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A B S T R A C T   

The Sequential Multi-Block Partial Least Squares (SMB-PLS) model inversion is applied for defining analytically 
the multivariate raw material region providing assurance of quality with a certain confidence level for the critical 
to quality attributes (CQA). The SMB-PLS algorithm does identify the variation in process conditions uncorre
lated with raw material properties and known disturbances, which is crucial to implement an effective process 
control system attenuating most raw material variations. This allows expanding the specification region and, 
hence, one may potentially be able to accept lower cost raw materials that will yield products with perfectly 
satisfactory quality properties. The methodology can be used with historical/happenstance data, typical in In
dustry 4.0. This is illustrated using simulated data from an industrial case study.   

1. Introduction 

Raw materials properties are usually considered as Critical Input 
Parameters (CIPs) because their variability has an impact on Critical 
Quality Attributes (CQAs) of the final product. Despite their importance, 
specifications are usually defined in an arbitrary way based mostly on 
subjective past experience, instead of using a quantitative objective 
description of their impact on CQAs. Furthermore, in many cases, uni
variate specifications on each property are designated, with the implicit 
assumption that these properties are independent from one another. 
However, multivariate specifications provide much insight into what 
constitutes acceptable raw material batches when their properties are 
correlated (as usually happens) [1]. To cope with this correlation several 
authors suggest using multivariate approaches, such as Partial Least 
Squares (PLS) regression. Two approaches emerge from the literature 
when using PLS [2]. The first is based on a direct mapping in the latent 
space whereas the second defines specifications by the PLS model 
inversion. 

The first systematic study was reported by De Smet [1] based on a 
direct mapping of good quality final product and associated lots of raw 
materials in the latent space, followed by selection of boundaries that 
best balance type I and II risks. The resulting region is then used to 
decide whether a new incoming lot of raw materials should be accepted 
or rejected. The key assumption of this method is that variability in the 
CQAs results exclusively from variations in the raw materials properties. 

Duchesne and MacGregor [3] generalized this method by assuming that 
both variations in raw materials properties and in process operating 
conditions are responsible for CQAs variations. Later on, García-Muñoz 
[4] extended the Duchesne-MacGregor method to combine data from 
multiple scales (e.g., lab or pilot scale and commercial scale) with 
different processing conditions and control strategies. These ap
proaches, however, focused on defining multivariate specification re
gions on the multiple properties of a single raw material. To overcome 
this limitation, MacGregor et al. [5] extended them to determine the 
acceptability of new raw materials from multiple suppliers and with 
multiple measured properties, as well as to assess the suitability of 
combining specific batches of raw materials currently in inventory to 
minimize the risk of manufacturing a poor quality product. Finally, 
Azari et al. [6] proposed a Sequential Multi-block PLS (SMB-PLS) algo
rithm instead of PLS. The SMB-PLS imposes a sequential pathway be
tween the regressor blocks according to the process flowsheet (e.g., raw 
material properties and process operating conditions), and then uses 
orthogonalization to separate correlated information between the blocks 
from orthogonal variations. Hence, the SMB-PLS captures the impact of 
variations in raw material properties on the process and on CQAs in the 
first block of latent variables. This allows identifying feedback/feed
forward control actions made to compensate for variations in raw ma
terial properties. Then, the second block of latent variables captures 
process variations that are independent from raw material properties 
and also affect CQAs, e.g., certain (unplanned) excitations due to small 
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changes in the process conditions during their daily operation. For that 
reason, the SMB-PLS is more efficient to establish the multivariate 
specifications when raw material properties and process conditions are 
correlated as it better sorts the contribution of both on the CQA 
variations. 

In the aforementioned references, based on the direct mapping 
approach, the general shape (e.g., an ellipsoid or a straight line) and 
locus of the boundaries is decided by the user, trying to best balance out 
the type I and type II risks as commented. In contrast to this, García- 
Muñoz, Dolph, and Ward [7] emphasized the use of mathematical and 
statistical models as an objective way to define such specifications by 
linking them with a desired set of CQAs. In this sense, the PLS model 
inversion is of interest because it allows predicting an appropriate set of 
raw materials linked to the specification limits for CQAs. Moreover, 
when inverting PLS models, their prediction uncertainty is also 
back-propagated [8,9] and, hence, Borràs-Ferrís et al. [10] presented a 
methodology for defining analytically the raw material specification 
region in the latent space where the prediction uncertainty is consid
ered. Thus, this region is expected to provide assurance of quality with a 
certain confidence level for the CQAs. In this regard, such region refers 
to the estimation of the so-called raw material Design Space (DS), which 
is defined as the multidimensional combination and interaction of inputs 
variables (e.g., raw material properties) that have been demonstrated to 
provide assurance of quality [11]. 

Since not only raw material properties influence the quality of the 
final product, but also the process conditions do, it is reasonable to 
consider the possibility to modify process conditions to compensate for 
raw material properties variations. Thus, wider raw materials specifi
cations could be used if an effective process control system attenuating 
most raw material variations is implemented. In this sense, García- 
Muñoz, Dolph, and Ward [7] already proposed a feed-forward controller 
based on the PLS model inversion. However, this approach requires 
solving an optimization problem by a non-linear programming method, 
where raw material properties are fixed to hard constraints reducing the 
degrees of freedom to only process conditions. Thus, once a new raw 
material batch is received, the controller is executed in order to calculate 
the combination of the best process conditions, based on the desired 
CQAs, for such raw material batch. Note that, if too many constraints are 
specified for raw material properties, the model inversion solution may 
be forced to move away from the latent model [12]. Besides, this 
approach makes no attempt to differentiate between correlated and 
uncorrelated variations in process conditions with raw material prop
erties and, hence, its proposed feed-forward controller does not identify 
properly the control actions from the past. 

The purpose of this work is to develop a novel methodology taking 
advantage of the SMB-PLS model already discussed in the direct map
ping approach but applied into the PLS model inversion approach. Thus, 
by means of the SMB-PLS model inversion, this methodology allows 
defining analytically such specifications by considering the possibility to 
modify process conditions prior to selecting a new raw material batch 
and, hence, it does not require solving an optimization problem each 
time a new raw material batch is received. In addition to that, unlike 
PLS, the SMB-PLS model does identify the variation in process condi
tions uncorrelated with both raw material properties and known dis
turbances, which is crucial as the modification of process conditions 
only must be inferred from such variations. 

