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A B S T R A C T

In this paper, we present a comprehensive probabilistic analysis of the deflection of a static cantilever beam
based on Euler–Bernoulli’s theory. For the sake of generality in our stochastic study, we assume that all model
parameters (Young’s modulus and the beam moment of inertia) are random variables with arbitrary probability
densities, while the loads applied on the beam are described via a delta-correlated process. The probabilistic
study is based on the calculation of the first probability density function of the solution and the probability
density of other key quantities of interest, such as the shear force, and the bending moment, which are treated
as random variables too. To conduct our study, we will first calculate the first moments of the solution, which
is a stochastic process, and we then will take advantage of the Principle of Maximum Entropy. Furthermore,
we will present an algorithm, based on Monte Carlo simulations, that allows us to simulate our analytical
development computationally. The theoretical findings will be illustrated with numerical examples where
different realistic probability distributions are assumed for each model random parameter.
. Introduction

Beams are considered one of the most important structural elements
n civil engineering. They are key elements to support the floor of a
uilding, as structural components of bridges, or to build balconies,
ust to cite a few. If we apply loads to these above-mentioned beams,
or example, the own weight of building materials or furniture, the
low of cars on a bridge, or people on the balcony, we have to ensure
hat the structure can support these loads so as not to collapse. To
roperly design a beam, it is necessary to know some key engineering
haracteristics, such as the static deflection, the bending moment, or
he shear force. To mathematically describe these characteristics, as a
irst simplified approach, we can use Euler–Bernoulli’s beam theory,
lso called shear rigid-beam or classical beam theory, [1]. Euler–
ernoulli’s beam model is a simplification of the theory of elasticity
hat allows us to model the deflection of a static straight-axis beam as
function of the applied load, provided it undergoes small deflections.
he deflection of a beam using Euler–Bernoulli’s beam model has been
idely studied from a deterministic point of view [2–4]. However, it

s more realistic to approach the corresponding study from a stochastic
tandpoint since uncertainties are often present due to, for example, the
eterogeneity of the beam materials or the lack of knowledge of the
hysical phenomenon because of its own inherent complexity. More
ccurately, the heterogeneity of the beam materials makes it more
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realistic to assume that both the values of the beam’s moment of inertia
and Young’s modulus are random variables rather than deterministic
constants. In addition, the loads applied on a beam may vary randomly
at each of its spatial points due to environmental factors (such as the
wind pressure or the snow load on the ground) or to the use for which
it has been built (such as the flow of people on balconies, or vehicles
on bridges), for instance. This latter motivates modeling the load on
a beam by a spatial stochastic process rather than via a deterministic
function. These reasons have motivated numerous probability-based
methods over the last few decades to better design and analyze civil
engineering structures. For instance, in [5], it is obtained the mean
and covariance of the deflection of a simply supported beam with
stochastic bending flexibility, assuming that the load is deterministic.
In [6], authors assume that elastic modulus is a random variable, then
the stochastic finite element method is applied to calculate the mean,
standard deviation, and coefficient of displacements. In [7], the authors
combine polynomial chaos with Neumann expansion method to obtain
closed-form expressions for the first two response moments and, then
they apply the results to a cantilever beam, where the bending rigidity
of the beam is assumed to be a stationary Gaussian random field.

In this paper, we perform a full probabilistic study of the deflection
of a static cantilever beam using the Euler–Bernoulli’s model with main
novelty that all its parameters (Young’s modulus and the beam moment
of inertia) are treated as random variables and that the load applied
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on the beam is assumed to be described by a delta-correlated process.
We will calculate the solution’s first probability density function (1-
PDF) via the Principle of Maximum Entropy (PME). To achieve this
goal, we first calculate the first statistical moments of the solution.
To complete the study, we also determine the PDF of the shear force,
and the bending moment, which are treated as random variables. We
also introduce an algorithm, based on Monte Carlo method, to carry
out simulations from our theoretical findings. It is important to point
out that the calculation of the first moments of the solution is based
on the so-called generalized functions. This technique is introduced
in [8], where authors elegantly analyze other types of beams, differ-
ent from a cantilever, assuming partial randomization of the models
under study. Particularly, they assume the flexural rigidity parameter
is deterministic. In the present paper, apart from studying another type
of beam, namely the cantilever, dealing with the full randomization of
the corresponding Euler–Bernoulli’s model, we also obtain the 1-PDF
of the solution, which is the most important information associated
with a stochastic process since from the 1-PDF one can determine
any one-dimensional statistical moment as well as the probability that
the deflection varies on a specific interval of interest. This is key
information to, for example, analyze and quantify the main risks that
may affect civil structures.

The paper is organized as follows. Section 2 introduces some de-
terministic and stochastic preliminaries required to conduct the prob-
abilistic study of the deflection of a cantilever beam subject to loads
spanned according to a delta-correlated process with random pulse
intensities (representing the loads) and assuming that the model pa-
rameters, namely, the material Young’s modulus of elasticity and the
beam moment of inertia are random variables. In Section 3, we carry
out the analysis of the stochastic model by first computing, under very
general conditions, the mean and variance of the deflection. With the
goal of approximating later its 1-PDF taking advantage of the PME
method. Apart from the deflection, we also calculate approximations of
mean, the variance, and the PDF of other relevant physical quantities
associated to the beam as the bending moment and the shear force. In
Section 4, we present an algorithm, based on Monte Carlo simulations,
that allows us to simulate all the abovementioned physical quantities
effectively. The theoretical results obtained in Section 3 are compared
with the ones obtained via simulations using the algorithm presented
in Section 4. Finally, conclusions are drawn in Section 6.

2. Problem setting and preliminaries

For the sake of completeness, this section is addressed to introduce
the model equations and some technical deterministic and stochastic
results that will be required throughout the paper.

2.1. Equations governing the problem and physical interpretation

It is well-known that the following linear fourth-order differential
equation governs the static deflection of a beam of length 𝑙 [9, Chapter
12],

d4𝑌 (𝑥)
d𝑥4

= 1
𝐸𝐼

𝑄(𝑥), 0 < 𝑥 < 𝑙, (1)

where 𝑌 (𝑥) represents the deflection curve, 𝐸 is the material’s Young’s
modulus of elasticity, 𝐼 is the beam moment of inertia about the
neutral axis, and the product 𝐸𝐼 is known as the flexural stiffness. 𝑄(𝑥)
represents the distribution of the downward force acting vertically on
the beam at each spatial point 𝑥 ∈ (0, 𝑙).

The above differential equation describes the beam deflection for
each load case and support configuration, such as embedded at both
ends, embedded and supported, with a free end, etc. In our setting, we
will consider a cantilever beam, i.e., a beam embedded on the left side
 f

2

Fig. 1. Graphical representation of model (1), where the distribution of the random
concentrated loads, 𝑃𝑖, on the spatial points 𝑥𝑖 of the beam is described by the stochastic
rocess given in (3).

𝑥 = 0) and free on the right side (𝑥 = 𝑙). The boundary conditions
orresponding to this case are then given by

𝑌 (0) = 0, (null deflection in the embedment),
𝑌 ′(0) = 0, (null slope in the embedment),
𝑌 ′′(𝑙) = 0, (null moment in the free end),
𝑌 ′′′(𝑙) = 0, (null shear in the free end).

(2)

Based on the reasons explained in Section 1, we will consider that
he distribution of the load supported on the beam, 𝑄(𝑥), is described
y a stochastic process. Specifically, we will assume that 𝑄(𝑥) is de-
ermined by concentrated loads, 𝑃𝑖, acting vertically on the beam and
andomly spanned according to the following expression,

(𝑥) =
𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅−1(𝑥 − 𝑥𝑖), (3)

here 𝑃𝑖 are assumed to be independent and identically distributed
i.i.d.) random variables, representing concentrated loads acting at the
bscissas 𝑥𝑖 ∈ (0, 𝑙). 𝑁(𝑙) denotes a Poisson counting process with rate
> 0. This parameter can be interpreted as the expected number of

andom loads, 𝑃𝑖, that randomly apply per unit of space on the beam.
ollowing the notation used in [10], we use the term 𝑅−1(𝑥 − 𝑥𝑖) ∶=
(𝑥 − 𝑥𝑖) to indicate that 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑛, represent concentrated loads
t the spatial points 𝑥𝑖. Here, 𝛿(⋅) denotes the Dirac delta function.
urthermore, hereinafter we will assume that 𝐸 and 𝐼 are independent
andom variables, so notice that they do not depend on 𝑥. Fig. 1 shows
graphical representation of the model.

