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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Microgrids based on renewable energies 
are a topic of growing interest today. 

• The EMS is crucial in microgrids, many 
authors designed an EMS for a 
microgrid. 

• There is a lack of systematization of this 
process, from modelling to EMS design. 

• This article develops a complete stan-
dard methodology for MPC-based EMS 
design. 

• The methodology has been tested and 
validated in different microgrid 
architectures.  
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A B S T R A C T   

This article focuses on the development of a general energy management system (EMS) design methodology 
using on model-based predictive control (MPC) for the control and management of microgrids. Different MPC- 
based EMS for microgrids have been defined in the literature; however, there is a lack of generality in the 
proposed that would facilitate adapting to new architectures, energy storage system technology, nature of the 
bus, application, or purpose. To fill this gap, a novel general formulation that is parameterizable, simple, easily 
interpretable, and reproducible in different microgrid architectures is presented. This is the result of the 
development of a novel methodology, which is also presented. It considers the state space formulation of the 
controller from the initial modelling phase, from the dynamics of the energy storage systems represented by their 
models to the subsequent definition of the optimisation problem. This is developed through the design of the 
general cost function and the formulation of constrains, by means of general guidelines and reference values. To 
evaluate the performance of the developed methodology, simulation tests were carried out for four different 
microgrid architectures, with different applications and objectives, also considering different generation con-
ditions, demand profiles, and initial conditions. The results showed that, with some simple guidelines and 
regardless of the case study, the developed MPC controller design methodology can address the technical- 
economic optimisation problem associated with energy management in microgrids in an easy and intuitive way.  
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1. Introduction 

A smart grid is a microgrid, formed by electrical generation sources, 
mainly renewable, an energy storage system (ESS), as well as a set of 
loads, and depending on the topology, the connection to the main 
electrical grid (MEG) [1]. The concept of smart grid intrinsically in-
cludes the word “intelligence”, so it is a microgrid that incorporates local 
control algorithms, as well as supervision, which allow guaranteeing the 
correct and optimal operation of each equipment [1]. 

Despite the benefits of the use of smart grids, there are currently a 
series of technical problems associated with the technology that need to 
be solved or mitigated so that they can be considered as a viable and 
competitive solution with respect to the current energy model [1]. In 
this sense, the stochasticity in the generation of renewable energy 
sources requires the use of energy storage system (ESS) that guarantee 
the energy balance in the case of energy mismatch between generation 
and demand [1]. 

Regarding ESSs, different technologies can be found such as battery 
energy storage systems (BSSs), supercapacitor energy storage systems 
(SCBs), hydrogen-based energy storage systems (HBSSs) or diesel gen-
erators (DGs), among others, as well as architectures, based on a single 
ESS or hybrid energy storage system (HESS) [2,3]. Despite the benefits 
of each technology, there are a number of technological problems 
related to the operating conditions, such as: the integration and man-
agement of the charging and discharging process of BSS/SCB, especially 

in topologies where the DC bus relies on their direct connection [4], the 
crossover effect or slow operating dynamics in electrolysers (ELECs) [1], 
as well as the electrochemical degradation during the cycles and hours 
of operation of fuel cells (FCs) [5] or the CO2 emissions in DGs [1]. 

To ensure the correct operation of smart grids, considering the design 
criteria, operating constraints, and technical problems to be solved, it is 
necessary to use energy management strategies (EMSs) [1]. This type of 
strategies has the function of defining which element, at what time and 
under what operating conditions will act according to technical and 
economic optimisation criteria, including parameters such as degrada-
tion, performance, load management, operation and maintenance cost, 
etc. Thus, the range of problems to be addressed by the microgrid con-
trol system is very broad. 

In terms of EMS, in the last decade the use of techniques based on 
optimal control has proliferated. This type of solution allows a multi- 
objective optimisation problem to be posed by defining a cost function 
to be minimised [6]. The resolution of the proposed control problem 
always allows guaranteeing the maximum utilisation of the energy 
resource, as well as optimising the system response according to the 
energy situation and state of the equipment. 

For implementation, although there are many optimisation tech-
niques that can be used for microgrid control, model-based predictive 
control (MPC) provides a general framework for solving most problems 
using some common ideas in an integrated way. MPC can respond to 
optimal control problems in multivariable systems subject to constraints 

Acronyms 

BoP Balance of plant 
BSS Battery-based storage system 
DG Diesel generator 
ELEC Electrolyser 
EMS Energy management system 
ESS Energy storage system 
EV Electric vehicle 
FC Fuel cell 
HBSS Hydrogen-based storage system 
HESS Hybrid energy storage system 
LTI Linear time invariant 
MEG Main electrical grid 
MEF Manipulable energy flow 
MPC Model-based predictive control 
non-MEF Non-manipulable energy flow 
non-MEF- Non-manipulable energy flow injected to the bus 
non-MEF+ Non-manipulable energy flow extracted from the bus 
O&M Operation and maintenance 
P2P Peer-to-peer 
PV Photovoltaic 
SCB Supercapacitor bank 
SMES Superconducting Magnetic Energy Storage 
SOC State of charge 

Symbols 
Cvar

i Variable cost MEFi (€/Wh) 
Cfix

i Fixed cost MEFi (€/h) 
Cstart

i Start cost MEFi (€) 
Cdegr

i Degradation cost MEFi (€/W2) 
CNj Energy capacity of ESSj (Wh) 
ESSj Energy storage system (j = {1,…, n}) 
H / H Maximum and minimum value of variable H (H=

{xl, Pi,ΔPi}) 
KPch/KPdis Coef. to battery related to charge/disc. power (V/W) 

KSOC Coef. to battery related to SOC (V/%) 
KVBUS Coef. to battery related to VBUS 
Loss Total losses of the microgrid (W) 
Lossi Variable losses depending on the power of MEFi 

LossBoP
i Balance of plant MEFi (W) 

n Number of ESS systems 
Nels/fc Case 4, number of active ELECs and FCs (integer) 
MEFi Manipulable energy flow (i =

{ch1, dis1,…, chn, disn, gridin, gridout}) 
Pi MEFi power (W) 
PnMEF− Total power non-MEF supplied by the microgrid (W) 
PnMEF+ Total power non-MEF injected into the microgrid (W) 
Pload Load power (W) 
PEV Electric vehicle power (W) 
PHA House appliance power (W) 
PHVAC Heat., ven., and air con. power (W) 
Pren Renewable power (W) 
PPV Photovoltaic power (W) 
PW Wind turbine power (W) 
PH Prediction horizon (h) 
rj
ch/dis Charge/discharge ratio ESSj (%/W) 

SOCj State of charge of ESSj (%) 
SOCini/end

j Initial and final state of charge of ESSj (%) 
Starti Start MEFi (binary) 
Ts Sample time (h) 
VBUS DC bus voltage (V) 
Vini

BUS Initial DC bus voltage (V) 
WTi Working time MEFi (binary) 
x(k) State variable (SOC1,…,SOCn,VBUS) 
ΔPi MEFi power variation (W) 
δPi MEFi increment power without on and/or off process (W) 
ηj

ch/dis Charge/discharge efficiency ESSj (%) 
vk Independent term related to VBUS model (V)  
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and disturbances, proposing a closed-loop control structure based on the 
concept of receding horizon [7]. This type of strategy allows the 
implementation of an on-line optimisation algorithm based on the cur-
rent system parameters, the model and their short-term prediction, 
defined by the prediction horizon (PH) [8]. In this sense, the incorpo-
ration of the future behaviour of the system is of crucial importance to 
optimise the use of microgrids [9]. 

The idea of applying MPC-based EMS is not new, in fact different 
MPC algorithms have been successfully tested in multiple microgrid 
architectures and applications [10]. However, the main problem lies in 
the lack of generality of the different formulations to be adapted to new 
architectures, ESSs or targets, in order to enhance the use of microgrids 
in multiple domains and scales. To systematise the review of the 
different MPC-based EMSs, the different works have been classified ac-
cording to the optimisation problem posed, Tracking MPC and Economic 
MPC. 

Tracking MPC proposes an optimisation problem that poses a state 
vector reference tracking problem to establish certain recommended 
operating conditions, while aiming to guarantee the power balance. 

Clear examples of these solutions are evaluated in [11–13] for 
renewable microgrids with HESS based on multiple BSSs and HBSSs over 
a DC bus modelled using hybrid linear time invariant (LTI) models. In 
particular, [11] proposes the use of an event-based Tracking MPC with 
several LTI-type models and pre-designed cost functions to increase the 
performance of the controller depending on the value of the state vector 
for office-type application. On the other hand, [12,13] propose a single 
MPC Tracking for use in stand-alone and grid-tie residential applications 
respectively. Regardless of the solution adopted, a weighted cost func-
tion is proposed for the tracking of reference values for SOCbat and 
SOCH2 considered optimal. The determination of these values does not 
respond to an analytical optimisation process but is carried out by means 
of previous simulations for different generation and consumption pro-
files and initial conditions in the microgrid under study. A more general 
solution is presented in [14], where a renewable microgrid model with 
HESS based on HBSS and BSS with direct connection to the DC bus is 
used. A general LTI model and weighted cost function are presented that 
integrates technical (SOCbat and SOCH2 reference tracking, bus voltage 
control, degradation minimisation, etc.) and economic (minimisation of 
the MEG power purchase/sale cost) objectives by proposing a hybrid 
Tracking and Economic MPC for short- and long-term optimisation of 
the microgrid. Despite its attempts to present a general problem, the 
parameter tuning process is based on heuristic rules implemented by a 
fuzzy controller. 

Even with proven performance, Tracking MPC-based EMSs define a 
multi-objective problem based on a particular weighted cost function, in 
which these weighting factors are often not easily interpretable, as they 
are not directly related to physical variables [15]. This means that their 
tune is complex, requiring a general tuning based on heuristic tech-
niques, which leads to a loss of generality in their design [15]. 

In order to make the optimisation problem more interpretable, the 
Economic MPC translates the control problem into a cost optimisation 
problem [16]. This allows the cost function to include only monetary 
cost terms, which makes it interpretable and at the same time homog-
enizes and standardises all the objectives to be achieved around the cost 
variable [16]. Thus, several works address the control problem based on 
Economic MPC for various microgrid architectures and applications. 

In [17,18] the use of an Economic MPC based on a hybrid LTI model 
is proposed for the management of an isolated microgrid with a HESS 
based on BSS and HBSS. The proposed cost function integrates variable 
costs for each ESSj linked to operation and maintenance (O&M) and 
depreciation costs for long-term system optimisation. Similarly, the use 
of an Economic MPC for the management of a distribution network 
based on microgrids with renewable generation and HESS based on BSS 
and microturbines is proposed in [19]. The proposed cost function in-
tegrates variable costs linked to the operating costs of the HESS and the 
energy flows between the different microgrids with the aim of 

guaranteeing a zero external energy balance of the distribution network. 
A more complex problem is addressed in [20]. In this case, the use of an 
Economic MPC is proposed for the optimal management of a DC 
microgrid with possible connection to the MEG, with multiple genera-
tion systems, renewable and non-renewable, and a HESS composed of 
BSS, SCB, microturbines and DG. The cost function has been designed to 
minimise the variable costs linked to the operating costs of the HESS, the 
costs linked to interruptions in the power supply to the demand (when 
operate in isolated-mode) and the net CO2 emissions of the microgrid. 