2. Data requirements 

The data required for developing raw materials multivariate speci
fications following the methodology proposed in this paper involves 
three data blocks: Z, X and Y. Z (N × M) is a matrix of inputs which 
includes a total of M measurements characterizing the properties of each 
of the N batches of a particular raw material, X (N × K) is a matrix of 
inputs which includes a total of K process conditions used to process 
each one of the N batches of a particular raw material. In this work, it is 

assumed that process conditions refer to process manipulated variables. 
The Y (N × L) output matrix consists of L measurements of the CQAs of 
the final product obtained for each one of the N corresponding batches. 
Finally, batches of raw materials are typically large, and it is assumed 
that the process will run for a long period at steady state on each batch. 
Thus, the three data blocks are collected in steady state. 

3. Latent variable regression model 

The latent variable regression models are tools specifically designed 
to analyze large data sets of highly correlated data, that find the main 
driving forces (i.e., latent variables) on the input space that are most 
related to the output space, being both spaces projected into a common 
latent space [12]. Thus, it is used not only to model the inner relation
ships between the matrix of inputs (Z and X) and the matrix of output 
variables (Y), but also to provide a model for both. This fact gives them a 
very nice property: uniqueness and causality in the reduced latent space 
no matter if the data come either from a Design of Experiments (DOE) or 
daily production process (historical/happenstance data) typical in In
dustry 4.0 [13]. 

The SMB-PLS is a multi-block latent regression model that combines 
the strengths of Multi-block PLS (MB-PLS) and those of the Sequential 
Orthogonal PLS (SO-PLS) methods [14]. Indeed, the SMB-PLS improves 
interpretability of between block relationships over the traditional 
MB-PLS methods by imposing a sequential ordering of the blocks 
(pathway) and applying stepwise block orthogonalization. Besides, as 
opposed to the SO-PLS, it models both the orthogonal and correlated 
information between blocks. In this section, the SMB-PLS is described as 
in Ref. [6], followed by the analytical definition of its inversion. 

3.1. SMB-PLS regression model 

The pseudocode of the SMB-PLS is presented in Appendix A and the 
algorithm is also shown schematically in Fig. 1, similarly as in Ref. [14]. 
The algorithm in Fig. 1 is presented for the two-blocks case (Z and X) for 
simplicity, but it can be extended to any number of regressor blocks as it 
is shown in Appendix A. 

Fig. 1 shows that the SMB-PLS uses a hierarchical structure where the 
input blocks are ordered according to the process flowsheet with the first 

Fig. 1. Scheme of SMB-PLS algorithm for two input blocks.  
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block Z containing incoming raw material properties, and process data 
in the second block X. The algorithm computes the block weights and 
scores from the first block Z. The subsequent block X is then regressed 
onto the first block scores to extract the information that is correlated 
with Z, and their block weights and scores are then calculated. All block 
scores are combined in the super level score matrix T and a PLS model is 
built between Y and T to obtain the super weights and super scores. 
Upon convergence, super-score deflation is applied to the input blocks, Z 
and X, and the output block, Y, ensuring that the next component will 
extract orthogonal information to the first one. The procedure is 
repeated for computing the next component using the residual of all data 
blocks. It continues to extract components from the first regressor block 
in the sequence until it has modeled all relevant information from Y. 
When all relevant information from Z is extracted in the first modelling 
step, a regular PLS model is fitted to the X and Y residuals (i.e., Xorth and 
F, respectively) in the second modelling step. Thus, the SMB-PLS latent 
space can be expressed, similarly as PLS, but as two blocks of latent 
variables (Eq. (1)). 

Y= [TT Torth] ⋅ [QT Qorth]
T
+F∗ =T ⋅ QT + F∗ (1)  

where F∗ are the residuals of Y after extracting the last SMB-PLS 
component. SMB-PLS captures the impact of variation in raw material 
properties on the process and on Y in the first modelling step represented 
by the first block of latent variables, TT, referring to [Z Xcorr]. These 
latent variables allow identifying past operating procedures, and control 
actions from the past (i.e., feedback/feedforward control) implemented 
to compensate for raw material properties variations. 

Note that as already commented, process data is collected in steady 
state, and hence, dynamics are not considered. Besides, if the feedfor
ward or feedback controllers remove the disturbances completely 
(perfectly), no deviation in Y in steady state will be captured after a raw 
material disturbance occurred. In such a case, there will be a correlation 
between Z and the manipulated variable in the control loop X, but that 
information should not be captured by any latent variable since there 
will be no correlation with Y. 

However, in the case of feedforward control on raw material prop
erties, an ideal controller would compensate any raw material distur
bance completely only if it would know the “true” model, which is never 
the case. In the case of a feedback control, if the controller transfer 
function includes an integrating element (e.g., the I mode in PID 
controller that seeks to eliminate the residual error according to the 
historic cumulative error), and if the manipulated variable does not 
reach an upper or lower bound (i.e., saturation), the impact of the 
disturbance on Y should not be captured if the data is collected truly in 
steady state (i.e., perfect controller). Note that, feedforward controllers 
are never ideal, nor feedback controllers are perfect. Therefore, these 
controllers do not compensate perfectly (i.e., there will be a residual 
effect on Y). In addition to that, regarding the feedback control, the 
correlations between the manipulated and controlled variable of the 
control loop are not causal but anti-causal, that is, these correlations 
capture the reciprocal of the control transfer functions, leading to the 
negative inverse of the controller gain for steady state data. Finally, note 
that control loops are known, and hence, when interpreting the SMB-PLS 
model, these correlations are not a surprise, but something expected. 