Notice that elements having different natures appear in the model
ormulation. Indeed, while 𝑅−1(⋅), 𝑙 and 𝜆 are deterministic, 𝑁(𝑙), 𝑃𝑖, 𝐸
nd 𝐼 are stochastic. For the sake of completeness, in the following
ubsections, we will describe some relevant ingredients that will be
equired throughout the paper.

.2. Deterministic ingredients

As it has been used in the previous subsection, we will use the
ost well-known generalized function in 𝑄(𝑥), i.e., the Dirac delta

unction. We will use this function to represent a concentrated load at
n arbitrary spatial point, say 𝑥0. Defining

−1(𝑥 − 𝑥0) ∶= 𝛿(𝑥 − 𝑥0), (4)

y integration, we obtain 𝑅0(𝑥−𝑥0), which is the unit step or Heaviside
unction. If we continue integrating up to order 𝑛 ∈ N, we arrive at the
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following piecewise polynomial function

𝑅𝑛(𝑥 − 𝑥0) =

{

0, if 𝑥 < 𝑥0,
1
𝑛! (𝑥 − 𝑥0)𝑛, if 𝑥 ≥ 𝑥0,

(5)

that, for 𝑛 = 1, 2, 3, corresponds to the linear, quadratic, and cubic
ramp functions, respectively. Notice that, (5) also works for 𝑛 = 0. As it
shall be seen later, these functions 𝑅0(⋅), 𝑅1(⋅), 𝑅2(⋅) and 𝑅3(⋅) will be
extensively used in our subsequent calculations.

2.3. Stochastic ingredients

The stochastic process given by (3) is known as the delta-correlated
process [11] (also termed Poisson white noise process [12, p. 186]).
The process 𝑄(𝑥) can be regarded as the formal derivative of its
corresponding associated compound Poisson process, 𝐶(𝑥) =

∑𝑁(𝑙)
𝑖=1 𝑃𝑖,

0 < 𝑥 < 𝑙, i.e. d𝐶(𝑥)
d𝑥 = 𝑄(𝑥). As we have seen before, this process

consists of a Poisson counting process, 𝑁(𝑙), and random intensities,
𝑃𝑖, acting at the spatial points on the beam, 𝑥𝑖, 𝑖 = 1,… , 𝑁(𝑙) (this
action is mathematically represented by 𝑃𝑖𝑅−1(𝑥 − 𝑥𝑖)). The loads 𝑃𝑖
are distributed along the beam according to a Poisson distribution. This
process is widely used to model concentrated loads simulating, for ex-
ample, cars traveling on a bridge, which has motivated its consideration
in our analysis.

We now introduce several statistical properties that will play a key
role later for a class of random processes that include, as a particular
case, the foregoing random processes 𝑄(𝑥) and

𝐺𝑗 (𝑥) ∶=
𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅𝑗 (𝑥 − 𝑥𝑖), 𝑗 = 0,… , 3, (6)

are filtered Poisson processes [13], which depend on the loads, 𝑃𝑖,
which are randomly spanned on the beam according to a Poisson
counting process 𝑁(𝑙).

closely related to it that will be introduced later (see (6)). Let

𝑍(𝑥) =
𝑁(𝑙)
∑

𝑖=1
𝑈𝑖𝑣(𝑥, 𝑥𝑖) (7)

be a stochastic process constructed by superposition of pulses at the
spatial points 𝑥𝑖 whose shape is defined by a deterministic function
𝑣 = 𝑣(𝑥, 𝑥𝑖) and having pulse intensities given by a family of indepen-
dent and identically distributed (i.i.d.) random variables 𝑈𝑖. As shown
in [13], the probabilistic structure of 𝑍 = 𝑍(𝑥) can be revealed via the
characteristic functional. Indeed, it can be shown that the cumulant
function of order 𝑚 of 𝑍 is given by

𝐶 (𝑚)
𝑍 (𝑥1,… , 𝑥𝑚) = 𝜆E

[

𝑈𝑚]

∫

min(𝑥1 ,…,𝑥𝑚)

0
𝑣(𝜌, 𝑥1)⋯ 𝑣(𝜌, 𝑥𝑚)𝑑𝜌. (8)

Note that we here have used 𝑥1,… , 𝑥𝑚 to denote the variables of
function 𝐶𝑍 for the sake of consistency with the independent variable
𝑥 of 𝑍, although any other letter could be used too. As a consequence
of the properties of cumulants [13], the mean and the covariance can
be obtained as particular cases of 𝐶 (𝑚)

𝑍(𝑥)(𝑥1,… , 𝑥𝑚):

𝜇𝑍 (𝑥) = E [𝑍(𝑥)] = 𝜆E [𝑈 ]∫

𝑥

0
𝑣(𝜌, 𝑥)𝑑𝜌 = 𝐶 (1)

𝑍(𝑥)(𝑥), (9)

and

Cov𝑍 (𝑥1, 𝑥2) = E
[

𝑍(𝑥1)𝑍(𝑥2)
]

− E
[

𝑍(𝑥1)
]

E
[

𝑍(𝑥2)
]

= 𝜆E
[

𝑈2]

∫

min(𝑥1 ,𝑥2)

0
𝑣(𝜌, 𝑥1)𝑣(𝜌, 𝑥2)𝑑𝜌

= 𝐶 (2)
𝑍 (𝑥1, 𝑥2). (10)

Hence, the variance is given by

𝜎2 (𝑥) = 𝐶 (2)(𝑥, 𝑥). (11)
𝑍 𝑍 p

3

Later we will also need to handle the cross-covariance of two stochastic
processes, say 𝑍𝑣 = 𝑍𝑣(𝑥) and 𝑍𝑤 = 𝑍𝑤(𝑥), of the form of (7) with
different shapes, 𝑣 and 𝑤,

𝑍𝑣(𝑥) =
𝑁(𝑙)
∑

𝑖=1
𝑈𝑖𝑣(𝑥, 𝑥𝑖), 𝑍𝑤(𝑥) =

𝑁(𝑙)
∑

𝑖=1
𝑈𝑖𝑤(𝑥, 𝑥𝑖). (12)

In this case, the cross-cumulant function of order 𝑚 = 2, which is just
the cross-covariance of 𝑍𝑣 and 𝑍𝑤, writes

𝐶 (2)
𝑍𝑣 ,𝑍𝑤

(𝑥1, 𝑥2) = 𝜆E
[

𝑈2]

∫

min(𝑥1 ,𝑥2)

0
𝑣(𝜌, 𝑥1)𝑤(𝜌, 𝑥2)𝑑𝜌. (13)

As it shall be seen in the next section, these properties will be
essential to obtain, in the first step, the mean and the variance of
𝑌 (𝑥), i.e., the deflection of the cantilever beam. Afterward, from these
two statistics, we will approximate the 1-PDF of the solution taking
advantage of the PME. Here, we point out that the computation of the
1-PDF is a key piece of information since, from its integration, one can
calculate any one-dimensional statistical moments,

E[𝑌 (𝑥)𝑚] = ∫

∞

−∞
𝑦𝑚𝑓𝑌 (𝑥)(𝑦)𝑑𝑦, 𝑚 = 1, 2,… (14)

provided they exist. Furthermore, the 1-PDF permits computing the
probability that the solution varies within a specific interval of interest,

P[𝑦1 ≤ 𝑌 (𝑥) ≤ 𝑦2] = ∫

𝑦2

𝑦1
𝑓𝑌 (𝑥)(𝑦)𝑑𝑦, 0 < 𝑥 < 𝑙. (15)

Furthermore, we will determine other engineering probabilistic quanti-
ties of interest associated with the beam, such as the bending moment
and the shear force.

