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A B S T R A C T   

It is well known that conventional heuristic optimization is the most common approach to deal with structural 
optimization problems. However, metamodel-assisted optimization has become a valuable strategy for 
decreasing computational consumption. This paper applies conventional heuristic and Kriging-based meta- 
heuristic optimization to minimize the CO2 emissions of spatial reinforced concrete frame structures, considering 
an aspect usually ignored during modeling, such as the soil-structure interaction (SSI). Due to the particularities 
of the formulated problem, there are better strategies than simple Kriging-based optimization to solve it. Thus, a 
meta-heuristic strategy is proposed using a Kriging-based two-phase methodology and a local search algorithm. 
Three different models of structures are used in the study. Results show that including the SSI leads to different 
design results than those obtained using classical supports. The foundations, usually ignored in this type of 
research, also prove significant within the structural assembly. Additionally, using an appropriate coefficient of 
penalization, the meta-heuristic approach can find (on average) results up to 98.24% accuracy for cohesive soils 
and 98.10% for frictional ones compared with the results of the heuristic optimization, achieving computational 
savings of about 90%. Therefore, considering aspects such as the SSI, the proposed metamodeling strategy allows 
for dealing with high-complexity structural optimization problems.   

1. Introduction 

Design optimization is a topic widely discussed in the current context 
of structural design due to the need to minimize construction costs, 
material use, and decrease the construction sector’s negative impact on 
the environment [1]. It can be achieved by strategies such as the use of 
novel building materials (e.g., low-carbon cement and clinker sub
stitutes) [2] and recycling [3], but also through the more efficient use of 
these materials resulting from their design optimization [4]. 

As a result, more optimization objectives beyond economic ones 
have been emerging. A primary view of environmental assessment can 
be applied using single criteria reliably representing environmental 
impact. The most representative ones are CO2 emissions and embodied 
energy (EE) [5], which have proven to hold a direct relationship with 
economic cost [6,7,8]. 

Structural optimization problems have two main ways to be solved. 
On the one hand, exact methods are generally based on mathematical 
programming. On the other hand, heuristics consist of artificial intelli
gence strategies that imitate natural processes [9]. These algorithms are 

excellent alternatives to solve large-scale and highly nonlinear optimi
zation problems, as is usually the case with structural optimization [10], 
especially related to reinforced concrete (RC) structures optimization. 
For this reason, it is habitual to find structural optimization problems 
solved by heuristics. In the books proposed by Kaveh [11,12], many 
examples of optimization problems in the design of civil engineering 
structures (mainly skeletal ones) can be found. However, more than 
these simple procedures are required to deal with real-life challenging 
optimization problems. Alternatively, meta-heuristics have arisen to 
handle such problems. They blend several simple strategies intelligently 
to explore the solution space more efficiently. 

Reinforced concrete (RC) frame building structures comprise a sig
nificant portion of the construction sector. They are associated with 
substantial economic costs and environmental impacts [13]. Therefore, 
it is crucial to obtain designs that minimize the adverse effects and 
maximize the advantages of this construction type. Several authors have 
carried out studies to optimize these structures. Most of these studies 
focus on essential concrete elements or two-dimensional frames. Only a 
few authors have applied design optimization to three-dimensional RC 
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frame buildings, including notable examples [14–18]. It is mainly due to 
the high complexity involved in modeling these structures. Therefore, 
high computational consumption is one of the most critical challenges in 
structural optimization problems. The solution for most of these engi
neering problems consists of accurate and expensive numerical methods, 
usually represented by partial differential or integral equations, e.g., 
structural finite element analysis (FEA), where a single function evalu
ation is usually considerably time-consuming [19]. Thus, if common 
optimization problems involve thousands of single-function evaluations, 
structural optimization problems generally require significant time and 
computational resources. Based on this, metamodel-assisted structural 
design optimization (MASDO) has arisen as a valuable alternative to 
deal with these complex problems. This kind of meta-heuristic approach 
uses a surrogate model instead of the complex one to perform the sim
ulations of the optimization procedure. The most basic methodology 
consists of obtaining a group of design vectors inside the design space, 
for which high-fidelity simulations (e.g., FEA) are performed. Then, the 
high-fidelity values regression or interpolation models are built and can 
be analyzed by, e.g., optimization algorithms [19]. Applying this strat
egy with the combination of clever optimization methodologies can be 
very useful in quickly obtaining good optimization results. The most 
common metamodels are polynomial regression, Neural Networks (NN), 
and Kriging models [20]. However, Kriging methodologies have been 
one of the most used to aid structural optimization problems due to their 
simplicity and effectiveness. They create a metamodel using optimal 
interpolation based on regression against observed values of the sur
rounding data points, weighted according to spatial covariance values 
[5]. 

On the other hand, another problem usually found in the literature is 
the non-inclusion of modeling aspects such as the soil-structure inter
action (SSI). Authors usually assume structures with idealized or classic 
supports (e.g., fixed), even when the assembly of soil and foundations is 
not perfectly rigid. Support displacements (settlements) exist and in
fluence how the superstructure works, which is not the case with classic 
supports. This idealization (no SSI consideration) leads to an inefficient 
superstructure design. Due to the nature of settlement occurrence, it will 
suffer an accelerated deterioration with the consequent need for extra 
maintenance during its life cycle [21,22,23]. 

Moreover, several distinctions must be considered between static 
and dynamic SSI in the analysis being performed for the SSI consider
ation. An example of a dynamic SSI implementation can be found in 
[24], where foundations are modeled as rigid strip footings, and the soil 
is layered with constant material properties along its depth. An approach 
similar to the one used in [25] is considered to build the constitutive 
model of the soil, where the shear wave velocity and the friction angle 
are considered parameters of the soil layers. Otherwise, considering this 
study’s static approach, SSI is considered to adopt a Winkler model, as 
proposed by [26]. Thus, to relate the contact soil pressure p to the 
foundation settlement S, only one equation that includes both linear and 
non-linear soil behavior is considered. Therefore, in this work, instead of 
creating a three-dimensional model of the soil, the vertical direction is 
eliminated while considering the behavior in this direction by modeling 
the contact of the foundation and the soil as a discrete number of springs 
of stiffness k. This stiffness depends directly on p and S. 

Considering the SSI during modeling, this paper applies conventional 
heuristic optimization and a Kriging-based meta-heuristic optimization 
strategy to optimize spatial RC frame structures. For this reason, the two 
main goals are to demonstrate the differences in optimizing the design of 
a structure with idealized supports and considering the SSI using two 
types of soils. Secondly, to implement a Kriging-based structural opti
mization strategy to reduce the high computational consumption of the 
conventional heuristic optimization trying to keep accurate optimiza
tion results. Consequently, the organization of the paper is as follows. 
Section 2 explains the general methodology, including the problem 
description, the explanation of the SSI consideration, the formulation of 
the optimization problem, and the strategies used to solve it. Section 3 is 

dedicated to exposing and discussing the results. Finally, conclusions are 
drawn in Section 4. 

2. Methodology 

2.1. Problem description 

In this paper, the structure used in previous work [8] is implemented 
as the basis of the investigation. Additionally, two other case studies 
similar to the basic one are used to generalize the results. In these, the 
span lengths (CS-2) and the number of levels (CS-3) are varied (see 
Fig. 1). The cross-sections of the elements are rectangular. This 
research’s novelty lies in including shallow foundations and the corre
sponding SSI during modeling. Note that the shallow individual footing 
variant is selected as it is the one that would best suit the modeled 
structures. If the height of the structures is increased, there will come a 
time when the base area of the foundations will be so large that they will 
overlap. It is where other typologies, such as combined footing or mat 
foundations, would be necessary. If the height of the building continues 
to increase, the use of piles would be required to increase the bearing 
capacity of the foundations, which opens the possibility of using the 
mat-pile combination. On the other hand, using the simpler typology 
allows better applicability of the proposed methodology, which, once 
validated, can be applied to other more complex structures. 

The loads imposed on the system are shown in Table 1. Eqs. [1–4] 
define the essential load combinations used, where D, L, and W are the 
dead, live, and extreme wind loads, respectively. It is essential to 
highlight that other combinations are used to design the foundations and 
to check the serviceability limit state. 