In both feedforward/feedback control, the correlation between Z 
and the manipulated variables in the control loops X, related to the re
sidual effect on Y, will be captured by some latent variables in the first 
block. Anyway, in both feedback/feedforward control, the purpose is 
not to interpret these relationships as causal (which would be wrong), 
but to account for them in the first block of latent variables. Thus, in the 
second modelling step, the second block of latent variables, Torth refer
ring to Xorth, is expected to capture only process variations that are in
dependent from raw materials and also affect Y (e.g., certain 
(unplanned) excitations). The main aim of this study is to take advan
tage of the information captured in this second block to improve the 

control actions from the past in a feedforward control strategy. 
In order to evaluate the model performance of an observation, the 

Hotelling T2 in the latent space and the Squared Prediction Error SPE are 
calculated [15]. The Hotelling T2 statistic of an observation is the esti
mated squared Mahalanobis distance from the center of the latent sub
space to the projection of such observation onto this subspace. The SPE 
statistic referring to the X-space gives a measure of how close (in an 
Euclidean way) such observation is from the A-dimensional latent space. 
Upper confidence limits (with a specified confidence level) for both 
statistics can be calculated based on theoretical distributions [16,17] or 
they can be obtained from distribution free methods by repeated sam
pling [18]. In the following sections, SPE and T2 99% confidence limits 
are calculated from theoretical distributions. 

3.2. SMB-PLS model regression inversion and the null space 

The objective of model inversion is to find (predict) a window of 
inputs (raw materials properties, process conditions, etc.) for a desired 
product quality. Jaeckle and MacGregor [13] proposed a framework for 
the inversion of latent variable regression models using historical data 
available on the process operating conditions and on the corresponding 
product quality. Using standard regression models (e.g., linear regres
sion or artificial neural network), the inversion is inadequate because 
those models do not model the regressors space and, consequently, the 
inversion solution of the model almost certainly does not respect pre
vious structural relationships in the regressors space, leading to unfea
sible solutions. By contrast, when inverting a latent variable regression 
model the inversion solution belongs to the latent space (defined by the 
latent variables) and, therefore, such solution is constrained to be 
physically feasible and consistent with the sets of process conditions and 
correlation structure from the past. In this respect, the latent variable 
regression model inversion has been demonstrated to be a valid tool to 
support the development of new products and their manufacturing 
conditions using historical data in several case studies [12,19–23]. 

When considering the inversion of a SMB-PLS model, the set of input 

variables (column vector 
[

znew

xnew

]

) that will yield the desired set of CQAs 

(column vector ydes) are obtained by solving the following system of 
linear equations: 

ydes =Q ⋅

[
τnew

T

τnew
ortho

]

=Q⋅τnew (2)  

where τnew is the vector of scores corresponding to the observation 
[

znew

xnew

]

. The way to calculate znew and xnew from τnew is explained in 

Section 5. Notice that the SMB-PLS model inversion involves solving a 
system of linear equations represented in a matrix form (Eq. (2)), where 
there are as many linear independent equations as the rank of Y (rY), and 
the number of unknown variables corresponds to the dimensionality of 
the latent space (A). Commonly, rY is lower than A and, hence, Eq. (2) 
corresponds to an underdetermined system of linear equations. The 
multiple solutions τnew fall into a (A − rY)- dimensional hyper-plane of 
the A-dimensional space, that theoretically yields the same desired set of 
CQAs [9]. This hyper-plane is so-called Null Space (NS). 

4. High-Confidence Design Space 

In this section, a brief overview of the DS is shown based on Borràs- 
Ferrís et al. [10], but by considering the process conditions by means of 
the SMB-PLS model instead of applying PLS as in Ref. [10]. This is 
possible as the SMB-PLS latent space (Eq. (1)) is expressed similarly as 
PLS. Thus, the DS refers to the multidimensional combination and 
interaction, not only of raw materials properties but also process con
ditions, that have been demonstrated to provide assurance of quality. If 
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there is no prediction uncertainty, the DS must be defined as a region in 
the latent space associated with raw materials properties and process 
conditions such that they yield an expected value of CQAs within their 
specification limits. Besides, since SMB-PLS is an empirical model based 
on historical data, any new set of raw materials properties must respect 
the correlation structure and range of those historical data [19]. 
Regarding the correlation structure, since the DS is defined in the latent 
space, it ensures new observations to behave in the same way as the ones 
used to create the model, in the sense that the correlation structure of the 
model is respected. Regarding the historical range, when considering the 
Hotelling T2 confidence limit as a raw material specification limit, the 
new set of raw material properties are constrained to be within historical 
ranges in a multivariate sense. Additionally, historical univariate ranges 
for each property (and other constraints) might be included. 

In this study, we initially focus on the l-th CQA and, hence, vector ydes 

degenerates to scalar ydes, and matrix Q degenerates to vector qT
l (l-th 

row of matrix Q). Thus, if a specific value of the l-th CQA is required 
(yl = ydes

l ), the desired specific value for the l-th CQA yields a (A-1)- 
dimensional NS and the DS is defined by the intersection of this NS and 
the Hotelling’s T2 confidence region. In the same way, if the desired l-th 
CQA refers to both lower and upper specifications limits (yLSL

l and yUSL
l , 

respectively), the DS in the latent space is defined by the intersection of 
the scores fulfilling the specifications’ NSs and the Hotelling T2 confi
dence region. 

Until now, the DS has been defined without taking into account the 
prediction uncertainty. However, since empirical models are subject to 
uncertainty, when a latent variable regression model is inverted, the 
uncertainty is back-propagated to the calculated inputs (i.e., the DS 
calculation is probabilistic) [8,9]. For that reason, even though working 
in the NS associated with the specification limit leads to a predicted 
value between specifications, it might yield out of specifications values 
for the l-th CQA due to prediction uncertainties. In this sense, Borràs-
Ferrís et al. [10] proposed to define the DS in the latent space as the 
region where any combination of raw properties and process conditions 
results in a prediction interval inside specifications. When calculating 
the confidence limit for the multiple solutions along the NS of yLSL

l and 
yUSL

l , a non-linear boundary is obtained for each specification: Lower 
Specification Confidence Limit (LSCL) and Upper Specification Confi
dence Limit (USCL), respectively. Appendix A of Borràs-Ferrís et al. [10] 
shows the analytical expression, which allows calculating the score 
belonging to both the lower and upper specification confidence limits 
given its respective score in the NS for the l-th CQA. 

The intersection regions delimited by the LSCL, USCL and the 
Hotelling T2 confidence ellipsoid, delimits the so-called High-Confi
dence Design Space (HC DS). This is illustrated in a two-dimensional 
latent space, and the focus is on the l-th CQA (Fig. 2). 