As shown in [14], for fixed 𝑥 ∈ (0, 𝑙), the PME is an efficient method
to obtain the PDF, 𝑓𝑌 (𝑥) ∶= 𝑓𝑌 (𝑥)(𝑦), of the random variable 𝑌 (𝑥), using
he statistical information available, such that its support, moments,
tc. Assuming that 𝑌 (𝑥) is an absolutely continuous random variable
ith support (𝑌 (𝑥)) and that its first two moments are known, then

he PME seeks an approximation of the PDF of 𝑌 (𝑥) that maximizes the
hannon’s entropy

(𝑓𝑌 (𝑥)) = E
[

− ln(𝑓𝑌 (𝑥)(𝑌 (𝑥)))
]

= −∫(𝑌 (𝑥))
𝑓𝑌 (𝑥)(𝑦) ln(𝑓𝑌 (𝑥)(𝑦))𝑑𝑦, (16)

ubject to the constraints

∫(𝑌 (𝑥))
𝑓𝑌 (𝑥)(𝑦)𝑑𝑦 = 1, ∫(𝑌 (𝑥))

𝑦𝑛𝑓𝑌 (𝑥)(𝑦)𝑑𝑦 = E[𝑌 𝑛(𝑥)], 𝑛 = 1, 2. (17)

ote that the PME utilizes the information of the moments of 𝑌 (𝑥)
in our setting representing the deflection of the beam at the spatial
oint 𝑥). As we shall first calculate the mean and the variance (or
quivalently the second order moment) of 𝑌 (𝑥), we will take advantage
f the PME to approximate the PDF of 𝑌 (𝑥).

Using the variational formulation of the method of Lagrange multi-
liers, it can be seen that the PDF of 𝑌 (𝑥) has the following form

𝑌 (𝑥)(𝑦) = 1(𝑌 (𝑥))𝑒
−1−𝜆0−𝜆1𝑦−𝜆2𝑦2 , (18)

here 1(𝑌 (𝑥)) is the characteristic function on the domain (𝑌 (𝑥)), and
arameters 𝜆0, 𝜆1 and 𝜆2 can be calculated using the constraints defined
n (17). Note that 𝜆𝑖 = 𝜆𝑖(𝑥), 𝑖 = 0, 1, 2, depend on 𝑥, although it is
mitted for convenience.

It is instructive to point out that the PME method has been widely
pplied in civil engineering. In [15], the authors obtain the PDF of
he shear capacity of the reinforced concrete beam using PME and
ompare it with brute force Monte Carlo simulation, obtaining good
pproximations. In [16], the PME is modified to estimate the PDF of
he material’s fiber-reinforced concrete properties using their different
rder moments. In [17], authors combine polynomial chaos expansions
ith a variation of the classical PME to approximate the PDF of

he response to several structural engineering problems. In [18], one
roposes a new method for constructing the so-called probability box
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(p-box) model based on the PME. The results are applied to perform a
reliability analysis for uncertain engineering structures.

We finish this subsection devoted to the stochastic ingredients that
will be required throughout this paper, indicating that, in the numerical
simulations that will be shown in Section 5, we will apply Monte
Carlo simulations. The Monte Carlo method is a popular, intuitive, and
flexible approach to uncertainty quantification in virtually any class
of mathematical problems whose data is affected by randomness. It is
based on performing simulations of the random data according to their
corresponding associated probabilistic laws. So, the method heavily
relies on good random number generators. In its crude form, the error
convergence rate is inversely proportional to the square root of the
number of realizations of the random inputs. The Monte Carlo has been
demonstrated to be a powerful tool to deal with stochastic/random
engineering problems [19,20].

3. Concentrated loads 𝑷𝒊 spanned randomly on the beam

In this section, we will carry out a probabilistic study of model (1).
or the sake of clarity, we substitute expression (3) into Eq. (1) and we
hen obtain
⎧

⎪

⎨

⎪

⎩

d4𝑌 (𝑥)
d𝑥4

= 1
𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅−1(𝑥 − 𝑥𝑖), 0 < 𝑥 < 𝑙,

𝑌 (0) = 0, 𝑌 ′(0) = 0, 𝑌 ′′(𝑙) = 0, 𝑌 ′′′(𝑙) = 0.
(19)

Integrating four times the model (19) and using the properties of 𝑅−1
and 𝑅𝑛, 𝑛 = 0, 1, 2, 3, given in (4) and (5), respectively, it is easy to
check that the stochastic solution is given by (see Appendix, for further
details)

𝑌 (𝑥) = 1
𝐸𝐼

(

𝐺3(𝑥) −
1
6
𝐺0(𝑙)𝑥3 −

1
2
(

𝐺1(𝑙) − 𝑙𝐺0(𝑙)
)

𝑥2
)

, (20)

where 𝐺𝑗 (𝑥) has been defined in (6).
The function 𝐺𝑗 (𝑥) represents the load function, which is indepen-

dent of the beam characteristics. However, for the sake of convenience
in our subsequent computations, we introduce the following relabeling
of the previous stochastic process 𝐺𝑗 (𝑥),

𝐺𝑗 (𝑥) =
𝑁(𝑙)
∑

𝑖=1
𝐹𝑖𝑅𝑗 (𝑥 − 𝑥𝑖), 𝑗 = 0, 1, 2, 3, 𝐹𝑖 =

𝑃𝑖
𝐸𝐼

, (21)

where 𝐺𝑗 (𝑥) is now also dependent on the beam characteristics. This
allows us to rewrite 𝑌 (𝑥) given in (20) in terms of the stochastic
processes 𝐺𝑗 (𝑥):

𝑌 (𝑥) = 𝐺3(𝑥) −
1
6
𝐺0(𝑙)𝑥3 −

1
2

(

𝐺1(𝑙) − 𝑙𝐺0(𝑙)
)

𝑥2. (22)

As has been indicated in Section 2, we are interested in approxi-
mating the 1-PDF of the deflection of the beam, and for this goal, we
shall apply the PME method. So we will first calculate the mean of the
deflection, taking the expectation operator in expression (20)

E[𝑌 (𝑥)] = E[𝐺3(𝑥)] −
1
6
E[𝐺0(𝑙)]𝑥3 −

1
2

(

E[𝐺1(𝑙)] − 𝑙E[𝐺0(𝑙)]
)

𝑥2. (23)

In order to provide an explicit representation of E[𝑌 (𝑥)], we shall
compute E[𝐺𝑗 (𝑥)], 𝑗 = 0,… , 3. Notice that E[𝐺2(𝑥)] is not specifically
required for computing E[𝑌 (𝑥)], but it will be also calculated because
will be needed later. To this end, we will take advantage of expectation
E[𝑍(𝑥)], given in (9), of the stochastic process 𝑍(𝑥) defined in (7)
with the following identification in terms of 𝐺𝑗 (𝑥) defined in (21): the
impulse shapes and pulse intensities are given by 𝑣(𝑥, 𝑥𝑖) ∶= 𝑅𝑗 (𝑥− 𝑥𝑖),
𝑗 = 0,… , 3, and 𝑈𝑖 ∶= 𝐹𝑖, respectively. Then, taking into account the
definition of functions 𝑅𝑗 (𝑥 − 𝑥𝑗 ), given in (5), one obtains:

E[𝐺0(𝑥)] = 𝐶 (1)
𝐺0

(𝑥) = 𝜆E
[

𝐹𝑖
]

∫

𝑥

0
𝑅0(𝑥 − 𝜌)𝑑𝜌

= 𝜆E
[

𝐹𝑖
]

𝑥
𝑑𝜌 = 𝜆E

[

𝐹𝑖
]

𝑥,
(24)
∫0

4

E[𝐺1(𝑥)] = 𝐶 (1)
𝐺1

(𝑥) = 𝜆E
[

𝐹𝑖
]

∫

𝑥

0
𝑅1(𝑥 − 𝜌)𝑑𝜌

= 𝜆E
[

𝐹𝑖
]

∫

𝑥

0
(𝑥 − 𝜌)𝑑𝜌 = 𝜆

2
E
[

𝐹𝑖
]

𝑥2,
(25)

E[𝐺2(𝑥)] = 𝐶 (1)
𝐺2

(𝑥) = 𝜆E
[

𝐹𝑖
]

∫

𝑥

0
𝑅2(𝑥 − 𝜌)𝑑𝜌

= 𝜆E
[

𝐹𝑖
]

∫

𝑥

0

1
2
(𝑥 − 𝜌)2𝑑𝜌 = 𝜆

6
E
[

𝐹𝑖
]

𝑥3,
(26)

and

E[𝐺3(𝑥)] = 𝐶 (1)
𝐺3

(𝑥) = 𝜆E
[

𝐹𝑖
]

