
Citation: Barriga, R.; Romero, M.;

Hassan, H.; Nettleton, D.F. Energy

Consumption Optimization of a

Fluid Bed Dryer in Pharmaceutical

Manufacturing Using EDA

(Exploratory Data Analysis). Sensors

2023, 23, 3994. https://doi.org/

10.3390/s23083994

Academic Editors: Roberto Teti

and Tao Peng

Received: 6 February 2023

Revised: 11 March 2023

Accepted: 30 March 2023

Published: 14 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Energy Consumption Optimization of a Fluid Bed Dryer in
Pharmaceutical Manufacturing Using EDA (Exploratory
Data Analysis)
Roberto Barriga 1,*, Miquel Romero 1 , Houcine Hassan 2 and David F. Nettleton 3

1 Industrias Farmacéuticas Almirall, Ctra. N-II, Km. 593, 08740 Sant Andreu de la Barca, Spain
2 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Camino de

Vera, No. 14, 46022 Valencia, Spain
3 IRIS Technology Solutions, Ctra. d’Esplugues, 39, 08940 Cornella de Llobregat, Spain
* Correspondence: rbarriga1974@gmail.com

Abstract: In this paper, a data preprocessing methodology, EDA (Exploratory Data Analysis), is
used for performing an exploration of the data captured from the sensors of a fluid bed dryer to
reduce the energy consumption during the preheating phase. The objective of this process is the
extraction of liquids such as water through the injection of dry and hot air. The time taken to dry a
pharmaceutical product is typically uniform, independent of the product weight (Kg) or the type
of product. However, the time it takes to heat up the equipment before drying can vary depending
on different factors, such as the skill level of the person operating the machine. EDA (Exploratory
Data Analysis) is a method of evaluating or comprehending sensor data to derive insights and key
characteristics. EDA is a critical component of any data science or machine learning process. The
exploration and analysis of the sensor data from experimental trials has facilitated the identification
of an optimal configuration, with an average reduction in preheating time of one hour. For each
processed batch of 150 kg in the fluid bed dryer, this translates into an energy saving of around
18.5 kWh, giving an annual energy saving of over 3.700 kWh.

Keywords: energy optimization; smart sensors; industrial process; machine learning; pharmaceutical
fluid bed dryer; control and monitoring

1. Introduction

The economic environment, the constant regulatory measures applied by adminis-
trations to maintain low healthcare costs, as well as the changes in healthcare regulations
that have been introduced in recent years, have all had a significant impact on the phar-
maceutical and healthcare industries. The Industry 4.0 paradigm encompasses changes
in the traditional production model of the pharmaceutical industry with the inclusion of
technologies that go beyond conventional automation [1]. The ultimate goal is to produce
more cost-efficient drugs through the optimal incorporation of technologies such as ad-
vanced analytics [2]. It is worth mentioning that the massive amounts of data generated by
the industries cannot be exploited in many cases due to the complexity involved. Two key
aspects addressed in this paper are (i) the amortization of older fluid bed dryers that do
not have the latest sensors and (ii) the complexity of the process to be modeled:

• Firstly, due to the situation described above, and the high cost of the fluid bed dryer
involved in the drug production process, it is common practice to try to maximize the
useful life of these fluid bed dryers. Thus, in particular, legacy fluid bed dryers (more
than 15 years old) are not equipped with the latest sensors.

• Secondly, in the pre-heating process, there is a significant variability of time that
depends on when the operator has started and finished the heating process. These
operations are executed manually by the operators, as the fluid bed dryer is an old
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machine, and it is not equipped with sensors that detect when it is the optimal time to
end the preheating process. On the one hand, there are operators who keep the fluid
bed dryer warming up for approximately 45 min, whereas other operators keep the
fluid bed dryer warming for up to 115 min. Although this scenario does not apply to
all industrial plants, it might apply to several plants.

• Thirdly, at first glance it seems that the process is simple, and the formula that describes
it is, basically, “the outlet temperature minus the inlet temperature” which approaches
a constant value. However, in reality, it is a process with a complex non-linear behavior
where the required temperature and therefore the time varies depending on different
parameters such as the batch, the quantity, the mixture, and so on.

Furthermore, with reference to the third point, the difference between the outlet
temperature and the inlet temperature is sufficient to fix the equation for the state of the
water in the air as long as we have constant pressure. However, this is not typically the
case because the state of the filters varies according to their saturation state [3].

