Contents

Li	st of	Figures
Li	st of	Tables
\mathbf{A}	cknov	wledgments
${f Li}$	${ m st}$ of	Abbreviations
\mathbf{A}	bstra	ct
\mathbf{R}	esum	en
\mathbf{R}	esum	
1	Intr	oduction and Literature Review
	1.1	Additive Manufacturing Industry
	1.2	Additive Manufacturing pros and cons
	1.3	Industrial applications of metal Additive Manufacturing
	1.4	Gas atomization
	1.5	Laser-Powder Bed Fusion

1.6	Directe	ed Energy	Deposition	20	
1.7	Micros	tructures	and defects in Laser-Powder Bed Technologies	25	
1.8	Comm	ercial Ste	els in Additive Manufacturing	29	
	1.8.1	Austenit	ic Stainless Steels	31	
	1.8.2	Duplex S	Stainless Steels	32	
	1.8.3	Martensitic Stainless Steels			
	1.8.4	Precipita	ation Hardening Martensitic Stainless Steels	35	
	1.8.5	Maragin	g Steels	38	
	1.8.6	Carbon-	bearing tool steels	40	
1.9	Fe-Mn	steel sys	tem and High Mn steels	44	
	1.9.1	TRIP st	eels	46	
	1.9.2	TWIP st	teels	47	
	1.9.3	High Mr	Fe-Mn-Al-C low density steels	49	
		1.9.3.1	Microstructure of High Mn Fe-Mn-Al-C low density		
			steels	53	
		1.9.3.2	Strengthening mechanism of austenitic High Mn Fe-		
			Mn-Al-C low density steels	55	
		1.9.3.3	End-use properties of austenitic High Mn Fe-Mn-Al-C		
			low density steels	56	
	1.9.4	Industria	alization challenges of High Mn steels	60	
1.10	High N	In steels	in Additive Manufacturing	61	

	1.11	Alloy (design for Additive Manufacturing	. 64
		1.11.1	General Solidification Theory	. 65
			1.11.1.1 Solute Redistribution	. 66
			1.11.1.2 Solidification Modes	. 67
			1.11.1.3 Columnar to equiaxed transition	. 69
			1.11.1.4 Control the solidification mode in laser-Additive M	an-
			ufacturing	. 70
		1.11.2	Steel-design oriented CALPHAD tools	. 71
			1.11.2.1 The CALPHAD method	. 71
			1.11.2.2 Databases	. 72
			1.11.2.3 Scheil-Gulliver Models	. 73
	1.12	Aim of	of this research	. 76
2	Mat	erials	and Methods	. 79
	2.1	Materi	rials production	. 79
		2.1.1	Powder production: Atomization	. 80
		2.1.2	Processing of powders by Laser-Powder Bed Fusion	. 81
		2.1.3	Processing of powders by Directed Energy Deposition	. 83
	2.2	Metho	ods	. 85
		2.2.1	Chemical analyses	. 85
		2.2.2	Classification and measurement of powder particles based	on
			size	. 86

		2.2.3	Density	measurements in printed material	87
		2.2.4	Microsco	ору	87
			2.2.4.1	Metallographic observations in powders	87
			2.2.4.2	Metallographic observations in printed material	88
		2.2.5	Diffracti	ion analyses	90
			2.2.5.1	Electron Backscatter Diffraction	90
			2.2.5.2	X-Ray Diffraction	90
		2.2.6	Mechani	ical testing	91
			2.2.6.1	Hardness	91
			2.2.6.2	Tensile	91
			2.2.6.3	Compression	92
			2.2.6.4	Impact Toughness	94
	2.3	Metho	odology		95
3	Allo	oy desi	gn to pr	event hot cracking	99
	3.1	CALF	PHAD-bas	sed alloy design	102
		3.1.1	Selection	n of the base steel system	105
	3.2	Calcu	lation of l	not cracking susceptibility	106
	3.3	Powde	er produc	tion	111
	3.4	HCS o	during L-l	PBF printing process	113
	3.5	Micro	structure	development during solidification	118
	3.6	Micro	structure	during L-PBF process	130