∫

𝑥

0
𝑅3(𝑥 − 𝜌)𝑑𝜌

= 𝜆E
[

𝐹𝑖
]

∫

𝑥

0

1
6
(𝑥 − 𝜌)3𝑑𝜌 = 𝜆

24
E
[

𝐹𝑖
]

𝑥4.
(27)

Then, substituting the above expressions in (23), one gets the following
expression for the expectation of 𝑌 (𝑥):

E[𝑌 (𝑥)] = 𝜆
2
E
[

𝐹𝑖
]

( 1
12

𝑥4 − 1
3
𝑙𝑥3 + 1

2
𝑙2𝑥2

)

. (28)

Now, we compute the covariance of 𝑌 (𝑥) using the representation (20)
nd its properties as a positive semidefinite function:

ov𝑌 (𝑥1, 𝑥2) = E
[

𝑌 (𝑥1)𝑌 (𝑥2)
]

− E
[

𝑌 (𝑥1)
]

E
[

𝑌 (𝑥2)
]

= 𝐶 (2)
𝐺3

(𝑥1, 𝑥2) −
1
2
𝐶 (2)
𝐺3𝐺1

(𝑥1, 𝑙)𝑥22 −
1
2
𝐶 (2)
𝐺3𝐺1

(𝑥2, 𝑙)𝑥21

+ 1
4
𝐶 (2)
𝐺1

(𝑙, 𝑙)𝑥21𝑥
2
2 +

1
2
𝐶 (2)
𝐺3𝐺0

(𝑥1, 𝑙)
(

𝑙𝑥22 −
1
3
𝑥32
)

+ 1
2
𝐶 (2)
𝐺3𝐺0

(𝑥2, 𝑙)
(

𝑙𝑥21 −
1
3
𝑥31
)

+ 1
4
𝐶 (2)
𝐺0

(𝑙, 𝑙)
(1
9
𝑥31𝑥

3
2 −

𝑙
3
𝑥31𝑥

2
2 −

𝑙
3
𝑥21𝑥

3
2 + 𝑙2𝑥21𝑥

2
2

)

+ 1
2
𝐶 (2)
𝐺0𝐺1

(𝑙, 𝑙)
( 1
6
𝑥31𝑥

2
2 +

1
6
𝑥21𝑥

3
2 − 𝑙𝑥21𝑥

2
2

)

.

(29)

Taking 𝑥1 = 𝑥2 = 𝑥 in the above expression, using that 𝐶 (2)
𝐺𝑗

(𝑥, 𝑥) =

𝜎2
𝐺𝑗
(𝑥), and after some algebraic manipulations, one can obtain the

ariance of 𝑌 (𝑥),

2
𝑌 (𝑥) = 𝐶 (2)

𝑌 (𝑥, 𝑥) = E
[

𝑌 (𝑥)2
]

− E [𝑌 (𝑥)]2

= 𝜎2
𝐺3
(𝑥) − 𝐶 (2)

𝐺3𝐺1
(𝑥, 𝑙)𝑥2 + 1

4
𝜎2
𝐺1
(𝑙)𝑥4 + 𝐶 (2)

𝐺3𝐺0
(𝑥, 𝑙)

(

𝑙𝑥2 − 1
3
𝑥3
)

+ 1
4
𝜎2
𝐺0
(𝑙)

( 1
9
𝑥6 − 2

3
𝑙𝑥5 + 𝑙2𝑥4

)

+ 1
2
𝐶 (2)
𝐺0𝐺1

(𝑙, 𝑙)
( 1
3
𝑥5 − 𝑙𝑥4

)

.

(30)

In this expression, we now compute the terms of the form 𝜎2
𝐺𝑗

and

𝐶 (2)
𝐺𝑖𝐺𝑗

, using (11) and (13), respectively,

𝜎2
𝐺3
(𝑥) = 𝜆E[𝐹 2

𝑖 ]∫

𝑥

0
𝑅3(𝑥 − 𝜌)𝑅3(𝑥 − 𝜌)𝑑𝜌 = 𝜆

252
E
[

𝐹 2
𝑖
]

𝑥7, (31)

𝐶 (2)
𝐺3𝐺1

(𝑥, 𝑙) = 𝜆E[𝐹 2
𝑖 ]∫

𝑥

0
𝑅3(𝑥 − 𝜌)𝑅1(𝑙 − 𝜌)𝑑𝜌 = 𝜆

24
E
[

𝐹 2
𝑖
]

𝑥4
(

𝑙 − 1
5
𝑥
)

,

(32)

𝜎2
𝐺1
(𝑙) = 𝜆E[𝐹 2

𝑖 ]∫

𝑙

0
𝑅1(𝑙 − 𝜌)𝑅1(𝑙 − 𝜌)𝑑𝜌 = 𝜆

3
E
[

𝐹 2
𝑖
]

𝑙3, (33)

𝐶 (2)
𝐺3𝐺0

(𝑥, 𝑙) = 𝜆E[𝐹 2
𝑖 ]∫

𝑥

0
𝑅3(𝑥 − 𝜌)𝑅0(𝑙 − 𝜌)𝑑𝜌 = 𝜆

24
E
[

𝐹 2
𝑖
]

𝑥4, (34)

𝜎2
𝐺0
(𝑙) = 𝜆E[𝐹 2

𝑖 ]∫

𝑙

0
𝑅0(𝑙 − 𝜌)𝑅0(𝑙 − 𝜌)𝑑𝜌 = 𝜆E

[

𝐹 2
𝑖
]

𝑙, (35)

𝐶 (2)
𝐺0𝐺1

(𝑙, 𝑙) = 𝜆E[𝐹 2
𝑖 ]∫

𝑙

0
𝑅0(𝑙 − 𝜌)𝑅1(𝑙 − 𝜌)𝑑𝜌 = 𝜆

2
E
[

𝐹 2
𝑖
]

𝑙2. (36)

Substituting these expressions into (30) and after simplifying, one gets
the following expression of the variance

𝜎2 (𝑥) = 𝜆 E[𝐹 2]
(

− 2 𝑥7 + 1 𝑙𝑥6 − 𝑙2𝑥5 + 𝑙3𝑥4
)

. (37)
𝑌 12 𝑖 105 3
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Consequently, the second-order moment of the deflection is

E
[

𝑌 2(𝑥)
]

= 𝜎2𝑌 (𝑥) + E[𝑌 (𝑥)]2 = 𝜆
12

E[𝐹 2
𝑖 ]

(

− 2
105

𝑥7 + 1
3
𝑙𝑥6 − 𝑙2𝑥5 + 𝑙3𝑥4

)

+ 𝜆2

12
E[𝐹𝑖]2

( 1
48

𝑥8 − 1
6
𝑙𝑥7 + 7

12
𝑙2𝑥6 − 𝑙3𝑥5 + 3

4
𝑙4𝑥4

)

.

(38)

his expression will be used later when applying the PME to approxi-
ate the 1-PDF of the deflection 𝑌 (𝑥).

Two characteristics that are very important when studying beams
n engineering are the bending moment, 𝑀(𝑥), and the shear force,
𝑇 (𝑥), defined as 𝑀(𝑥) ∶= −𝐸𝐼𝑌 ′′(𝑥) and 𝑇 (𝑥) ∶= −𝐸𝐼𝑌 ′′′(𝑥), respec-
tively [21]. These physical quantities can be calculated differentiating
(20)–(6), and taking into account that, by (5), 𝑅′′

3 (𝑥) = 𝑅1(𝑥) and
𝑅′′′
3 (𝑥) = 𝑅0(𝑥), so 𝐺′′

3 (𝑥) = 𝐺1(𝑥) and 𝐺′′′
3 (𝑥) = 𝐺0(𝑥). Consequently,

𝑀(𝑥) = −𝐺1(𝑥) + 𝐺1(𝑙) − 𝐺0(𝑙)(𝑙 − 𝑥), (39)

and

𝑇 (𝑥) = −𝐺0(𝑥) + 𝐺0(𝑙). (40)

Applying the expectation operator in (39) and (40), and using the
expressions obtained in (24) and (25), one calculates the value of the
mean of the bending moment

E [𝑀(𝑥)] = −1
2
𝜆E

[

𝑃𝑖
] (

𝑥2 + 𝑙2 − 2𝑙𝑥
)

, (41)

and the shear force

E [𝑇 (𝑥)] = −𝜆E
[

𝑃𝑖
]

(𝑥 − 𝑙). (42)

Now, we compute the variance of the bending moment of the beam

𝜎2𝑀 (𝑥) = 𝐶 (2)
𝑀 (𝑥, 𝑥) = E

[

𝑀(𝑥)2
]

− E [𝑀(𝑥)]2

= 𝜎2𝐺1
(𝑥) − 2𝐶 (2)

𝐺1
(𝑥, 𝑙) + 2𝐶 (2)

𝐺1𝐺0
(𝑥, 𝑙)(𝑙 − 𝑥) + 𝜎2𝐺1

(𝑙)

− 2𝐶 (2)
𝐺1𝐺0

(𝑥, 𝑙)(𝑙 − 𝑥) + 𝜎2𝐺0
(𝑙)(𝑙 − 𝑥)2.