On the other hand, the weight compensation related to the richness of the API (Active
Pharmaceutical Ingredients) implies that the mass to be dried is not always the same,
and also the size of the agglomerates does not remain constant because it depends on the
previous kneading. Thus, there is a non-linearity with an IN-OUT difference that does not
remain constant. In the literature, relevant studies can be found regarding the correlation
between inlet and outlet temperatures of the drying air, both through mechanistic and ma-
chine learning models. In [4], the authors provide examples of how mathematical modeling
can be used in various aspects of pharmaceutical development and manufacturing, such as
predicting the behavior of drug molecules in different formulations and optimizing manu-
facturing processes to increase efficiency and reduce costs. There are other experimental
results from batch fluidized bed drying of two pharmaceutical powders, where process
parameters are varied, such as inlet air temperature, inlet air velocity, and bed height. Then,
in [5], the authors use the desirability approach to analyze the performance of the process
based on multiple quality criteria, such as the final moisture content, the drying rate, and
the product uniformity. Ref. [6] present a dynamic model of the fluidized bed dryer that
takes into account the complex interactions between the particle properties, the gas flow,
and the drying process. This model is used to design an observer-based soft sensor that
estimates the moisture content based on measurements of other process variables, such
as temperature and humidity These authors focus on improving the fluidized bed drying
process and the challenges associated with controlling the process, particularly with respect
to maintaining consistent product quality. Since we are focused in the current work on
the preheating process, where no product is being dried, our approach is to reduce the
fluidized bed drying process time, and consequently reduce costs related to energy usage
and human operator time.

In this paper, we propose a methodology based on data exploration, also known
as EDA (Exploratory Data Analysis), applied to the data of the sensors of the FAMP68
fluid bed dryer. The goal of applying this methodology is to optimize the process of
preheating by reducing its duration and therefore the overall energy consumption of the
fluid bed dryer. The results obtained show that it is possible to reduce the preheating time
of the FAMP68 fluid bed dryer by more than 50%. This represents an average reduction
of 1 h per processed batch, achieving an energy savings of around 18.5 kWh per batch,
giving a potential annual energy savings of about 3700 kWh (200 batches/year × 18.5 kWh
per batch).

The remainder of the paper is structured as follows: Section 2 reviews the literature
relevant to the methods and techniques used in the paper; Section 3 explains the function-
ality of the fluid bed dryer and the main issue to be solved (optimize pre-heating time);
Section 4 explains the data collection and the pre-processing stage; Section 5 describes the
experimental design; next, Section 6 presents the data exploration, including the identi-
fication of trends and system behavior, and verification of the hypothesis with historical
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data from production batches; finally, Section 7 presents the conclusions and summarizes
the work.

2. Related Work

In this paper, we study how to optimize energy consumption in a fluid bed dryer
for pharmaceutical granules that is not equipped with the latest sensor technologies. This
is conducted through exploration methodologies and techniques such as pre-processing,
data exploration, and visualization [7–10]. Data exploration and analysis are among the
most important and most intensive steps in any experiment where large amounts of data
are being used [11]. Typically, the data are presented in non-optimal formats, or the
amount of data and variables to analyze is very extensive. Therefore, it is necessary to
identify meaningful variables that affect the process, observe their behavior patterns, and
find correlations between these relevant variables to be able to draw conclusions that are
beneficial to our objective of optimizing the pre-heating time.

Psychrometrics is a key technique used in the paper for modeling the pre-heating
and drying process. Psychrometrics is a subscience of physics dealing with the properties
and processes typically of moist air (the gas phase of H2O), which can be broadened
to cover mixtures of the gas of one substance and the condensation vapor of a second
substance [12]. The psychrometric chart is a useful and easy to use tool for determining
moist air’s psychrometric properties and visualizing the changes of properties in a sequence
of psychrometric processes. Example processes would be (a) as the outside and return air
mixes; (b) air passing through heating and cooling coils; (c) the supply fan/duct; (d) the
conditioned space [12]. In the literature, the psychrometric model has been the basis
of research in data exploration and modeling for complex systems. For example, in a
meteorological context, ref. [13] developed a new model of the THI (Temperature-Humidity
Index) which represented a simplification of the current NWS (National Weather Service)
model (3 parameters vs. 16 for the NWS model). In [14], a Monte-Carlo simulation model
was developed to predict the drying behavior of lumber in batch kilns. The drying rates
were approximated by a novel combination of high and low moisture asymptotic rates,
which provide a simple correction procedure to compensate for the temperature and the
humidity variations. In [15], an artificial neural network (ANN)-based psychrometric chart
was used for real-time calculations of the air properties required in the drying of agricultural
and food materials and in the ventilation of farm buildings. In [16], mathematical models
were developed of the psychrometric chart. In the latter, the aim was to identify and model
dynamic mathematical relationships between psychrometric properties. Theoretical and
empirical models were compared, the latter using a two-layer neural network as a transfer
function for the relative humidity of the air.