From a frequentist probabilistic interpretation, batches belonging to 
the HC DS in Fig. 2 are expected to produce product with CQAs within 
specification limits with a confidence level equal or higher than 1 − α. 
Additionally, the intersection between the region bounded by the two 
NSs corresponding to the yLSL

l and yUSL
l , and the Hotelling’s T2 confi

dence region, but outside the High-Confidence DS, defines the so-called 
Warning Space (WS) (Fig. 2). Note that, although this space does not 
belong to the HC DS as defined, it does not necessarily imply the 
rejection of batches. In fact, batches lying within the WS lead to pre
dicted values between specifications, but they result in prediction in
tervals for the CQA partially outside of specifications given the 
predefined confidence level 1 − α. Finally, the Low-Confidence Space 
(Fig. 2) leads to predicted values outside specifications. 

5. Multivariate raw material specification region 

The HC DS, defined by the SMB-PLS model, simultaneously considers 
the raw material properties and process conditions. At this point, one 
could use such model to define the multivariate raw material specifi
cation region (i.e., the Raw Material HC DS) according to two strategies: 
without or under improved control. 

5.1. Without improved control 

In this section, it is assumed that process variations, correlated with 
raw material properties will remain in place in the future without any 
improvement. Thus, establishing specifications in raw material proper
ties aims at penalizing those combinations that are not compensated for 
by the current control schemes. 

A priori, in this strategy, there is no need to consider the orthogonal 
variations in process conditions and, hence, Raw Material DS refers to 
the HC DS of the SMB-PLS for [Z Xcorr]. Thus, given a new raw material 
batch, znew, its corresponding Z scores, τnew

z , the expected process con
ditions according to the control actions from the past, xnew

corr, and its 
corresponding Xcorr scores, τnew

Xcorr
, are calculated according to Eq. (3). 

τnew
z = W∗T

Z⋅znew

xnew
corr = CXcorr ⋅τnew

z

τnew
Xcorr

= W∗T
Xcorr

⋅xnew
corr

(3)  

where W∗
Z is the Z block weights transformed to be independent be

tween components, CXcorr is the correlation coefficient matrix calculated 
in the first modelling step which directly relate τnew

z to xnew
corr, and W∗

Xcorr 
is 

the Xcorr block weights transformed to be independent between com
ponents. Both, W∗

Z and W∗
Xcorr

, are calculated in the first modelling step as 
it is shown in Appendix B. The corresponding projection into the first 
block of latent variables, τnew

T , are obtained in the super level score 
matrix (Eq. (4)). 

τnew
T = diag

([
τnew

z τnew
Xcorr

]
⋅ WT

)
(4)  

where [τnew
z τnew

Xcorr
] refers to the matrix of concatenated score vectors (A ×

2), WT is the super weight matrix containing the super weight vectors 
organized by columns (2 × A), and diag is the matrix-to-vector diagonal 
operator. Then, if any point, τnew

T is within the HC DS, one would expect 
good quality with a certain confidence level for such znew. Hence, the 
Raw Material HC DS (i.e., RM HC DS) can be defined as Eq. (5). 

RM HC DS := {(τT) : τT ∈HC DS} (5)  

In the case of considering also Xorth in the second modelling step, the 
Raw Material HC DS would refer to the space defined in Eq. (6). 

Ort :=
{
(τT, τorth) : τT ∈ ℝAT , τorth = τnew

orth

}

RM HC DS := {(τT) : τT ∈ HC DS ∩ Ort }
(6) Fig. 2. Defining the High-Confidence Design Space, Warning Space and Low- 

Confidence Space in the two-dimensional latent space. 
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Note that, the Raw Material HC DS defined in Eq. (6) a priori requires 
that the vector of scores referring to orthogonal variations in process 
conditions, τnew

orth, is known beforehand. If this is not the case, it is assumed 
that τnew

orth will remain on average with respect to the past (i.e., τnew
orth = 0Aorth 

where 0Aorth is a zero vector of size Aorth). However, as it is unknown, the 
confidence limits must be calculated disregarding the orthogonal latent 
space. In other words, the prediction uncertainty, back-propagated in 
the definition of the specification confidence limits, must be estimated 
assuming that the τnew

orth remain on average with respect to the past. 

5.2. Under improved control 

Several works have already emphasized the control actions from the 
past could be improved in order to compensate for some of the raw 
materials variability [6,7,24]. Hence, wider raw materials specifications 
can be used if an effective process control system attenuating most raw 
material variations is implemented. In this sense, the SMB-PLS is 
particularly useful approaching this strategy as it models the orthogonal 
variations in process conditions in a second block of latent variables 
being orthogonal to the first one. Thus, one can infer causality in
terpretations in the reduced latent space of the second block. This in
formation offers an effective way of manipulating the process 
conditions, with respect to the control actions from the past, for 
compensating raw material variations. 

In this strategy, given a new raw material batch, znew, the expected 
process conditions according to the control actions from the past, xnew

corr, 
and the first block of latent variables, τnew

T , are obtained as above. Then, 
any raw material batch, resulting in τnew

T , is expected to have good 
quality with a certain confidence level by modifying process conditions 
(i.e., it belongs to the Raw material HC DS), if and only if there is any 

τorth = τnew
orth such that τnew =

[
τnew

T

τnew
orth

]

belongs to the HC DS, where τnew
orth is 

the score values of the second block of latent variables. From τnew
orth, one 

can figure out how to manipulate the process conditions to compensate 
for raw material variations according to Eq. (7). 

xnew = xnew
corr + xnew

orth = xnew
corr + Porth⋅τnew

orth (7)  

where Porth is the loading matrix of the second latent block. Note that, 
τnew

orth represents the locus of the xnew
orth projections within the HC DS given a 

new raw material batch. Therefore, if it exists, the control actions could 
be improved in different ways without leaving the DS, which provides 
operational flexibility in process improvement. 

Finally, we can define analytically the Raw Material HC DS, prior to 
selecting a new raw material, as the projection of the HC DS onto the 
space defined by the first block of latent variables as Eq. (8). 