	3.7	Summ	ary and o	conclusions	135
4	Allo	oy desi	gn for g	rain refinement	137
	4.1	CALP	PHAD-bas	sed inoculant calculations	141
	4.2	Powde	er produc	tion	146
	4.3	Micro	structure	development during solidification	147
	4.4	Produ	ction of I	z-PBF samples	150
	4.5	Micro	structure	development during L-PBF process	153
	4.6	Summ	ary and o	conclusions	164
5	Tow	vards i	ndustria	lization	167
	5.1	Gener	al mechar	nical properties	168
		5.1.1	Mechani	ical hardness	168
		5.1.2	Tensile 1	properties	173
			5.1.2.1	Tensile properties of FeMnAlC steel printed by L-	
				PBF	174
			5.1.2.2	Tensile properties of FeMnAlC-2Si steel printed by L-	
				PBF	176
			5.1.2.3	Tensile properties of FeMnAlC-05Ti steel printed by	
				L-PBF	178
			5.1.2.4	Tensile properties of FeMnAlC-2Si-05Ti steel printed	
				by L-PBF	180

			5.1.2.5	Strain hardening mechanisms in High Mn Fe-Mn-Al-C	
				low density steels	182
	5.2	In-use	propertie	s	184
		5.2.1	Thermal	Stability of FeMnAlC steel printed by L-PBF	185
		5.2.2	Impact t	toughness of FeMnAlC steel printed by L-PBF	190
		5.2.3	Compres	ssion with lattice structures of FeMnAlC steel printed	
			by L-PB	F	193
		5.2.4	Compati	bility of FeMnAlC steels with other 3D printing tech-	
			nologies:	Powder-DED	201
			5.2.4.1	Microstructure	202
			5.2.4.2	Mechanical properties of FeMnAlC steel printed by	
				Powder-DED	208
			5.2.4.3	Influence of heat treatments on mechanical proper-	
				ties	212
	5.3	Summ	ary and c	onclusions	215
6	Cor	nclusio	ns and fu	ıture work	219
\mathbf{R}_{0}	efere	nces .			223
${f A}$	Las	er-Pow	$\sqrt{\mathrm{der}}\;\mathrm{Bed}$	Fusion printing parameters	275

List of Figures

1.1	Sketch of gas atomization process	11
1.2	Schematic representation of the free-fall, and closed-coupled or con-	
	fined atomization	12
1.3	Sketch of L-PBF process	16
1.4	Sketch of the main printing parameters of L-PBF	17
1.5	Representation of the four most widespread printing strategies in L-	
	PBF	20
1.6	Overview of tensile properties of available commercial steel powders	
	discussed in Section 1.8, after being printed by L-PBF or DED. The	
	UTS and TE represented include as built and heat treated conditions.	44
1.7	Sketch of the TWIP effect and dynamic Hall-Petch effect, where the	
	dislocation main free patch is shown in (a) an unstressed grain, and	
	(b) stressed grain	48
1.8	Effect of G and R on the morphology and size of solidification struc-	
	ture	68

1.9	Control volumes for solute redistribution applied to analysis of mi-	
	crosegregation: (a) cellular solidification; (b) dendritic solidification;	
	(c) control volumes enlarged	69
2.1	AUG 3000 atomization unit used in this research	81
2.2	TruPrint 1000 L-PBF machine used in this research	82
2.3	Powder gas jets of the three beam nozzle in powder-DED	83
2.4	DED equipment used in this research	84
2.5	Dimensions of rectangular subsize tensile specimens as defined by the	
	ASTM E8/E8M standard	92
2.6	Compression test set-up for lattice structures	93
2.7	Video-correlation set-up during compression test	94
2.8	DoE CAD in TruPrint 1000	97
3.1	Example of the determination process for the relaxation and vulnera-	
	bility times from the Scheil-Gulliver calculation for the three different	
	thermal conditions	107
3.2	Calculated heat maps of HCS criteria for the High Mn low density ref-	
	erence steel composition Fe-28Mn-7Al-0.8C-0.2N varying the content	
	of P from 0 to 0.2 and Si from 0 to 4 wt.% using the Scheil-Gulliver	
	solidification model. Calculations were done according to the (a) CSC	
	criterion, (b) HCC criterion and (c) BTR criterion under thermal mode	
	1 (left), mode 2 (center) and mode 3 (right)	108