1.2D+ 1.6L (1)  

1.2D+ 0.8W (2)  

1.2D+ 1.4W + 0.5L (3)  

0.9D+ 1.4W (4) 

Some features are considered in this problem to obtain relevant re
sults from a practical structural engineering point of view. The variables 
are discrete to handle with constructive dimensioning of the elements 
and real types of concrete. Additionally, solutions of reinforcement 
(longitudinal and transversal) are adapted to commercially available bar 
diameters, including longitudinal bars cut-off (detailing) and their 
actual placement in the cross-sections of the elements (see Fig. 2). 

Other aspects generally ignored by designers, such as the reduction 
of elements’ stiffness by cracking, second-order analysis of structures, 
and the after-mentioned SSI consideration, are also included. The CSi- 
SAP2000 platform is used as a calculation engine via the Applied Pro
gram Interface (API) SAP2000-MATLAB to deal with such a problem. 
For the creation of the models, the superstructure elements are consid
ered frame type. The foundations are modeled as shell elements. They 
are discretized (meshed) to improve their behavior as slab footings. A 
sensitivity analysis concluded that four divisions in each direction are 
sufficient for good results. Now, these elements are initially loose. It is 
where the soil-structure interaction comes in. To simulate this phe
nomenon, a stiffness coefficient k is calculated (see section 2.2), which 
can be assigned in two ways: as an area (directly to the bottom surface of 
the element) or distributed to the nodes formed by discretizing the 
element. In this case, the first way is used because it is faster from the 
computational point of view. In either case, the results are the same. A 
complete structure model can be seen in Fig. 3(a). The frame structure 
design for strength and serviceability Limit States is based on the ACI 
318–14 code. 
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2.2. Implementation of the static soil-structure interaction 

When considering the static SSI in the structural optimization 
problem, it is assumed that the structure above the underlying soil de
forms under loading–unloading, which results in a redistribution of in
ternal forces in the superstructure. The soil is modeled as a linearly 
elastic half-space, considering the depth constraint of compressible 
thickness, while the foundation is considered a shallow slab footing (see 
Fig. 3(a)). 

In practical calculations, the consideration of non-linearity in 
determining settlements in type II collapsible soils was introduced in 
[26]. However, this model can be adapted and extended to other soil 
types and foundation typologies [27]. In his 1969 study [26], Klepikov 
introduced an approximation of the relationship between acting pres
sure and settlement (p vs. S) for a shallow foundation on a soil base. He 
represented this relationship through a hyperbolic equation, denoted as 
Eq. (5). The “pressure-settlement” curve passes through the point with 

coordinates (Ŕ*,S) and unlimitedly approaches the asymptote p=q*br_II 
(see Fig. 4(a)). 

S =
p⋅S⋅

( ( q*
br II

R ′*

)
− 1

)

q*
br II − p

(5) 

Here, S is the base settlement for an acting pressure equal to the soil 
base linearity limit stress Ŕ* and q*br_II is the base bearing capacity 
pressure, based on expressions from the theory of plasticity. On the other 
hand, the soil base “secant” stiffness coefficient k can be obtained easily 
for the loading stage as in Eq. (6) [27]. 

k = tanα =
p
S
=

q*
br II − p

S ⋅
[( q*

br II

R ′*

)
− 1

] (6) 

This stiffness coefficient is applied to the finite springs introduced in 
the nodes created when meshing the foundation base. By making more 
divisions, the foundation will have a more realistic behavior, but the 
model will become more complex. Fig. 3(b) shows how the elements are 
discretized. On the other hand, Fig. 3(c) shows the non-uniform pressure 
distribution for an exterior foundation. It is because the foundations 
settle irregularly, depending on the loads coming from the superstruc
ture, i.e., the springs deform according to their stiffness k depending on 
the configuration of the superstructure and the foundation itself. This 
model has the limitation that the springs have a linear behavior. How
ever, when applied superficially to the base of the foundation, the nodes 
formed when discretizing the element will have a coefficient according 
to their position in the element (interior, exterior, and corner). In 
addition, these nodes will deform according to the load each receives, 

Fig. 1. Three case studies (CS). CS-1 is the basic case study, CS-2 is similar to CS-1, but X and Y are 8 and 6 m respectively, and CS-3 is CS-1 with an additional level.  

Table 1 
Loads considered.  

Description Value 

Dead load on first floor 4.80 kN/m2 

Dead load on roof 5.43 kN/m2 

Live load on first floor 4.00 kN/m2 

Live load on roof 0.80 kN/m2 

Wind load 0.92 kN/m2 0–5 m, 1.01 kN/m2 at 7 m, 
1.13 kN/m2 at 10.5 m.  

Fig. 2. Transversal and longitudinal reinforcement bars cut-off and distribution in RC building frames, x1 and x2 are design variables, As y A’s are the real steel area 
in traction and compression respectively [1]. 
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distributed non-uniformly throughout the shell element. Thus, the nodes 
formed (1) have different coefficients, and (2) receive different loads. 
Therefore, the foundation can not only settle but also rotate. Thus, the 
behavior of the supports is very much in line with what happens in re
ality. It is obviously not the case with rigid supports. It is important to 
note that several authors have validated this strategy of relating pressure 

and settlement. According to [28], this curve is acceptable for obtaining 
soil stiffness when considering SSI. It has been proven in actual exper
iments for different soil types [29,30,31,32]. 

It should be noted that the model proposed for considering the SSI is 
relatively simple. Even so, and taking into account that it is based 
fundamentally on the calculation of the actual settlements S, several 

Fig. 3. Concepts related to SSI modeling: (a) general considerations, (b) meshing of shell elements, and (c) non-uniform pressure distribution of a foundation base.  

Fig. 4. Curve representing the acting pressure and settlement (p vs. S), (a) is an abstraction, (b) is the real p vs. S curves for an interior foundation and (c) is a zoom of 
the graphic of (b). Here, Ŕ* is the linearity limit stress, S is the base settlement for an acting pressure equal to the soil base linearity limit stress Ŕ* and q*br_II is the 
base bearing capacity pressure. For more information, refer to [1]. 
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aspects could be indirectly considered, such as: inhomogeneity of the 
geological structure of the base, presence of water level, separate soil 
lenses and different inclusions, the possibility of soil flooding and 
change of its properties, particular consideration of residual and elastic 
settlements of the base, and more. If future research would like to 
include any of these aspects, providing more information about these 
special soil conditions underlying the foundations would be beneficial. A 
highly detailed explanation of the considerations for modeling SSI can 
be found in [1]. 

2.2.1. Pressure-settlement curves for different type of soils 
One of the points to highlight in this study is the inclusion of the SSI 

during modeling and its influence on the structure’s optimal design. 
Another aspect being considered is the underlying soil’s influence. For 
this purpose, two soils are used in the SSI modeling. Soil 1, as seen in 
Table 2, is predominantly cohesive, while soil 2 is predominantly 
frictional. 

It is essential to analyze how the soils behave during loading to un
derstand how the superstructure performs based on the soil type. It is 
achieved by using actual behavior curves of the soils for a specific type of 
foundation. These curves are similar to the one depicted in Fig. 4(a), 
which is an abstract representation. The theory behind this approach is 
that differential settlements result in a redistribution of the internal 
forces of the superstructure, causing an increase, particularly in the 
bending moment. 

Fig. 4(b) displays the curves for an interior foundation, where the 
thick line represents soil 2, and the thin one represents soil 1. It is 
observed that soil 2 has a greater bearing capacity than soil 1 and ex
hibits a larger zone of non-linear behavior, unlike soil 1, where the zone 
of non-linearity is minimal. It causes that underneath the foundation, 
type 1 soils generally present a linear behavior, while type 2 soils behave 
non-linearly. Therefore, differential settlements are more significant in 
type 2 soils. In Fig. 4(c), the curves are zoomed in. Suppose that dp is the 
possible difference in pressures of two adjacent foundations, e.g., an 
interior one with more pressure than an exterior one. This differ
ence dp is placed in the usual working zone for each soil type, which is 
not precisely at the bearing capacity limit q*br_II (continuous black ver
tical line in Fig. 4(b)) but shifted to the left. The curve is a function of the 
settlement S and is constructed for Limit State II. At the same time, the 
geotechnical design of the foundation is made according to Limit State I, 
with different safety coefficients. Thus, the real points of p vs. S are 
moved. Therefore, while in soil 2, this movement keeps the points in a 
zone of non-linearity, in soil 1, they move to the area of linear behavior. 
The zoomed graph shows how the same difference in pressure dp causes 
a larger difference dS in soil 2 (with non-linear behavior) than in soil 1 
(with linear behavior). Therefore, it can be said that this type of struc
ture behaves more irregularly on type 2 soils than on type 1 soils. 

