavior of the algorithm,
which differs from its behavior for lower orders.

A speech signal has been used as reference in a last exper-
iment, since one of the most common applications of system
identification by adaptive filtering arises in echo cancellers.
A sudden change in the acoustic path halfway through the
experiment has been brought about to assess the tracking
performance of the proposed algorithm. This change consisted
of the reversal of the sign of the acoustic path together with an
additional delay of two samples. The speech signal sample
was taken from the TIMIT database [56], which utters: ‘She
had your dark suit in greasy wash water all year’. Fig. 5
shows the desired signal (the speech signal filtered through
the primary path) versus the error signal (the difference be-
tween the desired signal and the signal filtered through the
adaptive filter, which is the estimated path) for the NLMS,
AP, APL, and the proposed algorithm (the last three with
N = 4). The proposed algorithm exhibits better performance
than the NLMS and the APL, and its performance is close to
the AP algorithm. All algorithms are robust against the sudden
change, but the NLMS transient is slower.

Regarding the steady state performance of the proposed
algorithm, the experimental MSE and the approximated MSE
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FIGURE 6. Experimental and theoretical MSE versus projection order for
the system identification problem.

according to the model of (45) have been depicted in Fig. 6
for different values of the measurement noise variance, σ 2

v ,
and several projection orders. The results have been obtained
using a reference signal based on the AR model with γ = 0.9.
The experimental MSE has been estimated as the average of
the squares of the last 100 samples of the error signal. The
number of samples for each simulation has been 132,300
to guarantee reaching the steady state. It can be observed
that the model provided by (45) accurately predicts the final
MSE.

VIII. CONCLUSION
In this work, a modification of the LMS algorithm has been
proposed that simultaneously uses N vectors of the reference
signal and a correction factor that, under certain conditions,
allows its behaviour to resemble that of the AP algorithm with
projection order N . The main advantage of this algorithm is
that it avoids the need for matrix inversion, resulting in a
computationally efficient approach with very low correction
calculation costs. In addition, it enhances the performance of
similar methods like APL-I while maintaining lower com-
putational demands. However, in cases where the reference
signal is highly colored, and high projection orders are used,
the performance of the proposed algorithm may deviate from
that of AP and may even be inferior to APL-I. Therefore,
it is advisable, in such cases, to employ regularisation of
the variable step size or limit the value of N to that of the
best algorithm performance. Nevertheless, it remains a ro-
bust algorithm that significantly improves the performance
of NLMS with minimal additional computational cost and
enhances the performance of APL-I with lower computational
requirements.

It should be noted that the proposed algorithm approaches
the behavior of the AP in terms of convergence when the
reference signal is slightly colored and exhibits excellent
performance for colored signals up to the projection orders

where the convergence behavior of the AP cannot be improved
either. Therefore, the algorithm’s performance is significant,
and the trade-off between convergence speed and computa-
tional cost is, in most cases, much superior to that of other
similar algorithms such as NLMS or other APL proposals.

REFERENCES
[1] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in 1960 IRE

WESCON Convention Record. New York, NY, USA: IRE, 1960, pp. 96–
104.

[2] P. S. R. Diniz, Adaptive Filtering, 4th ed. New York, NY, USA:
Springer, 2012.

[3] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an
orthogonal projection to an affine subspace and its properties,” Elec-
tron. Commun. Jpn. (Part I: Commun.), vol. 67, no. 5, pp. 19–27,
1984. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/ecja.4400670503

[4] S. L. Gay, “The fast affine projection algorithm,” in Proc. Int. Conf.
Acoustic Signal Process. Telecommun., 2000, pp. 23–45.

[5] M. Tanaka, Y. Kaneda, S. Makino, and J. Kojima, “Fast projection
algorithm and its step size control,” in Proc. Int. Conf. Acoust. Speech
Signal Process., 1995, pp. 945–948.

[6] F. Albu, M. Bouchard, and Y. Zakharov, “Pseudo-affine projection algo-
rithms for multichannel active noise control,” IEEE Trans. Audio Speech
Lang. Process., vol. 15, no. 3, pp. 1044–1052, Mar. 2007.

[7] M. Bekrani, R. Bibak, and M. Lotfizad, “Improved clipped affine
projection adaptive algorithm,” IET Signal Process., vol. 13, no. 1,
pp. 103–111, 2019.

[8] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine
projection algorithm designed for acoustic echo cancellation,” IEEE
Trans. Audio Speech Lang. Process., vol. 16, no. 8, pp. 1466–1478,
Nov. 2008.