RM HC DS := {(τT) : τT = TPT [τ],∀τ ∈HC DS} (8)  

where TPT is the linear transformation that projects from RAT+Aorth to RAT 

defined by the matrix PT = [IAT 0AT ,Aorth ], IAT is the identity matrix of size 
AT, 0AT ,Aorth is a zero matrix of size AT × Aorth, and AT and Aorth are the 
latent dimensionality of the first and second block, respectively. 

Note that saturation in the control actions caused by the actuators 
limits can be accounted for in the model inversion procedure [9]. This is 
feasible because the latent variable regression models allow projecting 
constraints on process conditions onto the latent space in order to 
delimit a portion of the HC DS within which products of the desired 
quality may still be produced while meeting saturation constraints. 

6. Presence of known disturbances affecting control actions 

Until now, we have assumed that orthogonal process variations to 
raw material properties and related to CQAs are due to certain (un
planned) excitations. However, process conditions could present varia
tions due to feedforward compensation for some known disturbances. 

This issue needs special attention as if one decides to ignore the 
known disturbance for not being manipulatable, the SMB-PLS could 
model, in the orthogonal block, variations in process conditions that 
may be related to such disturbance. The fact that the correlation be
tween process conditions and the known disturbance could still explain 
variations in CQAs is because the control adjustment may not be perfect 
(i.e., the effect of the known disturbances is not removed completely). 
This will yield misleading causality relations in the reduced latent space. 
Therefore, we suggest adding an intermediate block D (N × O) being a 
matrix of inputs which includes a total of O known disturbances 
measured in each one of the N batches of a particular raw material. Thus, 
the SMB-PLS algorithm includes an intermediate modelling step that 
captures the impact of variation in disturbances orthogonal to Z (i.e., 
Dorth) on the process and on Y, represented by latent variables TD. This 
intermediate block of latent variables allows identifying control actions 
from the past implemented to compensate for disturbances not related to 
raw material properties. This ensures that the last modelling step only 
model certain (unplanned) excitations in process conditions, Xorth, from 
which causality can be inferred. 

In the same way as Subsection 5.1 but including the disturbance 
space, the Raw Material HC DS without improved control would refer to 
the space defined in Eq. (9). 

Dis :=
{
(τT, τD, τorth) : τT ∈ ℝAT , τD = τnew

D , τorth ∈ ℝAorth
}

Ort :=
{
(τT, τD, τorth) : τT ∈ ℝAT , τD ∈ ℝAD , τorth = τnew

orth

}

RM HC DS := {(τT) : τT ∈ HC DS ∩ Ort ∩ Dis }
(9)  

Eq. (9) assumes that both the disturbance and the orthogonal space are 
not manipulatable and, hence, they must be defined as constraints, Dis 
and Ort respectively, that intersect with the HC DS. However, if control 
actions can be improved by means of the orthogonal space, such space 
must be projected onto the remaining space in the same way as Sub
section 5.2. Thus, the Raw Material HC DS, by considering the possibility 
to modify process conditions prior to selecting a new raw material batch, 
can be defined analytically as the intersection between the projection of 
the HC DS onto the first and second block of latent variables (i.e., Pr), 
and the subspace defined by τnew

D (i.e., Dis), as it is shown in Eq. (10). 

Dis :=
{
(τT, τD) : τT ∈ ℝAT , τD = τnew

D
}

Pr :=
{

(τT, τD) :

[ τT

τD

]

= TPTD [τ],∀τ ∈ HC DS
}

RM HC DS := {(τT) : τT ∈ Dis ∩ Pr }

(10)  

where TPTD is the linear transformation that projects from RAT+AD+Aorth to 
RAT+AD defined by the matrix PTD = [IAT+AD 0AT+AD ,Aorth ], IAT+AD is the 
identity matrix of size AT + AD, 0AT+AD ,Aorth is a zero matrix of size AT +

AD × Aorth, and AD is the latent dimensionality of the disturbance block. 
Note that, the Raw Material HC DS defined in Eq. (9) and Eq. (10) a 

priori requires that the vector of scores referring to orthogonal varia
tions in disturbances, τnew

D , is known beforehand. If this is not the case, it 
is assumed that τnew

D will remain on average with respect to the past (i.e., 
τnew

D = 0AD where 0AD is a zero vector of size AD), and the confidence 
limits must be calculated disregarding the disturbance latent space. 
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7. Industrial simulated case study 

7.1. Description of the dataset 

A simulated polymer extrusion film blowing process was used to 
generate data in order to illustrate how to define multivariate specifi
cation regions for incoming raw materials [3,14]. The dataset consists of 
two regressor blocks (Z and X) and a response block (Y). The raw ma
terial block (Z) contains the following polymer resin properties: ten 
temperature dependent viscosities (η), heat capacity (Cp), and density 
(ρ). The second block (X) contains 3 process conditions, namely the air 
temperature (Ta), the polymer flow rate (Q) and the cooling air flow rate 
represented by the maximum local heat transfer coefficient along the 
film bubble (h0). A priori, these process conditions are assumed to be 
manipulated variables, but in Section 7.6, Ta is considered a known 
process disturbance. The response block (y) is characterized by one 
quality attribute of the film, which is the full stress in the machine di
rection (FMDS), with a lower specification defined as its average. 

The dataset was simulated in two steps. First, variability was intro
duced in raw material properties and process conditions in such a way 
that both regressor blocks affect y, but variations in Z and X are un
correlated to each other (initially blocks are orthogonal). This was 
achieved by introducing random variations in raw material properties 
(Z) and processing conditions (X) to simulate their effect on product 
quality. However, the variables within each block are collinear to a 
certain extent. Regarding Z, correlation is due to viscosities measured at 
different temperatures, and for X, h0 must be adjusted to compensate for 
variations in Ta. In a second step, similar uncorrelated variations were 
again implemented in both regressor blocks, but between block corre
lations were introduced by a feedforward controller, added to attenuate 
variations caused by raw material properties. This controller corrects for 
some of the variability in the polymer heat capacity Cp by adjusting the 
flow rate Q. The processing of 50 raw materials batches were simulated. 
The simulated data that support the findings of this study are available 
on request from the authors. 