2.2.2. Algorithm for SSI modelling during structural optimization 
For the SSI consideration, it is necessary to start from some point. 

Accordingly, the calculation starts by analyzing a model with idealized 
supports (fixed for this case). Based on the results of the first step, the 
geotechnical design is performed. Here, the dimensions of the founda
tions are calculated, and the structural design is also performed. Then, 
the stiffness coefficient is calculated for each group of foundations. This 
step is called the pre-design of the foundation. With these results, the 

previous model is completed with the foundations and the springs 
with k stiffness. The model analysis with the SSI consideration is carried 
out next, leading to new values of internal forces. The final design of the 
whole structure is performed. Then, the CO2 emissions are obtained 
according to the total volume of work. Fig. 5 represents this process. 

2.3. Formulation of the optimization problem 

The economic cost is probably the most widely implemented objec
tive in optimizing the design of reinforced concrete structures. However, 
the environmental approach to optimization problems has arisen in 
recent years. The environmental impact of buildings can be directly 
measured using simple targets such as EE or CO2 emissions. 

Several studies have established comparisons between optimizing 
using economic or environmental criteria. In [33], it is compared the 
results of optimizing the economic cost and CO2 emissions in the design 
of RC structures similar to those in this study. It is concluded that these 
relationships vary depending on the ductility class. A similar study [34] 
shows that the economic cost must be moderately increased to decrease 
emissions significantly. However, optimizing both objectives is only 
partially counterproductive, as demonstrated by performing a multi- 
objective optimization including both criteria [35]. In [8], a compara
tive study was performed using the economic cost and the environ
mental impact (involving both EE and CO2 emissions). It was found that 
any of these objectives leads to good results as measured by the others. 
However, the best option is to use CO2 emissions since the other in
dicators keep good levels when using it as the optimization target. For 
this reason, this study involves the CO2 emissions single-objective 
optimization of the tri-dimensional frame RC structures shown in 
Fig. 1. Hence, the objective is to minimize Eq. (7). 

CO2emissions =
∑

i=1,n
ei × mi(x1, x2, ..., xn) (7) 

Here, ei represents the unit CO2 emissions (see Table 3), mi are the 
measurements concerning the construction units in the function of the 
design variables (x1, x2,…,xn). Table 3 shows unit values of considered 
materials and activities obtained from the 2016 database of the Institute 

Table 2 
Properties of the soils considered in the study.  

Soil FI C E γ μ ø 

(◦) (kPa) (MPa) kN/m3 (◦) 

1 8 60 12  19.0  0.40 76 
2 32 10 15  17.5  0.30 56 
FI: Soil friction angle C: Cohesion E: Modulus of elasticity γ: Density μ: Poisson’s ratio 

ø: see Fig. 6  
Fig. 5. General algorithm for the SSI consideration during structural optimi
zation process. 
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of Construction Technology of Catalonia [36]. The CO2 emissions values 
encompass the use of materials that involve emissions at the different 
stages of production and placement. Consequently, the higher this value 
is the lower its sustainability. 

As mentioned, all design variables are discrete and can only take 
relevant values from an engineering point of view. In the case of the 
frame elements, variables are related to the cross-section dimensions 
and are limited to multiples of 5 cm. Variables related to foundations 
rectangularity (L/B, see Fig. 6) can handle nine possible values repre
senting four possibilities for each direction plus the square configura
tion, e.g., [0.50, 0.63, 0.75, 0.88, 1.00, 1.25, 1.50, 1.75, 2.00]. There are 
three variables related to this issue. Finally, there are three more vari
ables considering the type of concrete for each group of elements 
(beams, columns, and foundations), where each one can handle four 
possible values. The property considered as a variable is the specified 
compressive strength (f′

c). Other properties are also variables (modulus 
of elasticity, for example), but they depend on f′

c, whose values vary in 
steps of 5 MPa. Table 4 shows the design variables and their corre
sponding ranges. It is straightforward to note that considering the 
foundations within the structural assembly (and the corresponding soil- 
structure interaction) modifies the basic formulation of the problem, 
where the foundations were not considered [8]. With the addition of 4 
more variables, and being the ones related to the foundations’ rectan
gularity very influential in the general formulation, the space of solu
tions grows exponentially, becoming more challenging to explore and, 
therefore, to optimize. 

On the other hand, this problem involves two fundamental types of 
constraints. The first group is called design (or explicit) constraints. They 
are imposed directly on the design variables and function as limits on the 
movement of these variables. The intervals shown in Table 4 are explicit 
constraints. They appear for buildability, architecture, functionality, 
and transportation. 

The other group is the so-called behavioral or implicit constraints. 

They are sometimes referred to as state equations. These constraints 
fulfill the design limit states, i.e., defining the values the variable pa
rameters must meet to satisfy behavioral requirements. In structural 
optimization, the behavioral constraints are usually set by design stan
dards. Eq. (8) represents the classical formulation of behavioral 
constraints. 

gj(x1, x2, ..., xn)⩽0 (8) 

Constraints related to the strength (ultimate) limit state for RC frame 
elements are automatically satisfied through the API SAP2000-MATLAB 
platform (calculus of the reinforcing steel area), which computes the 
structural design according to the standards. The geotechnical and 
structural design of the foundations is implemented in a routine pro
grammed in MATLAB according to the Eurocode. It is essential to note 
that this problem is formulated with a deterministic approach, so the 
design is based on the Limit States method. Therefore, aspects such as 
the variability of soil parameters are considered when applying the 
different safety coefficients. On the other hand, constraints related to 
serviceability limit state accomplishment are deflections in beams, limit 
displacement at the top of the building, or cracking of concrete mem
bers. As mentioned, these constraints are produced by applying the 
standards. The way to verify these behavioral constraints is that when 
any of them is not fulfilled, the value of the objective function for the 
current solution is penalized so that the algorithm discards it as possible. 
For more detailed information on how the deterministic approach works 
and the implementation of the constraints, refer to the document [1]. 

2.4. Solution of the optimization problem 

Two main strategies are used to solve the formulated problem. The 
first presents a classical heuristic approach using a relatively new 
Biogeography-based Optimization (BBO) strategy. The second relies on 
kriging formulation metamodels to optimize surrogate models and avoid 
costly accurate simulations, using the BBO strategy as the basic opti
mization algorithm. It should be noted that the optimization of this type 

Table 3 
Unit CO2 emissions for materials and activities.  

Material Units CO2 em (kg) 
Formwork m2 2.53 
Steel (G-60)* kg 3.01 
Concrete 25 MPa m3 244.94 
Concrete 30 MPa m3 279.21 
Concrete 35 MPa m3 305.96 
Concrete 40 MPa m3 307.06 
Activities   
Concrete placement Beams m3  34.72 

Columns m3  37.20 
Found m3  19.84 

Earthwork Excavation m3  3.99 
Refill m3  12.80 

* fy=420 MPa, E=220 GPa  

Fig. 6. Typical shallow foundation and excavation scheme, p(n) is the rect
angularity (variable) [1]. 

Table 4 
Design variables and corresponding ranges for each case study.  

Variable Range 

CS-1 and CS-3 CS-2 

Depth of beams of first design 
group 

300 mm ≤ x1 ≤ 600 
mm 

400 mm ≤ x1 ≤ 700 
mm 

Width of beams of first design 
group 

200 mm ≤ x2 ≤ 300 mm 

Depth of beams of second design 
group 

250 mm ≤ x3 ≤ 500 
mm 

300 mm ≤ x3 ≤ 600 
mm 

Width of beams of second design 
group 

200 mm ≤ x4 ≤ 300 mm 

Dimension in x-axis of interior 
columns 

250 mm ≤ x5 ≤ 500 mm 

Dimension in y-axis of interior 
columns 

250 mm ≤ x6 ≤ 500 mm 

Dimension in x-axis of exterior 
columns 

250 mm ≤ x7 ≤ 500 mm 

Dimension in y-axis of exterior 
columns 

250 mm ≤ x8 ≤ 500 mm 

Dimension in x-axis of corner 
columns 

250 mm ≤ x9 ≤ 500 mm 

Dimension in y-axis of corner 
columns 

250 mm ≤ x10 ≤ 500 mm 

Rectangularity of interior 
foundations 

0.5 ≤ x11 ≤ 2.0 

Rectangularity of exterior 
foundations 

0.5 ≤ x12 ≤ 2.0 

Rectangularity of corner 
foundations 

0.5 ≤ x13 ≤ 2.0 

f′
c in beams 25 MPa ≤ x14 ≤ 40 MPa 

f′
c in columns 25 MPa ≤ x15 ≤ 40 MPa 

f′
c in foundations 25 MPa ≤ x16 ≤ 40 MPa  
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of problem is a complex process in which it is not guaranteed to find the 
global optimum. In addition, meta-heuristic optimization based on 
metamodels is proposed as an alternative to conventional optimization. 
It is intended to significantly reduce computational costs while main
taining the quality of the solutions. 