3.3	Calculated heat maps of HCS criteria for the High Mn low density	
	reference steel composition 28Mn-7Al-0.8C-0.2N varying the content of	
	P from 0 to 0.2 and Si from 0 to 4 wt.% using the Scheil-Gulliver with	
	back diffusion solidification model. Calculations were done according	
	to the (a) CSC criterion, (b) HCC criterion and (c) BTR criterion	
	under thermal mode 1 (left), mode 2 (center) and mode 3 (right)	111
3.4	As-built density cubes printed using the (a) FeMnAlC, (b) FeMnAlC-	
0.1		
	HP, (c) FeMnAlC-HP-2Si, (d) FeMnAlC-1Si, (e) FeMnAlC-2Si, and	
	(f) FeMnAlC-4Si	114
3.5	Cross section at two magnifications of the L-PBF printed dense	
	cubes for (a) FeMnAlC, (b) FeMnAlC-HP, (c) FeMnAlC-HP-2Si, (d)	
	FeMnAlC-1Si, (e) FeMnAlC-2Si, (f) FeMnAlC-4Si	116
3.6	XRD data of FeMnAlC-xP-ySi (a) F1 powders, (b) F2 powders and	
	(c) L-PBF cubes with laser parameters 11: 175 W and 700 mm/s	122
3.7	Calculation of Solidification interval with Scheil-Gulliver model. (a)	
	Representation of the evolution of mass fraction of solid with temper-	
	ature for FeMnAlC and FeMnAlC-HP compositions. (b) Evolution of	
	the complete solidification interval for different contents of Si and P.	123

3.8	SEM data from F2 powders of (a-d) FeMnAlC-2S1, and (e-h) FeMnAlC-	
	4Si. (a) & (e) SE images of surface morphology, (b) & (f) cross-	
	sectional SE images of powder microstructure, (c) & (g) EBSD IPF	
	maps, and (d) & (h) EBSD phase distribution maps	125
3.9	SEM data from F2 powders of (a-d) FeMnAlC, and (e-h) FeMnAlC-HP.	
	(a) & (e) SE images of surface morphology, (b) & (f) cross-sectional	
	SE images of powder microstructure, (c) & (g) EBSD IPF maps, and	
	(d) & (h) EBSD phase distribution maps	126
3.10	STEM data from FIB-cut sections of FeMnAlC-LP F2 powder parti-	
	cles. Each panel comprises a bright field (BF) image and a correspond-	
	ing set of normalized X-ray intensity maps from an EDXS spectrum	
	imaging experiment on the same area. Scale bars correspond to: (a)	
	500 nm, (b) 200 nm, and (c) 100 nm	128
3.11	STEM data from FIB-cut sections of FeMnAlC-HP F2 powder parti-	
	cles. Each panel comprises a bright field (BF) image and a correspond-	
	ing set of normalized X-ray intensity maps from an EDXS spectrum	
	imaging experiment on the same area. All scale bars correspond to 100	
	nm	129
3.12	SEM images of FeMnAlC L-PBF sample at different magnifications (a)	
	x3000 and (b) x10000	131

3.13	SEM images of FeMnAlC-2Si L-PBF sample at different magnifica-	
	tions (a-b) x1500 and (c-d) x3000 and different locations capturing the	
	different solidification cells	132
3.14	EBSD maps for FeMnAlC steel (a-b) and FeMnAlC-2Si steel (c-d)	
	superposing the IPF at the direction parallel to the building direction	
	(a & c) and parallel to the transversal direction (b & d), onto the band	
	contrast	133
3.15	Pole Figures of the crystallographic planes (100), (110) and (111) in	
	the materials (a) FeMnAlC and (b) FeMnAlC-2Si. Note that BD refers	
	to the building direction	134
4.1	Calculated pseudo-phase diagram of the system Fe-28Mn-7Al-0.8C-	
	$0.02 \mathrm{N}\text{-}\mathrm{xTi}$ up to 2.5 wt.% of Ti. Dashed lines indicate the studied	
	compositions with the different levels of Ti $(0, 0.2, 0.5 \text{ and } 2.0)$ in	
	wt.%	144
4.2	Scheil-Gulliver solidification calculations for the four different Fe-Mn-	
	Al-C steel compositions: (a) the evolution of mass fraction of solid in	
	wt.% with the decrease in temperature during solidification and (b)	
	a zoom of the first stages of solidification before austenite and ferrite	
	start to form	145

