

Contents lists available at ScienceDirect

Applied Materials Today

journal homepage: www.elsevier.com/locate/apmt

Synthesis and mechanistic insights of SiO₂@WO₃@Fe₃O₄ as a Novel Supported Photocatalyst for Wastewater Remediation under Visible Light

Ander Diego-Lopez, Oscar Cabezuelo, Alejandro Vidal-Moya, M. Luisa Marin^{*}, Francisco Bosca^{*}

Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, València, 46022, Spain

ARTICLE INFO

Keywords: EPR spectroscopy heterogeneous catalysis magnetite photooxidation tungsten oxide

ABSTRACT

A new optimized photocatalyst for wastewater remediation at neutral pH has been developed and fully characterized. The catalyst features microparticles of SiO₂ as a supporting substrate and a uniform shell of WO₃ nanoparticles externally decorated with Fe₃O₄ nanocrystals. The photocatalytic activity of SiO₂@WO₃@Fe₃O₄ was evaluated and compared to its SiO₂@WO₃ counterpart on the photodegradation of methylene blue (MB) under visible light, with and without H₂O₂. Best results were obtained for SiO₂@WO₃@Fe₃O₄ in the presence of H₂O₂, whose potential for wastewater remediation was further evaluated on the photodegradation and mineralization of a contaminant of emerging concern such as diclofenac (DCF). Furthermore, a photocatalytic mechanism was proposed based on the performed electron paramagnetic resonance (EPR) experiments, which provided evidence for the intermediates generated in all the involved photocatalytic processes. Hence it was proven that 'OH is the species responsible for the photocatalyzed oxidation of MB and DCF. The generation of 'OH is boosted by a synergistic effect between Fe₃O₄ and WO₃ in the presence of light and H₂O₂.

1. Introduction

The intensive exploitation of agriculture, together with the rapid industrial development, are the main causes of surface and groundwater pollution, which lead to a decrease in freshwater availability, one of the biggest problems that society is facing today [1]. In this context, the presence of pharmaceutical compounds in water is particularly threatening due to their toxicity and the uncertainty of the extent of the problems they could arise [2]. Among them, diclofenac (DCF), a non-steroidal anti-inflammatory drug, is one of the most frequently detected compounds in aquatic environments, and its ecotoxicity, especially in the presence of other organic contaminants and metals, has been demonstrated [3-5]. However, conventional wastewater treatments are not able to effectively eliminate DCF, with reported degradation efficiencies of less than 10 % [6]. In consequence, it becomes crucial to develop efficient technologies able to remove contaminants of emerging concern (CECs) like DCF from the aquatic media, allowing water reuse.

Advanced Oxidation Processes (AOPs), which are characterized by the production of hydroxyl radical ('OH), are presented as promising technologies for the oxidation of organic pollutants. Among AOPs, heterogeneous photocatalysis and specifically semiconductor-based photocatalysis, have been widely reported as a viable option for wastewater decontamination [7,8]. Thus, the absorption of photons with the appropriate energy by the semiconductor can stimulate an electron transfer process from the valence band (VB) to the conduction band (CB) on the semiconductor surface, generating a photo-excited electron-hole pair (e^- — h^+). From the photo-generated e^- , species such as superoxide anion (O_2 ·⁻) can be produced, while the photo-generated h^+ could be able to produce hydroxyl radical ('OH) [9,10].

In this context, TiO_2 has been the most widely studied material for photocatalytic applications due to its low cost, chemical and photochemical corrosion stability, and nontoxicity. However, it displays several drawbacks, such as a low photocatalytic quantum yield due to its fast e^--h^+ pair recombination process or the impossibility of using visible light due to its band gap (3.2 eV) [11,12]. For that reason, other semiconductors, such as tungsten trioxide (WO₃), are gaining momentum in the field of photocatalysis for environmental applications. Among its advantages, WO₃ performs efficient photocatalytic processes under visible light (band gap between 2.6-2.8 eV) [13–15].

* Corresponding authors. *E-mail addresses:* marmarin@qim.upv.es (M.L. Marin), fbosca@itq.upv.es (F. Bosca).

https://doi.org/10.1016/j.apmt.2023.101879

Received 29 March 2023; Received in revised form 23 June 2023; Accepted 3 July 2023 Available online 7 July 2023

^{2352-9407/© 2023} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Nevertheless, its band edge (*ca.* +0.5 V vs NHE) prevents the production of O_2 ., and consequently, the electron in the CB rapidly tends to recombine with the h^+ in the VB, inhibiting the generation of OH [15]. Therefore, different studies using WO₃ as a semiconductor have been performed to overcome its disadvantages [16-30]. In this sense, the photoreactivity of WO₃ has been improved by the presence of electron scavengers, such as H_2O_2 or Fe^{3+} . These inorganic oxidants, acting as electron acceptors, would rapidly react with the photogenerated electrons in the CB of WO3 and consequently prevent recombination with the holes [17,25,28]. Nevertheless, coupling WO₃ with other low band gap semiconductors has resulted in being one of the most promising ways to reduce the e^--h^+ pair recombination due to the charge migration between semiconductors [16,18,20-24,29-31]. In this context, recent studies have demonstrated a better photocatalytic activity of new hybrid photocatalysts containing WO₃ and Fe₂O₃ or Fe₃O₄ than the pristine semiconductors. Even more, improved water decontamination has been observed using H2O2 with WO3@Fe3O4 nanopowders under acidic conditions (pH ca. 2.8) or with nanocomposites formed by mixing magnetite nanoparticles and WO₃ nanorods [18,23]. Nevertheless, although other studies have shown that Fe₃O₄ nanoparticles are able to perform photo-Fenton oxidations in the presence of H_2O_2 [32], ambiguous explanations for the better photocatalytic activity of WO₃@Fe₃O₄ nanocomposites have been provided in all cases [16,18, 20,21,23,24,29].

Another interesting point about photocatalysts based on semiconductors is that there are only a few cases in which they have been synthesized on supporting substrates, even though it offers advantages, such as the easier separation from the reaction medium or the prevention of the aggregation of the nanocrystals [33]. In this sense, although $WO_3@Fe_3O_4$ photocatalysts have been used for water decontamination in batch reactors applying magnetic fields for separating and recovering this type of powder catalyst particles, no supported photocatalytic systems based on $WO_3@Fe_3O_4$ have been reported.

With this background, the aim of the present work was to design a supported photocatalyst based on WO3 with improved oxidant properties for wastewater remediation at neutral pH. In this context, microparticles of SiO₂ were selected as the support of the WO₃ photocatalysts because they are cheap, easily available, offer high mechanical stability, and are transparent in the light spectral range where WO₃ will be excited. Thereby, after the synthesis of $SiO_2@WO_3@Fe_3O_4$ and an extensive characterization, the photocatalytic activity of SiO2@-WO₃@Fe₃O₄ and SiO₂@WO₃ (synthesized as a control) will be evaluated and compared in the presence and in the absence of H₂O₂, using methylene blue (MB) as a model contaminant. Furthermore, the reuse of the new supported photocatalyst will be demonstrated. Moreover, the potential of this new photocatalyst for water remediation will be tested against DCF, as a CEC, in the presence of H₂O₂. Finally, a deep mechanistic insight based on electron paramagnetic resonance (EPR) measurements, together with the photocatalytic results, will allow the postulation of plausible reaction mechanisms.