Again, despite the excellent results, these works lack the generality 
required for their correct application in microgrids with different ar-
chitectures and topologies. Thus, to solve this shortcoming, few works 
focused their efforts to try to present a general methodology for the 
design of EMS based on Economic MPC, from the modelling phase to the 
subsequent definition of the cost function and constraints. 

A first approach is presented in [20], which lays the foundations for 
the design of general EMSs based on Economic Distributed MPC. In 
particular, it establishes the design of general hybrid LTI-type models for 
a general microgrid architecture (with AC or DC bus) whose state vari-
ables are defined by its ESSs. Similarly, the optimisation problem is 
established by defining different cost functions and constraints 
depending on the type of application, connection to the MEG and type of 
generation, renewable or non-renewable. In view of the above, the 
definition of the cost function is not universal and therefore the pro-
posed methodology cannot be considered fully general. Something 
similar happens in the general methodology proposals presented in 
[21,22]. Unlike the previous work, these works consider a certain 
renewable DC microgrid architecture based on a HESS formed by BSS 
and HBSS. The innovation is based on the design and validation of 
general cost functions adapted to the proposed microgrid architecture 
for its correct management in applications linked to the daily and 
intraday market, peer-to-peer (P2P) as well as for electricity market 
regulation services. Again, these formulations lack generality as they 
only allow a restricted parameterisation of the problem either to the 
model or the cost function. 

From the literature review it can be deduced that the design of MPC- 
based EMS has grown exponentially in the last decade and is presented 
as a very powerful tool for the control of microgrids with very complex 
architectures in very demanding applications. However, there is a clear 
trend towards the design of very efficient and increasingly powerful 
control algorithms and models, but at the same time specific to a given 
microgrid architecture or application. Logically, this gives a lack of 
flexibility and generality to the algorithm, and therefore puts at risk the 
replicability of these techniques in other microgrid architectures and 
applications. 

In this sense, the formulation of a general MPC-based EMS must 
consider all the variables necessary for its definition. These include the 
architecture of the microgrid, the ESSs used, the connection to the MEG, 
the nature and method of DC bus integration (by power converter or 
direct connection of ESSs), as well as the constraints and the problem to 
be optimised, the minimisation of O&M and MEG costs, the control of 
DC bus voltage, the increase of ESS lifetime, etc. Based on the above, it is 
necessary to systematise and facilitate their application at different 
stages (model, optimisation problem, cost function, etc.), especially 
regarding the cost function to be optimised. 

On the basis of the analysis carried out, the main contributions of the 
paper can be summarised as follows:  

• Development of a standard methodology for the design of a control- 
oriented state space model for smart grids. This methodology is 
applicable regardless of its architecture, the ESS system, the nature of 
the internal bus, AC or DC, and its connection to the ESS, by power 
converter or direct connection. 

• Development of a general EMS-based MPC methodology (with eco-
nomic optimisation), which is parameterizable, simple to implement, 
easily interpretable and reproducible for different microgrids. This 
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methodology applies regardless of application, scale, architecture 
(with or without ESS-supported DC bus), or microgrid configuration.  

• The applicability and generality of the developed methodology has 
been tested and validated in different case studies for different scales, 
architectures and microgrid applications. 

Finally, to highlight the novelty of this research, Table 1 summarises 
its main characteristics in comparison with the analysed literature. 

The rest of the article is organised as follows. Section 2 describes the 
proposed methodology for general microgrid modelling considering its 

architecture and integration method. Section 3 develops the general 
formulation of the MPC-based EMS. Section 4 performs the validation of 
the proposed modelling and EMS design methodology and discusses the 
results for four different microgrids architectures and applications under 
study. Finally, Section 5 presents the main conclusions and future lines 
of work. 

Table 1 
Summary of MPC-based modelling and EMS solutions found in the literature compared to the authors’ proposal.   

Microgrid Architecture and Model MPC-based EMS 

Ref. General 
development 

Bus Topology General 
development 

DC Bus voltage 
control 

Parameterization Multi-application 
validation 

[11–13] State-Space 
Hybrid LTI 

model 

DC bus Tracking MPC No No No 
Residential and office- 

type application 

[14] State-Space 
LTI model 

DC bus and ESS-supported 
DC bus 

Tracking MPC Yes 
Yes 

Model, cost function and weighting 
factors 

No 
Residential application 

[17,18,20] 
State-Space 
Hybrid LTI 

model 
DC bus Economic MPC 

Cost index 
No No No 

Residential application 

[19] 
State-Space 
Hybrid LTI 

model 
AC bus 

Economic MPC 
Cost index No No 

No 
Distribution network 

application 

[20] 
State-Space 
Hybrid LTI 

model 
AC bus and DC bus Economic MPC 

Cost index 
No 

Yes 
Model cost index and constraints 

(Restricted parameterisation) 

No 
Secondary regulation 

[21,22] 
State-Space 
Hybrid LTI 

model 
DC bus Economic MPC 

Cost index 
No 

Yes 
Model cost index and constraints 

(Restricted parameterisation) 

Yes 
Primary regulation 

Secondary regulation 
P2P 

Authors’s 
approach 

State-Space 
Hybrid LTI 

model 

AC bus, DC bus and ESS- 
supported DC bus 

Economic MPC 
Cost index 

Yes Yes 
Model, cost index and constraints 

Yes 
Residential application 
EV charging application 
Industrial application 
Secondary regulation  

Fig. 1. Example of general microgrid architecture with multiple ESSs.  
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2. Microgrid model 

2.1. Microgrid architecture 

To implement a general model for the development of MPC-based 
EMSs, a microgrid with a general architecture is considered for the 
modelling process (see Fig. 1). This architecture can characterise many 
microgrids, regardless of the energy sources, renewable or non- 
renewable, the system loads, the ESSs used, the connection or not to 
the MEG, the nature and method of bus connection, etc. In microgrid 
architectures whose DC bus relies on the direct connection of ESSs, it is 
assumed that, at most, a single ESS is directly connected to the bus [23]. 

Regardless of the architecture and nature of the constituent elements 
of the microgrid under study, to guarantee the generality of the model, a 
homogenisation is required in the definition of the dynamics of each 
element with respect to a common variable, in this case, with respect to 
the power or electrical energy. Therefore, each element, and ultimately 
the microgrid, can be modelled according to the energy flows that each 
element exchanges with the bus in each sampling period. 

Obviously, some of these energy flows can be manipulable (MEF) 
and others non-manipulable (non-MEF). 

On the one hand, non-MEFs are defined as energy flows that a priori 
are not controllable, or whose control is partial or limited, as in the case 
of local controllers oriented to maximise the use of renewable energy 
generation. The values of these powers in the optimisation process are 
assigned by predictions. Non-MEFs will be classified according to 
whether they are demanded from the microgrid (non-MEF-, for example, 
the power of loads) or supplied to the microgrid (non-MEF+, e.g., power 
generated from renewable energy sources). 

On the other hand, MEFs guarantee the power and energy balance in 
the bus in the face of mismatches between generation and demand, and, 
therefore, provide certain degrees of freedom in the optimisation of the 
energy management problem. The EMS calculates the powers of the 
MEFs. Therefore, MEFs will be given by the charging or discharging 
processes of the ESSs (batteries, supercapacitors, HBSS, etc), and the use 
of the MEG, when considering a grid-connected architecture. 

Based on the above, any microgrid architecture, regardless of its 
complexity, can be represented as a set of MEFs (associated with ESSs 
and MEG) and non-MEFs (associated loads and renewable generation), 
as shown in Fig. 2. This will be the starting point for the definition of the 
microgrid model in the next sections. 

2.2. Modelling 

Once the generic architecture has been defined, Fig. 2, it is necessary 
to define the microgrid model, which must satisfy certain requirements 
of accuracy and computability to favour its application in real 
microgrids. 

In view of the above requirements, although a nonlinear model al-
lows, a priori, to obtain a more accurate model of the dynamics of the 
microgrid, given that most of its constituent elements have a nonlinear 
behaviour, this can turn the optimisation problem into a very complex 

problem, especially if it is considered that the microgrid can be defined 
by a very complex architecture [14]. Therefore, the design of EMS based 
on this type of model requires algorithms specially designed to address 
nonlinear optimisation problems, which, depending on the nonlinear 
nature of the model, can make the optimisation problem unsolvable or 
computationally intractable for the design of online MPC control stra-
tegies [24]. 

On the other hand, although the use of linear LTI models facilitates 
their computation, since they allow implementing linear control theory, 
they can present a low accuracy, since the dynamics or behaviour of the 
ESSs during the charge and discharge processes is different, for example, 
different charge and discharge performances in batteries, different dy-
namics and operation of ELECs and FCs in HBSSs, etc. 

Therefore, it is necessary to transform or adapt the above modelling 
option so that it can be used in the control strategy. Thus, the proposed 
alternative is based on approximating the nonlinear model by a piece-
wise linear model in which the behaviour of the different MEFj can be 
separated depending on the direction of the power flows. For this 
reason, the charging power (Pchj ) and discharging power (Pdisj ) of all ESSj 

are unfolded as Pj = Pdisj − Pchj , as well as the power purchase (Pgridin) 
and sale (Pgridout) of energy to the MEG as Pgrid = Pgridin − Pgridout. 

Based on the proposed modelling philosophy, the following sections 
will present the methodology for obtaining the general model of the 
microgrid, based on the modelling of the ESSs of the microgrid, the DC 
bus voltage (VBUS), when its control is necessary, and finally, the bus 
power balance, which governs the operation of the microgrid, inde-
pendent of its connection to the MEG. 

2.2.1. Energy storage system 
Currently, there are different ESS technologies for use in microgrids, 

in particular, ESSs defined by different battery technologies, super-
capacitors, magnetic superconductors, HBSSs, compressed air systems, 
etc., have been reported in the scientific literature. Regardless of the 
technology, their dynamics can be defined as a discrete-time first-order 
integrator with respect to state of charge (SOC) according to (1), [25]. 

SOCj(k+ 1) = SOCj(k)+
ηj(k)⋅Ts

CNj
Pj(k) (1) 

Where ηj, CNj and Pj are the efficiency, rated capacity, and power of 
the ESSj respectively and Ts is the sample time. 

According to the modelling criterion based on piecewise linear 
model, in all ESSs the MEFs are unfolded depending on the energy flow 
direction. Thus, the power of any ESS is obtained from the combination 
of the power of the different MEFs: Pj = Pdisj − Pchj . Since these MEFs can 
be mutually exclusive, binary variables, and constraints must be added 
in the MPC definition to avoid both operating simultaneously (see Sec-
tion 3.2). Thus, if ESSj is in charging mode: Pchj ≥ 0 and Pdisj = 0, and, on 
the other hand, if ESSj is in discharging mode: Pdisj ≥ 0 and Pchj = 0. 
Similarly, if it is considered, in general, that the performance of the 
charging and discharging process, ηj

ch and ηj
dis respectively, are different, 

Eq. (1) can be described according to (2), [9]. 