(43)

In the above expression, note that 𝜎2𝐺1
(𝑥) can be calculated by (33)

changing 𝑙 by 𝑥 and 𝐹𝑖 by 𝑃𝑖, the term 𝜎2𝐺0
(𝑙) can be determined

similarly to (35) changing 𝐹𝑖 by 𝑃𝑖, and the rest of the terms can be
expressed in an analogous manner using, respectively, (10) and (13),

𝐶 (2)
𝐺1

(𝑥, 𝑙) = 𝜆E[𝑃 2
𝑖 ]∫

𝑥

0
𝑅1(𝑥 − 𝜌)𝑅1(𝑙 − 𝜌)𝑑𝜌 = 𝜆E

[

𝑃 2
𝑖
]

(

𝑥2𝑙
2

− 𝑥3

6

)

,

(44)
(2)
𝐺1𝐺0

(𝑥, 𝑙) = 𝜆E[𝑃 2
𝑖 ]∫

𝑥

0
𝑅1(𝑥 − 𝜌)𝑅0(𝑙 − 𝜌)𝑑𝜌 = 𝜆

2
E
[

𝑃 2
𝑖
]

𝑥2. (45)

ubstituting these expressions in (43) and simplifying, one gets

2
𝑀 (𝑥) = 𝜆E

[

𝑃 2
𝑖
]

(

𝑥2𝑙 − 𝑙2𝑥 + 1
3
𝑙3 − 1

3
𝑥3
)

. (46)

onsequently, the second-order statistic of the bending moment, which
ill be required later to approximate its PDF via the PME, is given by
[

𝑀2(𝑥)
]

= 𝜆E
[

𝑃 2
𝑖
]

(

𝑥2𝑙 − 𝑙2𝑥 + 1
3
𝑙3 − 1

3
𝑥3
)

+ 1
4
𝜆2E

[

𝑃𝑖
]2 (𝑥2 + 𝑙2 − 2𝑙𝑥

)2 . (47)

Now, we complete similar calculations for the shear force. Its vari-
nce is given by

2
𝑇 (𝑥) = 𝐶 (2)

𝑇 (𝑥, 𝑥) = E
[

𝑇 (𝑥)2
]

− E [𝑇 (𝑥)]2 = 𝜎2𝐺0
(𝑥) − 2𝐶 (2)

𝐺0
(𝑥, 𝑙) + 𝜎2𝐺0

(𝑙).

(48)

Carrying out computations in a similar fashion as before, one obtains

𝜎2𝑇 (𝑥) = −𝜆E
[

𝑃 2
𝑖
]

(𝑥 − 𝑙). (49)

The second-order moment is given by

E
[

𝑇 2(𝑥)
]

= 𝜆(𝑥 − 𝑙)
(

−E
[

𝑃 2] + 𝜆E
[

𝑃
]2 (𝑥 − 𝑙)

)

. (50)
𝑖 𝑖

5

4. Computational implementation

This section presents an algorithm that allows us to simulate the
analytical development shown in the previous section computationally.
The proposed algorithm is based on Monte Carlo. The method consists
of a random and repeated sampling of the stochastic process of the load
function, 𝑄(𝑥), and of the random variables of the moment of inertia,
𝐼 , and Young’s modulus, 𝐸. The objective is to obtain a number of
simulations that together provide statistical information on the PDF
of the deflection, slope, bending moment, and shear parameters of the
beam.

The procedure has been divided into the following steps: (1) first,
the beam is discretized (2) then the stochastic process of the load
function is simulated for each of the discretized points of the beam,
(3) in a third step, the random variables of the moment of inertia and
Young’s modulus are sampled and (4) with the values obtained, the
functions describing the behavior of the beam are evaluated, and (5)
finally, the process is repeated until it is obtained a set of simulations
which adequately represents the uncertainty of the behavior of the
beam.

After the general description, we now give a detailed step-by-step
description of the procedure.

Step 1: Beam discretization. Given the discrete nature of computer
science, it is necessary to deal with the stochastic model in a discrete
manner. The Poisson counting process has 𝜆𝑥 as expected value, where
𝑥 represents the position in the axis of the beam. Although it is a
discrete-continuous process, its simulation is discrete as long as, compu-
tationally, you can only evaluate it in a finite set of 𝑥. The discretization
of the beam is important because the simulation involves assuming that
there can only be charge points at the discretized positions and hence
an adequate discretization plays a key role to obtain accurate results.
The approximate solution of the model (in our case, the deflection
of the beam) between spatial points can be linearly interpolated by
knowing the approximations at the adjacent points. Since the solution
does not necessarily be linear, the distance between points must be
small enough so that the error of the approximation is acceptable for
the application of the numerical results. Ideally, the beam should be
discretized at as many points as possible. However, the computational
cost increases proportionally to the number of points used in the dis-
cretization. An appropriate strategy to optimize the trade-off between
accuracy and computational cost is to generate more points where the
greatest uncertainty in the solution is sensed, which generally coincides
with the points of greatest structural weakness. If this intuition is not
predisposed, the ideal is to consider evenly distributed points.

Step 2: Simulation of the stochastic process.

1. ∀ 𝑖 ∈ {0, 1,… , 𝐷𝑏} determining a spatial position 𝑥𝑖 on beam 𝑏
(where 𝐷𝑏 is the total number of discretized points):

1.1. ∀ 𝑚 ∈ {0, 1,… , 𝐶𝑏}, determining the number of load
functions 𝑐𝑚 to be applied in beam 𝑏 (where 𝐶𝑏 is the
total number of loads functions) with intensity 𝑄𝑐 and
frequency 𝑓𝑐 ,

1.1.1. The number of charge points 𝑠𝑚𝑖 , generated by the
charge function 𝑐𝑚 at point 𝑥𝑖 is obtained sampling
from a Poisson distribution with parameter 𝜆 ∶=
𝑓𝑐∕𝐷𝑏 > 0, representing the expected value of 𝑠𝑚𝑖 .

1.1.2. ∀𝑘 ∈ {0, 1,… , 𝑠𝑚𝑖 }, the value of the point charge 𝑃𝑖
is:

𝑃 𝑘
𝑖 = 𝑃 𝑘−1

𝑖 +𝑄𝑐 , (51)

where 𝑃 𝑘−1
𝑖 = 0 if 𝑘 = 0 and where in the case

that is a random variable, it is necessary to sample
a value of its PDF. The distribution of 𝑄 can
𝑐
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be any positive/negative and continuous/discrete
random variable. It can even be a nonparametric
distribution constructed from field data.

At the end of the different loops, a value of 𝑃
𝑠𝑚𝑖
𝑖 (hereafter 𝑃𝑖)

will have been obtained for each 𝑥𝑖.
2. The next step is to obtain the value of the net charge function

𝐺𝑗 (𝑥), 𝑗 = 0, 1, 2, 3.