7.2. Building the SMB-PLS model 

Three components were found sufficient to capture the impact of raw 
material properties (and correlated process variations) on y in the first 
modelling step. One additional component was also needed in the sec
ond modelling step to model the effect of orthogonal variations in pro
cess conditions on the remaining variations in y. The goodness of fit, R2 

(i.e., variability percentage explained by the model) for each one of the 

input blocks, Z and X, and the output block, y, and each component, is 
presented in Fig. 3a. 

Fig. 3a shows that the first three components of the first modelling 
stage explain 74.89% of the information in Z and 22.10% of the infor
mation in X that was correlated with Z, to explain a great percentage of 
the response variability (86.22%). Component 4 (the unique component 
of the second modelling stage) shows that the 62.12% of the variation in 
X, not related to Z, is able to explain 8.65% of the response variability. 
Since the last two components explain the greatest variation in X 
(Fig. 3a) and b shows the bi-plot of the block weights and y loadings for 
these components to understand the behavior of process conditions. 
Fig. 3b reveals that the explained variation in the polymer flow rate Q 
seems to be related to raw material properties according to the third 
component. In fact, Q is strongly negatively correlated with the heat 
capacity Cp because when Cp increases, Q is reduced (as a result of the 
feedforward controller) to mitigate its impact on quality product. 
However, component 4 shows that Q barely presents orthogonal varia
tions to raw material properties related to y. By contrast, the air tem
perature Ta and the cooling air flow rate, which effect is represented by a 
change in h0, present orthogonal variations to raw material properties 
highly correlated with each other, from which one can infer causality in 
the reduced latent space. In other words, for any active change in the 
process conditions of Ta and h0, being consistent with the correlation 
structure modeled by the latent orthogonal space, the SMB-PLS model 
will reliably predict the changes in y. 

Fig. 3. Explained Z, X and y variability for the SMB-PLS model depending on either the number of latent variables (LVs) or the two blocks of latent variables (LV1- 
LV3 explain the first block [Z Xcorr], and LV4 explains the second block Xorth) (left), and bi-plot of the block weights and y loadings for last two components (right). 

Fig. 4. Graphical definition of the High-Confidence Design Space by showing 
calibration data. 
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7.3. Defining the High-Confidence Design Space 

The HC DS is defined with at least a 90% confidence level of 
obtaining superior or equal FMDS values to the average of calibration 
data (lower specification limit). Fig. 4 shows the HC DS by showing the 
calibration data for the first two components of the first modelling step 
[Z Xcorr] and the orthogonal one. The third [Z Xcorr] component from the 
first modelling step is omitted. 

One would expect that, of the batches lying within the HC DS, 90% or 
more would be acceptable batches. Indeed, the negative predictive 
value1 is 95%. On the other hand, the HC DS leads to 3.57% type I risk 
and 13.64% type II risk. This means that if only batches lying within the 
HC DS are accepted, 13.64% of unacceptable batches of raw materials 
had been accepted at the expense of rejecting 3.57% of acceptable 
batches. 

7.4. Multivariate raw material specification region without improved 
control 

In this section, it is assumed that process variations, correlated with 
raw material properties due to control actions through manipulated 
variables, will remain in place in the future without any improvement. 
In such a case, a priori there is no need to consider process conditions to 
establish the specification region associated with the raw material 
properties and, hence, one could define this region by the PLS model 
inversion by considering only raw material properties as in Ref. [10]. By 
contrast, without improved control, we propose to define the raw ma
terial HC DS as the HC DS of the first block of latent variables, referring 
to [Z Xcorr] of the SMB-PLS. The amount of information/variability 
contained in the first input block depends on Z as Xcorr does not provide 
a new source of variability. Therefore, the predictive power of both, PLS 
for Z with three components and SMB-PLS for only [Z Xcorr] with three 
components, are the same. Consequently, a priori, the classification 
performance of new raw material batches is expected to be equivalent. 
However, incorporating process data by means of the SMB-PLS presents 
some advantages with respect to PLS as we will see below. 

As Azari et al. [6] discussed, the SMB-PLS provides great insights in 
agreement with process knowledge for the effects of material variations 
and correlated process conditions (control schemes mainly). Firstly, 
since the SMB-PLS also can model the orthogonal variations in process 
conditions by the second block of latent variables, it provides a great 

capability for diagnosing assignable causes of such variations. In fact, by 
interrogating the underlying SMB-PLS model, one can extract diagnostic 
or contribution plots which reveal the group of process conditions 
making the greatest contributions to the deviations in the squared pre
diction errors, and the scores [15,25]. In addition to that, the second 
block of latent variables provides a better understanding of the response 
variability with respect to both PLS and SMB-PLS for only [Z Xcorr] (this 
increases the response variance percentage up to 95.87%). The latter 
results in less prediction uncertainty, and this affects the definition of 
the Raw Material HC DS. Fig. 5 shows the graphical definition of such 
space for the SMB-PLS depending on whether the Xorth is considered or 
not. 

Fig. 5 shows graphically that, as expected, the Raw Material DS 
without uncertainty (i.e., the union of the Raw Material HC DS and the 
Raw Material WS) are equal regardless of whether Xorth is considered or 
not. In addition to that, the less uncertainty there is, the more similar the 
Raw Material HC DS and the Raw Material DS without uncertainty are. 
For that reason, the SMB-PLS Raw Material HC DS becomes wider when 
incorporating the Xorth block as can see in Fig. 5. Therefore, it can be 
concluded that, for model building, the SMB-PLS provides useful infor
mation in order to achieve a higher level of process understanding when 
considering the Xorth. However, it is crucial to bear in mind that for 
exploiting the model, Fig. 5b requires that orthogonal variations are 
known beforehand. Indeed, the Raw Material HC DS shown in Fig. 5b 
arises from the assumption that the orthogonal variation in process 
conditions will remain at the average value with respect to the past. If 
they are not known beforehand, it is assumed that τnew

D will remain on 
average with respect to the past and, hence, the confidence limits must 
be calculated disregarding the orthogonal block yielding Fig. 5a. 