SOCj(k+ 1) = SOCj(k)+ rj
ch⋅Pchj (k) − rj

dis⋅Pdisj (k) (2) 

Where the charging and discharging ratios for each ESSj, rj
ch and rj

dis 
respectively, are defined in (3). 

rj
ch =

ηj
ch

CNj
⋅Ts; rj

dis =
1

ηj
dis⋅CNj

⋅Ts (3)  

2.2.2. Direct current bus voltage 
Considering the generality of the proposed model, there are micro-

grids with DC buses supported by the direct connection (without the use 
of a power converter) of an ESS, usually a BSS and/or a SCB [23] (see 
ESS1 in Fig. 1). This particular type of microgrids require DC bus voltage 

Fig. 2. Generic microgrid architecture.  
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control, with the objective of guaranteeing an operating voltage range 
for the microgrid interconnection, while performing the ESS charging 
and discharging process correctly, safely and with the least possible 
negative impact in terms of degradation [4]. 

Thus, when it is desired to manage this type of microgrids, it must be 
considered that, in the absence of a power converter, the ESS power, and 
secondly, the bus voltage, cannot be imposed directly. However, the 
imposition of power setpoints of the rest of the ESSs and MEGs, and the 
guarantee at all times of the power balance, indirectly leads to the 
definition of the ESS power and voltage setpoints. 

In view of the above, for the management of this type of topologies, it 
is important to have the bus voltage (VBUS) to proceed to its control, for 
example, by setting equality or inequalities constraints to keep the 
voltage between maximum and minimum limits. 

For VBUS modelling, there are many works in the scientific literature 
that allow modelling the dynamic voltage behaviour of batteries or 
supercapacitors [26]. Many of them are nonlinear models, as is the case 
of the electrochemical models of Tremblay [27] or Copetti [28] for 
battery voltage modelling. Other examples of control-oriented linear 
models are based on the use of first- or second-order Thevenin equiva-
lent circuits for modelling both batteries and supercapacitors 
[26,29,30]. 

Regardless of the model used, the different formulations allow 
modelling the voltage dynamics with respect to the stored energy (SOC), 
the charge or discharge energy, and, depending on the model, the in-
ternal temperature [31,32]. In view of the above, if the thermal effect of 
the models is neglected, and from the development of the differential 
equations governing linear models, or from the linearization of non- 
linear models, a general linear VBUS model can be defined according to 
Eq. (4), [14]. 

Eq. (4) is formulated from non-linear models that reflect the 
behaviour of a battery-based energy storage system. Specifically, for a 
battery, regardless of the technology used, the dynamics of its voltage is 
given as a function of the SOC, the charging or discharging power, and, 
logically, if the equation that models it is discrete, the voltage value in 
the previous sampling period. Since these this type of non-linear models 
are very complex, require the design of non-linear controllers, and are 
rarely needed (unless a specific battery test is being performed, in a 
microgrid, the SOC of the battery-based energy storage system must be 
kept in a relatively short and controlled range, without large dynamic 
excursions), the solution adopted has been the use of linear models 
based on the approximation by means of a first order Taylor polynomial. 

Thus, for the case under study, in which the DC bus is supported by 
the direct connection of a battery bank, its voltage (VBUS(k + 1)) can be 
determined from the partial derivatives with respect to SOC(k), Pch(k), 
Pdis(k) and VBUS(k), in the non-linear equation that defines the model. 
These partial derivatives determine the value of the coefficients KVBUS , 
KSOC, KPch, KPdis, and, if applicable, the independent term resulting from 
the linearisation process, vk. 

In this case, Eq. (4) includes this general linear approximation, which 
may be obtained from the non-linear model to be applied, depending on 
the type of battery or application. 

VBUS(k+ 1) ≈ KVBUS

• VBUS(k)+KSOC⋅SOCj(k)+KPch⋅Pchj (k) − KPdis⋅Pdisj (k)+ vk

(4) 

Where KVBUS , KSOC, KPch and KPdis are the battery coefficients of VBUS, 
SOCj, Pchj and Pdisj respectively, and vk is the independent term result of 
the linearization process. 

2.2.3. Power balance 
The general architecture of the microgrid is shown in Fig. 2. 

Regardless of its architecture or complexity, the microgrid must provide 
the non-manipulable energy flows supplied by the microgrid, i.e., all 
non-MEF- (e.g., the load power Pload cannot be controlled from the 
microgrid). For this purpose, the microgrid relies on all non-controllable 
generation units, non-MEFs+, e.g., renewable generation (Pren), as well 
as the contribution of MEFs, composed of ESSs (Pj), and if applicable, 
MEG (Pgrid). Based on the above, if energy conversion and transport 
losses and auxiliary consumption are considered (Loss), the microgrid 
must satisfy the power balance according to Eq. (5) [9]. Of course, in 
isolated architectures, Pgrid term is zero. 

According to the established criterium, the powers associated with 
MEFs (Pgridin, Pgridout , Pchj and Pdisj∀ESSj) and non-MEFs (PnMEF+, PnMEF− ) 
are individually positive. However, for the definition of the power bal-
ance, Eq. (5), the powers injecting and extracting power to the microgrid 
must have opposite sign. Therefore, it has been considered that the 
powers injected into the DC bus (Pgridin,Pdisj and PnMEF+) add up with a 
positive sign; conversely, the powers extracted from the DC bus 
(Pgridout ,Pchj and PnMEF− ) are added with negative sign to the power 
balance (Eq. (5)). In the case of the MEFs power (Pj and Pgrid), the sign is 
determined by the direction of power flow defined above 
(Pgrid = Pgridin − Pgridout and Pj = Pdisj − Pchj , following the same criteria). 
Of course, in both Pgrid and Pj it is necessary to prevent the optimisation 
from proposing a value in the two variables that compose them simul-
taneously. Restrictions are added to ensure that this cannot happen 
(please see details in Section 3.2. Restrictions). 

Thus, based on (5), when PnMEF+ > PnMEF− there is surplus energy in 
the bus. This surplus energy can be used, regardless of the process, for 
storage in the ESSs, or to obtain an economic benefit by selling energy to 
MEG, when possible. On the other hand, when PnMEF+ < PnMEF− there is 
an energy deficit in the bus. This energy deficit can be made up by 
discharging energy from the ESSs, or by purchasing energy from MEG, 
when possible. 

PnMEF+ − PnMEF− − Loss(k) +Pgrid(k) +
∑n

j=1
Pj(k) = 0 (5) 

In this case, the Loss(k) term includes all the total losses of the 
microgrid not previously considered, according to Eq. (6). This term 
does not include the losses related to the efficiencies in the different ESSj 

since they have already been considered in Eq. (2). Similarly, this term 
will not include the losses related to the non-MEFs, since by considering 
the net energy flows with respect to the bus (PnMEF+ and PnMEF− ), these 
losses have already been considered in the respective non-MEFs+ and 
non-MEFs- terms. 

Loss(k) =
∑|MEF|

i=MEF
Lossi(k)⋅Pi(k)+ LossBoP

i ⋅WTi (6) 

Where LossBoP
i and Lossi are the balance of plant (BoP) and the vari-

able losses of MEFi respectively, and WTi is a binary variable defining 
the working time of MEFi. The MEFi can inject (i = {dis1,…, disn, gridin}) 
or extract energy (i = {ch1,…, chn, gridout}) to the microgrid. WTi = 1 if 
the MEFi injects or extracts energy, i.e. if it operates; and WTi = 0 if the 
MEFi does not inject or does not extract energy, i.e. if it does not operate. 

According to Eq. (6), Loss(k) is defined by two types of losses, vari-
able and fixed. Thus, the first term models the variable power losses as a 
function of the power Pi. These variable losses are associated with the 
rest of the subsystems that are not modelled, such as the power con-
verters or the power transmission lines and connections. These elements 
have variable losses as a function of the power consumed or generated 
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by the different devices in the microgrid, in short, these losses depend on 
the power of the MEFs. 

The second term models the fixed losses known as LossBoP
i . These 

losses are associated with the consumption of auxiliary equipment that 
must be provided by the microgrid and are required for the correct 
operation of the MEFs. Perhaps the clearest example of these losses may 
be the consumption associated with the BoPs of HBSSs. These systems 
are in turn made up of several subsystems: pumps, controllers, valves, 
etc., which normally have a fixed energy consumption, independent of 
the power consumed/generated by the HBSS. Other examples can be 
considered, such as the consumption of auxiliary monitoring systems for 
battery management or other ESSs. In view of the above, these losses 
will only be considered when the MEFi is providing or generating power 
(WTi = 1). Otherwise, these losses will be zero (WTi = 0). 

2.2.4. Microgrid model 
Since the nature of the ESSs represent the dynamic component of the 

microgrids, their models are generally formulated as state-space equa-
tions, according to the general model shown in (7) [9], where the state 

variables x(k) coincide with the SOCj of each ESSj

(
[SOC1…SOCn]

T
)

, 

whose behaviour is defined by a first-order integrator according to Eq. 

(2). Therefore, a state-space model is a good alternative for modelling 
microgrids to be controlled by an MPC. Likewise, due to the generality of 
the model, VBUS can be integrated in the state vector in those microgrid 
architectures and applications that require it. 

Finally, the outputs will coincide with the states, y(k) = x(k), and the 
manipulated variables (u(k)) will be the charge/discharge powers of 
each ESSj (

[
Pch1 Pdis1 …Pchn Pdisn

]T). 

x(k+ 1) = Ax(k)+Bu(k)+ d  

y(k) = x(k) (7) 

Thus, considering (2)–(4), according to the general expression (7), 
the general state-space model of any microgrid, with a discrete number n 
of ESSs, regardless of its architecture, nature of the ESS or bus connec-
tion, responds to Eq. (8). In microgrid architectures whose DC bus is 
supported by the direct connection of ESSs, it is assumed that, at most, a 
single ESS is directly connected to the bus (ESS1). Of course, this 
ordering is not mandatory and, therefore, both the state and input ma-
trix (A and B respectively) can be adapted depending on the position of 
the ESS supporting the DC bus without no loss of generality.   

Thus, based on the general formulation (8) and the general archi-
tecture defined in Fig. 2, to define the dynamic model of a specific 
microgrid, the procedure described in Fig. 3 should be followed. 

First, the number of ESSs must be identified, and a new integrator 
must be added to the model for each ESSj. Likewise, for each ESSj, its 
characteristic parameters will be defined according to the model pro-
posed in Table 2. Specifically, for each ESSj its nominal capacity CNj (in 
Wh) and its charging and discharging performances (ηj

ch and ηj
dis 

respectively) will be defined, in order to calculate its charging and dis-
charging ratios, rj

ch and rj
dis (according to eq. (3)). 

Finally, the bus connection method will be evaluated, and in those 
cases where the microgrid architecture requires it, VBUS will be inte-
grated as a new state variable in the model. To obtain it, the desired ESS 
model can be used, requiring the necessary procedures to obtain a linear 
model according to the general Eq. (4). Similarly, for its formulation, the 
characteristic parameters will be defined according to the proposed 
Table 2. 