2.4.1. Conventional heuristic optimization 
Heuristics are the most implemented strategies to solve structural 

design optimization problems. It is precisely the case for optimization 
problems in the design of RC structures. In the optimization of simple 
elements (beams or columns), several heuristics have been used, such as 
Harmony Search (HS) [37,38] or Glowworm Swarm Algorithm [39]. 
Genetic Algorithms (GA) have been implemented for the solution of the 
optimization of RC plane frames [40,41], as well as HS [42] or Simu
lated Annealing (SA) [9,43]. On the other hand, to solve optimization 
problems of three-dimensional concrete structures, it has been imple
mented Particle Swarm Optimization (PSO) [14,15], the Flower Polli
nation Algorithm [17], the Cascade Optimization Method [18], HS [44], 
SA [45,46], or the old bachelor algorithm [47]. 

Alternatively, there is a heuristic of relatively little diffusion called 
Biogeography-based Optimization, proposed by [48] and, although 
ephemeral, has been used in problems of optimal design of civil engi
neering structures. In [49], it is implemented a version of BBO with Levy 
flight distribution (LFBBO) in the design optimization of cantilever 
retaining walls. In [50], BBO is used to optimize the design of 3D and 
plane frame steel structures. In the case of RC structures, BBO has been 
successfully implemented to solve a design optimization problem. In 
[21,51], BBO was compared to other heuristics in these types of prob
lems, outperforming some classical ones such as GA, HS, or PSO. In [1], 
the main parameters of BBO were tuned to deal with problems related to 
the formulated in this paper. Finally, in [8], BBO was implemented to 
optimize the design of the same structure of this paper without consid
ering foundations and SSI during modeling. 

As mentioned, previous works have demonstrated the superiority of 
BBO over other methodologies to solve this type of problem. However, 
considering the benefits of working with metamodels, an experiment is 
carried out to select the best heuristic that will be the basis of the meta- 
heuristic algorithm. In addition, it will serve as a reference to compare 
and validate the results of the proposed meta-heuristic. The other two 
heuristics tested are GA and PSO. Note that the parameters of the 
methods are selected according to the recommendations provided in 
[51]. Fig. 7 shows the behavior of each method in the optimization of 
the real model (the equis represent the values obtained in three tests) and 
of a metamodel (the boxplots represent the statistical analysis of twenty 

tests) created using the basic Kriging methodology (see next section). A 
polynomial of order 0 is used as the regression model to construct the 
metamodel. The utility (or measure used to compare the performance of 
each method) is the final value obtained in each optimization process. 
The figure shows that BBO is superior in both types of optimization, 
especially in the real model. It also shows that using metamodels is an 
excellent alternative to perform parameter tuning processes and 
compare options to give a solution to a real problem using a surrogate 
model. In this case, this metamodel (created using a polynomial of order 
0, see next section) could be more precise regarding values. Even so, it 
captures the fundamental characteristics of the natural phenomenon 
and is much more computationally low-cost to evaluate. It is highly 
desirable in parameter setting or comparison of alternatives to solve real 
problems. 

The BBO algorithm represents mathematical models of how species 
migrate from one island to another, how new species arise, and how 
species become extinct. A more detailed explanation of the BBO strategy 
can be found in [1,8,48]. In order to explain why BBO seems to be a 
proper strategy for dealing with discrete optimization problems, it is 
essential to highpoint the main difference between this strategy with 
classical Evolutionary Algorithms (EAs), such as GA, for example. It is 
associated with the recombination operator. When classical EAs 
combine complete solutions, the BBO algorithm processes solutions 
from variable to variable (not solution to solution). That is to say, when 
GA combines two solutions to create a new one, BBO can obtain solu
tions from more than two previous solutions. In addition, the combi
nation and the mutation operators can affect the variable involved in the 
same process of getting new solutions. 

Highlight that one of the advantages of BBO over other heuristics is 
the rapid convergence to outstanding solutions very quickly. It is espe
cially desirable in these extremely computationally expensive processes. 
One of the reasons for this fast and efficient convergence is the algo
rithm’s effectiveness with relatively low population sizes. For example, 
in the parameter tuning process mentioned above, the optimal popula
tion size was 80 individuals, while for the other two heuristics, it was 
around 200. More information on this aspect can be found in [1]. 

2.4.2. Kriging-based optimization 
Conventional heuristic optimization processes are usually quite 

computationally expensive, even when using a tuned method with fast 
and efficient convergence, such as BBO. Alternatively, MASDO allows 
for reducing computational consumption. The basic idea consists of 
using a surrogate model (instead of the real and complex one) built from 
an initial sampling of points. This surrogate model can predict the 
output data (objective response) from any input data (design variables) 
in the design space. 

There are three main steps to building a metamodel: (1) selection of 
the initial sample of points inside the design space, also called the design 
of experiment (DoE), (2) construction of the approximate mathematical 
model using the initial sample of points using a metamodeling technique 
and (3) validation of the constructed surrogate model. The main 
objective of the metamodel construction is to obtain a model that pre
dicts the actual response with the best possible accuracy [5]. 

To select the initial sample of points to construct the metamodel 
(DoE), the sample size and the position of these points must be consid
ered. On the one hand, the sample size (N) is directly related to the 
number of variables. On the other hand, once the number of points has 
been selected, they should be placed in such a way as to gather as much 
information as possible. DoE can be split into two main groups. Classic 
designs tend to place the sample points around the border of the design 
space and only locate a few points inside it [52]. The other group, called 
space-filling designs, is more suitable for building advanced meta
models. One of the popular ones is Latin Hypercube Sampling (LHS). 

In this work, the DoE will be performed through LHS. The effec
tiveness of this technique has been proved in several studies [53]. LHS 
was proposed by [54]. This method determines the N number of non- 

Fig. 7. Comparison of the performance of the three heuristics in optimizing the 
real model (equis) and the surrogate model (boxplots, where bottom whisker, 
box bottom, middle, top, and top whisker denote the minimum, 25th percentile, 
median, 75th percentile and maximum utility of each process). 
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overlapping intervals for each variable from several design variables (v) 
and some initial input sample points (N). Then, the design space is 
distributed in Nv sections. Each point is placed in such a way as to 
correspond to a combination of different intervals of each variable 
design range. Consequently, LHS designs ensure all design variables are 
represented with their intervals [5]. 

Once the appropriate set of points has been selected and the corre
sponding high-fidelity simulations for each point have been performed, 
the next step is to choose a metamodel and fitting strategy. As 
mentioned, NN and Kriging strategies are the most implemented tech
niques in structural engineering. However, NN-based models usually 
require several sample points and considerable computational time to 
train the network [55]. On the contrary, Kriging-based models are 
flexible strategies and less time-consuming than NN-based techniques 
[56]. For this reason, the metamodel construction in this study is based 
on the Kriging formulation and the DACE Kriging Toolbox V 2.0 [57]. 
Kriging models are extensive and very popular global approximation 
techniques based on the work of Daniel G. Krige [58], adapted to handle 
geostatistical problems [59]. A more detailed explanation of the Kriging 
formulation can be found in [57,60]. 

2.4.3. Simple Kriging-based optimization 
The usual methodology of Kriging-based optimization starts with 

generating the N initial sample points using the LHS technique. It is 
necessary to obtain the real fitness value of each point. Then, the met
amodel is built according to the mathematical strategies used by 
Kriging-based approaches. It is also important to highlight that each 
metamodel type has its associated fitting model. In this case, the 
hyperparameters used to fit the model are determined by maximum 
likelihood estimation [60]. Once the metamodel has been built, it is 
necessary to validate it. For this purpose, measurements based on error 
estimation are usually used. In this case, the mean absolute percentage 
error (MAPE) is implemented, measured using ten randomly obtained 
points (that do not coincide with those obtained in the DoE) as shown in 
Eq. (9). 