2. Materials and methods

2.1. Chemicals

Tetraethyl orthosilicate (TEOS), ammonium hydroxide (28-32%, NH₄OH), ammonium metatungstate (AMT), ferrous chloride tetrahydrate (FeCl₂·4H₂O), ferric chloride anhydrous (FeCl₃), methylene blue (MB) and hydrogen peroxide (50%, H₂O₂) were purchased from Sigma Aldrich. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was purchased from TCI chemicals. Tungsten (VI) chloride (WCl₆) was purchased from Fisher Scientific. Methanol (MeOH) and ethanol (EtOH) were purchased from Scharlab.

2.2. Synthesis and characterization

2.2.1. Synthesis of SiO₂ spheres

 SiO_2 spheres were synthesized following the Stöber method [34]. Thus, TEOS (269 mmol) was added to a solution of NH₄OH (2.11 mmol) in EtOH (1500 mL) at 0°C. After two hours under these conditions, the reaction was conducted at 22°C for further 24 hours. Then, the SiO₂ particles were centrifuged (4000 rpm for 5 min) and washed with EtOH (200 mL). The obtained SiO₂ particles were dried under vacuum.

2.2.2. Synthesis of Fe₃O₄ nanoparticles

Magnetite (Fe₃O₄) nanoparticles were synthesized *via* a coprecipitation method [35]. Thus, FeCl₂·4H₂O (11.8 mmol) and FeCl₃ (18.5 mmol) were dissolved in distilled H₂O (100 mL) under a nitrogen gas flow at 50°C. After 45 minutes under vigorous stirring, NH₄OH (260 mmol) was added to the mixture, which was stirred at the same conditions for further 2 hours. Finally, the obtained Fe₃O₄ nanoparticles were washed with water, centrifuged (3500 rpm for 15 min), washed with EtOH, and finally centrifuged (5000 rpm for 5 min). The obtained Fe₃O₄ nanoparticles were dried under vacuum.

2.2.3. Synthesis of SiO₂@WO₃ photocatalyst

A suspension of the synthesized SiO₂ particles (500 mg) in EtOH (24 mL) was prepared under sonication. In parallel, a mixture of WCl₆ (1.56 mmol) and EtOH (40 mL) was sonicated prior to its addition dropwise to the SiO₂ suspension under vigorous stirring at room temperature. After 2 hours, the suspension was submitted to a humidified airflow of 100 mL min⁻¹ for 20 h at room temperature and then centrifuged to obtain a precipitate which was washed several times with water and ethanol and centrifuged (3500 rpm for 15 minutes). The obtained microparticles were dried under vacuum overnight, prior to calcination (500 °C for 3 hours with a calcination ramp of 57 °C h⁻¹), giving rise to the SiO₂@WO₃ photocatalyst.

2.2.4. Synthesis of SiO₂@WO₃@Fe₃O₄ photocatalyst

 $SiO_2@WO_3@Fe_3O_4$ photocatalyst was synthesized using the previously synthesized Fe_3O_4 nanoparticles and $SiO_2@WO_3$ microparticles. Thus, an aqueous ammonium metatungstate (AMT) solution (1 mM, 6.5 mL) was added dropwise to $SiO_2@WO_3$ (650 mg) under vigorous stirring. After 45 minutes at room temperature, Fe_3O_4 nanoparticles (27.1 mg) were added, and the reaction was stirred for further 15 hours. Then, the suspension was centrifuged, and the obtained precipitate was washed with water (3000 rpm for 15 minutes) and with ethanol (3000 rpm for 15 minutes). The obtained $SiO_2@WO_3@Fe_3O_4$ photocatalyst was dried under vacuum.

2.2.5. Characterization

All the instrumentation employed is described in Section 2 of SI.

2.3. Photocatalytic activity

The photocatalytic activity of the synthesized SiO₂@WO₃ and SiO₂@WO₃@Fe₃O₄ photocatalysts was evaluated using MB as a model organic contaminant. An LZC-4V photoreactor from Luzchem Research Inc. was used to perform the photocatalytic degradation experiments, using 8 lamps of 8 W with λ_{em} centered at *ca.* 420 nm. Samples were placed in the center of the photoreactor where the light intensity was *ca.* 3.8×10^{-3} W cm⁻², measured with a radiometer (P-2110, Gigahertz-Optik with radiometric detector head RW-3705-5). MB degradation was determined by UV-Vis analysis using a Cary 60 UV-Vis spectro-photometer from Agilent Technologies.

Thus, photocatalytic degradations of MB were performed by adding 12 mg of SiO₂@WO₃ or SiO₂@WO₃@Fe₃O₄ to 12 mL of MB (6×10^{-5} M) aqueous solutions with and without H₂O₂ (4.4 mM). The reaction mixtures were adjusted to pH 7 using NaOH (1 M). Each assay was performed keeping the aqueous mixture under stirring in the dark for 30

Figure 1. TEM images of: (a) $SiO_2@WO_3$ photocatalyst and (b-c) $SiO_2@WO_3@Fe_3O_4$ photocatalyst. (d) FESEM image of $SiO_2@WO_3@Fe_3O_4$ photocatalyst. (e) HRTEM image of WO_3 and Fe_3O_4 lattices in $SiO_2@WO_3@Fe_3O_4$ photocatalyst. (f) STEM dark field image of $SiO_2@WO_3@Fe_3O_4$ photocatalyst and its elemental mapping of Si (g), W (h), and Fe (i) by EDS analysis.

minutes prior to irradiation, to reach the adsorption/desorption equilibrium. To monitor the progress of the photoreactions, aliquots of 500 μ L were taken at different times. Prior to the analysis of the samples, they were mixed with methanol (2 mL) and stirred for 15 minutes to recover the adsorbed MB from the photocatalyst surface, and then filtered with a CLARIFY-PTFE 13 mm syringe filter with 0.45 μ m porous. Finally, the MB degradation was determined by UV-Vis analysis.

The reusability of the SiO₂@WO₃@Fe₃O₄ photocatalyst was assessed in consecutive photodegradation of aqueous MB solutions (6×10^{-5} M) in the presence of H₂O₂. After each cycle, the reaction mixture was centrifuged, and the photocatalyst was washed several times with water and ethanol, centrifuged (3500 rpm for 15 minutes), and dried overnight under vacuum.

Finally, the activity of SiO₂@WO₃@Fe₃O₄ was tested on the photodegradation and mineralization of DCF. Thus, an aqueous DCF solution $(1.5 \times 10^{-4} \text{ M})$ was irradiated in the presence of SiO₂@WO₃@Fe₃O₄ (1 mg mL⁻¹) and H₂O₂ (1.1×10^2 M) under the same conditions as the above mentioned. The progress of the photoreactions was monitored by taking aliquots of 200 µL at different times. Prior to the analysis of the samples, they were mixed with 1.8 mL of an aqueous solution containing 4-nitrobenzoic acid (1×10^{-4} M). After filtering the samples with a CLARIFY-PTFE 13 mm syringe filter with 0.45 µm porous, samples were submitted to UPLC analysis. A C18 column (2.1 \times 50 mm, 1.7 μm particle size) was employed for the UPLC studies. The mobile phase was fixed at 0.5 mL min $^{-1}$ with an isocratic mixture of a 0.1 % aqueous formic acid solution (50 %) and acetonitrile (50 %). Aliquots of 5 μL were injected, and the detection wavelength was fixed at 277 nm. Additionally, the mineralization was monitored via total organic carbon using a Shimadzu TOC-L total organic carbon analyzer.