7.5. Multivariate raw material specification region under improved 
control 

Let us considerer the HC DS defined previously (see Fig. 4). Then, a 
new raw material batch is considered prior to the manufacturing process 
(i.e., only raw material properties are known). Thus, the red triangle in 
Fig. 6 refers to the projection onto the latent space assuming that the 
control actions of process conditions remain in place, and the orthogonal 
variation in process conditions remain at the average value with respect 

to the past (i.e., the orthogonal component is null): 

[
τnew

T

0

]

. 

In such a case, as shown in Fig. 6, this batch would be outside the 
specification region. However, if the orthogonal component is modified 
orthogonally, such batch can become part of the specification region 

Fig. 5. Graphical definition of the Raw Material High-confidence Design Space (Multivariate Raw Material Specification region) and Raw Material Warning Space 
when considering only [Z Xcorr] (left) and also Xorth assuming that orthogonal variations remain at the average value (right). 

1 The negative predictive is the proportion of batches that actually result in a 
good product out of all those within the HC DS. 
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(deep blue solid line). This is a batch that, a priori, would give place to a 
film with an unacceptable response value (FMDS), but that by improving 
the control actions it would yield a film with an acceptable response 
value (FMDS). As commented, since the control actions could be 
improved in different ways without leaving the HC DS, it provides 
operational flexibility in process improvement. As an example, the blue 
circle is selected among all process conditions yielding the score: 
[

τnew
T

τnew
orth

]

. This solution belongs to the latent space and, therefore, it be

haves in the same way as the ones used to create the model, in the sense 
that the correlation structure of the model is respected. A logical ques
tion then arises: how to manipulate the process conditions to get this 
solution? The answer is applying Eq. (7). This is shown graphically in 
Fig. 7. 

Fig. 7 shows the time series of manipulated variables with their 
historical limits. The red triangles refer to the expected process condi
tions due to the control actions from the past, xnew

corr , while the blue circles 
show the final conditions after improving such control for compensating 
raw material variations. The latter arises from adding the orthogonal 
variation, xnew

orth, which is obtained as Porth⋅τnew
orth. As expected, the flow rate 

Q is barely modified with respect to the expected control actions 
because, as it is shown in Fig. 3b, this process condition does not present 
a significant amount of orthogonal variation related to y. By contrast, 

Fig. 6. Graphical definition of the High-Confidence Design Space by showing 
the projection of the new raw material batch when: i) orthogonal variation in 
process conditions remain at the average value with respect to the past (red 
triangle), and ii) control actions are improved (blue circle). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 7. Time series of process conditions, Ta, Q and h0, and new setpoints in two scenarios: no improved control (red triangle) and under improved control (blue 
circle). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Raw Material High-Confidence Design Space without improved control by showing the projection of the new raw material batch as a red triangle (left), and 
under improved control by showing the projection of the new raw material batch as a blue circle (right). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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the air temperature Ta and the cooling air flow rate h0 do and, hence, one 
can infer causality in the reduced latent space in order to attenuate most 
raw material variations. Note that, since causality is inferred in the 
reduced latent space, process conditions are manipulated being consis
tent with the latent orthogonal space shown in Fig. 3b. 

Finally, the Raw Material HC DS, by considering the possibility of 
modifying process conditions prior to selecting a new raw material 
batch, can be defined analytically as the projection of the HC DS onto the 
space defined by the first block of latent variables, according to Eq. (8) 
(see Fig. 8b). 

Fig. 8 shows that Raw Material HC DS is expanded when considering 
the possibility to modify process conditions for compensating raw ma
terial variations. Thus, one may be able to accept raw materials that will 

yield products with perfectly satisfactory quality properties as a conse
quence of the process conditions modification, as in the considered new 
raw material batch. 

7.6. Presence of known disturbances affecting control actions 

Process conditions could present variations due to feedforward 
compensation for some known disturbances. In fact, in the simulated 
polymer extrusion film blowing process, the air temperature Ta refers to 
the air ambient temperature. In such a case, this process condition 
cannot be manipulated but it is a major process known disturbance 
affecting cooling conditions and hence, quality properties. In addition to 
that, the cooling air flow rate h0 is manipulated by a feedforward 
controller to compensate for some variations in the ambient air tem
perature Ta. To identify these variations as explained in Section 6, an 
intermediate block D must be added. In this case, since there is only one 
known disturbance, the intermediate block is defined as vector d. The 
goodness of fit for the SMB-PLS model, R2, for each one of the input 
blocks, Z, d and X, and the output block, y, and each component, is 
presented in Fig. 9. 

Fig. 9 shows that three components were found sufficient to capture 
the impact of raw material properties (and correlated disturbances and 
process variations) on y in the first modelling step explaining 74.89% of 
the information in Z, 4.89% of the information in d and 30.70% of the 
information in X, to explain a high percentage of the response variability 
(86.22%). One additional component was also needed in the second 
modelling step to model the effect of orthogonal variations in distur
bances (and correlated process variations) on the remaining variations 
in y. This component shows that the 95.11% of the variation in d, not 
related to Z, is able to explain 42.83% of X and 7.02% of the response 
variability. The latter represents variations in d affecting y, but not 
compensated by the controller. Finally, one component was used to 
capture the orthogonal variations in process variations on the remaining 
variations in y showing that the 8.28% of variation in X, not related to Z 
and d, is able to explain 3.27% percentage of the response variability. 

The most common case is that the ambient air temperature Ta is not 
known when receiving a raw material batch. Therefore, it is assumed 
that, for exploiting the model, this disturbance remains on average with 

Fig. 9. Explained Z, d, X and y variability for the SMB-PLS model depending on 
either the number of latent variables (LVs) or the three blocks of latent vari
ables (LV1-LV3 explain the first block [Z dcorrZ XcorrZ ], LV4 explains the second 
block, [dorth Xcorrd ], and LV5 explains the last block Xorth). 

Fig. 10. Raw Material High-Confidence Design Space prior to knowing Ta without improved control (left) and under improved control (right) by showing the 
projection of the new raw material batch as a red triangle. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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respect to the past and, hence, the confidence limits are calculated dis
regarding the disturbance block. Thus, Fig. 10 shows the Raw Material 
HC DS prior to knowing Ta without improved control (Fig. 10a), and by 
considering the possibility to modify process conditions (Fig. 10b), using 
Eq. (9) and Eq. (10), respectively. 