2.1. ∀ 𝑖 ∈ {0, 1,… , 𝐷𝑏}:

2.1.1. ∀ 𝑧 ∈ {0, 1,… , 𝐷𝑏}:
If 𝑥𝑖 < 𝑥𝑧:

𝐺0(𝑥𝑖) = 𝐺0(𝑥𝑖) + 0, (52)

𝐺1(𝑥𝑖) = 𝐺1(𝑥𝑖) + 0, (53)

𝐺2(𝑥𝑖) = 𝐺2(𝑥𝑖) + 0, (54)

𝐺3(𝑥𝑖) = 𝐺3(𝑥𝑖) + 0. (55)

If 𝑥𝑖 > 𝑥𝑧:

𝐺0(𝑥𝑖) = 𝐺0(𝑥𝑖) + 𝑃𝑖, (56)

𝐺1(𝑥𝑖) = 𝐺1(𝑥𝑖) + 𝑃𝑖(𝑥𝑖 − 𝑥𝑧), (57)

𝐺2(𝑥𝑖) = 𝐺2(𝑥𝑖) +
1
2
𝑃𝑖(𝑥𝑖 − 𝑥𝑧)2, (58)

𝐺3(𝑥𝑖) = 𝐺3(𝑥𝑖) +
1
3!
𝑃𝑖(𝑥𝑖 − 𝑥𝑧)3. (59)

Step 3: Simulation of the random variables. The values of the inertial
moment, 𝐼𝑏, and Young’s modulus, 𝐸𝑏, are obtained by sampling from
their corresponding PDFs. The distribution of these random variables
can be any positive parametric one. It can even be a nonparametric
distribution constructed from field data.

Step 4: Evaluation of beam performance functions.. Once the deter-
ministic values of all the variables have been obtained by simulation,
we take advantage of the analytical development introduced in the
previous section to determine the behavior of the beam with respect to
its deflection (Eq. (20)) and, therefore, its moment of inertia (Eq. (39))
and shear force (Eq. (40)).

1. ∀ 𝑖 ∈ {0, 1,… , 𝐷𝑏}:

𝑌𝑏(𝑥𝑖) =
1

𝐸𝑏𝐼𝑏

[

𝐺3(𝑥𝑖) −
1
6
𝐺0(𝑙)𝑥3𝑖 −

1
2
(

𝐺1(𝑙) − 𝑙𝐺0(𝑙)
)

𝑥2𝑖
]

, (60)

𝑀𝑏(𝑥𝑖) = −𝐺1(𝑥𝑖) + 𝐺1(𝑙) − 𝐺0(𝑙)(𝑙 − 𝑥𝑖), (61)

𝑇𝑏(𝑥𝑖) = −𝐺0(𝑥𝑖) + 𝐺0(𝑙). (62)

Step 5: Repeat steps 1–4 until it is obtained a set of simulations. Once
all the Steps 1–4 have been simulated, the result of one simulation is
obtained. To determine the distribution of deflection, bending moment,
and shear force of the beam, it is necessary to perform multiple simu-
lations by repeating Steps 1–4. The greater the number of simulations,
𝑁 , the better results will be obtained from the statistical analysis.

Once a large set of simulations has been generated, it is possible to
construct the 95%CI (confidence intervals):

∀ 𝑖 ∈ {0, 1,… , 𝐷𝑏}:

95%CI of 𝑌𝑏(𝑥𝑖) =
(

𝐏2.5([𝑌 0
𝑏 , 𝑌

1
𝑏 ,… , 𝑌 𝑛

𝑏 ]), 𝐏97.5([𝑌 0
𝑏 , 𝑌

1
𝑏 ,… , 𝑌 𝑛

𝑏 ])
)

,

(63) c
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Table 1
Comparison of the mean, E[𝑌 (𝑥)], and the variance, 𝜎2

𝑌 (𝑥), of the static deflection of
he cantilever beam at different spatial points 𝑥 ∈ {0, 1, 2,… , 10} using the theoretical
pproach (Eq. (28) and Eq. (37) for computing E[𝑌 (𝑥)] and 𝜎2

𝑌 (𝑥), respectively), and
00.000 simulations via Monte Carlo.
𝑥 E[𝑌 (𝑥)] (Eq. (28)) E[𝑌 (𝑥)] (simulation) 𝜎2

𝑌 (𝑥) (Eq. (37)) 𝜎2
𝑌 (𝑥) (simulation)

0 0 0 0 0
1 0.000463 0.000463 1.486249 ⋅ 10−8 1.563205 ⋅ 10−8

2 0.001730 0.001731 2.140720 ⋅ 10−7 2.248590 ⋅ 10−7

3 0.003633 0.003634 9.721975 ⋅ 10−7 1.019968 ⋅ 10−6

4 0.006023 0.006025 2.746732 ⋅ 10−6 2.878598 ⋅ 10−6

5 0.008772 0.008773 5.974110 ⋅ 10−6 6.254897 ⋅ 10−6

6 0.011770 0.011770 1.100046 ⋅ 10−5 1.150769 ⋅ 10−5

7 0.014928 0.014928 1.804558 ⋅ 10−5 1.886364 ⋅ 10−5

8 0.018177 0.018175 2.719839 ⋅ 10−5 2.841349 ⋅ 10−5

9 0.021467 0.021464 3.844254 ⋅ 10−5 4.013907 ⋅ 10−5

10 0.024769 0.024730 5.171033 ⋅ 10−5 5.382120 ⋅ 10−5

95%CI of 𝑀𝑏(𝑥𝑖) =
(

𝐏2.5([𝑀0
𝑏 ,𝑀

1
𝑏 ,… ,𝑀𝑛

𝑏 ]), 𝐏97.5([𝑀0
𝑏 ,𝑀

1
𝑏 ,… ,𝑀𝑛

𝑏 ])
)

,

(64)

95%CI of 𝑇𝑏(𝑥𝑖) =
(

𝐏2.5([𝑇 0
𝑏 , 𝑇

1
𝑏 ,… , 𝑇 𝑛

𝑏 ]), 𝐏97.5([𝑇 0
𝑏 , 𝑇

1
𝑏 ,… , 𝑇 𝑛

𝑏 ])
)

,

(65)

where 𝑛 ∈ {0, 1,… , 𝑁} and 𝐏 represents the percentile function.

5. Numerical example

This section is addressed to apply the theoretical findings estab-
lished in the previous sections by means of a full illustrative example.

Let us consider a 10m long overhanging beam (cantilever) in form
of a balcony or lookout made up of an IPE 450 steel profile whose
moment of inertia, 𝐼 , is 33740cm4 ±2%, and whose Young’s modulus,

, is 210Mpa [22]. Due to the heterogeneous properties of the steel,
e will assume Young’s modulus of the profile has some variability
ccording to a Gaussian distribution with a mean of 210Mpa and a
tandard deviation of 5%. Just for illustrative purposes, let us assume
he maximum capacity allowed in the lookout is 20 people. We will
ssume that each person weighs, on average, 700N (71.36 kg) with a
tandard deviation of 5%. The above description corresponds with the
ollowing deterministic data of our modeling problem: 𝑙 = 10, and 𝜆 =
0. While for the random parameters, and according to the foregoing
escription, we will assume that the Young’s modulus of elasticity, 𝐸,
as a truncated Gaussian distribution, 𝐸 ∼ N (210 ⋅ 109; 0.05 ⋅ 210 ⋅
09)N/m2, where  = [209.9993 ⋅ 109, 210.0006 ⋅ 109]. The moment
f inertia, 𝐼 , has a Gaussian distribution, 𝐼 ∼ N(33740 ⋅ 10−8; 0.02 ⋅
3740 ⋅ 10−8)m4. And, finally, let us assume that the intensity of the
oncentrated loads 𝑃𝑖 follows a Gaussian distribution, 𝑃𝑖 ∼ N(700; 35)N.
e consider that 𝐸, 𝐼 and 𝑃𝑖 are independent random variables.
In Table 1, we show a comparison of the mean and the variance of

he static deflection, 𝑌 (𝑥), given by expression (28) and (37), respec-
ively, and the mean and variance obtained by Monte Carlo simulation
ollowing the procedure described in Section 4. We can observe that
he values are in full agreement.