2.4. Electron Paramagnetic Resonance (EPR) tests

For detection of $^{\circ}$ OH, 1 mg mL⁻¹ aqueous suspensions of SiO₂@WO₃ or SiO₂@WO₃@Fe₃O₄ were prepared in the presence of DMPO (10 mM), with and without H₂O₂ (4.4 mM). In parallel, for the detection of O₂⁻⁻, suspensions of SiO₂@WO₃ or SiO₂@WO₃@Fe₃O₄ (1 mg mL⁻¹) in the presence of DMPO (10 mM) were prepared in EtOH:H₂O (4:1). Afterwards, the EPR spectra were recorded in a flat cell, in darkness, and after one-minute irradiation.

2.5. Photoluminescence emission measurements

For the photoluminescence emission studies, samples of $SiO_2@WO_3$, $SiO_2@WO_3@Fe_3O_4$, and Fe_3O_4 were placed in flat quartz 0.1 cm

Figure 2. (a) Magnetization curve of SiO₂@WO₃@Fe₃O₄ photocatalyst. Inset: results obtained for pure Fe₃O₄ nanoparticles. (b) DR spectra of SiO₂@WO₃ (blue) and SiO₂@WO₃@Fe₃O₄ (red) photocatalysts. Inset: results obtained for pure Fe₃O₄ nanoparticles. (c) XRD patterns of SiO₂@WO₃ (blue) and SiO₂@WO₃@Fe₃O₄ (red) photocatalysts. Inset: results obtained for pure Fe₃O₄ nanoparticles. (c) XRD patterns of SiO₂@WO₃ (blue) and SiO₂@WO₃@Fe₃O₄ (red) with references of SiO₂ (black), WO₃ (green), and Fe₃O₄ (olive). (d) Raman spectra of SiO₂@WO₃ (blue) and SiO₂@WO₃@Fe₃O₄ (red) photocatalysts. N₂ adsorption-desorption isotherms of (e) SiO₂@WO₃ and (f) SiO₂@WO₃@Fe₃O₄ photocatalysts.

cuvettes.

3. Results and discussion

3.1. Characterization of the novel photocatalyst

A scheme illustrating the synthesis of the photocatalysts can be found in SI, section S1. Two new photocatalysts were synthesized using the same homemade supporting silica substrate (SiO₂ microparticles with a diameter size of 598 ± 22 nm, see Figures S3a and S4a). TEM analysis reveals that the nanocrystal shell of WO₃ is homogeneously distributed over the surface of SiO₂ cores, resulting in SiO₂@WO₃ microparticles with a rough surface and increased diameter (673 \pm 31 nm, see Figure 1a and S4c). A WO₃ thin shell of *ca*. 37 nm was determined from the diameter difference between SiO₂ and SiO₂@WO₃. Furthermore, based on the diameters and estimated density of both SiO₂ and $SiO_2@WO_3$ particles, a 53 % (w/w) WO_3 in $SiO_2@WO_3$ was calculated (see more details in section S4 of SI), while an experimental value of 30 % of WO_3 (w/w) was found from ICP-OES analysis. The smaller value found from the ICP analysis clearly indicates that the WO_3 shell is formed by nanocrystals with small gaps.

The previously synthesized Fe₃O₄ nanoparticles (see Figure S1 and S3b), which showed a diameter size of *ca*. 12 ± 2 nm (Figure S4b), were used to decorate SiO₂@WO₃ microspheres in order to get SiO₂@-WO₃@Fe₃O₄ photocatalyst (see synthesis procedure in Figure S2 and TEM images in Figure 1b,c). This new material shows a particle diameter increased up to 680 ± 30 nm (Figure S4d), keeping a rough texture quite similar to the observed for SiO₂@WO₃. Moreover, this diameter value is indicative that a monolayer of magnetite nanocrystals would partially cover the SiO₂@WO₃ microspheres. The FESEM analysis also shows the rough texture of the surface of SiO₂@WO₃ and Fe₃O₄ (see Figure 1d).

Figure 3. High-resolution XPS spectra of Si2p (a), W4f (b), Fe2p_{3/2} (c), and O1s (d) in SiO₂@WO₃@Fe₃O₄ photocatalyst. Inset (c): complete Fe2p spectra.

Moreover, a high-resolution TEM (HRTEM) image of $SiO_2@WO_3@-Fe_3O_4$ (Figure 1e) shows the junction between WO₃ and Fe₃O₄. A more careful analysis of the interplanar crystal distances shows a value of 0.39 nm for WO₃ and 0.29 nm for Fe₃O₄, which correspond to the (002) and (220) crystal planes, respectively [36,37]. Furthermore, the SAED pattern of WO₃ crystals on SiO₂@WO₃@Fe₃O₄ photocatalyst was also analyzed to further investigate the crystallinity of the material (Figure S4). Thus, the polycrystal analysis (Figure S5a) shows the presence of (002), (202), (140), and (420) planes of monoclinic WO₃ (JCPDS No. 00-043-1035). Single crystal analysis shows the presence of two planes with d spacings of 0.37 nm and 0.36 nm, which correspond to the (002) and (200) planes of the monoclinic phase, respectively (Figure S5b) [38].

Moreover, the STEM-EDS elemental mapping displays a homogeneous distribution of WO₃ and Fe₃O₄ on the coating shell of SiO₂@-WO₃@Fe₃O₄ (Figure 1f-i). This result was confirmed by SEM-EDS analysis (see Figure S6). The STEM-EDS elemental analysis also revealed 41% of WO₃ and 8% of Fe₃O₄ (w/w) in SiO₂@WO₃@Fe₃O₄. Although the values obtained from STEM-EDS must be used with caution because they are only an estimation [39], this percentage of magnetite is compatible with the amount of Fe₃O₄ nanoparticles that would produce an increase in the diameter size of SiO₂@WO₃ of *ca*. 6 nm.

The magnetization saturation of Fe_3O_4 and $SiO_2@WO_3@Fe_3O_4$ was determined at 300 K for the evaluation of the magnetic response to an external field (see Figure 2a). Thus, Fe_3O_4 and $SiO_2@WO_3@Fe_3O_4$

presented values of 72.5 and 0.4 emu g⁻¹, respectively. Magnetization saturation of Fe₃O₄ nanoparticles agreed with the values described for magnetite nanocrystals of sizes ca. 12 nm [40]. Therefore, after adding SiO₂@WO₃, a substantial decrease in the magnetic properties of the samples was observed. This behavior can be mainly attributed to the increase in the mass caused by the addition of SiO₂@WO₃.

Diffuse reflectance spectra (DRS) were performed for both photocatalysts and for Fe_3O_4 nanoparticles (Figure 2b). The Fe_3O_4 incorporation to the WO₃ shell structure produces a slight red shift on the diffuse reflectance spectrum, improving the visible-light harvesting capability of the SiO₂@WO₃@Fe₃O₄ photocatalyst compared to SiO₂@WO₃, reaching *ca*. 700 nm. Furthermore, the band-gap energy for both composites was calculated through the Kubelka-Munk function and the Tauc plot method [41] and resulted in being lower for SiO₂@WO₃@Fe₃O₄ (2.77 eV) than for SiO₂@WO₃ (2.87 eV) (Figure S7). Those values are in concordance with the reported band gap for WO₃ [17,42].