[9] S.-E. Kim, S.-J. Kong, and W.-J. Song, “An affine projection algo-
rithm with evolving order,” IEEE Signal Process. Lett., vol. 16, no. 11,
pp. 937–940, Nov. 2009.

[10] T. Shao, Y. R. Zheng, and J. Benesty, “An affine projection sign al-
gorithm robust against impulsive interferences,” IEEE Signal Process.
Lett., vol. 17, no. 4, pp. 327–330, Apr. 2010.

[11] Y.-R. Chien, “Variable regularization affine projection sign algorithm in
impulsive noisy environment,” IEICE Trans. Fundamentals Electron.
Commun. Comput. Sci., vol. 102, no. 5, pp. 725–728, 2019.

[12] J. J. Jeong, “A robust affine projection algorithm against impulsive
noise,” IEEE Signal Process. Lett., vol. 27, pp. 1530–1534, 2020.

[13] H. Zhao, W. Xiang, and X. He, “Bias-compensated affine-projection-
like algorithm based on maximum correntropy criterion for robust
filtering,” J. Franklin Inst., vol. 359, no. 3, pp. 1274–1302, 2022.

[14] Y.-R. Chien, C.-H. Yu, and H.-W. Tsao, “Affine-projection-like max-
imum correntropy criteria algorithm for robust active noise con-
trol,” IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 30,
pp. 2255–2266, 2022.

[15] R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,”
IEEE Trans. signal Process., vol. 40, no. 7, pp. 1633–1642, Jul. 1992.

[16] L. R. Vega, H. Rey, J. Benesty, and S. Tressens, “A new robust variable
step-size NLMS algorithm,” IEEE Trans. signal Process., vol. 56, no. 5,
pp. 1878–1893, May 2008.

[17] H.-C. Huang and J. Lee, “A new variable step-size NLMS algorithm and
its performance analysis,” IEEE Trans. Signal Process., vol. 60, no. 4,
pp. 2055–2060, Apr. 2012.

[18] Z. M. Bidgoli and M. Bekrani, “A switching-based variable step-size
PNLMS adaptive filter for sparse system identification,” Circuits Syst.
Signal Process., pp. 1–25, 2023.

[19] J. Shin, J. Yoo, and P. Park, “Variable step-size affine projection sign
algorithm,” Electron. Lett., vol. 48, no. 9, 2012, Art. no. 1.

[20] L. Shi, H. Zhao, Y. Zakharov, B. Chen, and Y. Yang, “Variable step-size
widely linear complex-valued affine projection algorithm and perfor-
mance analysis,” IEEE Trans. Signal Process., vol. 68, pp. 5940–5953,
2020.

[21] H. Zhao, B. Liu, and P. Song, “Variable step-size affine projection
maximum correntropy criterion adaptive filter with correntropy induced
metric for sparse system identification,” IEEE Trans. Circuits Syst. II:
Exp. Briefs, vol. 67, no. 11, pp. 2782–2786, Nov. 2020.

90 VOLUME 5, 2024

https://onlinelibrary.wiley.com/doi/abs/10.1002/ecja.4400670503
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecja.4400670503


[22] D. Slock, “On the convergence behavior of the LMS and the normal-
ized LMS algorithms,” IEEE Trans. Signal Process., vol. 41, no. 9,
pp. 2811–2825, Sep. 1993.

[23] C. Breining et al., “Acoustic echo control. an application of very-
high-order adaptive filters,” IEEE Signal Process. Mag., vol. 16, no. 4,
pp. 42–69, Jul. 1999.

[24] E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control: A Prac-
tical Approach. Hoboken, NJ, USA: Wiley, 2005.

[25] S. Douglas, “The fast affine projection algorithm for active noise con-
trol,” in Proc. Conf. Rec. 29th Asilomar Conf. Signals Syst. Comput.,
1995, pp. 1245–1249.

[26] M. Bouchard, “Multichannel affine and fast affine projection algo-
rithms for active noise control and acoustic equalization systems,” IEEE
Speech Audio Process., vol. 11, no. 1, pp. 54–60, Jan. 2003.

[27] M. Ferrer, A. Gonzalez, M. De Diego, and G. Pinero, “Fast affine
projection algorithms for filtered-x multichannel active noise con-
trol,” IEEE Trans. Audio Speech Lang. Process., vol. 16, no. 8,
pp. 1396–1408, Nov. 2008.

[28] F. Albu, Y. Zakharov, and C. Paleologu, “Modified filtered-x dichoto-
mous coordinate descent recursive affine projection algorithm,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2009, pp. 257–260.

[29] R. A. Dobre, C. Paleologu, S. Ciochină, C. Negrescu, and D. Stanomir,
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