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A B S T R A C T   

Recognizing the species composition of an ecosystem is essential for conservation and land management. This 
study presents the software Class3Dp, a supervised classifier of vegetation species for coloured point clouds. 
Class3Dp is run through a graphical user interface (GUI) that allows for the selection of training samples from 
RGB or MS (multispectral) clouds and their classification based on geometric, spectral and neighbourhood 
features, along with different machine learning methods, obtaining the point cloud classified according to the 
classes (species) introduced. A case study is shown where a classification of ground and vegetation is carried out, 
obtaining an overall accuracy (OA) of 0.94 in the RGB classification and 0.95 in the MS. Points classified as 
vegetation were re-classified in the species Anthyllis cytisoides L., Chamaerops humilis L., Cistus monspeliensis L., 
Pistacia lentiscus L. and Quercus coccifera L., obtaining an OA of 0.86 in the RGB classification and 0.87 in the MS.   

Software and data availability  

• Software name: Class3Dp. 
• Developers: Juan Pedro Carbonell-Rivera, Javier Estornell Cre-

mades, Luis Ángel Ruiz Fernández.  
• First year available: 2023.  
• Hardware requirements: PC.  
• Program language: Python.  
• Access to the compressed file with source code, executable file and 

tutorial of use available: http://hdl.handle.net/10251/193787  
• License: GNU GPL v3.0  
• Program size: 638 MB  
• Access to the compressed file with the dataset from the case study: 

https://doi.org/10.4995/Dataset/10251/194199  
• Dataset license: CC BY-NC-SA 4.0  
• Dataset size: 206 MB 

1. Introduction 

The ability to locate and identify plants allows the assessment of 
ecosystem variables that are critical for proper management, such as 
species richness and species evenness (Hooper and Vitousek, 1997). The 
location of individual plants classified by species contributes to deter-
mine the health and dynamics of an ecosystem. In addition, applications 

in conservation and sustainable forest management, such as biodiversity 
monitoring, climate change studies, forest inventories, risk management 
or wildlife habitat modelling, rely significantly on the classification of 
plant species (Diaz et al., 2000). 

The classification of plant species has traditionally been addressed 
using remote sensing (RS), based on spectral and geometric differences 
(Al-doski et al., 2013). RS imagery, especially space-borne imagery, has 
been widely used to classify vegetation communities and, to discrimi-
nate forest types and tree species at different spatial and spectral levels: 
low-spatial and medium-spectral resolution MODIS imagery (Ivanova 
et al., 2019); medium-spatial and high-spectral resolution PRISMA im-
agery (Vangi et al., 2021); medium-spatial and medium-spectral reso-
lution Landsat or Sentinel imagery (Wang et al., 2018), and high-spatial 
and medium-spectral resolution WorldView imagery (Ferreira et al., 
2019). However, these images, even those with high-spatial resolution 
such as WorldView images (0.31 m using pansharpening techniques), 
cannot discern the composition of small herbaceous or shrub species, 
which are usually mixed (Carbonell-Rivera et al., 2022; Lu and He, 
2017). 

In recent years, UAVs have emerged as an alternative to the use of 
aircraft or satellite platforms for geospatial data acquisition (Meinen and 
Robinson, 2021). UAVs allow for the acquisition of very high spatial 
resolution images due to their low altitude operation, which makes these 
systems less constrained by atmospheric conditions. Compared to 
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manned aircrafts, UAVs reduce the cost of acquisition, maintenance and 
operation, as well as the complexity of data collection. The application 
of photogrammetry and Structure from Motion (SfM) algorithms allows 
to obtain products such as point clouds, 3D objects, or orthophotos using 
only a consumer camera (Ullman, 1979). In this context, UAV systems 
can carry different sensors such as RGB digital cameras, multispectral 
(MS) or hyperspectral sensors, or light detection and ranging (LiDAR) 
sensors. The information extracted from UAV-based digital aerial 
photogrammetry (UAV-DAP) allows for pixel-based and point-based 
classifications. Point-based classifications have the advantage of using 
3D information obtained from the point cloud (Gao et al., 2022; Marselis 
et al., 2016). These point data, in addition to geometric information, 
contain spectral information associated with the photogrammetric 
process and the matched parent pixel from the raw image (Iglhaut et al., 
2019; Wallace et al., 2016). The addition of spectral information in point 
clouds is not unique to UAV-DAP, as those obtained from laser instru-
mentation may also contain spectral information if one or more images 
are projected onto the point cloud (Leberl et al., 2010). However, the 
delay between the image and the laser shot can lead to registration er-
rors due to changes in the environment or poor calibration between the 
LiDAR sensor and the camera (González et al., 2022). For this reason, 
applications of this combination of spatial and spectral information in a 
single data source have been focused on the use of UAV-DAP point 
clouds (Carbonell-Rivera et al., 2022; Mesas-Carrascosa et al., 2020; 
Nevalainen et al., 2017). 