4.3	SEM data from electropolished cross sections of powders of (a-d)	
	FeMnAlC, (e-h) FeMnAlC-0.2Ti, (i-l) FeMnAlC-0.5Ti, and (m-p)	
	FeMnAlC-2Ti. (a) & (e) & (i) & (m) cross-sectional SE images pow-	
	der microstructure, (b) & (f) & (j) & (n) SE SEM images at higher	
	magnifications of powder microstructure, (c) & (g) & (k) & (o) EBSD	
	IPF maps, and (d) & (h) & (l) & (p) EBSD phase distribution maps,	
	red-austenite, green-ferrite	148
4.4	STEM data from twin-jet electropolished sections of (a) FeMnAlC,	
	(b) FeMnAlC-0.2Ti, (c) FeMnAlC-0.5Ti, and (d) FeMnAlC-2Ti pow-	
	der particles. Each panel comprises a bright field (BF) image and a	
	corresponding set of normalized X-ray intensity maps from an EDXS	
	spectrum imaging experiment on the same area. Scale bars correspond	
	to 400 nm in all images	150
4.5	Density cubes printed using the steel powders (a) FeMnAlC, (b)	
	FeMnAlC-02Ti, (c) FeMnAlC-05Ti, (d) FeMnAlC-2Ti	151
4.6	Cross section of the L-PBF printed dense cubes printed using (a) FeM-	
	nAlC, (b) FeMnAlC-02Ti, (c) FeMnAlC-05Ti and (d) FeMnAlC-2Ti	
	powders	152
4.7	XRD data of FeMnAlC-xTi (a) F1 powders, (b) F2 powders and (c)	
	L-PBF cubes	154

4.8	EBSD maps at x500 magnification in the center of the L-PBF samples	
	for FeMnAlC-02Ti (a-b), FeMnAlC-05Ti (c-d), and FeMnAlC-2Ti (e-f)	
	superposing the IPF at the direction parallel to building direction (a,	
	c & e) and parallel the transversal direction (b, d & f), onto the band	
	contrast	156
4.9	SEM data from printed parts of (a-c) FeMnAlC, (d-f) FeMnAlC-0.2Ti,	
	(g-i) FeMnAlC-0.5Ti, and (j-l) FeMnAlC-2Ti. (a) & (d) & (g) & (j)	
	BSE images of the cross-section microstructure, (b) & (e) & (h) & (k)	
	EBSD IPF maps, and (c) & (f) & (i) & (l) EBSD phase distribution	
	maps	159
4.10	Pole Figures of the crystallographic planes (100), (110) and (111) in the	
	L-PBF samples of composition (a) FeMnAlC-02Ti, (b) FeMnAlC-05Ti,	
	and (c) FeMnAlC-2Ti. Note that BD refers to the building direction.	160
111	CTEM data from twin introduction of (a) FaMr AlC and	
4.11	STEM data from twin-jet electropolished samples of (a) FeMnAlC and	
	(b) FeMnAlC-0.2Ti of printed parts. Each panel comprises a HAADF	
	image and a corresponding set of normalized X-ray intensity maps from	
	an EDXS spectrum imaging experiment on the selected area	162

4.12	STEM data from twin-jet electropolished samples of (a) FeMnAlC-	
	0.5Ti and (b) FeMnAlC-2Ti of printed parts. Each panel comprises a	
	HAADF image and a corresponding set of normalized X-ray intensity	
	maps from an EDXS spectrum imaging experiment on the selected	
	area	163
5.1	Microhardness evolution in FeMnAlC L-PBF dense cube cross section.	168
5.2	Vickers hardness HV10 of L-PBF dense cubes printed under different	
	conditions for compositions FeMnAlC, FeMnAlC-1Si, and FeMnAlC-	
	2Si	170
5.3	Vickers hardness HV10 of L-PBF dense cubes printed under different	
	conditions for compositions FeMnAlC, FeMnAlC-02Ti, FeMnAlC-02Ti	
	and FeMnAlC-2Ti	171
5.4	Vickers hardness 10 of L-PBF dense cubes printed under different con-	
	ditions for compositions FeMnAlC and FeMnAlC-2Si-05Ti	172
5.5	Rectangular subsize ASTM E8/E8M tensile specimens (a) designed by	
	CAD and (b) printed in L-PBF	174
5.6	Tensile curves of as built FeMnAlC steel in L-PBF printed with a VED	
	value of 139 J/mm^3 in blue and 130 J/mm^3 in orange	175
5.7	Fracture surface of L-PBF tensile specimens of FeMnAlC steel printed	
	under (a-b) 130 J/mm^3 and (c-d) 139 J/mm^3 VEDs. Images were	
	taken at different magnifications (a, c) x500 and (b,d) x1000	176