SiO₂@WO₃ and SiO₂@WO₃@Fe₃O₄ XRD patterns (Figure 2c) showed broad peaks at $2\theta = 23.7^{\circ}$, 26.5° , 28.9° , 33.9° , 41.7° and 55.0° , which, as demonstrated previously from the SAED analysis, could be attributed to the monoclinic phase of WO₃ [43]. However, the small size of the WO₃ crystals clustered in the coating shell can lead to the broadly observed signals, which are coherent with the XRD pattern for the monoclinic WO₃ (JCPDS No. 00-043-1035). In fact, the WO₃ crystal size was averaged over *ca*. 6.5 nm through the Scherrer equation, where the diffraction peak at $2\theta = 23.6^{\circ}$ was used for the crystal size estimation.

Figure 4. (a) Degradation of an aqueous MB solution $(6 \times 10^{-5} \text{ M})$ under visible-light irradiation (8 lamps of λ_{em} *ca.* 420 nm) in the presence of 1 mg mL⁻¹ of the different photocatalysts with and without 4.4 mM of H₂O₂: SiO₂@WO₃ (blue), SiO₂@WO₃@Fe₃O₄ (red), SiO₂@WO₃ with H₂O₂ (navy) and SiO₂@WO₃@Fe₃O₄ with H₂O₂ (orange). (b) Degradation of MB aqueous solutions $(6 \times 10^{-5} \text{ M})$ reusing the SiO₂@WO₃@Fe₃O₄ photocatalyst (1 mg mL⁻¹) and in the presence of H₂O₂ (4.4 mM). (c) Photodegradation of an aqueous DCF solution $(1.5 \times 10^{-4} \text{ M})$ under visible-light irradiation (8 lamps of λ_{em} *ca.* 420 nm) in the presence of 1 mg mL⁻¹ of SiO₂@WO₃@Fe₃O₄ and 11 mM of H₂O₂.

The monoclinic phase of WO₃ is further confirmed in both photocatalysts by Raman spectroscopy (Figure 2d), which shows Raman active modes at 801 cm⁻¹, 710 cm⁻¹, 325 cm⁻¹, and 273 cm⁻¹ [44]. The signals found at 801 cm⁻¹ and 710 cm⁻¹ correspond to the W-O-W stretching modes, while 325 cm⁻¹ and 273 cm⁻¹ signals correspond to the W-O-W bending modes [45]. The signals corresponding to Fe₃O₄ on SiO₂@WO₃@Fe₃O₄ were not observed, nor in Raman spectroscopy or in XRD analysis, probably due to the low content of Fe₃O₄.

Specific surface area (SSA), as a relevant characteristic directly linked with the catalytic activity of heterogeneous materials, was also determined. N₂ adsorption-desorption isotherms (Figure 2e,f) showed a value of 15.2 m² g⁻¹ for SiO₂@WO₃, and of 9.4 m² g⁻¹ for SiO₂@WO₃@WO₃@Fe₃O₄. The decrease in SSA for SiO₂@WO₃@Fe₃O₄ could be due to the partial coverage of WO₃ nanocrystals (*ca.* 7 nm) by the higher Fe₃O₄ nanoparticles (*ca.* 12 nm).

The chemical composition of the surface of $SiO_2@WO_3@Fe_3O_4$ photocatalyst was studied by X-ray photoelectron spectroscopy (XPS). The XPS survey spectra show the presence of Fe2p, O1s, C1s, W4f, and Si2p, respectively (see Figure S8). The high-resolution XPS spectrum of Si2p (see Figure 3a) shows a peak at 103.3 eV, which agrees with the reported one for SiO₂ [46]. The high-resolution W4f spectrum shows peaks at 37.6 and 35.4 eV, which can be assigned to W4f_{5/2} and W4f_{7/2}, respectively (see Figure 3b). These peaks correspond to the VI oxidation state of tungsten in WO₃ [47]. Figure 3c shows that a low-resolution peak is achieved for Fe2p_{3/2} due to the low content of Fe₃O₄. Thus, the peaks at 712.1 and 710.2 eV could be attributed to the Fe2p_{3/2} of Fe³⁺ and Fe²⁺ species, respectively [48]. Figure 3d shows the high-resolution O1s spectrum with two peaks at 532.6 and 530.6 eV, corresponding to the oxygen present in SiO₂ and WO₃, respectively [46, 49]. The data of the chemical composition of the surface of SiO₂@WO₃ photocatalyst by X-ray photoelectron spectroscopy (XPS) agree with those of SiO₂@WO₃@Fe₃O₄ photocatalyst commented above (see Figure S9).

3.2. Photocatalytic activity of SiO₂@WO₃ and SiO₂@WO₃@Fe₃O₄

The photocatalytic activity of the synthesized $SiO_2@WO_3$ and $SiO_2@WO_3@Fe_3O_4$ photocatalysts was evaluated through the

Figure 5. EPR spectra of DMPO (10 mM) solutions irradiated with visible light in the presence of 1 mg mL⁻¹ of SiO₂@WO₃ and SiO₂@WO₃@Fe₃O₄ in water (a, b, respectively), in aqueous H₂O₂ (4.4 mM) (c, d, respectively), in H₂O:EtOH (1:4) (e, f, respectively).

degradation of MB as a model contaminant. Hence, when aqueous mixtures of MB (6×10^{-5} M) in the presence of SiO₂@WO₃ or SiO₂@WO₃@Fe₃O₄ (1 mg mL⁻¹) were irradiated under visible light (λ_{max} 420 nm), with and without H₂O₂ (4.4 M) at pH *ca.* 7, different MB degradation profiles were observed (see Figure 4a). A clear enhancement in the MB photodegradation was observed for both photocatalysts in the presence of H₂O₂. Even more, the presence of Fe₃O₄ on SiO₂@WO₃ (SiO₂@WO₃@Fe₃O₄) produced a positive increase in the degradation of MB, resulting in more than 90% degradation after 120 minutes of irradiation (pseudo-first order constant values were 0.018 min⁻¹ for SiO₂@WO₃@Fe₃O₄ and 0.010 min⁻¹ for SiO₂@WO₃, respectively, both in presence of 4.4 mM of H₂O₂).

Control experiments such as irradiation of MB solutions in the presence of Fe_3O_4 (0.06 mg mL⁻¹, which would be approximately the amount of magnetite in 1 mg mL⁻¹ of SiO₂@WO₃@Fe₃O₄) and H₂O₂ (4.4 mM), or dark solutions of MB in the presence of SiO₂@WO₃@Fe₃O₄ (1 mg mL⁻¹) and H₂O₂ (4.4 mM), did not produce any MB degradations

during 120 minutes of irradiation (see section S5 in the SI). The insignificant capability of the free nanoparticles of magnetite to produce MB oxidation in the presence of light could be attributed to the low light intensity used. In fact, other studies reported higher degradation of organic pollutants when irradiating similar free Fe_3O_4 nanoparticles in the presence of H_2O_2 or WO_3 nanomaterials with 10 times fold intensity of light [18,23,29].

The reusability of the SiO₂@WO₃@Fe₃O₄ was evaluated by performing four consecutive photocatalytic cycles (see Figure 4b). Results showed that there was not any remarkable decrease in its photocatalytic activity. These results clearly support the high expected stability of the WO₃ nanocrystals shell and also that the iron leaching from the magnetite is negligible, which was also evidenced using the 1,10-phenanthroline test, where ferroin (a complex of Fe²⁺ with phenanthroline) was not observed (see details in section S6 in SI). Thereby, there is no MB degradation occurring by Fenton and/or photo Fenton processes from Fe²⁺ leached in the aqueous media.