Fig. 3. Flow chart for the definition of the microgrid model.  

Table 2 
Necessary parameters for the definition of the microgrid model for n ESSs and 
DC bus supported by ESS.  

ESSs Parameters 

ESS1  ESSn 

CN1 η1
ch η1

dis 
⋯ CNn ηn

ch ηn
dis 

DC bus Parameters (if VBUS) 
KVBUS KSOC KPch KPdis vk  

⎡

⎢
⎢
⎣

SOC1(k + 1)
⋮

SOCn(k + 1)
VBUS(k + 1)

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞ x(k+1)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
(n+1,1)

=

⎡

⎢
⎢
⎣

1 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 1 0

KSOC 0 ⋯ KVBUS

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
A

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
(n+1,n+1)

⎡

⎢
⎢
⎣

SOC1(k)
⋮

SOCn(k)
VBUS(k)

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅ ⏞ x(k)

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
(n+1,1)

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r1
ch − r1

dis ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ rn

ch − rn
dis

KPch − KPdis 0 ⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
B

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
(n+1,2n)

⎡

⎢
⎢
⎢
⎢
⎣

Pch1 (k)
Pdis1 (k)

⋮
Pchn (k)
Pdisn (k)

⎤

⎥
⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅⏞ u(k)

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
(2n,1)

+

⎡

⎢
⎢
⎣

0
⋮
0
vk

⎤

⎥
⎥
⎦

⏞̅̅ ⏟⏟̅̅ ⏞
d

⏟̅̅̅⏞⏞̅̅̅⏟
(n+1,1)

(8)   
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3. Model predictive control based energy management system 

The EMS decides at all times and based on objectives, the MEF that 
must be supplied or consumed by the different devices of the microgrid 
to be managed. In this work, an MPC is proposed for the design of the 
EMS of a microgrid. The MPC is a strategy based on the optimisation of a 
cost function, which makes use of a process model and some predictions 
of the non-MEF to evaluate the effect of the control action on a plant 
along the prediction horizon. 

A widely used approach in the literature for solving an MPC-based 
EMS, computationally manageable, is the definition of a mixed integer 
programming (MIP) problem using integer and/or binary variables 
[33,34]. The inclusion of integer or binary variables allows scenario 
changes while maintaining simplicity in the model. When these prob-
lems have a linear cost function it results in a mixed integer linear 
programming (MILP) [33,35–37, when they have a quadratic cost 
function it results in a mixed integer quadratic programming (MIQP) 
[9,38]. In both cases there are very efficient and consolidated software 
for its resolution [32]. 

Therefore, once the model has been defined (see Section 2), to define 
MPC-based EMS it is necessary to:  

• Define a cost function J to be optimised by the MPC. 
• Define a prediction horizon PH suitable to optimise energy man-

agement and operation of ESS.  
• Define the physical and operational constraints of the microgrid. 

In an MPC-based EMS, the definition of the cost function to optimise 

is a key point. However, the definition of this cost function is not a trivial 
task. In the literature there are different articles in which the authors 
propose a particularized cost function depending on their preferences, as 
well as the application and architecture of the microgrid under study 
[21–23]. In many cases, their implementation requires the definition of 
weighting factors that lack physical meaning and are difficult to inter-
pret and tune, even with a thorough knowledge of the microgrid [38]. 
Therefore, to improve its practical application in an MPC-based EMS it is 
relevant to have a cost function that combines the criteria of generality 
and extrapolability for its easy extension to other microgrids, inter-
pretability by using physically meaningful parameters, and finally, 
standardisation, to avoid the use of weighting factors. 

Therefore, this section presents a methodology for the design of a 
generic MPC-based EMS, parameterizable, simple and with an easily 
interpretable cost function. It should be noted that this methodology can 
be extrapolated to other microgrid structures. 

First, it is necessary to correctly define the PH. In a microgrid, 
especially with photovoltaic (PV) generation, there is usually a daily 
repetitive cyclic behaviour. For example, during the day there is a high 
solar resource, which usually leads to excess energy on the bus. How-
ever, in the afternoon/evening the solar resource is low or non-existent, 
which often results in an energy deficit situation. In addition, it is 
common that consumption patterns also follow daily patterns. For 
example, in a residential application, during the morning hours con-
sumption is usually low because no one is at home, while in the after-
noon and evening consumption increases considerably due to increased 
family activity. Therefore, to optimise this type of architecture and 
application of microgrids, it seems reasonable to define a PH = 24h, as it 
allows to optimise a complete cycle. Of course, the PH can be adapted 
depending on the microgrid architecture or application under study. 

Once the PH is defined, it is necessary to design the MPC. To carry 
out this design, the flowchart shown in Fig. 4 is defined. Thus, for each 
MEFi, and considering both directions of energy flow, if applicable, the 
designer must define its costs (see Section 3.1), constraints and losses 
(see Section 3.2). Thus, the cost function J to be optimised is defined. 
Once all the MEFs are defined, it is necessary to define the boundaries of 
the microgrid state variables. Finally, the prediction profiles of the non- 
MEFs are defined. 

3.1. Cost function 

A generalised cost function to be optimised by the MPC is proposed 
where all the terms are associated to an economic cost (in this case in €), 
Eq. (9). In this way, the units of all the summands are equal, with 
physical sense, being more intuitive for the designer. This function uses 
the information for each sample time of the PH, as well as for each MEF 
of the microgrid. 

J =
∑PH

k=1

∑|MEF|

i=MEF
Cvar

i (k)⋅Pi(k)⋅Ts +Cfix
i (k)⋅WTi(k)⋅Ts +Cstart

i (k)⋅Starti(k)

+Cdegr
i (k)⋅δP2

i (k)
(9) 

Where Cvar
i , Cfix

i , Cstart
i and Cdegr

i are user-defined costs, WTi, Starti and 

Fig. 4. Flow chart for the definition of the MPC.  

Table 3 
Designer-defined costs for n ESS.  

MEFi Cvar
i Cfix

i 
Cstart

i Cdegr
i 

ch1     

dis1     

⋮     
chn     

disn     

gridin     
gridout      

A. Pajares et al.                                                                                                                                                                                                                                 



Applied Energy 351 (2023) 121809

9

δPi are decision variables and are defined in the following subsections. 
The proposed approach aims to facilitate the definition of the MPC. 

All the MEFs involved in the microgrid can have the same type of costs 
(variable, fixed, start-up and degradation). Thus, for any microgrid ar-
chitecture it is necessary to define for each MEFi the following cost 
terms: variable cost Cvar

i , fixed cost Cfix
i , start-up cost Cstart

i and degra-
dation cost Cdegr

i . 
Therefore, for a generic microgrid, the user should define the costs 

seen in Table 3. It should be noted that many of these costs may be zero. 
If the microgrid is modified, for example, by the appearance of a new 
ESS (supercapacitor, etc.) the index is maintained. In this case, it is only 
necessary to define the costs associated with the new MEF (new row for 
the charging and discharging process in Table 3). 

3.1.1. Variable cost 
A variable cost Cvar

i in €/Wh is defined, which determines the cost per 
Wh consumed, and by its definition, this cost is proportional to the 
operating power (Pi) of each MEFi, see Eq. (9). Variable cost typically 
models those terms associated with the cost of energy, consumption of 
operating power-dependent supplies, the O&M cost per Wh, the depre-
ciation cost per Wh or cost associated with CO2 emissions. 

Some general considerations for the definition of cost of energy 
depending on the microgrid architecture are the following: this term is 
associated with the cost of energy generated/consumed externally to the 
microgrid necessary to carry out the charging/discharging processes of 
the ESSs, or the purchase/sale of energy in the case of the MEG. In this 
sense, if it is considered that the energy used entirely for the charging/ 
discharging processes of a certain ESSj is contemplated in the power 
balance according to Eq. (5), or that the energy not contemplated is 
negligible, its operation does not derive costs of energy. A clear example 
occurs in microgrids that have HBBSs in which the cycle of production 
and storage of H2 for subsequent use is carried out entirely from the 
surplus energy in the bus. Thus, Cvar

chH2 
and Cvar

disH2 
for HBBs can be zero (or 

negligible) [38–41]. Otherwise, these costs must be considered. 
Finally, the use of MEG, when applicable, always has a variable cost 

due to the price of energy [36]. The purchase of energy from the grid has 
a cost in €/Wh, and logically, the higher the power consumed, the higher 
the term Cvar

i ⋅Pi in the cost function. These variable costs will always be 
positive in any MEFi (economic cost), except in the sale of energy to the 
MEG where an economic benefit will be obtained. Therefore, Cvargridout is 
the only negative variable cost (although it is defined positive in Table 3, 
it must be negative in the equations). 

In addition, Cvar
i may include variable costs associated with the 

consumption of operating power-dependent supplies. An example of this 
is given in HBSSs where the cost of water and oxygen gas consumption 
by ELECs and FCs respectively can be considered. 

Similarly, the variable cost may aggregate all those costs associated 
with O&M tasks required after a given MEFi generates/consumes a given 
power. For example, BSSs may need to perform certain maintenance 
tasks after a certain number of charge or discharge cycles (i.e. a certain 
number of Wh) [38–41]. Thus, the O&M cost per Wh is calculated as the 
quotient between the cost and the number of Wh after which these tasks 
are performed. This is not the case for HBSSs for which the O&M costs 
per hour of operation are usually considered (as fixed costs, see Section 
3.1.2). Similarly, the operation of the MEG does not derive O&M costs. 

Analogously, Cvar
i can include terms associated with depreciation 

cost. Thus, for example, battery lifetime is given by manufacturers as a 
number of charge/discharge cycles [42,43]. Thus, it is possible to 
calculate the battery cost per Wh extracted/stored in the BSSs (directly 
proportional to the number of cycles). The same applies to any other 
ESS. 

Finally, in microgrid architectures where fossil fuel-based MEFi exist, 
this cost can also model the cost associated with CO2 emissions. 

3.1.2. Fixed cost 
The fixed cost Cfix

i in €/h is the hourly operating cost for a given MEFi, 
and by its definition, is independent of its operating power, see Eq. (9). 
To consider this cost, the binary variable working time WTi of each MEFi 
is defined. This decision variable indicates whether a given MEFi pro-
duces/consumes energy, in short, whether it is operating. Thus, the 
product Cfix

i ⋅WTi produces an economic cost when the MEFi produces/ 
consumes energy (WTi = 1). If the MEF does not produce/consume 
energy, this product will not produce any cost (WTi = 0). 

Fixed cost can be mainly due to two types of costs, fixed O&M and 
depreciation costs per operating h. Some general considerations for the 
definition of O&M costs depending on the microgrid architecture are the 
following: during the operation of BSSs and MEG, fixed O&M costs are 
not usually contemplated (or they are considered negligible) [39]. In 
contrast, these costs are usually considered in the operation of HBSSs 
[42,43]. Examples are the costs associated with detecting H2 leaks in 
tanks or pipelines during operation or checking cell voltages in FCs 
every few hours of operation. For this term, once the system is on, the 
power at which the system operates is indifferent. 