3. Fluid Bed Dryer

The fluid bed dryer is a common piece of equipment widely used in the pharmaceutical
industry. The material is dried throughout the granulation process to get the optimum
moisture content in the tablet formulation granules needed for effective tablet compression.
The drying process involves the transmission of hot air and the extraction of the product’s
humidity via diffusion and forced convection. The granulate is fluidized by hot air and
dehumidified during this process, resulting in a mass and energy conversion [17].

The fluid bed dryer has three critical parameters that characterize the drying process’s
efficiency and thus can influence the final product quality. Temperature, humidity, and
air flow are the parameters described in [18]. In theory, a higher temperature and flow
rate of the fluid bed dryer’s inlet air imply a shorter drying time. However, depending on
the type of product, each of these three parameters must be configured correctly to avoid
quality issues and deterioration of the final product obtained after the drying process. It is
critical to note that the inlet air temperature should not exceed the critical temperature of
the product to be dried so that its quality or pharmaceutical properties are not jeopardized.
The fluid bed dryer used in this study was Fielder Aeromatic MP 6/8 (FAMP68), which is
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shown in Figure 1. This fluid bed dryer has 56 sensors governed by SCADA (Supervisory
Control And Data Acquisition), through which the operators monitor and configure the
basic parameters of the fluid bed dryer such as the inlet air temperature or the air flow. In
the initial phase of the dryer operation, fluid bed dryers are preheated for a certain time,
to ensure that the interior of the fluid bed is at the temperature indicated in the formula
of the pharmaceutical tablet or pill. Once we have the fluid bed dryer preheated (in a
similar fashion to an oven), we introduce the wet granulated product and inject hot air at a
constant speed to start the fluidization process, by which the moisture is removed. This
process is monitored by the operator through SCADA, which records the increase in outlet
air temperature as the product is being dried. Based on the fluid bed drier data sensors, the
outlet air and inlet air temperatures are almost the same when the product becomes dry.
At this point it is critical to stop the operation, since lengthening it more than necessary
could put the quality of the product at risk, as well as consume more time and energy than
necessary for the process [19].
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Figure 1. Fluid bed dryer model Fielder Aeromatic MP 6/8.

The FAMP68 fluid bed dryer used for this experiment is more than 20 years old, and it
lacks sensors that indicate when the fluid bed dryer has reached the optimal temperature
for the different drying phases (preheating, drying, and cooling), so human operators
typically use fixed times for the drying phases. However, for the preheating phase, the
time can vary depending on the experience of the operator with the fluid bed dryer. In this
paper, we are going to focus on the optimization of the first phase of the process, that is, the
pre-heating phase, the previous step before loading any product. Since this process relies
on the input of the operator, we suspect that a significant amount of time and energy can
be saved using quantitative methods.

4. Data Capture and Pre-Processing

This section will explain how the data capture and pre-processing is carried out.
Figure 2 shows the general process that will be followed in Sections 4–6 of the paper.
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Figure 2. Proposed methodology.

4.1. Data Capture

As shown in Figure 2, the first step is to capture data from the different sources. In our
case, we have the FAMP68 fluid bed dryer that is currently operating in a pharmaceutical
plant. The FAMP68 fluid bed dryer processes two batches of granules per day, with each
batch containing approximately 150 kg of drug mixed with 25 kg of alcohol and 10 kg
of another excipient prior to introduction into the fluid bed dryer. The fluid bed dryer
has 56 sensors that measure, among other things, inlet/outlet air temperature, air flow in
m3/h, motor rotation speed, and air pressure. The data will be inside a matrix D with m
columns and n rows, where n corresponds to the time measured at one minute intervals
and m to the 56 sensors of the fluid bed dryer. We have two years of data, which equates to
over 700,000 readings of each of the 56 signals. A PLC (Programmable Logic Controller,
Barcelona, Spain) collects the data and stores them in SCADA (Supervisory Control And
Data Acquisition). Figure 3 depicts the SCADA that operators use to interact with the fluid
bed dryer (start/stop controller, inlet air temperature indicator, inlet air flow indicator,
and so on). The SCADA data was exported to a .csv file format. The table contains over
700.000 rows and 56 columns.
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After saving the data in a file, it is uploaded to a cloud computing platform to be
processed. Because of the large amount of data (over 3 GB), the Azure platform and its
advanced analytics module Databricks using Python were chosen for data analysis.
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4.2. Data Pre-Processing