MAPE =

∑n
i=1

|yi − yi
∧
|

yi

n
× 100% (9) 

Here, n is the number of points used for the measurement (ten in this 
case), while yi and ŷi are the actual and predicted values, respectively. 
This MAPE value must be lower than a previously established threshold. 
If this criterion is not met, another ten randomly selected points (that do 
not coincide with any previous point) are added. The process is repeated 
until this condition is met, i.e., the metamodel has adequate accuracy. 
Then, the optimization process proceeds. For this case, the BBO algo
rithm explained above is used. This algorithm optimizes the response 
surface generated by the metamodel. Once the “optimal solution” of the 
metamodel has been found, it is necessary to check if it is feasible using a 
high-fidelity simulation. If the solution is not feasible, it is penalized 

with a coefficient of penalization CP. This point is added to those used to 
build the initial metamodel. If the solution is feasible, it is taken as the 
optimal solution. 

One value that defines and regulates the process’s accuracy is the 
coefficient of penalization CP applied to infeasible solutions, which is 
common in this type of optimization problem. Even more significantly, 
the best solutions are often close to these “not feasible” points. There
fore, a sensitivity analysis is conducted to observe the strategy’s 
behavior for different CP values. Fig. 8(a) shows the results of studying 
three values: 1.00 (no penalization), 1.15, and 1.30. In this case, an 
initial number of sampling points of N = 100 is considered. Five tests are 
performed for each penalty coefficient, and the mean of the five values is 
plotted. The figure shows that as the penalization coefficient increases, 
the accuracy of the metamodel decreases. Therefore, CP = 1 is used for 
the simple Kriging-based optimization. 

On the other hand, another essential aspect is the number of initial 
points N obtained in the DoE. A sensitivity study similar to the previous 
one is carried out. Five values are analyzed: 20, 50, 100, 200, and 300. 
Five tests are performed for each value, and the average of these values 
is plotted. Fig. 8(b) shows that the MAPE values are outstanding. It in
dicates that the metamodels obtained from the points located by LHS are 
pretty accurate. 

However, simple Kriging-based optimization often produces unsat
isfactory results, as optimal values tend to be located at the extremes of 
the variables, especially the lower ones. It frequently leads to constraints 
being violated, requiring additional points to be added to the initial 
sampling from which the first metamodel was created. Without a coef
ficient of penalization (CP), the algorithm may repeatedly select the 
same point as the optimal solution, even if it fails to meet the constraint 
requirements. However, the solution found in such cases could be better, 
consisting mainly of variables with extreme values. Increasing the CP 
results in a “see-saw effect”, affecting the area surrounding the infeasible 
point and all other values. Therefore, when optimizing the metamodel, if 
the obtained point violates constraints, the optimum becomes the 
opposite value through penalization (see-saw effect). It is usually the 
case for variables most affected by constraint violations, such as beam 
depths or column section dimensions. 

Thus, the points obtained by LHS produce a highly accurate meta
model only within the interior of the solution space, as illustrated in 
Fig. 9. This situation becomes more intricate for the problem since there 
are too many variables compared to the limited number of possible 
values they can handle. In other words, the interior solution space is 
minimal compared to the points at the boundaries, which causes the 
“see-saw effect”. Moreover, since meaningful solutions are often found 
at these frontier points, this explains the outcome when applying simple 
Kriging-based optimization to the problem. 

2.4.4. Kriging-based meta-heuristic optimization 
Considering the limitations of the simple strategy to deal with the 

Fig. 8. Study of (a) the coefficient of penalization (CP) and (b) the initial sampling size (N).  
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formulated optimization problem, a two-phase strategy based on Kriging 
metamodels is designed. It also includes concepts of online optimization 
and a local search heuristic. The global strategy is called Kriging-based 
meta-heuristic optimization (KBMO). 

Using only LHS is not a good choice for this type of problem, 
although it provides excellent results in the interior of the solution 
space. Therefore, a DoE is designed using points obtained through LHS 
and others arbitrarily located at the boundaries. The basic idea of this 
strategy is the following: to perform a first exploration of the solution 
space to “detect” promising areas using a general metamodel; to build a 
“local” metamodel in the most feasible area; to optimize the “local” 
metamodel and to obtain the best solution resulting from the use of 

metamodels (two-phase Kriging-based strategy). From this point, a local 
search heuristic using the actual response surface is applied to improve 
the solution obtained using the surrogate models. The steps are as fol
lows (see Fig. 10):  

1. The initial DoE is designed by obtaining 20 points using LHS, 32 
exterior points, and 16 corner ones for 68 initial points. Two exterior 
points are obtained for each variable (one upper and one lower), thus 
the 32 exterior points. An exterior point is considered to be one in 
which the value of a variable is fixed at one of the extremes while the 
other variables take random values. A corner point is considered to 
be set to an extreme value. At the same time, the other variables take 

Fig. 9. Example of the low effectiveness of the metamodel at the boundaries of the solution space, (a) simulated response, (b) real response and (c) error between the 
simulated and the real. Coefficient of penalization equal to 1.00. The values of the other variables are randomly selected. 

Fig. 10. Flowchart of Kriging-based meta-heuristic optimization (KBMO).  
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a random value from the two extremes that correspond to each one, i. 
e., all variables have extreme values. Since fewer corner points exist, 
only 16 are considered, one for each variable. Then, the high-fidelity 
simulation is performed for each point. The metamodel is created 
using a first-order polynomial for the regression model (see how 
Kriging works in suggested references). The metamodel is “vali
dated” using ten randomly selected points (five interior ones ob
tained through LHS and five exterior-corner ones) and the 
corresponding MAPE. If the MAPE value is not less than 6%, these 10 
points are incorporated into the initial DoE, and the metamodel is 
updated. The process is repeated until the criterion is met. Once a 
good sample of initial points is obtained, another metamodel is 
created with this sample, using a polynomial of order 0 (constant). It 
creates a less accurate metamodel than the one obtained with the 
first-order polynomial, but the “see-saw effect” does not affect it.  

2. The metamodel is optimized with the simple BBO heuristic. The 
generated response surface is quite complex, i.e., each optimization 
process usually gives different results, although with much better 
quality than those obtained with the metamodels built using a first- 
order polynomial. Ten optimization procedures are performed, 
which, when using the metamodel, present a little computation time 
compared to the accurate simulations. The best solution is selected 
from the ten obtained.  

3. A new local solution space is created by adding one value up (+1) 
and one value down (-1) to the “optimal” values of each variable 
using this solution. If the value of a variable is located at the extreme, 
two units are added or subtracted so that each variable can take three 
values. Using similar criteria as in point 1, a new DoE is created (10 
LHS points, 15 exterior, and 10 corner points, for a total of 35 
points), and the “local metamodel” is created this time using a first- 
order polynomial as the regression model. The accuracy of the 

metamodel is checked with ten selected points following the same 
criteria as point 1 until it meets the established criteria.  

4. This metamodel is optimized using the simple BBO strategy. Until 
here, this part of the process is named Kriging-based optimization 
(KBO).  

5. Considering that the computation time is still relatively low 
compared to the conventional procedure, the process is finished with 
the local optimization algorithm (CDLIS, see Fig. 11), starting from 
the point obtained using the metamodels. The final solution is 
considered the optimal one. 

It is essential to highlight that each of the high-fidelity simulations 
performed in the process is stored so that if a point is repeated, it is 
unnecessary to perform costly extra simulations. 

On the other hand, the local search algorithm is based on strategies 
such as the Simplex Nelder-Mead algorithm [61] and Integer Linear 
Programming [62]. It consists of performing discrete unit steps and 
gradually storing the results to improve the analyzed solution. The steps 
are as follows (see Fig. 11):  

1. Each variable increases and decreases by one unit in value, starting 
from the basic solution. Then, the corresponding high-fidelity 
simulation is run, and the results are stored. If the variable’s value 
is in one of the limits, it is not violated, so only one solution is 
analyzed. In addition, each new solution is checked in the database 
against all previous solutions to avoid repeating additional costly 
accurate simulations. If already performed, it is not necessary to run 
the FE software. Therefore, each iteration will have at most twice the 
number of variables.  