Figure 6. Photoluminescence (PL) emission spectra of Fe_3O_4 (black), $SiO_2@WO_3$ (blue), and $SiO_2@WO_3@Fe_3O_4$ (red) at an excitation wavelength of 366 nm. Inset: PL emission decay lifetime of $SiO_2@WO_3@Fe_3O_4$ at 455 nm (black) and its fitting (red).

With these results, it was decided to evaluate the potential of SiO₂@WO₃@Fe₃O₄ photocatalyst for wastewater remediation against the photodegradation of a contaminant of emerging concern like DCF. Thus, the combination of SiO₂@WO₃@Fe₃O₄ and H₂O₂ produced the photodegradation of 80 % of DCF (1.5×10^{-4} M) in 180 minutes of visible light irradiation, together with a 34% of decrease of the total organic carbon (Figure 4c). Control experiments showed that DCF is not degraded in the presence of light and H₂O₂ in the absence of the photocatalyst (results not shown).

3.3. Evidence of intermediates generated upon irradiation of the photocatalysts by EPR spectroscopy measurements

For the EPR experiments, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trap to detect the potential formation of hydroxyl radical and superoxide radical anion, upon irradiation of the photocatalysts, through the formation of DMPO-OH and DMPO- O_2^- spin adducts, respectively [50]. Thus, when aqueous suspensions of the two photocatalysts were irradiated with DMPO (Figure 5a-d), a four-line EPR signal with 1:2:2:1 intensity with hyperfine coupling constants of $a_N = 14.97$ G and $a_H = 14.77$ G was detected, which can be safely associated with the DMPO-OH spin adduct as a piece of evidence for the formation of 'OH [51,52]. Results from the control experiments are shown in Figure S12. It is noteworthy that the presence of H_2O_2 produces a notable DMPO-OH signal increment (see Figure 5a,b vs Figure 5c,d, respectively). Moreover, the intensity of the DMPO-OH signal was higher when using SiO₂@WO₃@Fe₃O₄, rather than with SiO₂@WO₃.

Additional EPR assays were performed in a mixture of H₂O:EtOH (1:4) as a solvent to increase the probability of detecting O₂⁻⁻, since EtOH acts as an efficient quencher of 'OH; thus, no formation of DMPO-OH was expected. Thereby, as it can be observed in Figure 5e,f, an EPR signal with hyperfine coupling constants of $a_N = 13.42$ G, $a_H^{\beta} = 10.70$ G, and $a_H^{\gamma} = 1.23$ G, attributable to the DMPO-O₂⁻⁻ spin adduct [53] was generated using SiO₂@WO₃@Fe₃O₄, and with less intensity also for SiO₂@WO₃. The results of the control experiments are shown in Figure S13. The high intensity of the signals detected for SiO₂@WO₃@Fe₃O₄, because previous EPR studies have reported the generation of O₂⁻⁻ from magnetite nanoparticles [23]. In fact, it is well known that reduced iron species are rapidly oxidized by O₂ at near-neutral pH, yielding Fe³⁺ and O₂⁻⁻ [54].

3.4. Photoluminescence emission properties of the photocatalysts

Photoluminescence (PL) emission spectra of $SiO_2@WO_3$ and $SiO_2@WO_3@Fe_3O_4$ photocatalysts were recorded at the excitation wavelength of 366 nm using Fe_3O_4 nanoparticles as reference. Thus, an emission maximum of *ca*. 440 nm was observed for the three samples (see Figure 6). Besides, the lifetime of the PL emission was 1.10 ns for both photocatalysts (SiO_2@WO_3 and SiO_2@WO_3@Fe_3O_4).

The PL observed for SiO₂@WO₃ photocatalyst is quite similar to the one registered for mesocrystals of WO₃ [55]. However, a higher intensity of PL emission was observed for SiO2@WO3@Fe3O4 compared to SiO₂@WO₃. Although it is widely accepted that the higher the PL intensity, the higher the e^{-}/h^{+} recombination and, therefore, the lower the photocatalytic activity, exceptions to this trend have already been reported for other kinds of semiconductors [56,57]. In fact, the participation of the surface, oxygen vacancies, etc, in the observed PL is still under controversy. Furthermore, an anomalous enhancement in photoluminescence emission has been reported for Fe₃O₄@SiO₂ core@shell materials [58]. In that case, the authors attributed that increase to the reduction of the non-radiative centers at the interfaces of the core and shell. This effect could be operating in our case. Thus, the lower PL intensity exhibited by SiO₂@WO₃ compared to that of SiO₂@WO₃@Fe₃O₄ could be attributed to a decrease of non-radiative processes when the Fe₃O₄ nanoparticles are added to the WO₃ surface. Therefore, the expected PL decrease attributable to a reduction of e^{-}/h^{+} recombination processes in SiO₂@WO₃@Fe₃O₄ could be masked by the mentioned effect.

3.5. Plausible mechanisms for the photooxidation of organic compounds by $SiO_2@WO_3$ and $SiO_2@WO_3@Fe_3O_4$

After a detailed characterization and evaluation of the performance of the photocatalysts, hydroxyl radical ought to be the reactive species responsible for MB and DCF oxidative photodegradation. Plausible mechanisms to explain the photocatalytic generation of this intermediate from $SiO_2@WO_3$ or $SiO_2@WO_3@Fe_3O_4$, with and without H_2O_2 , are shown in Figure 7.

First, as expected, in the absence of H₂O₂, SiO₂@WO₃ does not show relevant photoactivity due to the fast recombination of charge carriers (Figure 4a, blue trace). In fact, although the generation of 'OH is thermodynamically feasible from the holes of the VB of WO₃, the reduction potential of the electrons of the CB of WO₃ is, theoretically, insufficient to generate O_2 from O_2 [15]. In agreement with the observed photoactivity, signals attributable to 'OH were detected by EPR, while the signals corresponding to O_2 ⁻ showed very low intensity (Figure 5e). Nevertheless, the addition of H₂O₂ to the reaction media leads to a significant enhancement in the MB photodegradation rate (Figure 4a, navy trace) due to a parallel generation of 'OH from two different pathways. The first pathway involves the reaction of the photogenerated electrons in the CB of WO₃ with H_2O_2 (E_{red}^0 (H_2O_2/OH) = + 0.80 V vs NHE). This process also reduces the e^--h^+ pair recombination, enhancing the efficiency of the second pathway: the oxidation of H₂O in the holes of the VB of WO₃ [59]. This proposed mechanism (Figure 7a) is supported by the results obtained from the EPR experiments, where a more intense signal corresponding to DMPO-OH is detected when adding H₂O₂ (Figure 5c vs 5a).