Fig. 10 shows that the Raw Material HC DS is slightly expanded when 
considering the possibility to modify process conditions for compen
sating raw material variations. Indeed, the new raw material batch 
illustrated in Subsection 7.5 would be on the border of the Raw Material 
HC DS, since there is no control action that allows to be within the HC 
DS. This happens because only 3.27% of the response variability can be 
inferred as the effect of 8.28% of the variation in X not related to Z and. 
The latter may not be sufficient to carry out effective improvement in the 
control action. 

8. Conclusions 

In this paper, we propose a novel approach for defining analytically 
the multivariate raw material specification region by considering the 
possibility to modify process conditions to compensate for raw material 
properties variations. This methodology is based on the SMB-PLS model 
inversion where prediction uncertainty is back-propagated. The most 
remarkable advantages of the proposal approach are.  

• It can be used with historical data (i.e., daily production data not 
coming from any experimental design but with varying raw material 
properties, typical from Industry 4.0 environment).  

• It considers a multivariate approach providing much insight into the 
correlated nature of raw material properties and process conditions. 
Besides, the SMB-PLS does identify the variation in process condi
tions uncorrelated with raw material properties and known distur
bances, which is crucial to implement an effective process control 
system attenuating most raw material variations.  

• It allows expanding the multivariate raw material specification when 
considering the possibility to modify process conditions and, hence, 
one may potentially be able to accept lower cost raw materials that 
will yield products with perfectly satisfactory quality properties. 

Definitely, this methodology takes advantage of the variation in 
process conditions uncorrelated with raw material properties and 
known disturbances to expand the raw material specification. However, 
this variation may result insufficient to carry out effective improvement. 
In such a case, process excitation would be needed by running design of 
experiments on process operating conditions. 
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Appendix A. Pseudocode for the SMB-PLS 

The pseudocode of the SMB-PLS assuming a process with B blocks is similarly as in Ref. [14]. 
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Appendix B 

This appendix is applicable to blocks, Z and Xcorr (hereinafter called B). 
The weights matrix, WB, do not directly relate the matrix B to the score matrix TB, as B is deflated after each component by the loading matrix PB. 

However, the weights, WB, can be transformed to W∗
B by M (Eq. (B.1)) and, thus, W∗

B does directly relate B to TB, (Eq. (B.2)). 

W∗
B =WB⋅M Eq. (B.1)  

TB =B⋅W∗
B = B⋅WB⋅M Eq. (B.2) 

If multiplying both sides of Eq. (B.2) by the transpose of the super score matrix, TT, the M matrix can be expressed as Eq. (B.3). 

M=
(
TT

T⋅B⋅WB
)− 1⋅

(
TT

T ⋅ TB
)

Eq. (B.3) 

On the other hand, TT are good “summaries” of B according to the loading matrix PB (Eq. (B.4)). 

B=TT⋅PB
T + EB Eq. (B.4)  

where EB is the residual matrix. Then, multiplying both sides of Eq. (B.4) by the transpose of TT, Eq. (B.5) is obtained. 

TT
T ⋅ B = TT

T⋅TT⋅PB
T + TT

T⋅EB = TT
T⋅TT⋅PB

T Eq. (B.5) 

Note that, the super scores columns vectors of TT are orthogonal to EB. Substituting Eq. (B.3) and (B.5) in Eq. (B.1), the relation between WB and 
W∗

B is obtained according to Eq. (B.6). 

W∗
B =WB⋅

(
TT

T⋅TT⋅PB
T⋅WB

)− 1⋅
(
TT

T ⋅ TB
)

Eq. (B.6) 

Note that, regarding the block Xcorr, the matrix A = TT
T⋅TT⋅PT

Xcorr
⋅WXcorr may be rank-deficient as more latent variables could be extracted than the 

rank of Xcorr and, hence, A would not be invertible. In such a case, Xcorr and TXcorr cannot be directly related by W∗
Xcorr

. 
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[12] E. Tomba, M. Barolo, S. García-Muñoz, General framework for latent variable 
model inversion for the design and manufacturing of new products, Ind. Eng. 
Chem. Res. 51 (2012) 12886–12900, https://doi.org/10.1021/ie301214c. 

[13] C.M. Jaeckle, J.F. MacGregor, Product design through multivariate statistical 
analysis of process data, AIChE J. 44 (1998) 1105–1118, https://doi.org/10.1016/ 
0098-1354(96)00182-2. 

[14] J. Lauzon-Gauthier, P. Manolescu, C. Duchesne, The Sequential Multi-block PLS 
algorithm (SMB-PLS): comparison of performance and interpretability, 
Chemometr. Intell. Lab. Syst. 180 (2018) 72–83, https://doi.org/10.1016/j. 
chemolab.2018.07.005. 

[15] T. Kourti, J.F. MacGregor, Multivariate SPC methods for process and product 
monitoring, J. Qual. Technol. 28 (1996) 409–428, https://doi.org/10.1080/ 
00224065.1996.11979699. 

[16] P. Nomikos, J.F. MacGregor, Multivariate SPC charts for batch monitoring 
processes, Technometrics 37 (1995) 41–59, https://doi.org/10.2307/1269152. 

[17] N.D. Tracy, J.C. Young, R.L. Mason, Multivariate control charts for individual 
observations, J. Qual. Technol. 24 (1992) 88–95, https://doi.org/10.1080/ 
00224065.1992.12015232. 

[18] A. Ferrer, Multivariate statistical process control based on principal component 
analysis (MSPC-PCA): some reflections and a case study in an autobody assembly 
process, Qual. Eng. 19 (2007) 311–325, https://doi.org/10.1080/ 
08982110701621304. 

[19] C.M. Jaeckle, J.F. MacGregor, Industrial applications of product design through the 
inversion of latent variable models, Chemometr. Intell. Lab. Syst. 50 (2000) 
199–210, https://doi.org/10.1016/S0169-7439(99)00058-1. 

[20] F. Yacoub, J.F. MacGregor, Product optimization and control in the latent variable 
space of nonlinear PLS models, Chemometr. Intell. Lab. Syst. 70 (2004) 63–74, 
https://doi.org/10.1016/J.CHEMOLAB.2003.10.004. 
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