Due to the large amount of information, firstly the most relevant variables have to
be analyzed and cleaned in order to facilitate the identification of patterns and groupings
in the data. To normalize the data, it is observed that the data produced by some sensors
(columns) do not vary over time. So, we proceed to eliminate these columns to simplify
the data set and to focus on the data from sensors that can help optimize the preheating
process of the fluid bed dryer. Overall, we find 10 sensors that do not provide us with any
relevant information about the preheating or drying process, as they remain constant over
the 2-year period and can therefore be eliminated from the dataset.

5. Experiment Design

Firstly, we use psychrometrics to identify the most suitable sensors available to model
the behavior of the pre-heating process. The vapor pressure is the outermost curve, which
marks the water-vapor change of state. The pressure of change of state increases with
increasing temperature, therefore, if we carry out a process with constant humidity, we have
that the partial pressure of the water in the mixture increases with increasing temperature.
For this reason, the constant RH (Relative Humidity) curves are increasing. In our fluidized
bed drying process, we are carrying out a constant pressure process. This causes the air
entering the chamber to travel along a horizontal line starting from an initial point at the
entrance to the chamber. The movement of the point is going to follow the horizontal line to
the left that starts from the initial point because, by absorbing the water from the granules,
the humidity of the air is going to increase. The air can continue to absorb water as long as
this line does not reach the Dew Point, at which time the air will be saturated with moisture.
Fluidized bed dryers are designed so that the inlet air is sufficiently hot and dry so that
the Dew Point line is long enough to absorb all the moisture in the granules. According
to the psychrometric chart, the psychrometric ratio is defined formally as the ratio of the
heat transfer coefficient to the product of mass transfer coefficient and humid heat at a
wetted surface. It is quantified using the following equation, where r = psychrometric
ratio, hc = convective heat transfer coefficient (Wm−2K−1), ky = convective mass transfer
coefficient (kg m−2 s−1), and cz = humid heat (J kg−1K−1).

r =
hc

kycz
(1)

Taking into account the psychrometric chart in Figure 4 explained above, the following
sensors were selected in order to characterize the preheating phase of the fluid bed dryer:

• Fan motor: the signal shows when the fluid bed dryer is on or off.
• Air flow: the signal indicates the air flow (quantity in m3/h) that enters the fluid bed

dryer. This is configured by the fluid bed dryer operator.
• Inlet air temperature: the signal indicates the temperature at which the air enters the

fluid bed dryer and is also set by the operator at the beginning of the process.
• Outlet air temperature: the signal indicates the temperature at which the air exits the

fluid bed dryer.

Following the principle of the psychrometric process, once the fluid bed dryer is
running and the hot air inlet process begins, we have to take into account the heat retained
by the fluid bed dryer to reach preheating temperature. This means that we can rely on
the sensor that indicates the temperature of the outlet air of the fluid bed dryer to know
how much heat the fluid bed dryer is absorbing. By subtracting the air inlet and outlet
temperatures, we can detect when the fluid bed dryer is not capable of absorbing more
heat and therefore the inlet air temperature will be similar to the outlet air temperature.

As a last step, the data from the selected sensors will be graphically visualized, on
randomly selected days, to observe the behavior of the fluid bed dryer signals when carry-
ing out the preheating, drying, and cooling process each time a batch of pharmaceutical
product is processed. To perform this analysis, we will consider the temperature differences
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of the air inlet and outlet of the fluid bed dryer, as we have commented previously, a
variable that we will define as:

TAD = TAs − TAe (2)

where TAs is the outlet air temperature, TAe the inlet air temperature and TAD is the
temperature difference.
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Next, the proposed methodology used in the experiments is summarized. The data
will be inside a matrix D with m columns and n rows, where n corresponds to the time
measured minute by minute and m to the 56 sensors of the fluid bed dryer. We define the
variables that measure the airflow, fan motor, and phase as Cφ, Mσ, and F~, respectively.
The variables used to select data by days and batches are also defined as QD and QL,
respectively. PS will indicate the drying process and t the time.