Second, when SiO₂@WO₃@Fe₃O₄ was used as the photocatalyst in the absence of H₂O₂, the degradation of MB resulted in being only significant during the first few minutes of the irradiation (Figure 4a, red trace). In this case, photogenerated electrons in the CB of WO₃ would be transferred to the CB of magnetite to reduce Fe³⁺ into Fe²⁺. In fact, the redox potential of CB of magnetite (E_{CB} *ca.* 0.2 V vs NHE), that of the CB of WO₃ (E_{CB} 0.2-0.5 V vs NHE), and the E_{red}^0 (Fe³⁺/Fe²⁺) = + 0.77 V vs NHE) are very close (see Figure 7b) [15,60,61]. Thereby, the *e*⁻*h*⁺ pair recombination is initially prevented, thus 'OH can be generated from the holes of the VB of WO₃. However, the insignificant MB degradation after

Figure 7. Hydroxyl radical generation processes involved in the MB degradation produced from visible light excitation of $SiO_2@WO_3$ or $SiO_2@WO_3@Fe_3O_4$ photocatalysts (a and b, respectively) in the presence of H_2O_2 .

the first few minutes of irradiation indicates that the 'OH generation would stop when most of the Fe³⁺ of Fe₃O₄ nanoparticles was reduced to Fe²⁺. As a result, the recombination of the photogenerated electrons in CB of WO₃ with the holes of the VB would be again the main process. Although a photo-Fenton reaction between Fe³⁺ and H₂O to generate Fe²⁺ and 'OH would also be occurring in the magnetite particles, this process must be minor. In fact, control irradiations performed with Fe₃O₄ nanoparticles showed insignificant MB degradation.

Interestingly, the addition of H_2O_2 in the reaction media (Figure 4a, orange trace) using $SiO_2@WO_3@Fe_3O_4$ as photocatalyst produces an even higher MB photodegradation rate than the observed only using $SiO_2@WO_3@Fe_3O_4$ or $SiO_2@WO_3$ plus H_2O_2 . Hence, H_2O_2 and Fe_3O_4 must play important roles in the photocatalytic generation of 'OH. Thus, as discussed above, in the presence of only $SiO_2@WO_3@Fe_3O_4$, 'OH generation occurs initially due to the efficient decrease of e^-h^+ pair

recombination of WO₃ due to the reduction of Fe³⁺ to Fe²⁺ in the shell of magnetite. Nevertheless, the presence of H₂O₂ in the reaction medium boosts a Fenton reaction (Fe²⁺ + H₂O₂ \rightarrow Fe³⁺ + \cdot OH + $^-$ OH), which maintains the cycle Fe³⁺/Fe²⁺ active, allowing a continuous generation of \cdot OH from magnetite and from VB of WO₃ (see Figure 7b). The reduction of H₂O₂ by the electrons in the CB of WO₃ could also be taking place as an additional source of \cdot OH generation in SiO₂@WO₃@Fe₃O₄. However, the fact that MB degradation in the presence of H₂O₂ was faster using SiO₂@WO₃@Fe₃O₄ than using SiO₂@WO₃ must be due to a more efficient electron transfer process from the photoexcited CB of WO₃ to Fe₃O₄ nanoparticles than to H₂O₂. In fact, as can be observed in Figure 7a,b, if the two common \cdot OH generation processes were also the major pathways in SiO₂@WO₃@Fe₃O₄, MB photodegradation reaction rate would be similar for both photocatalysts. Thereby, the combined presence of light and H₂O₂ induces a synergistic effect between Fe₃O₄

and WO_3 that boosts its photocatalytic activity. In this context, same OH generation processes ought to be occurring for the DCF photodegradation and mineralization.

4. Conclusions

New SiO₂@WO₃@Fe₃O₄ microparticles were carefully designed and synthesized to obtain a supported WO₃ photocatalyst with improved oxidant properties. Thereby, a homogeneous WO₃ shell formed by WO₃ nanocrystals lower than 7 nm was obtained over SiO₂ cores, and a subsequent fine and homogeneous decoration with Fe₃O₄ nanoparticles linked to the surface of WO₃ photocatalyst gave rise to the final robust and recyclable SiO2@WO3@Fe3O4 photocatalyst. Thereby, after an extensive characterization, the results of the photocatalytic activity of SiO₂@WO₃@Fe₃O₄ and SiO₂@WO₃ (synthesized as a control) using methylene blue (MB) as a model contaminant in the presence/absence of hydrogen peroxide, have evidenced that hydroxyl radical is the intermediate responsible for MB photooxidation. Moreover, all the pathways involved in the generation of this oxidant species from the SiO₂@- $WO_3@Fe_3O_4$ photocatalyst have been evaluated. Electron paramagnetic resonance (EPR) experiments further support the proposed mechanism. It should be highlighted that the presence of light and H₂O₂ induces a synergistic effect between Fe₃O₄ and WO₃ that boosts its photocatalytic activity. In fact, this combination has been demonstrated to be effective in the degradation and mineralization of the well-known CEC diclofenac. In view of the results achieved and especially considering the inexpensiveness of silica derivatives as supporting substrates for WO3based photocatalysts, we believe that this study could be used as the starting point for the development of semiconductor-based photocatalysts supported on a different type of silica derivatives.

CRediT authorship contribution statement

Ander Diego-Lopez: Investigation, Writing – original draft. Oscar Cabezuelo: Investigation. Alejandro Vidal-Moya: Methodology, Validation. M. Luisa Marin: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing – review & editing. Francisco Bosca: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing – review & editing.

Declaration of Competing Interest

There are no conflicts of interest to declare.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to acknowledge the Spanish Ministry of Science, Innovation, and Universities (PID2019-110441RB-C33 financed by MCIN/AEI/10.13039/501100011033 and TED2021-131952B-I00 financed by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR). A. Diego-Lopez and O. Cabezuelo are indebted to the Universitat Politècnica de València for the Predoctoral FPI fellowship (FPI-UPV/Subprograma 1). The authors would like to acknowledge the Servei de Microscopia Electrònica from the Universitat Politècnica de València (UPV) for the support on the composite characterization and sample preparation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.apmt.2023.101879.