Finally, Cfix
i can also contemplate the depreciation cost. For example, 

normally the HBSS has several operating hours with acceptable perfor-
mance (e.g., with a degradation of <20%) [42,43]. In this case, it is not 
relevant the power at which these systems work, but the operating 
hours. Thus, it is possible to calculate the depreciation cost as the quo-
tient between acquisition cost and number of acceptable operating 
hours. 

3.1.3. Start-up cost 
A start-up cost Cstart

i in €/W2 is defined. This cost will only be 
considered at the instant when a given MEFi goes from a non-operating 
condition (does not supply/consume energy) to supplying/consuming 
energy (Starti = 1), in short, starts operating. In this case, the binary 
variable Starti(k) indicates whether a given MEFi switches from not to 
provide/consume energy to produce/consume energy at instant k: 
Starti (k) = WTi(k)⋀ ∼ WTi(k − 1). 

The start-up cost is usually related to the cost of starting up a system 
and the possible degradation costs resulting from this operation. 

Some general considerations for the definition of start-up costs 
depending on the architecture of the microgrid are the following: during 
the operation of BSSs and MEG, start-up costs are not usually contem-
plated [39]. However, these costs are usually considered in the opera-
tion of HBSSs [9]. 

Similarly, Cstart
i can also integrate certain degradation costs associ-

ated with the repetitive start-up and shut-down processes of MEFs. 
Perhaps the clearest example is the considerable degradation suffered in 
HBSSs (mainly in FCs) during start-up and shut-down processes due to 
various electrochemical phenomena [44,45]. Thus, it is possible to add 
in this cost a term related to this issue. 

3.1.4. Degradation cost 
A degradation cost Cdegr

i in €/W2 is defined. This cost penalises the 
degradation associated with variations in operating power for a given 
MEFi of the microgrid, since these fluctuations can cause them to 
degrade greatly, e.g., in the case of HBSSs [9]. Then, Cdegr

i is related to 
degradation cost due to power fluctuations. 

Therefore, this term seeks to prevent these systems from operating 
with fluctuating power profiles, to favour smooth operation around their 
nominal or optimum operating power, at which they normally reach 
their highest efficiency. To this end, it is desirable to allow the system to 
reach this condition quickly. Based on the above, it is necessary not to 
penalise power variations during the start-up (minimum time needed for 
a system to reach its nominal/optimal power) and shut-down process (if 
desired). Thus, during the start-up process, it should be free to reach 
nominal power without penalising the cost function. Once the start-up 
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process is complete, the fluctuations in operating power can be penal-
ised. For this reason, the power variation δPi (see Eq. (10)) is defined as 
the variations in operating power ΔPi at every sample time except during 
the start-up process. 

δPi = ΔPi⋅Yi.

Where: 

Yi = (WTi(k) ∧ WTi(k − 1) ∧ … ∧ WTi(k − NTsi) ) (10) 

Where NTsi is the number of sampling periods necessary for the MEFi 

to reach nominal power (start-up process), and “∧” refers to the logical 
operation “and” between binary variables. The start-up process can last 
1 or several sampling periods. For example, suppose the electrolyzer 
(MEFels) has a start-up process of 3 sampling periods. In this scenario, 
δPels = ΔPels⋅(WTels(k)⋀WTels(k − 1)⋀WTels(k − 2)⋀WTels(k − 3) ). Once 
the electrolyzer is turned on, in the following three samples, its varia-
tions will not be penalised (δPels = 0 due to WTels(k − 3) = 0). At sam-
pling k, the electrolyzer turns on, and, therefore, WTels(k) = 1, 
WTels(k − 1) = 0, WTels(k − 2) = 0 and WTels(k − 3) = 0 (δPels = 0 
because Yels = 0). At sampling k+ 1: WTels(k) = 1, WTels(k − 1) = 1, 
WTels(k − 2) = 0 and WTels(k − 3) = 0 (δPi = 0 because Yels = 0). At 
sampling k+ 2: WTels(k) = 1, WTels(k − 1) = 1, WTels(k − 2) = 1 and 
WTels(k − 3) = 0 (δPi = 0 because Yels = 0). Finally, at sampling k + 3 
(three sample times after power on): WTels(k) = 1, WTels(k − 1) = 1, 
WTels(k − 2) = 1 and WTels(k − 2) = 1 (Yels = 1). From this point on, 
power increases will be penalised: δPels = ΔPels⋅Yels. 

In this sense, it is necessary to consider that adding the cost term Cdegr
i 

to MEFs with start-up processes of several sampling periods considerably 
increases the number of variables and constraints in the optimisation 
problem. In the proposed cost function, Eq. (9), δPi is squared to penalise 
positive and negative increments indistinctly, and therefore, the 
consideration of Cdegr

i leads to a quadratic optimisation problem (QP). 
Finally, as for the previous cost terms, certain considerations can be 

established based on the MEFs commonly used in microgrids. For 
example, it is common to consider that during the operation of BSSs and 
MEG, degradation costs are not considered (or are considered negligible 
in the case of BSSs) [39]. In contrast, degradation costs can be consid-
ered in the operation of HBSSs [9]. 

3.2. Constraints 

A microgrid must always satisfy the non-MEF- (e.g., Pload) from the 
power generated by the non-MEF+ (e.g., Pren) and the power provided 
by the MEFs, in short, guarantee the power balance according to (5). To 
this end, in practice, there are physical and operational constraints that 
must be considered in the operation of any device. Therefore, once the 
control-oriented model and the cost function have been defined, it is 
necessary to define in general terms the constraints that will determine 
the operation of the microgrid. Based on the above, a set of physical and 
operational constraints will initially be established for the control var-

iables. 
The first constraints are usually associated with physical limits 

imposed by each MEFi, such as a minimum or maximum power limit that 
they can never exceed (Pi ≤ Pi ≤ Pi). Similarly, some operating con-
straints can be defined to establish certain constraints on the operation 
of certain MEFi. For example, it is possible to limit the power variation of 
a MEFi 

(
ΔPi ≤ ΔPi ≤ ΔPi

)
. This restriction may not be related to a 

physical limit, but is advisable in some ESSs, where fluctuating power 
profiles may lead to excessive degradation. 

Analogously, certain constraints must be established with the 
objective of establishing which operation process is carried out at each 
time instant k, in those ESSj in which it is physically impossible (or not 
advisable) to carry out the charging and discharging process simulta-
neously (or the sale and purchase of energy to the MEG). Thus, the 
constraint WTchj + WTdisj ≤ 1 (or WTgridin + WTgridout ≤ 1) is defined. 

Finally, the constraints and initial conditions of the state variables 
([SOC1…SOCn VBUS], VBUS if it is desired to control it) of the microgrid 
will be established. These constraints can represent both the physical 
operational limits, as well as recommended operating margins to guar-
antee a safe and efficient operation of the ESSs. 

Thus, in general, for the definition of the constraints to which the 
optimisation problem will be subject, the user will have to define all the 
physical and operational constraints according to the structure proposed 
in Table 4 (for each MEFi, n ESS). 

3.3. Optimisation problem 

The model describes the dynamics with linear equations (for more 
detail, see Section 2.2.4). The state variables of the state-space model are 
x(k) = [SOC1(k) ,…, SOCn(k) ,VBUS(k) ]. With all described above, the 
MPC-based EMS is defined as the optimisation problem defined in Eq. 
(11). In this problem, the decision variables z =

[Pi(k) ,WTi(k) ,Starti(k) ,δPi(k) ] are defined for each MEFi of the micro-
grid. The model acts as a constraint in the control problem (x ≤ x(k) ≤ x 
and x(k + 1) = A⋅x(k)+ B⋅u(k)+ d, please see Eq. (11)). The MPC-based 
EMS strategy proposed is an economic minimisation. Therefore, the goal 
is to minimise the economic cost. 

min
z

J (z)

Where: 

J =
∑PH

k=1

∑|MEF|

i=MEF
Cvar

i (k)⋅Pi(k)⋅Ts +Cfix
i (k)⋅WTi(k)⋅Ts +Cstart

i (k)⋅Starti(k)

+Cdegr
i (k)⋅δP2

i (k)

Subject to: 

Pi⋅WTi(k) ≤ Pi(k) ≤ Pi⋅WTi(k)∀i ∈ MEFi 

ΔPi ≤ ΔPi(k) ≤ ΔPi ∀i ∈ MEFi 

WTchj (k)+WTdisj (k) ≤ 1∀j ∈ ESSj  

WTgridin(k)+WTgridout(k) ≤ 1  

x ≤ x(k) ≤ x∀x(k)

x(k+ 1) = A⋅x(k)+B⋅u(k)+ d  

PnMEF+ − PnMEF− − Loss(k) +Pgrid(k) +
∑n

j=1
Pj(k) = 0 (11) 

The optimisation problem posed in (11) can be adapted to any type 
of microgrid architecture or application, and certain assumptions can be 
applied in its definition to significantly simplify its complexity: 

Table 4 
Designer-defined constraints for n ESS.  

MEFi 
[
Pi,Pi

] [
ΔPi,ΔPi

] Lossi LossBoP
i 

ch1     

dis1     

⋮     
chn     

disn     

gridin     
gridout     

State Vector Constraints 
SOC1, SOC1, …, SOCn, SOCn, VBUS (if applicable), VBUS (if applicable) 

Initial conditions 
SOCini

1 , …, SOCini
n , Vini

BUS (if applicable)  
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• Variable WTdisj (k) or WTchj (k) can be eliminated for MEFi that: 1) 

contain no fixed costs Cfix
i , 2) have no fixed losses due to BoP LossBoP

i .

• Variable Starti(k) can be removed in MEFi that do not contemplate 
start-up costs Cstart

i .  
• Variable δPi(k) can be eliminated in MEFi that do not contemplate 

degradation costs Cdegr
i . 

For example, the BSS usually does not contemplate fixed costs Cfix
i or 

losses due to BoP LossBoP
i . Therefore, it is possible to eliminate one of the 

two variables WTdisbat (k) or WTchbat (k). For example, if the variable 
WTdisbat is removed, this variable will be replaced by (1 − WTchbat (k)) in 
the rest of the constraint. In this case, the constraint that does not allow 
the BSS to be used in charge and discharge mode simultaneously 
(WTchbat (k)+ WTdisbat (k) ≤ 1) should also be removed. Furthermore, the 
terms associated with WTdisbat can be eliminated from the power balance, 
since there are no losses associated with the BoP. Similarly, this 
simplification can be performed in the grid (variable WTgridin(k) or 
WTgridout(k)). 

When a ESSj (or MEG) has no start-up costs Cstart
i the decision variable 

Starti(k) can be eliminated. In addition, when a ESSj (or MEG) has no 
degradation costs Cdegr

i the decision variable δPi(k) can be removed. The 

BSS and the MEG usually do not have these two costs. 
Therefore, it can be eliminated the variables: WTbatch (k) or 

WTbatdis (k), WTgridin(k) or WTgridout(k), Startbatch (k), Startbatdis (k), 
Startgridin(k), Startgridout(k),δPbatch (k), δPbatdis (k), δPgridin(k) y δPgridout(k). 

Depending on the final formulation of the optimisation problem, 
according to (11), a MILP (linear cost function) or MIQP (quadratic cost 
function) will be used to solve it, depending on whether the cost function 
integrates the degradation cost term (Cdegr

i ) for any MEFi. 