The pseudo code of the data exploration process is the following:

1. Define a matrix D [m, n]
2. Assign data extracted from SCADA to D
3. Upload D in the cloud environment (Azure)
4. Eliminate values with variability equal to zero in D
5. Perform data exploration on D
6. Select key variables D~(TAe TAs CφMσF~)
7. Select key rows D~ ~ (QD QL)
8. Perform data exploration on D~ ~ for PS
9. Establish trends over time for t (D~ ~, PS)
10. Establish trends over time for TAD (D~ ~, PS)

Hence, the process embodies a typical data analysis/exploration methodology, which
will be explained in detail in the next section. It will be seen that visualization of the
variables through plots is a key aspect (lines 5 and 8 above), in which the trends over time
are established. Also note that previously, using the psychrometric chart (Figure 4), the
optimum values of TAs, TAe, and TAD were established.

6. Data Exploration

The following section describes the data exploration and discovery of trends and
systemic behavior. Firstly, in Section 6.1, the data are explored using different samples
of days to identify trends and evaluate the behavior of the system (hypothesis); then, in
Section 6.2, the hypothesis is verified with all the real production data obtained from the
fluid bed dryer for two years.
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6.1. Data Exploration to Identify Trends and System Behavior

In Table 1, we can observe the information of 4 sensors selected from the total of
56 sensors of the fluid bed dryer, with the selection based on the psychometric air process
approach. The information presented in Table 1 corresponds to the number of sensor
readings (count), the average value of each sensor (mean), the standard deviation of each
sensor (std), as well as the maximum and minimum values, and the limit of each of the
quartiles for each sensor. Knowing this preliminary information allows us to establish the
average values of the sensors, with respect to individual batches sampled on different days,
in order to identify trends and to evaluate the behavior of the system.

Table 1. Example of signals used for the experiment.

Power Impeller
[Kw]

Air Flow
[m3/h]

Inlet Air
Temperature [◦C]

Outlet Air
Temperature [◦C]

count 1441.000000 1441.000000 1441.000000 1441.000000

mean 0.208952 1040.490632 23.295212 27.635045

std 0.944463 1366.454053 6.842901 7.364493

min 0.000000 −58.000000 10.700000 22.100000

25% 0.000000 −55.000000 16.800000 22.900000

50% 0.000000 −55.000000 27.700000 23.400000

75% 0.100000 2471.000000 29.500000 30.800000

max 11.600000 4042.000000 31.600000 47.900000

Figure 5 indicates on the x-axis the elapsed time (1400 min in total) and on the y-axis
the difference in temperature of the fluid bed dryer’s inlet and outlet air.
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Figure 5. Plot of phases of the drying process.

To visualize graphically the behavior of the signals on different days, we randomly
selected several days on which the fluid bed dryer had been operating to analyze the
pattern that follows the preheating, drying, and cooling process. This is illustrated in
Figure 6a–f, where each plot indicates a full day’s operation of the fluid bed dryer (in
Figure 6a,b,f there was only one batch run during the day, whereas in Figure 6c–e it can be
seen there were two consecutive batch runs).
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In Table 2, we can see the four most relevant variables that we are going to use for the
experiment, selected from the first data exploration performed. We added a new variable
(fan motor) that indicates to us when the fluid bed dryer is running. The IF signal (phase
indicator) can take the values 1, 2, or 3, depending on the phase the fluid bed dryer is in.
Phase 1 corresponds to the preheating phase, where the fluid bed dryer needs to warm
up through the hot air inlet to be able to start the drying process (which corresponds to
the value 2). When the IF signal (phase indicator) acquires the value 3, it means that the
drying process has concluded (phase 2), and therefore the fluid bed dryer must be cooled
with air inlet to a lower temperature for the environmental conditioning that will avoid
condensation when cooling. The TAE (inlet air temperature) signal corresponds to the
degrees to which the air enters the fluid bed dryer for any of the three phases (1: preheat
the fluid bed dryer, 2: dry the product, 3: cool the fluid bed dryer). The TAS (outlet air
temperature) signal corresponds to the temperature in degrees of the air coming out of the
fluid bed dryer. The CAE signal (inlet air flow) indicates the volume of air per unit of time
supplied by the fluid bed dryer’s fan, and finally the MOT (fan motor) signal is used to
know when the fluid bed dryer is activated in any of the three phases (when the fan motor
starts). In Table 2, we can see the different signals, as well as their mean, maximum, and
minimum values for a random sample of signals. Note that it is expected to see null values
for the minimums of the inlet and outlet temperatures.