5.8	Tensile curves of as built FeMnAlC-2Si steel in L-PBF printed using a	
	VED value of 130 J/mm³ in blue and 139 J/mm³ in orange	177
5.9	Fracture surface of L-PBF tensile specimens of FeMnAlC-2Si steel	
	printed using VED of (a-b) $130~\mathrm{J/mm^3}$ and (c-d) $139~\mathrm{J/mm^3}$. Im-	
	ages were taken at different magnifications (a, c) x25 and (b,d) x500.	178
5.10	Tensile curves of as built FeMnAlC-05Ti steel in L-PBF printed with	
	a VED value of 167 J/mm³ in blue and 278 J/mm³ in orange	179
5.11	Fracture surface of L-PBF tensile specimens of FeMnAlC-05Ti steel at	
	different magnifications (a) x25 and (b) x500	180
5.12	Tensile curves of as built FeMnAlC-2Si-05Ti steel in L-PBF printed	
	using a VED value of 139 $\rm J/mm^3$ in blue and 278 $\rm J/mm^3$ in orange.	181
5.13	Fracture surface of L-PBF tensile specimens of FeMnAlC-2Si-05Ti steel $$	
	printed at different magnifications (a) x25 and (b) x500	181
5.14	Hardness HV10 measurements on FeMnAlC L-PBF samples submitted $$	
	at different time-temperature heat treatments and cooled in (a) air and	
	(b) water quenching	185
5.15	(a) SEM micrograph of the size of extraction of material by FIB lift	
	out for APT examination, (b) SEM micrograph of an APT tip with a	
	radius of curvature below 50 nm obtained after FIB annular milling.	188

5.16	Chemical concentration profile along one axis perpendicular to the so-	
	lidification cell structures of FeMnAlC steel L-PBF samples (a) as built	
	and (b) heat treated at 500 °C for 4 hours	189
5.17	Chemical concentration profile along one C-rich region FeMnAlC steel	
	L-PBF sample heat treated at 500 °C for 4 hours	190
5.18	Charpy ASTM E23 specimens (a) designed by CAD and (b) printed	
	in L-PBF with FeMnAlC steel	190
5.19	CVN toughness of FeMnAlC steel in L-PBF at different temperatures	
	from room temperature to cryogenic	191
5.20	Fracture surfaces of Charpy FeMnAlC steel specimens printed in L-	
	PBF tested at (a) room temperature, (b) 0 °C, (c) -10 °C, (d) -30 °C,	
	(e) -50 °C, (f) -70 °C and (g) -196 °C	192
5.21	Lattice structures (a) CAD representation of the different lattices and	
	their location in the L-PBF machine and (b) printed in L-PBF	194
5.22	Representation of extraction of lattice results from compression test	
	curves	196
5.23	Comparison between all FeMnAlC lattices compression tests	197
5.24	Representative video-correlation image of FeMnAlC deformation in L-	
	PBF lattice a) double diamond, b) double gyroid and c) BCC struc-	
	tures	199

5.25	Compression test comparison of double diamond 30% lattice structures	
	manufactured with FeMnAlC (orange) and 316L (blue) steels by L-	
	PBF	200
5.26	Photograph of the small walls printed using the DoE to develop the	
	printing parameters of FeMnAlC steel in powder-DED	202
5.27	Cross-section of FeMnAlC steel powder produced by DED at different	
	magnifications taken with (a) LOM and (b) SEM	203
	magnifications taken with (a) DOM and (b) SDM	200
5.28	XRD diffraction patter of FeMnAlC processed by DED	204
5.29	EBSD map of FeMnAlC steel sample printed by DED	205
5.30	PF of FeMnAlC sample printed in DED. Note BD refers to the building	
	direction	206
	direction.	200
5.31	SEM-backscattered images taken at the cross section of FeMnAlC steel	
	produced by DED at (a) the upper layer and (b) a representative	
	middle-height section	207
5.32	Extraction of horizontal tensile specimens in DED	208
- 00		200
5.33	Tensile curves of as built FeMnAlC steel printed by DED	209
5.34	SEM images of fraction surface of tensile FeMnAlC specimens printed	
	by DED at different magnifications (a) x25, (b) x500, and (c) x2000.	210