2. Once all the results are stored, the new solution is formed, updating 
the values of each variable that improved the basic solution. For 
example, in Fig. 11, variable 1 improved the solution by decreasing 

Fig. 11. Flowchart of Constrained Deterministic Local Iterative Search (CDLIS). Left: general flowchart. Right: example of an iteration in a problem with 3 variables.  
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its basic value (p(1)-1), and variable 2 did not improve with either 
step. Variable 3 improved by increasing it (p(3)+1), so the basic 
solution [p(1), p(2), p(3)] becomes [p(1)-1, p(2), p(3)+1]. It is called 
new solution 1. In addition, the best individual solution is identified, 
which is the best solution of all those obtained during the iteration. It 
is the new solution 2.  

3. The high-fidelity simulation obtains the actual value of the objective 
function provided by new solution 1. If this value improves the value 
of the basic solution, the new solution 1 becomes the basic, and a 
new iteration begins.  

4. If the value of solution 1 does not improve the base one, the quality of 
the new solution 2 (already stored) is analyzed. If this new solution is 
better than the basic one, the latter becomes the new solution 2 
(single best solution), and a new iteration begins. If the new solution 
2 does not provide a better result, the process is ended, and the basic 
solution is considered the optimal global solution. 

3. Results and discussion 

The results and their discussion focus on two fundamental aspects: 
the influence of considering the SSI and the application of the proposed 
metamodeling strategy. The methodology is based on performing the 
basic experiments on case study 1 and validating the results with the 
other two models. Additionally, this type of structure’s behavior is 
analyzed by the different conditions generated in this study. 

3.1. Influence of SSI consideration 

The results’ first point focuses on including the SSI during modeling. 
For this purpose, the three case studies are optimized by considering 
classical (fixed) supports and the SSI using the two soil types. In addi
tion, the optimization with classical supports does not consider the 
environmental cost of the foundations in the objective function, unlike 
the optimization considering the SSI. As mentioned, the primary hy
pothesis is that a structure modeled with SSI will have a more stressed 
superstructure due to the logical differential settlements between 
contiguous supports. 

Table 5 shows the optimum values of the variables for each model. It 
can be appreciated that the results are different for each support con
dition, although some aspects maintain their tendency. For example, 
corner columns tend to be square or with little rectangularity in the 
direction of predominant bending due to gravitational loads (“x” axis in 
these cases). This rectangularity tends to increase in soil 2, where dif
ferential settlements are higher. As do corner columns, exterior columns 
usually have rectangular cross-sections with the most significant 

dimension on the x-axis. Here the rectangularity is generally more sig
nificant. The interior columns usually have a rectangular section with a 
larger side in the y-axis direction. It is to increase the horizontal stiffness 
of the structure in that direction, which is critical against wind action. 
Note that these columns do not have predominant bending due to 
gravitational loads since the structures are symmetrical. 

On the other hand, the interior foundation, which does not receive a 
predominant bending moment due to gravitational loads, tends to be 
designed with a rectangular footing to deal with the horizontal wind 
load in its critical direction. Exterior foundations usually have square 
footings. Corner foundations tend to be designed with a rectangular base 
with a larger dimension on the x-axis to cope with gravity loads. It can be 
seen how there is a match between the columns and the corresponding 
foundations. Regarding the quality of the concrete, the elements that 
work primarily in bending (beams and foundation footing) require 
concrete with low compressive strength. On the other hand, since this 
property (f′

c) is significant in columns, the best choice is usually high- 
strength concrete. 

Table 5 
Design variables and corresponding optimal values for each case study.  

Variable Optimal values 

CS-1 CS-2 CS-3 

No SSI Soil 1 Soil 2 No SSI Soil 1 Soil 2 No SSI Soil 1 Soil 2 

x1 (m) 0.45 0.35 0.35 0.60 0.45 0.50 0.45 0.45 0.50 
x2 (m) 0.20 0.20 0.20 0.25 0.25 0.25 0.20 0.25 0.25 
x3 (m) 0.40 0.35 0.35 0.40 0.35 0.35 0.40 0.35 0.35 
x4 (m) 0.20 0.20 0.20 0.25 0.25 0.25 0.20 0.25 0.25 
x5 (m) 0.30 0.30 0.25 0.25 0.30 0.30 0.30 0.30 0.30 
x6 (m) 0.25 0.40 0.35 0.45 0.40 0.45 0.45 0.40 0.45 
x7 (m) 0.35 0.35 0.45 0.35 0.50 0.50 0.40 0.50 0.50 
x8 (m) 0.25 0.25 0.30 0.25 0.25 0.30 0.25 0.25 0.30 
x9 (m) 0.25 0.30 0.35 0.25 0.40 0.50 0.25 0.40 0.50 
x10 (m) 0.25 0.30 0.40 0.25 0.35 0.35 0.25 0.35 0.35 
x11 – 0.75 0.63 – 1.00 1.25 – 1.00 0.88 
x12 – 1.25 1.00 – 1.00 1.00 – 1.00 1.00 
x13 – 1.00 0.75 – 1.25 1.50 – 1.25 1.25 
x14 (MPa) 25 25 25 25 25 25 25 25 25 
x15 (MPa) 25 40 25 40 40 40 40 40 40 
x16 (MPa) – 25 25 – 25 25 – 25 25  

Table 6 
Comparison of results of optimization procedures with and without considering 
soil-structure interaction during modeling (using CS-1*).   

Elements No SSI SSI 
(soil 
1) 

SSI 
(soil 
2) 

CO2 

emissions 
(kg) 

Beams Steel 2917 3223 3274 
Concrete 3155 2584 2584 
Formwork 352 301 301 
Total 6424 6108 6159 

Columns Steel 1968 2838 3024 
Concrete 1333 1952 2345 
Formwork 175 193 234 
Total 3476 4983 5603 

Superstructure 9900 11 
091 

11 
762 

Foundations  Soil 
1** 

Soil 
2**  

Steel 2694 1539 2613 1062 

Concrete 872 427 868 476 
Formwork 77 68 81 80 
Earthwork 5867 5014 5801 4963 
Total 9510 7048 9363 6581 

TOTAL 19 
410 

16 
948 

20 
454 

18 
343 

* Results of CS-2 and 3 are graphically represented in Fig. 12. 
** Foundations are designed and their environmental cost is calculated for the 
optimal solution (model with classic supports, no SSI). 
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Table 6 highlights the differences in the designs with and without 
SSI. It is constructed with the basic case study (CS-1) results. First, it is 
observed that the superstructure of the models optimized with SSI is 
much more environmentally costly than that of the model with classical 
supports: 12.03% for soil 1 and 18.81% for soil 2. It does not mean that 
not including the SSI is better. On the contrary, using a model with 
classical supports does not consider additional stresses introduced into 
the structure, which is why its optimal design is “less costly”. When 
modeling the system with SSI, the optimal results are more expensive 
because the superstructure is more stressed. Thus, the elements are 
designed with more material. Therefore, the design of a model that does 
not consider the SSI does not cause the collapse of the structure but 
rather a gradual and accelerated deterioration because of the appear
ance of stresses for which it was not designed. It causes a considerable 
increase in the use of resources for its maintenance. It should be 
remembered that support settlements are a slow process that could take 
years to reach its final stage. On the other hand, obtaining a more costly 
superstructure for soil 2 proves the hypothesis in section 2.2.1 about the 
increase in internal forces resulting from differential settlement, which 
is higher for these types of soils. 

On the other hand, it can be seen that the costs of the beams do not 
vary much from one model to another, the columns being the main ones 
affected. Differential settlements cause an increase in the bending 
moment. This increase directly affects the beams. It is also transferred to 
the columns due to how statically indeterminate structures work (as in 
this case). Therefore, the beams’ design does not “suffer” too much from 
this increase in bending since they are elements intended to support this 
stress. However, columns are intended to support axial stress funda
mentally, so this increase in bending resulting from the consideration of 
the SSI does significantly affect their design. It causes a significant in
crease in the dimensions and rectangularity of the columns’ cross- 
sections and the need for reinforcement to deal with these internal 
forces more efficiently. Table 6 shows that for soil 1, the cost of the 
columns in comparison with the model using classic supports increases 
by 43.35% (46.55% for concrete and 44.21% for steel), while for soil 2, 
the increase is 61.19% (75.92% for concrete and 53.66% for steel). 