Table 2. Signals used for the experiment.

Abbreviation Sensor Average Max Min

IF Phase Indicator (1, 2, 3) N/A 3 1

TAE Temperature inlet Air 23.2 52.8 0

TAS Temperature outlet Air 27.6 47.9 0

CAE Inlet Air Flow 1040 4042 0

MOT Fan Motor 19.8 151 0
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The first action that has been performed is finding out how many batches of product
are dried in the fluid bed dryer each day. To do this, a random sample of signals is taken
using only those in which we have the fan motor running (MOT > 1). In Figure 7, the
x-axis indicates the number of minutes elapsed in a day (we see that the total is 1400 min,
corresponding to 24 h), and the y-axis corresponds to the difference of inlet and outlet
temperature (TAE) and output (TAS) of the fluid bed dryer. Each color corresponds to a
phase of the IF signal (phase indicator). The value 1 corresponds to the preheating phase
(blue), value 2 to the drying phase (orange), and the value 3 to the cooling phase (green) of
the fluid bed dryer. We also analyzed how much time (in minutes) it takes on average to
complete the three drying phases: preheating, drying, and cooling, as shown in Figure 7.
Some days are selected with a single batch, and others selected with two or more batches
to observe the behavior of the fluid bed dryer. We note that the fluid bed dryer requires
approximately 300 min (or 5 h) to dry a batch of product on average.
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Once the average drying time of a batch is known, including its three phases (pre-
heating the fluid bed dryer, drying the product, and cooling the fluid bed dryer), which
corresponds to approximately 5 h, we focus on the preheating phase, indicated by the
blue dots in Figure 7. The goal is to know how much time it takes to heat up the dryer
before starting the drying process. Since we are going to focus on the preheating phase,
we will select the data that meet the condition IF = 1 (preheat phase) and CAU > 0 (airflow
greater than zero), and we will choose a day to identify the duration in minutes of the
preheating phase.

In Figure 8, the blue dots represent the difference between the inlet (TAE) and outlet
(TAS) temperatures. The horizontal red line at 12.5◦ indicates the maximum of the values
(blue dot). The x-axis corresponds to the time in minutes of the preheating phase IF = 1.

The data consist of a set of points (xj, yj), j = 1, . . . , n, where xj is an independent
variable and yj is an observed value. The data are processed with a set of m convolution
coefficients Ci, expressed mathematically as

yj =

m−1
2

∑
i= 1−m

2

Ciyj+i,
m + 1

2
≤ j ≤ n − m − 1

2
(3)

where yj is a smoothed data point corresponding to observed value yj. We can observe,
by studying the data from a day of processing of a batch of product, that the operator has
left the fluid bed dryer preheating for more than 100 min (x-axis), at which point the curve
begins to descend. At this point, the next phase commences where the granulated product
is loaded into the fluid bed dryer to begin drying. It can also be observed that the maximum
difference between the air inlet and outlet temperatures in both cases is between 12 and
15 degrees (y-axis). So, it can be deduced that hot air is being introduced into the fluid bed
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dryer for a longer period than necessary (since the temperature differences between the
inlet and outlet air remain stable). Thus, the operator is lengthening the process longer
than the necessary time, during which energy is being consumed and wasted.
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6.2. Verification of the Hypothesis with Historical Data from Production Batches

Once key trends have been identified in selected sample days (Section 5), the next
step is to evaluate the preheating phase of all the 200 product batches available in the
700,000 signals (about two years of data). We can see in Figure 9 how the inlet (TAE) and
outlet (TAS) temperature difference is distributed. We observe that the median is around
12 degrees, which is similar to the median of the previous sample containing two batches
(Figure 8).
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In addition, in Figure 10, we can observe the duration in minutes of the preheating
phase for all the batches analyzed. Figure 10 shows that the preheating duration varies
mainly between 45 and 115 min, with the median being around 75 min.
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This time variability depends on when the operator has started and finished the
heating process. Since it is a manual process due to the age of the fluid bed dryer (more
than 20 years), there are operators who keep the fluid bed dryer preheating for about
45 min, whereas other operators keep the fluid bed dryer preheating for up to 115 min.
Although there is no product in the preheating stage, the preheating conditions are dif-
ferent depending on the product to be processed later, since not all products dry at the
same temperature. This causes the differential in temperature to not always be the same.
Additionally, we have lots that are the first batches of a given product (first series), and
others are not. The first series will probably show a longer time to reach the same point
than those that follow. It is this variability that makes it important to have a system which
has an optimization capability.