Once we have obtained the mean, E[𝑌 (𝑥)], and the variance, 𝜎2𝑌 (𝑥),
e use the PME to compute the 1-PDF of the static deflection, 𝑓𝑌 (𝑥)(𝑦).
s we have seen in Section 2.3, for each 𝑥, we first solve the system

17) for 𝜆𝑖 = 𝜆𝑖(𝑥), 𝑖 = 0, 1, 2. For example, for the free-end, 𝑥 = 10,
here the mean and variance of the deflection are maxima, the 1-PDF

s given by

𝑌 (10)(𝑦) = 1(𝑌 (10))𝑒
−1+0.893356−477.134605𝑦+9633.765685𝑦2 , (66)

here we have taken as domain the interval (𝑌 (10)) = [0, 0.096694] is

onstructed using the Chebyshev–Bienaymé’s inequality [23] with 10
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Fig. 2. 1-PDF of the static deflection of the cantilever beam, 𝑓𝑌 (𝑥)(𝑦), at the spatial point 𝑥 = 10 obtained via PME and Monte Carlo using 1000, 10,000 and 100,000 simulations.
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Table 2
Comparison of the mean, E[𝑀(𝑥)], and the variance, 𝜎2

𝑀 (𝑥), of the bending moment of
the cantilever beam at different spatial points 𝑥 ∈ {0, 1, 2,… , 10} using the theoretical
approach (Eq. (41) and Eq. (46) for computing E[𝑀(𝑥)] and 𝜎2

𝑀 (𝑥), respectively), and
100000 simulations via Monte Carlo.
𝑥 E[𝑀(𝑥)] (Exp. (41)) E[𝑀(𝑥)] (simulation) 𝜎2

𝑀 (𝑥) (Eq. (46)) 𝜎2
𝑀 (𝑥) (simulation)

0 −69993.699374 −69878.898675 3.274244 ⋅ 108 3.291509 ⋅ 108

1 −56694.896493 −56586.404173 2.386924 ⋅ 108 2.399465 ⋅ 108

2 −44795.967599 −44696.961390 1.676413 ⋅ 108 1.685314 ⋅ 108

3 −34296.912693 −34206.526813 1.123065 ⋅ 108 1.128808 ⋅ 108

4 −25197.731774 −25118.063711 7.072368 ⋅ 107 7.103806 ⋅ 107

5 −17498.424843 −17432.235020 4.092805 ⋅ 107 4.104798 ⋅ 107

6 −11198.991899 −11145.801799 2.095516 ⋅ 107 2.096393 ⋅ 107

7 −6299.432943 −6258.001079 8.840460 ⋅ 106 8.808880 ⋅ 106

8 −2799.747974 −2768.248438 2.619395 ⋅ 106 2.586399 ⋅ 106

9 −699.936993 −681.106878 3.274244 ⋅ 105 3.145759 ⋅ 105

10 0 0 0 0

standard deviations around the mean (and truncating the left-end of the
interval to 0 value in order to keep consistent with the physical mean-
ing of the deflection) so that ∫(𝑌 (10)) 𝑓𝑌 (10)(𝑦)𝑑𝑦 ≈ 1. To better compare
the results obtained using the PME against the ones calculated by Monte
Carlo, in Fig. 2, we show the corresponding using Monte Carlo with
simulations 1000, 10000, and 100,000 simulations at the spatial point,
𝑥 = 10. Although we can observe a good agreement between them,
it is worth to point out that this little discrepancy can be explained
because when applying the PME we retain the information provided
by the two first moments, then being Gaussian the approximation while
the response could be non-Gaussian.

Now, we study the bending moment, 𝑀(𝑥). In Table 2, we com-
pare the mean and the variance of 𝑀(𝑥), given by expression (41)
and (46), respectively, and the ones computed by Monte Carlo using
100,000 simulations. We can observe, again, that the values show good
agreement.

The 1-PDF of the bending moment, 𝑓𝑀(𝑥)(𝑚), can also be computed
by the PME. Its approximation at the spatial point 𝑥 = 0, where its
mean (in absolute value) and variance are maxima, is given by

𝑓𝑀(0)(𝑚) = 1(𝑀(0))𝑒
−1−17.197008−0.000213 𝑚−1.524656𝑚2

, (67)

where, similarly as it was done for the deflection, the domain (𝑀(0))
= [−250931.572337, 0] has been calculated using the Chebyshev-
Bienaymé’s inequality with 10 standard deviations and taking into
account that the bending moment is non-positive.

In Fig. 3, we show a graphical representation of the 1-PDF given by
(67) and the ones obtained by Monte Carlo using 1000, 10,000, and
100,000 simulations. We can observe the results are fully consistent.

In Table 3, we compare the values obtained of the mean, E[𝑇 (𝑥)],
and the variance, 𝜎2 (𝑥), of the shear force, 𝑇 (𝑥), given by expression
𝑇 a

7

Table 3
Comparison of the mean, E[𝑇 (𝑥)], and the variance, 𝜎2

𝑇 (𝑥), of the shear force of the
antilever beam, at different spatial points 𝑥 ∈ {0, 1, 2,… , 10} using the theoretical
pproach(Eq. (40) for E[𝑇 (𝑥)] and Eq. (49) for 𝜎2

𝑇 (𝑥), respectively,), 100000 simulations
ia Monte Carlo.
𝑥 E[𝑇 (𝑥)] (Eq. (40)) E[𝑇 (𝑥)] (simulation) 𝜎2

𝑇 (𝑥) (Eq. (49)) 𝜎2
𝑇 (𝑥) (simulation)

0 13998.739874 13989.984660 9.822734 ⋅ 106 9.868522 ⋅ 106

1 12598.865887 12584.463060 8.840460 ⋅ 106 8.871837 ⋅ 106

2 11198.991899 11184.844909 7.858187 ⋅ 106 7.891253 ⋅ 106

3 9799.117912 9787.433546 6.875913 ⋅ 106 6.893854 ⋅ 106

4 8399.243924 8387.069932 5.893640 ⋅ 106 5.922317 ⋅ 106

5 6999.369937 6985.927374 4.911367 ⋅ 106 4.941940 ⋅ 106

6 5599.495949 5588.894615 3.929093 ⋅ 106 3.946902 ⋅ 106

7 4199.621962 4191.937526 2.946820 ⋅ 106 2.953221 ⋅ 106

8 2799.747974 2792.303398 1.964546 ⋅ 106 1.971305 ⋅ 106

9 1399.873987 1391.025322 9.822734 ⋅ 105 9.818576 ⋅ 105

10 0 0 0 0

(42) and (49), respectively, and the ones computed by Monte Carlo
using 100,000 simulations. Note that the results show good agreement.

As before, to complete the probabilistic analysis, we approximate
the 1-PDF of the shear force, 𝑓𝑇 (𝑥)(𝑡), using the PME. It results

𝑇 (0)(𝑡) = 1(𝑇 (0))𝑒
−1−17.943337+0.001424𝑡−5.088214⋅10−8𝑡2 , (68)

here (𝑇 (0)) = [0, 45347.054670].
Finally, in Fig. 4 we compare the three approximations of 1-PDF

btained by Monte Carlo with 1000, 10,000 and 100,000 simulations
gainst the one obtained by Eq. (68) at the spatial point 𝑥 = 0. The
esults show a full agreement as the number of simulation increase.

Now, we are going to compare the theoretical and Monte Carlo
pproximations of the expectation of all the physical quantities studied
or the cantilever, namely, the deflection, the bending moment and
he shear force, using as goodness-of-fit the symmetric mean absolute
ercentage error (SMAPE). Let us recall that for a set of 𝑛 theoreti-
al values of the previous quantities, say 𝑍𝑖 and their corresponding
pproximations obtained by Monte Carlo, 𝑧̂𝑖, the SMAPE is given by

MAPE = 100%
𝑛

𝑛
∑

𝑖=1

|𝑍𝑖 − 𝑧̂𝑖|
(

|𝑍𝑖| + |𝑧̂𝑖|
)

∕2
. (69)

n Table 4, we show the SMAPE corresponding to the expectation of the
eflection, 𝑌 (𝑥), the bending moment, 𝑀(𝑥), and the shear force, 𝑇 (𝑥),
t the spatial points 𝑥 = 0, 1,… , 10, considering the approximations
btained via Monte Carlo simulations (MCS) with a different number of
amples (1000, 10,000 and 100,000). It must be noticed that we apply
he SMAPE with 𝑛 = 10 since we must exclude the term 𝑥 = 10, in the
ase of the deflection, and 𝑥 = 0, in the case of the bending moment
nd the shear force, since their values are zero. We can observe that
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Fig. 3. 1-PDF of the bending moment of the cantilever beam, 𝑓𝑀(𝑥)(𝑦), obtained via PME and Monte Carlo using 1000, 10,000, and 100,000 simulations at the spatial point 𝑥 = 0.
Fig. 4. 1-PDF of the shear force of the cantilever beam, 𝑓𝑇 (𝑥)(𝑡), at the spatial point 𝑥 = 0 obtained via PME and Monte Carlo using 1000, 10,000 and 100,000 simulations.
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Table 4
Computation of the SMAPE calculated by (69) of the theoretical expectation and the
mean calculated via Monte Carlo simulations (MCS) with different samples (1000,
10000 and 100000) the deflection, bending moment, and shear force of the cantilever
SMAPE (%) 1000 MCS 10000 MCS MCS 100000

𝑌 (𝑥) 0.288816 0.245558 0.032886
𝑀(𝑥) 0.824381 1.004208 0.653084
𝑇 (𝑥) 0.726415 0.442595 0.203296

the SMAPE is significantly reduced when using 100,000 simulations,
as expected.