4. Case studies: results & discussion 

This section validates the proposed MPC-based EMS modelling and 
design methodology on different microgrid architectures and applica-
tions. With this goal in mind, multiple simulations have been performed 
in MATLAB Simulink® with the YALMIP toolbox and IBM CPLEX 
Optimiser solver for MILP and MIQP optimisation problems. 

In this study, four microgrid architectures specially designed to 
provide solutions for different applications are distinguished: residential 
application, EVs charging station, industrial application and community 
application. Each architecture differs in scale, bus architecture, micro-
grid configuration and constraints. These cases will be detailed below. 

For all cases it has been assumed that non-MEF+ are associated with 
renewable energy sources (PnMEF+ = Pren), mainly photovoltaic and 

Fig. 5. Microgrid architecture for: (a) residential application (case 1); (b) electric vehicle charging station application (case 2); (c) industrial application (case 3); and 
(d) community application (case 4). 
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wind energy. The prediction of renewable generation has been devel-
oped from real measurements of solar radiation and wind speed for the 
province of Huelva, Spain. Likewise, the non-MEF- are defined by the 
different loads associated with each microgrid architecture and appli-
cation (PnMEF− = Pload). These profiles are based on real applications or 
typical consumptions provided by the Institute for the Diversification 
and Saving of Energy (IDAE) [46] and the Spanish national electricity 
system operator (REE) [47]. 

To define the model and the controller for each of the cases under 
study, the proposed methodology has been used, specifically the flow 
diagrams defined in Figs. 3 and 4, as well as the Tables 2-4. The char-
acteristic parameters in terms of performance and costs associated with 
ESSs and MEG have been obtained from average values of commercial 
equipment datasheets and cost terms presented in the scientific litera-
ture for similar applications and microgrids, respectively. Depreciation 
costs have not been considered in any architecture due to two reasons: 1) 
not to limit the use of available devices due to their acquisition cost and 
2) it is possible to analyse the profitability of the system offline. We think 
that economic depreciation should not be considered in daily opera-
tions. When a device is purchased, the objective is to obtain the highest 
economic performance and not to limit its use due to the acquisition 
cost. Costs related to degradation effects are already considered in the 
cost function. 

For simulations, in all scenarios a prediction horizon (PH) of 24h has 
been considered (a daily repetitive cyclic behaviour is assumed) and a 
sampling time (Ts) of 0.033 h (120 s.). Each case has been simulated in 
different scenarios, considering different initial conditions, starting 
time, weather conditions (sunny, cloudy, sunless, windy, windless, etc.), 
etc. Finally, in order to avoid that the ESSs end up with SOCs close to the 
minimum levels established, constraints have been included in which 

their SOCs must be greater than or equal to the initial one 
(SOCend

bat ≥ SOCini
bat y SOCend

H2 ≥ SOCini
H2). By doing so, all simulations start 

and end with approximately the same level of SOCs, making it fairer to 
compare the economic cost obtained by the EMS (no energy is used from 
previous operations). 

4.1. Case studies 

4.1.1. Case 1: residential application 
In this case, a microgrid architecture adapted to a grid-connected 

residential application is proposed, Fig. 5a. As renewable generation 
sources, a PV field is used (Pren = PPV), while the loads are determined 
by the house appliances (PHA), the consumption of the ventilation and 
air conditioning system (PHVAC) and the charge process of an electric 
vehicle (PEV), Pload = PHVAC + PHA + PEV . A HESS composed of a BSS, 
which supports the DC bus, and a HBSS is also available. In this case, a 
first-order Thevenin equivalent model has been considered for BSS 
modelling and hence the DC bus voltage [48]. The sizing parameters of 
the microgrid are shown in Table 5. 

For the definition of the MPC, it will be necessary to define the 
constraints, losses and cost terms of each of the MEFs that determine the 
microgrid architecture according to the proposed methodology. 

Thus, according to the provisions of Section 3, for the BSS only a 
variable O&M cost will be considered (in the literature these costs are 
defined between [0.3–0.5] €/MWh [49–51]). Likewise, due to the direct 
connection to the DC bus, no losses related to its use (nor BoP) will be 
considered. 

Regarding the HBSS, no variable costs will be considered since de-
vice consumptions are already implicitly considered in the energy bal-
ance. On the contrary, for HBSS it is necessary to define fixed costs (due 

Table 5 
Design parameters, costs, constraints and losses defined for case 1.  

Case ESS parameters 

1 

CNbat = 28.8 kWh ηbat
ch = 0.934 ηbat

dis = 1 CNH2 = 24 kWh ηH2
ch = 0.57 ηH2

dis = 0.57 
KVBUS = 0.01 KSOC = 30 KPch = 0.002 KPdis = 0.002 vk = 355 

MPC Parameters & Constraints 
MEFi Cvar

i Cfix
i Cstart

i Cdegr
i 

[
Pi,Pi

] [
ΔPi,ΔPi

]
Lossi LossBoP

i 
chbat 0.4 €/MWh – – – [0,10] kW – – – 
disbat 0.4 €/MWh – – – [0, 6] kW – – – 
chH2 – 0.015 €/h 0.05 € 0.05 €/W2 [0, 5] kW – 0.05 1 kW 
disH2 – 0.028 €/h 0.05 € 0.05 €/W2 [0, 3.5] kW – 0.05 300 W 

gridin Table 10 – – – [0, 6] kW – 0.05 – 

gridout 0.05 €/MWh – – – [0, 10] kW – 0.05 – 
State Vector Constraints 

SOCbat = 90%, SOCbat = 55%, SOCH2 = 100%, SOCH2 = 25%, VBUS = 450 V, VBUS = 330 V 
Initial conditions 

Vini
BUS = 375 V, SOCini

bat = 56%, SOCini
H2 = 25%  

Table 6 
Design parameters, costs, constraints and losses defined for case 2.  

Case ESS parameters 

2 

CNbat = 32.4 kWh ηbat
ch = 0.9 ηbat

dis = 1 CNH2 = 24 kWh ηH2
ch = 0.57 ηH2

dis = 0.57 
MPC Parameters & Constraints 

MEFi Cvar
i Cfix

i Cstart
i Cdegr

i 

[
Pi,Pi

] [
ΔPi,ΔPi

]
Lossi LossBoP

i 
chbat 0.4 €/MWh – – – [0,20] kW – 0.05 – 
disbat 0.4 €/MWh – – – [0, 10] kW – 0.05 – 
chH2 – 0.015 €/h 0.05 € – [0, 10] kW [− 2,2] kW/Ts 0.05 3.5 kW 
disH2 – 0.028 €/h 0.05 € – [0, 5] kW [− 2, 2] kW/Ts 0.05 750 W 

gridin Table 10 – – – [0, 10] kW – 0.05 – 

gridout 0.05 €/MWh – – – [0, 20] kW – 0.05 – 
State Vector Constraints 

SOCbat = 90%, SOCbat = 55%, SOCH2 = 100%, SOCH2 = 14% 
Initial conditions 

SOCini
bat = 90%, SOCini

H2 = 100%  
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to O&M costs, defined in the literature between [0.001–0.1] €/h 
[9,52–54], start-up costs (defined in the literature between 
[0.01–0.123] € [9,55]) and degradation costs (defined in the literature 
between [0.01–0.05] €/W2 [9,55]). These values will be used as refer-
ence for all cases. In addition, variable losses, due to the power con-
verters and related to their BoPs, are defined. 

Finally, considering the MEG, a variable energy purchase cost will be 
considered (see Table 10), while the energy sale cost is considered fixed. 
In contrast, the MEG has no fixed, start-up or degradation costs. More-
over, the connection of the MEG to the DC bus entails variable losses 
associated with the power converters. 

Considering the constraints, in addition to the usual ones, associated 
to the physical limits of operation of the devices, as well as the manu-
facturer’s recommendations, it is necessary to establish constraints 
associated to the state vector. In addition, it is necessary to establish 
constraints for the definition of the decision variables Starti (see Section 
3.1.3) and δPi (see Section 3.1.4). These constraints are defined by 
conversion of logic relations into mixed-integer inequalities [56,57]. In 
this case, no constraints have been considered for the variation of the 
power. Thus, in this case, an MIQP with 27,360 inequality and 720 
equality constraints is used. 

According to the designed methodology, the state space model of the 
microgrid, decision variables, cost function and constraints of the opti-
misation problem under study are defined in Tables 5 and 9. 

4.1.2. Case 2: electric vehicles charging station 
In this case, a microgrid architecture adapted to a grid-connected 

electric vehicle (EV) charging station is proposed, Fig. 5b. A photovol-
taic field (PPV) and a wind generator (PW) are used as renewable energy 
sources (Pren = PPV + PW), while the loads are determined by the con-
sumption associated to two EV charging points (PEV1 , PEV2 ), assumed 

operating at constant charging power Pload = PEV1 + PEV2. A HESS con-
sisting of a BSS, and a HBSS is also available. The BSS is not directly 
connected to the DC bus. The sizing parameters of the microgrid are 
shown in Table 6. As in the previous case, for the definition of the MPC, 
it will be necessary to define the constraints, losses and cost terms of 
each of the MEFs that determine the architecture of the microgrid ac-
cording to the proposed methodology. 

Thus, in accordance with the provisions of Section 3, and analo-
gously to the previous case, the costs terms are defined. Unlike the 
previous case, in this case losses in the BSS due to the power converter 
will be considered. In this case, no degradation costs are contemplated 
for the HBSS. Regarding the constraints, parameters very similar to 
those of the previous case will be defined, with the exception that ac-
cording to the microgrid architecture, it is not necessary to establish the 
constraint related to the DC bus voltage. Likewise, restrictions on the 
variation of the HBSS operating power and variable losses in the BSS due 
to the connection through the converter to the bus have been consid-
ered. In this case, a MILP with 18,720 inequalities and 720 equality 
constraints is used. According to the designed methodology, Tables 6 
and 9 define the state space model of the microgrid, the decision vari-
ables, the cost function and the constraints of the optimisation problem 
under study. 

4.1.3. Case 3: industrial application 
In this case, a microgrid architecture adapted to an industrial 

application connected to the grid over an AC bus is proposed, Fig. 5c. A 
photovoltaic field (PPV) installed on the roof of the industry is used as a 
renewable energy source (Pren = PW), while the load is determined by 
the consumption associated with the industrial consumption, charac-
terised as a stable consumption profile (Pload). As in the previous cases, a 
HESS composed of an BSS and a HBSS is available. In accordance with 

Table 7 
Design parameters, costs, constraints and losses defined for case 3.  