Therefore, a “look-up table” could be defined, followed by a data model that relates
the pre-heating time with the independent variables mentioned, that is, the batch/product,
batch order in the series, etc. The operator would enter the independent variables into
the control system, and the control system would calculate and apply the corresponding
optimal time.

As a conclusion drawn from the pre-processing and scanning of the signals, illustrated
in Figures 7–10, it can be affirmed that the preheating phase lasts longer than necessary.
Once the 12.5◦ temperature difference between the inlet and outlet air is reached, the
fluid bed dryer is at the correct temperature to proceed with the drying of the product.
Therefore, from this point on, it is not necessary to continue heating. Next, we can see in
Figure 11 how when applying the pre-processing and exploration techniques that have
been commented previously, the complete process is visualized, including the preheating
phase of the fluid bed dryer IF = 1 (blue dots 1.0), the drying phase of the product IF = 2
(orange points 2.0), and the cooling phase IF = 3 (green points 3.0). In Figure 11, the
y-axis indicates the difference between inlet air temperature (TAE) and outlet (TAS), and
the x-axis represents the elapsed time in minutes. Thus, as can be seen in Figure 8, the
pre-heating phase temperature difference stabilizes between 12.5◦ and 15◦ (blue dots). This
is the desired stable state required as a precondition for the drying phase to commence.
Therefore, further pre-heating (as was done in the previous system which had a fixed time
period) is unnecessary, and the system can (dynamically) commence the drying phase once
this state is detected, thus saving time and energy consumption.

The time in minutes (x-axis) between the red vertical lines corresponds to the average time
wasted (approx. more than 50 min that the fluid bed dryer is preheating unnecessarily) since
the fluid bed dryer is already at its optimum point (approximate difference of 12.5 degrees
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between the inlet and outlet temperatures) to be able to start drying the product (phase 2
with dots in orange). This potential saving in time and energy consumption also implies
a reduction in the entire process (which lasts about 350 min: from the start time of fluid
bed dryer preheating until end of cooling). This amounts to a saving of approximately
50–60 min per batch and the corresponding energy consumption reduction. The power
of the fan’s fluid bed dryer used is 18.5 kWh, so if we consider that we can reduce, on
average, almost an hour of preheating time where the fan is working at full power (sending
hot air at more than 45 degrees with a flow of 2000 m3), we calculate an energy saving
for each batch of 18.5 kWh. Remember that the fluid bed dryer processes approximately
200 batches per year, giving an estimated annual energy saving of approximately 3700 kWh
(200 batches/year × 18.5 kWh/batch).
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7. Conclusions and Future Work

This paper has provided a practical example of how to use an EDA (Exploratory Data
Analysis) methodology to analyze and optimize a large-scale drug production process, such
as the drying process of solid drugs (pharmaceutical granules) through a fluid bed dryer.
The problem of how to optimize energy consumption in fluid bed dryers for pharmaceutical
granules has been addressed, obtaining average reduction results of almost half the time
used by the fluid bed dryer in the process (average 1 h per batch), and a considerable saving
in energy consumption (18.5 kWh) per batch. This has been achieved by using advanced
analytical data exploration and pre-processing techniques on more than 700,000 data
records from 56 sensor signals captured with 1-min time intervals from a Fielder-Aeromatic
MP 6/8 fluid bed dryer. As a next step, we propose connecting the fluid bed dryer sensors
to a cloud computing platform in real time. Then, from the results of the data exploration,
develop a data model using machine learning algorithms. This model will provide the
operator with a prediction of the time required to complete the preheating process via the
SCADA interface. As future research, the same technique could be used for the drying
and cooling processes of the fluid bed dryer, as well as for the time-consuming process of
cleaning and disinfection of the equipment once a batch is completed. This methodology
and technique can also be applied to other types of machines within the industrial drug
production process, such as compactors, coaters, mixers, etc.
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