We finish this section by comparing the mean and confidence inter-
vals of the deflection, bending moment, and shear force, which we have
obtained theoretically and by simulations. First, we take advantage
of the 1-PDF computed through PME to construct 95% confidence
intervals. To do this for the deflection 𝑌 (𝑥) (similarly is done for the
bending moment, 𝑀(𝑥), and the shear force, 𝑇 (𝑥)), we need to obtain
𝑘(𝑥) satisfying

∫

E[𝑌 (𝑥)]+𝑘(𝑥)𝜎𝑌 (𝑥)

E[𝑌 (𝑥)]−𝑘(𝑥)𝜎𝑌 (𝑥)
𝑓𝑌 (𝑥)(𝑦) = 0.95, (70)

where 𝑓𝑌 (𝑥)(𝑦) is the 1-PDF of the deflection. Second, from the Monte
Carlo simulations, we obtain the confidence intervals using the algo-
rithm based on the percentile function explained in Step 5 in Section 4.

In Fig. 5, we show the mean and confidence intervals of the de-
lection, 𝑌 (𝑥). We can observe that the results provided using both

approaches are very close, showing better agreement in the case of the
approximation of the mean E[𝑌 (𝑥)], as expected. Although the value of
8

𝑘(𝑥) ∶= 𝑘𝑌 (𝑥) obtained from (70) may change with the spatial position
𝑥, in this case, we have obtained 𝑘𝑌 (𝑥) ≈ 1.96 for all 𝑥 = 1,… , 10.

Analogously, in Figs. 6 and 7, we show the corresponding plots for
he bending moment, 𝑀(𝑥), and the shear force, 𝑇 (𝑥). Here, it is worth
ointing out that the value of 𝑘 changes as 𝑥 does. In the case of the
ending moment, 𝑘(𝑥) ∶= 𝑘𝑀 (𝑥) ≈ 1.96 for 𝑥 ∈ {0,… , 6}, 𝑘𝑀 (7) ≈ 1.9,
𝑀 (8) ≈ 1.75, and 𝑘𝑀 (9) ≈ 1.32. While for the share force, 𝑘𝑇 (𝑥) ≈ 1.96
or 𝑥 ∈ {0,… , 6}, 𝑘𝑇 (7) ≈ 1.95, 𝑘𝑇 (8) ≈ 1.87, and 𝑘𝑇 (9) ≈ 1.51.

To better understand the behavior indicated for 𝑘 = 𝑘(𝑥) in each
f the three cases, let us observe that we have approximated the corre-
ponding 1-PDFs by applying the PME imposing three constraints (first,
he one corresponding to the normalization condition and the others
wo corresponding to the two first statistical moments). In this manner,
e determine a (truncated) Gaussian-like approximation. As can be

een in Fig. 8, the approximations for 𝑓𝑌 (𝑥)(𝑦) are roughly symmetric
or every spatial position 𝑥 (in Fig. 8(a) we show the results including
ll values of 𝑥, and in Fig. 8(b) we zoom-up a few values so that the
ymmetry can be better graphically assessed). So, the classical Gaussian
𝜎 rule-of-thumb [23], corresponding to 𝑘 ≈ 1.96, is fulfilled. For the

case of 𝑓𝑀(𝑥)(𝑚), it can be seen that symmetry is roughly preserved
for 𝑥 ∈ {0,… , 6} and deteriorates thereafter (see Figs. 8(c)–8(d)).
Consequently, the approximation of 𝑓𝑀(𝑥)(𝑚) is no longer Gaussian, and
the value of 𝑘 departs from 1.96. An analogous explanation, can be
given for the case of 𝑓𝑇 (𝑥)(𝑡) (see Figs. 8(e)–8(f)). In this latter case,
it is worth pointing out that we can also observe that in the case
of the calculation of the percentiles of 𝑓𝑇 (𝑥)(𝑡), there are steps in the
functions. This is because the shear force is defined by a linear function

of 𝐺0(𝑥), see Eq. (62), which corresponds to the step function. The
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Fig. 5. Comparison of the mean and confidence intervals of the static deflection, 𝑌 (𝑥), using the PME and Monte Carlo simulations.
Fig. 6. Comparison of the mean and confidence intervals of the bending moment, 𝑀(𝑥), using the PME and Monte Carlo simulations.
Fig. 7. Comparison of the mean and confidence intervals of the shear force, 𝑇 (𝑥), using the PME and Monte Carlo simulations.
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ifferences in the smoothness of the steps are due to the influence of the
andom intense load, 𝑃𝑖, in extreme cases. Simulating this parameter
s a deterministic one, it has been observed that both functions reduce
he smoothness of their steps. This verification has also been done with
he parameters corresponding to the structural characteristics, 𝐸 and
, observing that their variability has no impact on the smoothness of
he steps.

. Conclusions

In this paper, we have performed a full probabilistic analysis of
cantilever beam using the Euler–Bernoulli’s theory. For the sake of

enerality, in our study, we have assumed that all the model parameters
the moment of inertia, 𝐼 , and Young’s modulus, 𝐸) are independent
 1

9

andom variables with arbitrary density functions, and the load acting
n the beam is described by means of the delta-correlated process. The
dopted approach has made it possible the computation of the mean
nd the variance of the static deflection, the bending moment, and the
hear force, with the purpose of later obtaining the first probability
ensity function taking advantage of the Principle of Maximum En-
ropy. In the numerical example, we have compared these results with
imulations obtained using a Monte Carlo-based algorithm, with good
esults.

cronyms

DF: Probability density function
-PDF: First probability density function
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Fig. 8. 1-PDF of the different studied characteristics of the cantilever beam.
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PME: Principle of Maximum Entropy
MCS: Monte Carlo simulations
SMAPE: Symmetric mean absolute percentage error
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Appendix. Obtaining the solution of model (19)

The solution of model (1) is similar to the one obtained in [8],
the difference lies in the type of beam, and therefore, in the boundary
conditions of the model. Based on the solution

𝑌 (𝑥) = 1
𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅3(𝑥 − 𝑥𝑖) +

1
6
𝐶1𝑥

3 + 1
2
𝐶2𝑥

2 + 𝐶3𝑥 + 𝐶4, (A.1)

e use the boundary conditions (2) in order to compute the integration
onstants 𝐶1, 𝐶2, 𝐶3, and 𝐶4.

First, we calculate 𝐶4

(0) = 0 → 𝐶4 = 0, (A.2)

nd 𝐶3

′(0) = 0 → 𝐶 = 0, (A.3)
3
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Second, we calculate 𝐶1 using the third derivative

𝑌 ′′′(𝑙) = 0 →
1
𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅0(𝑙 − 𝑥𝑖) + 𝐶1 = 0 → 𝐶1 = − 1

𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅0(𝑙 − 𝑥𝑖),

(A.4)

nd finally, we calculate 𝐶2

′′(𝑙) = 0 →
1
𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅1(𝑙 − 𝑥𝑖) −

1
𝐸𝐼

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅0(𝑙 − 𝑥𝑖)𝑙 + 𝐶2 = 0, (A.5)

𝐶2 = − 1
𝐸𝐼

(𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅1(𝑙 − 𝑥𝑖) −

𝑁(𝑙)
∑

𝑖=1
𝑃𝑖𝑅0(𝑙 − 𝑥𝑖)𝑙

)

. (A.6)

ow, replacing the obtained integration constants into (A.1), using
he Filtered Poisson Processes (6) and reorganizing the solution, one
btains

(𝑥) = 1
𝐸𝐼

(

𝐺3(𝑥) −
1
6
𝐺0(𝑙)𝑥3 −

1
2
(

𝐺1(𝑙) − 𝑙𝐺0(𝑙)
)

𝑥2
)

. (A.7)
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