Case ESS parameters 

3 

CNbat = 252 kWh ηbat
ch = 0.934 ηbat

dis = 1 CNH2 = 240 kWh ηH2
ch = 0.57 ηH2

dis = 0.57 
MPC Parameters & Constraints 

MEFi Cvar
i Cfix

i Cstart
i Cdegr

i 

[
Pi,Pi

] [
ΔPi,ΔPi

]
Lossi LossBoP

i 
chbat 0.4 €/MWh – – – [0, 150] kW – 0.05 – 
disbat 0.4 €/MWh – – – [0, 50] kW – 0.05 – 
chH2 – 0.015 €/h 0.01 € – [0, 60] kW [− 4, 4] kW/Ts 0.05 10 kW 
disH2 – 0.028 €/h 0.01 € – [0,30] kW [− 4, 4] kW/Ts 0.05 3.5 kW 

gridin Table 10 – – – [0, 50] kW – – – 

gridout 0.06 €/MWh – – – [0, 150] kW – – – 
State Vector Constraints 

SOCbat = 90%, SOCbat = 55%, SOCH2 = 100%, SOCH2 = 10% 
Initial conditions 

SOCini
bat = 75%, SOCini

H2 = 58%  

Table 8 
Design parameters, costs, constraints and losses defined for case 4.  

Case ESS parameters 

4 

CNbat = 135 kWh ηbat
ch = 0.934 ηbat

dis = 1 CNH2 = 120 kWh ηH2
ch = 0.57 ηH2

dis = 0.57 
MPC Parameters & Constraints 

MEFi Cvar
i Cfix

i Cstart
i Cdegr

i 

[
Pi, Pi

] [
ΔPi,ΔPi

]
Lossi LossBoP

i 
chbat 0.4 €/MWh – – – [0,100] kW – 0.05 – 
disbat 0.4 €/MWh – – – [0, 50] kW – 0.05 – 
chH2 – 0.015 €/h 0.01 € – [5] kW – 0.05 1 kW 
disH2 – 0.028 €/h 0.01 € – [3.5, 3.5] kW – 0.05 300 W 

gridin Table 10 – – – [0, 50] kW – – – 

gridout 0.05 €/MWh – – – [0, 100] kW – – – 
State Vector Constraints 

SOCbat = 90%, SOCbat = 55%, SOCH2 = 100%, SOCH2 = 11% 
Initial conditions 

SOCini
bat = 75%, SOCini

H2 = 55%  
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the Section 3, and analogously to the previous cases, the sizing param-
eters of the microgrid are shown in Table 7. In this case, variable losses 
in the grid have not been considered due to the direct connection to the 
AC bus. Thus, in this example, a MILP with 18,720 inequations and 720 
equality constraints is used. According to the methodology designed, 
Table 7 and 9 define the state space model of the microgrid, the decision 
variables, the cost function and the constraints of the optimisation 
problem under study. 

4.1.4. Case 4: community application 
In the latter case, the microgrid architecture models a community 

application with multiple energy consumers and producers (prosumers) 

and is shown in Fig. 5d. In this example, a community with ten neigh-
bours (Nbr = 10) is defined. MEG connection is available to guarantee, 
at all times, the energy balance in the microgrid. Considering the com-
munity system as a whole, the complex system can be modelled by 
considering a single battery with the resulting capacity and voltage. For 
its application in a real system, a low-level control would be necessary to 
charge and discharge the batteries properly. 

To elaborate on the above, on the one hand, the microgrid must 
satisfy the Pload of each neighbour in the community. On the other hand, 
the microgrid has renewable power Pren generated by each neighbour. 
Thus, it is possible to consider: (1) the Pload of the community as the sum 
of the load powers of each neighbour Ploadm (Pload =

∑|Nbr |
m=1Ploadm) and (2) 

Table 9 
Necessary parameters for the definition of the microgrid model for n ESSs and DC bus supported by ESS.  

Cases Model 

1 
⎡

⎣
SOCbat(k + 1)
SOCH2(k + 1)
VBUS(k + 1)

⎤

⎦ =

⎡

⎣
1 0 0
0 1 0

KSOC 0 KVBUS

⎤

⎦

⎡

⎣
SOCbat(k)
SOCH2(k)
VBUS(k)

⎤

⎦+

⎡

⎢
⎢
⎣

rbat
ch − rbat

dis 0 0
0 0 rH2

ch − rH2
dis

KPch − KPdis 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Pchbat (k
)

Pdisbat (k
)

PchH2 (k
)

PdisH2 (k
)

⎤

⎥
⎥
⎦

2–4 [
SOCbat(k + 1)
SOCH2(k + 1)

]

=

[
1 0
0 1

][
SOCbat(k)
SOCH2(k)

]

+

[
rbat
ch − rbat

dis 0 0
0 0 rH2

ch − rH2
dis

]
⎡

⎢
⎢
⎣

Pchbat (k
)

Pdisbat (k
)

PchH2 (k
)

PdisH2 (k
)

⎤

⎥
⎥
⎦

Cost function 
1 minJ =

∑PH
k=1

∑|MEF|
i=MEFCvar

i (k)⋅Pi(k)⋅Ts + Cfix
i (k)⋅WTi(k)⋅Ts + Cstart

i (k)⋅Starti(k)+ Cdegr
i (k)⋅δP2

i (k)
2–4 minJ =

∑PH
k=1

∑|MEF|
i=MEFCvar

i (k)⋅Pi(k)⋅Ts + Cfix
i (k)⋅WTi(k)⋅Ts + Cstart

i (k)⋅Starti(k)
Decision variables 

1 Pchbat (k), Pdisbat (k), PchH2 (k), PdisH2 (k), Pgridin(k), Pgridout(k), WTchbat (k), WTchH2 (k), WTdisH2 (k), WTgridin(k), StartchH2 (k), StartdisH2 (k), δPchH2 (k),δPdisH2 (k)
2–4 Pchbat (k), Pdisbat (k), PchH2 (k), PdisH2 (k), Pgridin(k), Pgridout(k), WTchbat (k), WTchH2 (k), WTdisH2 (k), WTgridin(k), StartchH2 (k), StartdisH2 (k)

Constraints 

All cases 

Pchbat ⋅WTchbat (k) ≤ Pchbat (k) ≤ Pchbat ⋅WTchbat (k)

Pdisbat ⋅
(
1 − WTchbat (k)

)
≤ Pdisbat (k) ≤ Pdisbat ⋅

(
1 − WTchbat (k)

)

PchH2 ⋅WTchH2 (k) ≤ PchH2 (k) ≤ PchH2 ⋅WTchH2 (k)

PdisH2 ⋅WTdisH2 (k) ≤ PdisH2 (k) ≤ PdisH2 ⋅WTdisH2 (k)

Pgridin⋅WTgridin(k) ≤ Pgridin(k) ≤ Pgridin⋅WTgridin(k)

Pgridout⋅
(
1 − WTgridin(k)

)
≤ Pgridout(k) ≤ Pgridout ⋅

(
1 − WTgridin(k)

)

SOCbat ≤ SOCbat(k) ≤ SOCbat ; SOCH2 ≤ SOCH2(k) ≤ SOCH2 

ΔPels ≤ ΔPels(k) ≤ ΔPels;ΔPfc ≤ ΔPfc(k) ≤ ΔPfc 

Starti(k) = WTi(k)∧ ∼ WTi(k − 1)

1 VBUS ≤ VBUS(k) ≤ VBUS 

δPi(k) = ΔPi(k) ∧ Yi(k), with Yi(k) = WTi(k) ∧ WTi(k − 1)
4 0 ≤ WTchH2

≤ Nels;0 ≤ WTdisH2 ≤ Nfc 

All cases 
Pdisbat (k)

(
1 + Lossdisbat

)
− Pchbat (k)

(
1 + Losschbat

)
+ PdisH2 (k)

(
1 + LossdisH2

)
+

WTdisH2 (k)⋅LossBoP
disH2

− PchH2 (k)
(
1 + LosschH2

)
+ WTchH2 (k)⋅LossBoP

chH2
+

Pgridin(k)
(
1 + Lossgridin

)
− Pgridout(k)

(
1 + Lossgridout

)
+ Pren(k) − Pload(k) = 0  

Fig. 6. Power and SOC profiles obtained for case 1 for a daily simulation.  
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the Pren generated by the community as the sum of the power generated 
by each neighbour PPVm (Pren =

∑|Nbr |
m=1PPVm). Of course, not all loads and 

renewable power act at the same time. In addition, each neighbour may 
have a different load and renewable power. 

Under this concept, it will be considered that there is only one 
hydrogen tank in the community. Each neighbour may or may not have 
an ELEC and/or FC. In this example, it has been considered that the 
microgrid has six neighbours with ELEC (Nels= 6) and FC (Nfc = 6). To 
facilitate the study, in this case, each individual HBSS can only operate 
at rated power. Despite this assumption, the considerable number of 

devices available allows the required power generation/consumption 
profile to be adapted with great flexibility by switching one or more 
ELECs/FCs on or off. 

To simulate this operation, the variables WTi and Starti, for the ELEC 
and FC, will now be integer variables in this example (unlike previous 
architectures, where they were binary because there was only one FC 
and ELEC). Thus, these variables will indicate the number of FCs or 
ELECs ON. Thus, for example, assuming that at sampling k − 1, there are 
two ELECs previously connected (WTels(k − 1) = 2 and Startels(k − 1) =

0), and at sampling k, three more ELECs are connected (WTels(k) = 5 

Fig. 7. DC bus voltage profile obtained for case 1 for a daily simulation.  

Fig. 8. Power and SOC profiles obtained for case 2 for a daily simulation.  

Fig. 9. Power and SOC profiles obtained for case 3 for a daily simulation.  
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and Startels(k) = 3), which remain connected at instant k + 1 
(WTels(k + 1) = 5 and Startels(k + 1) = 0). So, at sampling k − 1, PchH2 

will be two times the nominal power (3.5 kW) of the ELEC (PchH2 =

2⋅3.5 kW). However, at sampling k, when connecting three more ELECs 
(five in all), PchH2 = 5⋅3.5 kW. Finally, at sampling k + 1 and so on, 
PchH2 = 5⋅3.5 kW. 

In accordance with Section 3, and analogously to the previous cases, 
the sizing parameters of the microgrid are shown in Table 8. For the 
ELEC (i = els) and FC (i = fc), the fixed cost (Cfix

i ), start-up cost (Cstart
i ), 

and BoP will be defined by an individual system. Therefore, the term 
“Cfix

i (k)⋅WTi(k)” of the cost index (see Eq. (9)) calculates the total fixed 
cost, considering all the ELECs or FCs operating at sampling k (WTi(k)). 
In the same way, the term “Cstart

i (k)⋅Starti(k)” of the cost index (see Eq. 
(10)) calculates the total start-up cost, considering all the systems that 
have been turned on at sampling k. Again, the term “LossBoP

i (k)⋅WTi(k)” 

of the balance equation (see Eq. (6)) calculates the total BoP loss, 
considering all systems that operate at sampling k (WTi(k)). 

Thus, in this example, a MILP with 19,440 inequations and 720 
equality constraints is used. According to the methodology designed, 
Table 8 and 9 define the state space model of the microgrid, the decision 
variables, the cost function and the constraints of the optimisation 
problem under study. 

4.2. Results 

Regarding validation, almost 200 simulations (available in http://hd 
l.handle.net/10251/193290) have been carried out in this work for the 
four cases under study, for different initial conditions, ESS constraints, 
renewable resource profiles, etc. Due to lack of space, only some results 
of special interest are shown in this work. 