References

- S. Lavrnić, M. Zapater-Pereyra, M.L. Mancini, Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture, Water Air Soil Pollut. 228 (2017) 251, https://doi.org/10.1007/s11270-017-3425-2.
- [2] M. Campinas, R.M.C. Viegas, C.M.M. Almeida, A. Martins, C. Silva, E. Mesquita, M. R. Coelho, S. Silva, V.V. Cardoso, M.J. Benoliel, M.J. Rosa, Powdered activated carbon full-scale addition to the activated sludge reactor of a municipal wastewater treatment plant: Pharmaceutical compounds control and overall impact on the process, J Water Process Eng 49 (2022), 102975, https://doi.org/10.1016/j. iwpe.2022.102975.
- [3] L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Diclofenac and its transformation products: Environmental occurrence and toxicity - A review, Environ Int 96 (2016) 127–138, https://doi.org/10.1016/j.envint.2016.09.014.
- [4] L.A. Pérez-Estrada, S. Malato, W. Gernjak, A. Agüera, E.M. Thurman, I. Ferrer, A. R. Fernández-Alba, Photo-Fenton Degradation of Diclofenac: Identification of Main Intermediates and Degradation Pathway, Environ Sci Technol 39 (2005) 8300–8306. https://doi.org/10.1021/es050794n.
- [5] J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac, Aquatic Toxicol 68 (2004) 141–150, https://doi.org/10.1016/j.aquatox.2004.03.014.
- [6] M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D. Mohan, Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods, Chem Rev 119 (2019) 3510–3673, https://doi.org/10.1021/ acs.chemrev.8b00299.
- H. Gerischer, The impact of semiconductors on the concepts of electrochemistry, Electrochim Acta 35 (1990) 1677–1699, https://doi.org/10.1016/0013-4686(90) 87067-C.
- [8] S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot-plant scale: an overview, Appl Catal B 37 (2002) 1–15, https://doi.org/ 10.1016/S0926-3373(01)00315-0.
- D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications - a review, J Chem Technol Biotechnol 77 (2002) 102–116, https://doi.org/10.1002/jctb.532.
- [10] D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO₂-based photocatalysts: A review, J Clean Prod 268 (2020), 121725, https://doi.org/10.1016/j.jclepro.2020.121725.
- [11] A. Khanna, V.K. Shetty, Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO₂ core-shell nanoparticles: A comparison with UV photocatalysis, Sol Energy 99 (2014) 67–76, https://doi.org/ 10.1016/j.solener.2013.10.032.
- [12] E. Coy, K. Siuzdak, I. Grądzka-Kurzaj, S. Sayegh, M. Weber, M. Ziółek, M. Bechelany, I. Iatsunskyi, Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: Enhancing carrier transfer mechanism, Appl Mater Today 24 (2021), 101095, https://doi.org/ 10.1016/j.apmt.2021.101095.
- [13] B. Ahmed, S. Kumar, A.K. Ojha, P. Donfack, A. Materny, Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material, Spectrochim Acta A Mol Biomol Spectrosc 175 (2017) 250–261, https:// doi.org/10.1016/j.saa.2016.11.044.
- [14] W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, Characterizations of Nb-doped WO₃ nanomaterials and their enhanced photocatalytic performance, RSC Adv 4 (2014) 36064, https://doi.org/10.1039/C4RA04080E.
- [15] J.C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, J.L. Guzmán-Mar, A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications, Chem Eng J Adv 5 (2021), 100070, https://doi. org/10.1016/j.ceja.2020.100070.
- [16] M. Bahmani, K. Dashtian, D. Mowla, F. Esmaeilzadeh, M. Ghaedi, Robust charge carrier by Fe3O4 in Fe3O4/WO3 core-shell photocatalyst loaded on UiO-66(Ti) for urea photo-oxidation, Chemosphere 267 (2021), 129206, https://doi.org/ 10.1016/j.chemosphere.2020.129206.
- [17] G.R. Bamwenda, K. Sayama, H. Arakawa, The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO₃–Fe²⁺–Fe³ ⁺ aqueous suspension, J Photochem Photobiol A Chem 122 (1999) 175–183, https://doi.org/10.1016/S1010-6030(99)00026-X.
- [18] N.D. Banić, B.F. Abramović, J.B. Krstić, D.V. Šojić Merkulov, N.L. Finčur, M. N. Mitrić, Novel WO₃/Fe₃O₄ magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation, J Ind Eng Chem 70 (2019) 264–275, https://doi.org/10.1016/j.jiec.2018.10.025.
- [19] V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, A.M. Asiri, P. Singh, An overview on WO3 based photocatalyst for environmental remediation, J Environ Chem Eng 9 (2021), 105018, https://doi.org/10.1016/j. iecc. 2020.105018.
- [20] Z. Feng, Y. Zhu, Q. Zhou, Y. Wu, T. Wu, Magnetic WO3/Fe3O4 as catalyst for deep oxidative desulfurization of model oil, Mater Sci Eng B 240 (2019) 85–91, https:// doi.org/10.1016/j.mseb.2019.01.009.
- [21] A. Gandon, C. Nguyen, S. Kaliaguine, T. Do, Synthesis of magnetic core@dual shell <scp>Fe₃O₄ </scp>@ <scp>SiO₂ </scp>@ <scp>WO₃ </scp>nanocatalysts for olefin double bond oxidative cleavage, Can J Chem Eng 99 (2021) 2003–2013, https://doi.org/10.1002/cjce.23931.
- [22] H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Spray dried TiO₂/WO₃ heterostructure for photocatalytic applications with residual activity in the dark, Appl Catal B 226 (2018) 311–323, https://doi.org/10.1016/j.apcatb.2017.12.049.
- [23] J. Liao, Y. Xu, Y. Zhao, C.-C. Wang, C. Ge, Ag and Fe $_3$ O₄ Comodified WO_{3-x} Nanocomposites for Catalytic Photothermal Degradation of Pharmaceuticals and

A. Diego-Lopez et al.

Personal Care Products, ACS Appl Nano Mater. 4 (2021) 1898–1905, https://doi. org/10.1021/acsanm.0c03261.

- [24] A. Memar, C.M. Phan, M.O. Tade, Photocatalytic activity of WO₃/Fe₂O₃ nanocomposite photoanode, Int J Hydrogen Energy 40 (2015) 8642–8649, https:// doi.org/10.1016/j.ijhydene.2015.05.016.
- [25] N.T.T. Nguyen, A.Q.K. Nguyen, M.S. Kim, C. Lee, J. Kim, Effect of Fe³⁺ as an electron-transfer mediator on WO₃-induced activation of peroxymonosulfate under visible light, Chem Eng J 411 (2021), 128529, https://doi.org/10.1016/j. cej.2021.128529.
- [26] H. Quan, Y. Gao, W. Wang, Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement, Inorg Chem Front 7 (2020) 817–838, https://doi.org/ 10.1039/C9QI01516G.
- [27] P. Shandilya, S. Sambyal, R. Sharma, P. Mandyal, B. Fang, Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO₃ based photocatalysts, J Hazard Mater 428 (2022), 128218, https://doi.org/ 10.1016/j.jhazmat.2022.128218.
- [28] K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Mesoporous WO₃ photocatalyst for the partial oxidation of methane to methanol using electron scavengers, Appl Catal B 163 (2015) 150–155, https://doi.org/10.1016/j.apcatb.2014.07.055.
- [29] G. Xi, B. Yue, J. Cao, J. Ye, Fe₃0₄/WO₃ Hierarchical Core-Shell Structure: High-Performance and Recyclable Visible-Light Photocatalysis, Chem Eur J 17 (2011) 5145–5154, https://doi.org/10.1002/chem.201002229.
- [30] M. Yoon, Y. Oh, S. Hong, J.S. Lee, R. Boppella, S.H. Kim, F. Marques Mota, S. O. Kim, D.H. Kim, Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO₃ nanohybrids mediated by photo-Fenton reaction and H2O2, Appl Catal B 206 (2017) 263–270, https://doi.org/10.1016/j. apcatb.2017.01.038.
- [31] X. Wang, M. Sayed, O. Ruzimuradov, J. Zhang, Y. Fan, X. Li, X. Bai, J. Low, A review of step-scheme photocatalysts, Appl Mater Today 29 (2022), 101609, https://doi.org/10.1016/j.apmt.2022.101609.
- [32] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl Catal B 154–155 (2014) 102–109, https://doi.org/10.1016/j. apcatb.2014.02.006.
- [33] L.K.-S. Ng, E.J.-C. Tan, T.W. Goh, X. Zhao, Z. Chen, T.C. Sum, H. Sen Soo, Mesoporous SiO₂/BiVO₄/CuO nanospheres for Z-scheme, visible light aerobic C–N coupling and dehydrogenation, Appl Mater Today 15 (2019) 192–202, https://doi. org/10.1016/j.apmt.2019.01.010.
- [34] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci 26 (1968) 62–69, https://doi.org/ 10.1016/0021-9797(68)90272-5.
- [35] K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Mater Sci Eng B 177 (2012) 421–427, https://doi.org/10.1016/j.mseb.2012.01.003.
- [36] S. Asuha, B. Suyala, X. Siqintana, S. Zhao, Direct synthesis of Fe₃O₄ nanopowder by thermal decomposition of Fe-urea complex and its properties, J Alloys Compd 509 (2011) 2870–2873, https://doi.org/10.1016/j.jallcom.2010.11.145.
 [37] J. Ram, R.G. Singh, R. Gupta, V. Kumar, F. Singh, R. Kumar, Effect of Annealing on
- [37] J. Ram, R.G. Singh, R. Gupta, V. Kumar, F. Singh, R. Kumar, Effect of Annealing on the Surface Morphology, Optical and and Structural Properties of Nanodimensional Tungsten Oxide Prepared by Coprecipitation Technique, J Electron Mater 48 (2019) 1174–1183, https://doi.org/10.1007/s11664-018-06846-4.
- [38] J. Wang, Z. Chen, G. Zhai, Y. Men, Boosting photocatalytic activity of WO₃ nanorods with tailored surface oxygen vacancies for selective alcohol oxidations, Appl Surf Sci 462 (2018) 760–771, https://doi.org/10.1016/j.apsusc.2018.08.181.
- [39] N.R. Lugg, G. Kothleitner, N. Shibata, Y. Ikuhara, On the quantitativeness of EDS STEM, Ultramicroscopy 151 (2015) 150–159, https://doi.org/10.1016/j. ultramic.2014.11.029.
- [40] A. Fallah Shojaei, A. Shams-Nateri, M. Ghomashpasand, Comparative study of photocatalytic activities of magnetically separable WO₃/TiO₂/Fe₃O₄ nanocomposites and TiO₂, WO₃/TiO₂ and TiO₂/Fe₃O₄ under visible light irradiation, Superlattices Microstruct 88 (2015) 211–224, https://doi.org/ 10.1016/j.spmi.2015.09.014.
- [41] J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO₂ doped with Pt, Appl Catal B 211 (2017) 337–348, https://doi.org/10.1016/j.apcatb.2017.04.029.
- [42] F. Wang, C. DiValentin, G. Pacchioni, Rational Band Gap Engineering of WO₃ Photocatalyst for Visible light Water Splitting, ChemCatChem 4 (2012) 476–478, https://doi.org/10.1002/cctc.201100446.