5.35	SEM images of fracture surfaces of Charpy FeMnAlC specimens printed	
	by DED. Image (a) shows a representative fracture surface at low mag-	
	nifications and fracture surfaces at higher magnifications ($\mathbf{x}700$) are	
	shown at the samples tested at (b) room temperature, (c) -20 $^{\circ}\mathrm{C},$ and	
	(d) -60 °C	211
5.36	Averaged hardness values and standard deviations measured in FeM-	
	nAlC DED samples as built (orange) and subjected to 500 °C heat	
	treatment for different times (blue)	213
5.37	Tensile curves of FeMnAlC steel printed in DED and heat treated at	
	500 °C for 4 hours (in blue) and for 16 hours (in orange)	214

List of Tables

1.1	Distribution of alloys weight of total feedstock consumption in 2022	
	and forecast for 2027	5
1.2	Pros and Cons associated with each scanning strategy	20
1.3	Tensile properties (UTS, and TE) of duplex steel. AB: as built, HT:	
	heat-treated	34
1.4	Tensile properties (YS, UTS, and TE) of 420 SS. AB: as built, HT:	
	heat-treated	35
1.5	Tensile properties (YS, UTS, and TE) of 17-4PH steel. AB: as built,	
	S: solution treatment, A: aging treatment	37
1.6	Tensile properties (YS, UTS, and TE) of 18Ni-300 maraging steel. AB:	
	as built, S: solution treatment, A: aging treatment	40
1.7	Tensile properties (YS, UTS, TE and Rockwell-C hardness) of H13 and	
	M2 carbon-bearing steels. AB: as built, HT: heat treated, BP: build	
	platform preheating	43
1.8	Common ranges of chemical compositions and tensile properties of the	
	four different categories of Fe-Mn-Al-C low density steels	51

2.1	Range of studied printing parameters in TruPrint 1000	82
2.2	Range of studied printing parameters in DED system	85
3.1	Target and measured chemical compositions of powders with size be-	
	tween 20-60 μm (fraction F2) of High Mn Fe-Mn-Al-C low density steel	
	with different contents of Si and P, in wt.%	112
3.2	D10, D50 and D90 percentiles of the FeMnAlC steel powder size dis-	
	tributions of different powder size fractions	113
3.3	Calculated solidification interval (ΔT), HCC in the 3 thermal condition	
	modes, and length of hot cracks measured in the alloys investigated.	
	Calculations were done considering the Scheil-Gulliver solidification	
	model in both the target and measured compositions	118
3.4	Weight percent of phases present in the F1 and F2 fractions of the	
	powders and L-PBF cubes produced of FeMnAlC-xP-ySi compositions,	
	as determined by Rietveld refinement of XRD data, where the error of	
	the technique is estimated in ± 2 wt.%. γ denotes austenite, α ferrite	
	and κ kappa-carbide	121
4.1	Mass fraction of the different solid phases in wt.% calculated at the end	
	of the solidification with the Scheil-Gulliver model for the four High	
	Mn Fe-Mn-Al-C low density steel compositions	145

4.2	Target and measured chemical compositions of powders with size be-	
	tween 20-60 $\mu\mathrm{m}$ (fraction F2) of High Mn Fe-Mn-Al-C low density	
	steels with different contents of Ti, in wt.%	146
4.3	Quantification of phases (in wt.%) present in the F1 and F2 fractions	
	of the powders and L-PBF cubes produced of FeMnAlC-xTi composi-	
	tions, as determined by Rietveld refinement of XRD data, where the	
	maximum error of the technique is estimated in ± 2 wt.%. γ denotes	
	austenite, and α ferrite	155
4.4	Grain size quantification from EBSD maps, where the average grain	
	size is approximated by the equivalent diameter, and the standard	
	deviation is the error	157
5.1	Hardness and density values of the different Fe-Mn-Al-C low density	
	steels studied in L-PBF	173
5.2	Tensile properties of the different Fe-Mn-Al-C low density steels studied	
	in L-PBF	183
5.3	Tensile properties of Fe-Mn-Al-C low density steels studied in L-PBF	
	in the as built condition and after heat treatment at 400 and 500 $^{\circ}\mathrm{C}$	
	for 4 h	187
5.4	Specification of the different lattice structures and their codification.	195
5.5	Compression results of FeMnAlC lattice structures printed in L-PBF.	198

5.6	Tensile properties of FeMnAIC steel printed by DED in the as built	
	condition and after HT at 500 °C	214
A.1	Printing parameters used in L-PBF to define the process window in	
	high Mn Fe-Mn-Al-C low density steels, where \boldsymbol{v} stands for laser speed,	
	and h for hatch spacing between adjacent laser tracks	276