The simulation results for the four cases under study are shown in 
Figs. 6-10. In all simulations, sunny and cloudy days have been 
considered. In the simulations, the powers injected into the DC bus are 
positively represented, while all power extracted from the DC bus has a 
negative sign. In particular, Fig. 6 shows the evolution of the microgrid 
power variables for case 1, as well as the SOCs of the BSS and HBSS for a 
radiation profile corresponding to that of a sunny day, and a typical 
residential consumption profile determined by three daily consumption 
peaks, during the early morning, midday and evening hours (see Fig. 6). 
Considering the integration method of the BSS in the DC bus, Fig. 7 
shows the bus voltage evolution during the 24 h of simulation time. 

Fig. 8 shows the evolution of the power variables and the SOC of the 
HESS for case 2, for a radiation profile corresponding to that of a sunny 
day with cloudy intervals with a high wind resource profile (see Fig. 8). 
On the other hand, the consumption profile associated with the EVs is 
defined by the nominal power of the charging points, assuming 

continuous operation from early morning (see Fig. 8). 
Next, Fig. 9 shows the evolution of the power of MEFi and SOC 

variables for the case 3 microgrid. In this case, a radiation profile of a 
sunny day with cloudy intervals has been considered. The power profile 
has been considered practically constant according to the profiles of 
industries operating 24 h a day (see Fig. 9). 

Fig. 10 shows the evolution of the MEG and HESS power and SOC 
variables for the community system, case 4. For the simulation, a radi-
ation profile corresponding to a cloudy day and a low wind generation 
profile has been considered. In this case, the consumption profile used 
corresponds to the scaled average annual demand profile for the city of 
Huelva (southwestern Spain). 

Finally, Table 11 shows the economic cost for each of the cases, 
considering the proposed microgrid and MPC architecture (CostMPC), the 
case in which the microgrid has not ESS but a renewable generation 
(Costren), and the traditional case based on the exclusive connection to 
the MEG (CostMEG). 

4.3. Discussion 

Although each case presents a different microgrid architecture and 
application, in general terms, the response of the MPC-based EMS 
designed for each case study generates common patterns in the use of 
HESS and MEG, and in short, the behaviour of the different microgrids is 
very similar. For this reason, a common discussion of the results can be 
carried out. 

Regarding the use of the BSS, regardless of the method of integration 
to the DC bus, its operation is associated with its role as a fast response 
ESS with low operation cost, see Tables 5-8. This implies that the MPC 
promotes a more exhaustive use of the BSS to the benefit of a more 
conservative use of the HBSS, see Figs. 6, 8-10. 

Thus, it is the BSS that acts in the first instance to guarantee the 
power balance on the bus, absorbing all fluctuations in the generation 
and demand profile, even during the start-up, shutdown and operation 
processes of the HBSS as can be seen in all simulations. Sometimes this 
occurs even when MEG operates (case 1: during the interval 22 h ≤ t ≤
23 h, Fig. 6 and case 4: interval 23 h ≤ t ≤ 24 h, Fig. 10). 

The operation of the BSS is mainly defined by the SOCbat constraints, 
its lower and upper boundary values (SOCbat and SOCbat), and the final 
constraint (SOCend

bat ≥ SOCini
bat). In the specific case 1, due to the DC bus 

integration method, its operation will also be determined by the DC bus 
voltage VBUS constraints, see Fig. 6 and 7. It is verified that SOCbat (all 
cases), and VBUS (only for case 1) evolve and comply with the limits 
imposed by the constraints, see Figs. 6-10. 

Considering the use of the HBSS, its operation is associated with its 
role as a slow response ESS, and that is why the MPC, in terms of cost, 
favours a more conservative use with respect to BSS, thus minimising the 

Fig. 10. Power and SOC profiles obtained for case 4 for a daily simulation.  
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number of operating cycles, to reduce the associated cost. 
Regardless of the case under study, the operation of the ELEC is 

determined by the existence of surplus energy that will not be possible to 
store in the BSS (SOCbat(k) ≤ SOCbat), the operation of the FC is deter-
mined by the existence of energy deficit that will not be possible to be 
supplied by the BSS (SOCbat(k) ≥ SOCbat and SOCend

bat ≥ SOCini
bat), see 

Figs. 6, 8–10. 
Their operating conditions are characterised by start-up and shut-

down processes subject to the constraints in the power variations 
ΔPch/disH2 imposed, if applicable, Fig. 8 (case 2) and 9 (case 3). Likewise, 
the MPC controller promotes their smooth operation at stable operating 
power, as far as possible, especially in case 1 (Fig. 6) where Cdegr

i is 
considered. In case 2, this operation is also observed due to fixed costs (it 
is more economical to switch on the system for the shortest possible 
time), see Fig. 8. On the contrary, this effect is not so clearly observed in 
case 3, where slightly more fluctuating performance profiles are 
observed in the ELEC, see Fig. 9. Finally, in the particular case of case 4, 
the HBSS power is adapted by turning on and/or off an integer number 
of ELECs and FCs according to the nominal power of each device, see 
Fig. 10, during the intervals 4 h ≤ t ≤ 6 h, 8 h ≤ t ≤ 9:20 h, 10.6 h ≤ t ≤
18:30 h and 19:20 h ≤ t ≤ 22 h. Again, it is shown that for all cases the 
SOCH2 evolve and comply with the limits imposed by the constraints, see 
Figs. 6, 8-10. 

Regarding the use of the MEG, in case of energy surplus, its use is 
reduced exclusively to the sale of surplus energy when the SOCs of the 
HESS has reached the maximum level (or it is not necessary to store 
more energy for later use). This operation is justified because, according 
to the defined cost terms, it is always more profitable to store energy in 
the HESS for later use than to sell energy and then purchase it from the 
MEG. For example, this can be seen in Fig. 8, case 2, 12:30 h ≤ t ≤ 13:30 
h and 17 h ≤ t ≤ 19 h. 

In case of energy deficit, the use of the MEG is promoted during the 
night hours with the lowest associated energy purchase cost (22 h ≤ t ≤
24 h, according to Table 10). Even, if it is of interest to the microgrid, the 
purchase of energy for the BSS charging process is considered (interval 
22 h ≤ t ≤ 24 h in the Figs. 6, 9-10) with a double purpose: 1) to take 
advantage of the BSS during the least economic hours, 2) to satisfy the 
final SOCbat constraint. Also, MEG is used as a last resort, regardless of 
energy cost, when the HESS will not be able to cope energy deficits, in 
order to ensure power balance according to (5). For example, this can be 
seen in Fig. 6 during the interval 24 h ≤ t ≤ 1 h; Fig. 8 during the interval 
20.5 h ≤ t ≤ 22 h (must be met SOCend

bat ≤ SOCini
bat = 90%); Fig. 9 during 

the intervals 5 h ≤ t ≤ 8 h, 9 h ≤ t ≤ 10 h and 22 h ≤ t ≤ 4 h; and Fig. 10 
during the intervals 6 h ≤ t ≤ 8 h, 9 h ≤ t ≤ 10 h and 22 h ≤ t ≤ 3 h. 

Finally, although it is not the aim of the paper to provide an eco-

nomic analysis for each case, as expected, and according to Table 11, it is 
shown that the cost obtained by the MPC-based EMS CostMPC, regardless 
of the architecture or application of the microgrid, allows considerable 
reductions in operating costs. CostMPC (and the cost based on self- 
consumption without ESS, Costren) are compared to the costs obtained 
with the traditional solution with exclusive connection to the MEG 
CostMEG. MPC-based EMS costs between 10% and 37% of the CostMEG 
(90% and 63% reduction respectively). Costren has costs between 23.5% 
and 59% of the CostMEG (76.5% and 41% reduction respectively). 

Based on the coherent results obtained, it is demonstrated that 
regardless of the microgrid architecture, bus integration method, ESS 
used or application, the proposed modelling methodology and subse-
quent design phase of MPC controllers allows addressing the problem of 
technical-economic optimisation in energy management in microgrids 
with guarantees and in an easy and intuitive way. 

5. Conclusions 

The design of EMS for microgrid energy management is a funda-
mental task to achieve the different technical and economic objectives in 
a safe and efficient way. In this sense, MPC-based controllers have 
proven to be comprehensive solutions by integrating concepts such as 
prediction or optimality. Specifically, in the case of microgrids, the main 
advantage of MPC is that it allows to optimise the current situation 
without losing sight of future situations. 

Since the microgrid concept nowadays encompasses a multitude of 
architectures and applications, it is essential to have general MPC-based 
EMSs that allow their application in different situations with only slight 
variations in their formulation. However, most of the solutions proposed 
in the scientific literature are specific to the model or design of the 
optimisation problem for each case under study and, therefore, cannot 
be extrapolated to other different cases. 

This lack of generalisation detected when addressing the problem of 
optimal control of microgrids has been the motivation for this work. 
Thus, this article presents a general methodology for the design of state- 
space Economic MPC controllers for microgrid control regardless of 
their architecture, application or design objectives. The main objective 
of this approach was to simplify and systematise the MPC-based EMS 
design process from the initial modelling phase to the subsequent defi-
nition of the optimisation problem. 

In order to evaluate the goodness of the proposed controller design 
approach, simulations have been performed for different scenarios, 
namely four microgrid architectures and applications with completely 
different generation and demand profiles. The results obtained are 
promising and the main conclusion that can be drawn is that the design 

Table 10 
MEG hourly power purchase price between 22 h on 09/21/2022 and 22 h on 09/22/2022 in Spain.  

Time (h) Price (€/MWh) Time (h) Price (€/MWh) Time (h) Price (€/MWh) Time (h) Price (€/MWh) 

22–23 336.62 04–05 392.72 10–11 391.41 16–17 298.46 
23–00 318.02 05–06 389.31 11–12 377.38 17–18 324.77 
00–01 357.04 06–07 364.61 12–13 373.21 18–19 386.86 
01–02 377.73 07–08 375.18 13–14 368.95 19–20 417.00 
02–03 384.00 08–09 426.10 14–15 307.02 20–21 498.26 
03–04 388.94 09–10 380.72 15–16 296.07 21–22 485.62  

Table 11 
Hourly cost of operation for the four cases under study, for the microgrid and use of the MPC, architecture without ESS and traditional case of connection exclusively to 
the MEG.  

Case CostMPC (€) CostMPC/CostMEG(%) Costrem (€) Costren/CostMEG (%) CostMEG (€)

1 5.40 30.56 10.40 58.86 17.67 
2 6.87 10.11 15.96 23.48 67.97 
3 122.36 36.71 162.88 48.86 333.34 
4 54.83 21.75 82.73 32.82 252.06  
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methodology and controller architecture presented in this work allows 
the design of EMSs for the control of microgrids in a systematized way, 
by means of simple guidelines. 

The limitations of the proposed work have to do with its imple-
mentation in real-time. The computational cost of solving an MPC with 
low sampling periods is high. Therefore, it is proposed as a future work 
to adapt the proposed methodology for its implementation in real-time. 
For this purpose, it is proposed, for example, the implementation using a 
hierarchical MPC. In this type of control, the upper level corresponds to 
the MPC obtained through the methodology proposed in this work. 
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