- [43] C. Chacón, M. Rodríguez-Pérez, G. Oskam, G. Rodríguez-Gattorno, Synthesis and characterization of WO₃ polymorphs: monoclinic, orthorhombic and hexagonal structures, J Mater Sci Mater Electron 26 (2015) 5526–5531, https://doi.org/ 10.1007/s10854-014-2053-5.
- [44] J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, O. Zaca-Moran, Characterization of WO₃ Thin Films Grown on Silicon by HFMOD, Adv Condens Matter Phys 2013 (2013) 1–9, https://doi.org/10.1155/2013/591787.
- [45] K. Christou, D. Louloudakis, D. Vernardou, N. Katsarakis, E. Koudoumas, One-pot synthesis of WO₃ structures at 95°C using HCl, J Solgel Sci Technol 73 (2015) 520–526, https://doi.org/10.1007/s10971-014-3459-5.
- [46] F. Rueda, J. Mendialdua, A. Rodriguez, Y.Barbaux R.Casanova, L. Gengembre, L. Jalowiecki, Characterization of Venezuelan laterites by X-ray photoelectron spectroscopy, J Electron Spectros Relat Phenomena 82 (1996) 135–143, https:// doi.org/10.1016/S0368-2048(96)03035-6.
- [47] A. Katrib, V. Logie, N. Saurel, P. Wehrer, L. Hilaire, G. Maire, Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides, Surf Sci 377–379 (1997) 754–758, https://doi.org/10.1016/S0039-6028(96) 01488-4.
- [48] Q. Ai, Z. Yuan, R. Huang, C. Yang, G. Jiang, J. Xiong, Z. Huang, S. Yuan, One-pot co-precipitation synthesis of Fe₃O₄ nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries, J Mater Sci 54 (2019) 4212–4224, https://doi.org/10.1007/s10853-018-3141-3.
- [49] C. Cantalini, M.Z. Atashbar, Y. Li, M.K. Ghantasala, S. Santucci, W. Wlodarski, M. Passacantando, Characterization of sol-gel prepared WO₃ thin films as a gas sensor, J Vac Sci Technol A: Vacuum, Surfaces, and Films 17 (1999) 1873–1879, https://doi.org/10.1116/1.581698.
- [50] V. Brezová, D. Dvoranová, A. Staško, Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy, Res Chem Intermed 33 (2007) 251–268, https://doi.org/10.1163/156856707779238630.
- [51] G.R. Buettner, Spin Trapping: ESR parameters of spin adducts 1474 1528V, Free Radic Biol Med 3 (1987) 259–303, https://doi.org/10.1016/S0891-5849(87) 80033-3.
- [52] J. Soria, M.J. López-Muñoz, V. Augugliaro, J.C. Conesa, Electron spin resonance study of radicals formed during photo-oxidation of phenol on TiO₂, Colloids Surf A Physicochem Eng Asp 78 (1993) 73–83, https://doi.org/10.1016/0927-7757(93) 80312-3.
- [53] A. Bosnjakovic, S. Schlick, Spin Trapping by 5,5-Dimethylpyrroline- N -oxide in Fenton Media in the Presence of Nafion Perfluorinated Membranes: Limitations and Potential, J Phys Chem B 110 (2006) 10720–10728, https://doi.org/10.1021/ jp061042y.
- [54] L. Emmenegger, D.W. King, L. Sigg, B. Sulzberger, Oxidation Kinetics of Fe(II) in a Eutrophic Swiss Lake, Environ Sci Technol 32 (1998) 2990–2996, https://doi.org/ 10.1021/es980207g.
- [55] D. Wang, J. Sun, X. Cao, Y. Zhu, Q. Wang, G. Wang, Y. Han, G. Lu, G. Pang, S. Feng, High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies, J Mater Chem A Mater 1 (2013) 8653, https://doi.org/10.1039/c3ta11506b.
- [56] J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, The preparation and characterization of La doped TiO₂ nanoparticles and their photocatalytic activity, J Solid State Chem 177 (2004) 3375–3382, https://doi.org/10.1016/j. jssc.2004.05.064.
- [57] D.S. Bohle, C.J. Spina, Cationic and Anionic Surface Binding Sites on Nanocrystalline Zinc Oxide: Surface Influence on Photoluminescence and Photocatalysis, J Am Chem Soc 131 (2009) 4397–4404, https://doi.org/10.1021/ ja808663b.
- [58] S.K. Jana, S. Majumder, B. Satpati, S.K. Mishra, R.K. Srivastava, S. Banerjee, Enhancement of photoluminescence emission and anomalous photoconductivity properties of Fe₃O₄ @SiO₂ core-shell microspheres, RSC Adv 5 (2015) 37729–37736, https://doi.org/10.1039/CSRA03686K.
- [59] D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D. M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: inorganic radicals, Bioinorg React Mech. 9 (2013), https://doi.org/10.1515/irm-2013-0005.
- [60] U. Kurien, Z. Hu, H. Lee, A.P. Dastoor, P.A. Ariya, Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticles, RSC Adv 7 (2017) 45010–45021, https://doi.org/10.1039/C7RA07401H.
- [61] K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Photocatalytic decomposition of water into H₂ and O₂ by a two-step photoexcitation reaction using a WO₃ suspension catalyst and an $\text{Fe}^{3+}/\text{Fe}^{2+}$ redox system, Chem Phys Lett 277 (1997) 387–391, https://doi.org/10.1016/S0009-2614(97)00903-2.