Fig. 12 shows the graphical representation of Table 6. In addition, 
the results of case studies 2 and 3 are included. Here we can see how the 
conclusions obtained using the CS-1 are reaffirmed. As can be seen, there 
is a tendency to increase the absolute differences in the superstructure 
design. In the case of CS-2, although the absolute differences increase 
compared to CS-1, their ratio expressed as a percentage of the model 
without SSI decreases due to higher total emissions. However, it can be 
seen how in CS-3, this ratio shoots up. Here it can be concluded that as 

the number of levels increases, the consideration of SSI becomes even 
more significant. It is due to the increase in axial forces and differential 
settlements. Furthermore, the predominantly frictional soil is the most 
influential, obeying the theories discussed in Section 2.2. The figure also 
confirms the significant influence of the columns on the differences 
observed for each support condition. It is magnified in CS-3 due to 
increased differential settlements and bending in the superstructure. 
Thus, it is confirmed that this increase in bending resulting from the SSI 
phenomenon significantly influences the design of the columns. 

3.2. Application of KBMO 

Conventional optimization using FE software as a computational 
engine for modeling, analysis, and structural design is highly costly. For 
these reasons, the results will be measured in terms of the accuracy of 
the metamodel-based strategy compared to conventional optimization, 
highlighting the savings achieved in computational time. The element 
considered in the analysis of KBMO is the coefficient of penalization CP. 
It is important to remember that optimization based on metamodels 
aims to reduce computational costs while maintaining good results. In 
this section, we use the models with SSI (with both soils) to test the 
effectiveness of the proposed methodology. 

3.2.1. Obtaining the appropriate CP 
As mentioned above, an aspect of significant importance in imple

menting metamodel-based optimization is the coefficient of penalization 
applied to infeasible solutions. Therefore, the study of applying the 
KBMO methodology starts with searching for the appropriate CP. Case 
study 1 is used for this purpose. 

3.2.1.1. Predominantly cohesive soil. Table 7 and Fig. 13 show how, in 
general, the results are better for low CPs. It is because, as proved in 
section 2.4.2, more accurate predictions are obtained for low CP values. 
It occurs in both strategy steps: the Kriging-based optimization (KBO) 
and the completion with the local heuristic technique. The final results 
are the best in the case of CP=1.15, even if the KBO offers the worst. The 
response surface generated with this value of CP presents a zone of good 
local optima corresponding to an area of the real surface close to the 
global optimum. On the other hand, it can be said that the most stable 
values were obtained for a CP=1.05 since both results (intermediate and 
final) are excellent. This configuration also offers the most significant 
computational savings. 

In Fig. 13, the final results are pretty accurate. Three CP configura
tions have above 98% accuracy compared to CO. The cases of CP equal 

Fig. 12. Graphical representation of the results referring to SSI consideration’s influence on the superstructure. Left: Results shown in Table 6 and those obtained 
with CS-2 and 3. Right: Absolute differences for each case study and each soil type compared to the model without SSI. 
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to 1.03 and 1.05 are pretty outstanding, considering not only the final 
results but also those obtained with the KBO. Note that one of the three 
tests with CP=1.03 obtained a result accuracy of 99.72% compared to 
the best solution obtained by the CO, being this value even better than 
one of the three results obtained by the conventional method. The best 
value found with CP=1.05 has an accuracy of 98.71%, another excellent 
result. On the other hand, this figure shows the computational savings 
obtained. This saving lies almost entirely in substituting high-fidelity 
simulations with metamodels. The number of high-fidelity simulations 
is determined by the number of simulations needed to obtain a first 
surface with a MAPE lower than 6% (step 1) and by the number of it
erations the local search algorithm must do to find the best solution. The 
latter is influenced by the quality of the solution obtained at the end of 
the KBO. Low CPs offer much more computational savings because of 
their more accurate surrogate response surfaces and better intermediate 
solutions. In general, using low CPs (1.03 and 1.05) saves, on average, 
almost 92% of computational time, with very accurate results compared 
to CO. 

3.2.1.2. Predominantly frictional soil. Table 8 and Fig. 14 show that the 
intermediate (KBO) and final results (KBMO) are less efficient. It is 
because this model using soil 1 is more “unstable”, where there are 
certainly more constraint violations in a more deformed and stressed 
superstructure. It makes the actual response surface more difficult to 
predict. The results with the lowest CP (1.03) are remarkable, which are 
poor compared to those obtained for soil 1. It is due to the previous 
approach to the number of constraint violations, where this low penalty 
seems less efficient in predicting the real phenomenon. Again, the results 
with CP= 1.15 lead to reasonably good final results since both models, 
even with different soils, should have similar overall behavior. It should 
be noted that the best solution was obtained with CP=1.05, with an 
accuracy of 99.24%. The computational savings were also lower due to 
obtaining less accurate metamodels. Overall, the results are still quite 
satisfactory. 

3.2.2. Application of KBMO with CP=1.05 to case studies 2 and 3 
Having concluded that the best option for penalizing infeasible so

lutions is to apply a CP of 1.05, it is tested the proposed strategy with 
case studies 2 and 3. Fig. 15 shows the results for the three cases. Part (a) 

Table 7 
Overview on results of applying the proposed metamodeling strategy in comparison with Conventional Optimization (CO) of the model considering SSI for the 
predominantly cohesive soil.  

Method CP Mean results Best results 

Time (s) Comp. time savings 
(%) 

CO2 emissions 
(kg) 

Accuracy with respect to CO 
(%) 

CO2 emissions 
(kg) 

Accuracy with respect to CO 
(%) 

KBMO  1.03 10 840  91.97 20 786  98.76 20 511  99.72  
1.05 10 706  92.07 20 902  98.20 20 717  98.71  
1.10 15 930  88.20 21 243  96.53 20 727  98.67  
1.15 15 255  88.70 20 684  99.26 20 454  100.00  
1.20 14 351  89.37 21 495  95.31 21 346  95.64 

Conv. Opt. 
(CO)  

135 000  20 532  20 454   

Fig. 13. Graphic comparison of results shown in Table 7. Left: simple box plots (extreme values and mean) of three test performed for each configuration. Right: 
Accuracy of metamodel-based optimization results (in comparison to CO) for different CPs (left y-axis) and corresponding computational savings (right y-axis). 

Table 8 
Overview on results of applying the proposed metamodeling strategy in comparison Conventional Optimization (CO) of the model considering SSI for the predom
inantly frictional soil.  

Method CP Mean results Best results 

Time (s) Comp. time savings 
(%) 

CO2 emissions 
(kg) 

Accuracy with respect to CO 
(%) 

CO2 emissions 
(kg) 

Accuracy with respect to CO 
(%) 

KBMO  1.03 12 877  90.17 19 002  96.59 18 715  97.97  
1.05 14 764  88.73 18 646  98.53 18 483  99.24  
1.10 15 629  88.07 18 981  96.71 18 885  97.05  
1.15 13 716  89.53 18 963  96.80 18 623  98.47  
1.20 14 842  88.67 19 321  94.86 19 026  96.28 

Conv. Opt. 
(CO)  

131 000  18 376  18 343   
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shows that the model for structure 2 is the most difficult to optimize, 
especially for soil 2, as shown in part (b). It is because this structure is 
probably more prone to obtain infeasible solutions. In this case, as the 
length of the beams increases, this infeasibility is given by the stiffness 
constraint of these elements (i.e., violation of the deflection constraint at 
the center of the span). This situation, as mentioned, becomes more 
critical in soil 2, causing a more stressed superstructure. This theory 
about the inversely proportional relationship between the number of 
infeasible solutions and the accuracy of metamodel-assisted optimiza
tion strategies is verified by obtaining less accurate results for case 
studies 2 and 3. Additionally, this is proven by the fact that the struc
tures modeled on soil 2 are more challenging to optimize using the 
metamodel strategy. In Fig. 15(b), the results for model 1 suggest the 
opposite, but this is true for this case of CP = 1.05 specifically. In the 
previous section, it was found that, in general, the results are more stable 
for soil 1. 

In summary, it can be stated that the results are pretty satisfactory 
since, on average, solutions above 98% accuracy are achieved compared 
to conventional optimization. In some specific cases, even 99% is 
exceeded. Regarding computational savings, a similar analysis is per
formed for CS-2 and 3 as for CS-1 (tables 7 and 8). For CS-2, these 
savings, on average, are 90% and 89 % for soils 1 and 2, respectively. For 

CS-3, the results are slightly higher: 90.5 and 89.4 %. In general, these 
results are similar to those obtained in CS-1. 

3.2.3. Exploring the systems under investigation 
One of the benefits of using metamodels is that thanks to the 

cheapness of the simulations, several experiments can be performed, and 
the solution space can be explored better. It allows a deeper under
standing of the systems under analysis. Considering that several solu
tions were obtained in the study of the appropriate CP using CS-1, these 
are used to go inside into the structure’s behavior. Other more gener
alized conclusions are also accepted by analyzing the solutions obtained 
with the other two case studies. 

Hypotheses on the behavior of this type of structure, such as 
obtaining more stressed superstructures when modeling the SSI, have 
been previously discussed. Several of these hypotheses can be deduced 
from Fig. 16. Perhaps the most notable case is the relationship between 
the cost of beams and columns. It is often the case that as the cost of 
concrete in beams decreases, there is an increase in the cost of columns, 
significantly reinforcing steel, as can be seen in Fig. 16(c) comparing the 
cases of CP=1.05 with CO or with CP=1.10. The same occurs in Fig. 16 
(d) with CP=1.03 compared to CP=1.05 or CP=1.10 with CP=1.15. It is 
because stiffer (more expensive) beams cause the columns to be 

Fig. 14. Graphic comparison of results shown in Table 8. Left: simple box plots (extreme values and mean) of three test performed for each configuration. Right: 
Accuracy of metamodel-based optimization results (in comparison to CO) for different CPs (left y-axis) and corresponding computational savings (right y-axis). 

Fig. 15. (a) Simple box plots of the three tests performed (conventional optimization and KBMO) for each case study for both soil types. (b) Achieved accuracy of 
KBMO compared to CO for each case. Note that the differences between the means and the minimum value obtained from the three tests are represented. 
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subjected to fewer bending moment and a corresponding reduction in 
reinforcing steel. 

It is essential to note the differences between the solutions for each 
soil type. Fig. 16(a) and (b) show that the columns of models with soil 2 
are more expensive, although the foundations are much cheaper due to 
the higher bearing capacity of this type of soil. Considering that foun
dations are usually ignored in this type of study, a few lines are dedi
cated to their influence on the structural assembly. In CS-1, foundations 
represent 46 and 36% of the emissions of the structural assembly for 
soils 1 and 2, respectively. In CS-2, they represent 41 and 29 %, while in 
CS-3, 40 and 26 %, respectively. Therefore, foundations are very influ
ential in the final output of this type of structure. In addition, they 
regulate how the superstructure works with their geometry and the 
interaction with the soil. It is also essential to emphasize the significant 
impact on CO2 emissions of earthwork activities. In CS-1, they represent 
62% of the total emissions of foundations (28% of global emissions) for 
soil 1 and 75% (27% of the total) for soil 2. In CS-2, this ratio is 51% 
(21% of the total) for soil 1 and 69% (20% of the total) for soil 2. For CS- 
3, these values are 51% (20%) and 71% (18%), respectively. 

Other significant aspects are the optimal emission ratios between 
elements and components. For CS-1 with soil 1, the distribution is 
approximately 30, 24, and 46% between beams, columns, and founda
tions. In the case of soil 2, this distribution is more equitable, leaving 33, 

31, and 36%. For CS-2, this distribution is 34–25-41 for soil 1 and 40–31- 
29 for soil 2. In CS-3, the optimal distribution would be 32–28-40 for soil 
1 and 36–38-26 for soil 2. Regarding the components analyzed, it can be 
seen that the formwork has very little influence, unlike the earthwork. 
On the other hand, the optimal (environmental) cost ratio of steel
–concrete is always helpful in reinforced concrete structures. For the CS- 
1 with soil 1, this ratio is 1.25, 1.45, and 3.01 for beams, columns, and 
foundations, respectively. For soil 2, the ratios are 1.25, 1.29, and 2.23. 
The overall ratios are 1.61 for soil 1 and 1.37 for soil 2. For the second 
case study, these ratios are 1.08, 1.57, and 3.47 (1.60 in general) for soil 
1, and 0.96, 1.31, and 2.42 (1.20 in general) for soil 2. CS-3′s optimal 
distribution is 1.12, 1.20, and 3.39 (1.47 in general) for soil 1, and 1.05, 
1.51, and 2.35 (1.33 in general) for soil 2. 

4. Concluding remarks and future work 

Although conventional heuristic optimization has been successfully 
implemented for years in structural optimization, this strategy may be 
insufficient to deal with more complex problems. This increase in 
complexity is due to the development of more accurate models, even 
though modeling aspects such as soil-structure interaction (SSI) are 
usually not considered. This paper has evaluated the use of metamodel- 
assisted optimization to minimize the CO2 emissions of spatial 

Fig. 16. Breakdown of each of the best solutions obtained by each configuration for CS-1, (a) and (b) represent the emissions broken down by elements, while (c) and 
(d) denote each element broken down by the main components. Additionally, (a) and (c) are related to the soil 1, while (b) and (d) to the soil 2. 
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reinforced concrete frame buildings, taking into account the SSI, which 
is implemented using a Winkler model. The surrogate models are built 
using a Kriging-based methodology. 

Due to the particularities of the formulated discrete optimization 
problem, there are better alternatives than simple Kriging-based opti
mization. Thus, a meta-heuristic strategy is proposed using a Kriging- 
based two-phase methodology to build the surrogate model with a 
local search algorithm. 

Results show that the SSI should be addressed during modeling. 
When considering this aspect, the superstructure design provides 
different results than when it is not considered, i.e., the SSI consider
ation leads to more stressed superstructures, especially the columns. 
This phenomenon is more evident in predominantly frictional soils than 
in predominantly cohesive ones. Considering the foundations within the 
structural assembly is another aspect that should be addressed. They are 
very influential both in the general outputs of the structure and in the 
way in which the system distributes the loads. On the other hand, 
applying the Kriging-based meta-heuristic optimization allows for 
obtaining very accurate results compared with those obtained with the 
conventional heuristic optimization, with computational savings of 
about 90%. This accuracy varies depending on the coefficient of 
penalization. Generally, better results are obtained for low coefficients 
(1.03–1.05). 

Promising lines of research in this field should focus on implement
ing surrogate-based optimization to solve optimization problems with 
more encompassing formulations, considering environmental, social, 
and constructive objectives. Moreover, these objectives should not only 
be limited to mere optimization up to the design stage, i.e., they should 
also include the Life-Cycle Analysis of the structures. Another interesting 
point of view would be identifying the least influential variables within 
the optimization results and converting them into constant parameters 
by assigning them values that have proven optimal from previous 
studies. It would make the optimization problem easier to solve, 
considerably reducing computation time. Alternatively, considering that 
soil-structure interaction is a novel aspect in this research, the influence 
of soil conditions underlying the foundations, such as the presence of a 
water table, more than one stratum, or drainage conditions, could be 
investigated. Other ways of modeling this interaction can also be 
explored. An interesting alternative would be implementing other 
models beyond the proposed linear springs, such as using dashpots with 
a Kelvin-type or a similar approach. It would be very effective also for 
dynamic analysis. Therefore, further refining the proposed methodology 
with other more complex methods and checking if it is worthwhile 
would be fascinating. In addition, other artificial intelligence techniques 
(e.g., Neural Networks) could be considered to deal with the high 
computational costs. Furthermore, once the importance of modeling SSI 
in frame structures has been demonstrated, other typologies should be 
tested to increase the sustainability of this type of structure based on the 
methodologies proposed in this work. Once more complex structures are 
implemented, other foundation alternatives such as combined footings, 
mat foundations, or mat-piles combinations can be used. An exciting 
research to develop would be to analyze the sustainability of each of 
them and their relation with the superstructure design. Regarding the 
latter, variable section beams, “I” or “T” sections, slab-column typol
ogies (without beams), hybrid elements, and others can be alternatives 
to be explored to improve the economic, environmental, constructive, 
social, and durability indexes of this type of construction. Another 
promising line of research is focused on the type of optimization 
formulation. Performance-based, reliability-based, or robust designs are 
interesting and efficient approaches when considering other aspects, 
such as dynamic analysis or uncertainty. 
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