Point-based classification in RS, as well as image classification, is 
commonly divided into two methods: supervised and unsupervised 
classification (Ripley, 1996; Sathya and Abraham, 2013). Supervised 
classification involves the use of algorithms to classify data points and 
objects into different categories, using existing labelled data as a refer-
ence (Sathya and Abraham, 2013). In supervised classification, data 
points are labelled into predefined classes. In contrast, unsupervised 
classification involves the use of algorithms to assign data points or 
objects to groups without having any predefined labels (Ripley, 1996; 
Sathya and Abraham, 2013). This method is based on analysing data and 
finding patterns and similarities between different objects, without the 
use of predefined classes for classification. Supervised classification is 
widely used as a statistical approach for vegetation classification based 
on the similarity of species composition (Atik et al., 2021; Cabo et al., 
2019; Deng et al., 2022; Mesas-Carrascosa et al., 2020; Molina-Valero 
et al., 2022; Nevalainen et al., 2017; Sothe et al., 2019). 

Traditionally, point-based classification has been developed specif-
ically for LiDAR point clouds. In this sense, point cloud classification 
software have traditionally relied solely on geometric information. This 
type of software is capable of classifying UAV-DAP point clouds, using 
only geometric information without considering spectral information. 
Currently, the lack of specific software to handle UAV-DAP point clouds 
is limiting its potential (Yancho et al., 2019). Software such as LAStools 
(Isenburg, 2014) or Fusion/LDV (McGaughey, 2016) use geometrical 
algorithms to classify bare ground points. Others, such as Agisoft Met-
ashape (Agisoft LLC., 2022) or Pix4d, have integrated unsupervised 
classification methods for the classification of point clouds according to 
different predefined generic classes, not allowing the user to define new 
classes. The possibility to perform supervised classifications on photo-
grammetric point clouds based on their geometric and spectral proper-
ties would allow their application in a wide range of fields. In 2022, 
Carbonell-Rivera et al. showed a methodology for classifying vegeta-
tion species by combining spectral and geometrical features from mul-
tispectral point clouds. In this study, mean cross-validation accuracies of 
81.7% and 91.5% were achieved in two test sites encompassing a study 
area of 14,344 m2. Consequently, this prompted the proposal for the 
development of a user-friendly point cloud classification software, 
enabling users to classify point clouds with ease, even without prior 
programming expertise. 

This study proposes a new software tool, Class3Dp, to apply a su-
pervised classification to point clouds using point spatial distribution 

and spectral information. With Class3Dp, a user can process large 
datasets of points to identify and classify tree and shrub species in a 
given area. A classified point cloud with flora data can provide accurate 
information on species, height and density, which can help ecologists 
and resource managers make decisions about ecosystem management, 
including identifying priority conservation areas and planning forest 
restoration activities. In addition, these classified point clouds can be 
used to analyse the richness and composition of tree and shrub species, 
key information for evaluation and management of ecosystems. 

2. Software description 

The open source software Class3Dp (Carbonell Rivera et al., 2023a) 
allows the supervised classification of point clouds using 3D and spectral 
information. This software is operated through a graphical user interface 
(GUI), enabling the selection of samples and the extraction of different 
geometric, spectral and neighbourhood features to train different ma-
chine learning models selected by the user. Fig. 1 shows the typical 
workflow of a classification process using Class3Dp. 

The software is divided into two modules. The first one is focused on 
the selection of training samples, and the second one on the rest of the 
classification process, either using RGB or MS data. In this paper, the 
point cloud containing red, green and blue bands will be referred as RGB 
point cloud, while the one with the bands blue, green, red, red-edge and 
near-infrared will be referred as MS point cloud. 

2.1. Point cloud sampling 

For the selection of training and validation samples, Class3Dp allows 
the three-dimensional visualization of RGB and MS point clouds (Fig. 2). 
The input file format for the RGB point cloud is LAS (.las), while for the 
MS point cloud it is a space separated ASCII format (.txt) with the in-
formation: X, Y, Z, blue, green, red, red-edge, NIR. 

In the case of MS point clouds, the user can select the bands to be 
displayed, allowing the creation of false colour composites to facilitate 
the selection of samples. The software supports MS point clouds created 
from imagery with five bands: blue, green, red, red-edge and near- 
infrared. These bands correspond to the most commonly used multi-
spectral cameras available on the market. Once the point cloud is 
loaded, the user can select samples and the points selected for each class 
will be saved separately in different files. In this sense, the user can enter 
in Class3Dp training samples created in other programs, following the 
aforementioned formats. 

2.2. Feature extraction 

In order to perform the classification of point clouds, the software is 
able to calculate up to 48 different features per point to potentially be 
introduced in the model (Table A1). These features are generated from 
the geometric information of the points (X, Y, Z coordinates) and the 
spectral information (green, blue, red, red-edge or near-infrared bands), 
and they are divided into different types: geometrical, spectral and 
neighbourhood-based including geometrical and spectral. The neigh-
bourhood of a point is defined as p ∈ R3, R3 being the set of points inside 
a sphere s, of centre p, and radius defined by the user. From the co-
ordinates (X, Y, Z) of each point, 17 geometric features are generated 
based on the neighbourhood of each point. These features are based on 
the average and standard deviation distance of the points in the neigh-
bourhood (Dist_mean and Dist_std), and on the height differences in the 
neighbourhood (Z_mean, Z_std, Dif_Z, Z_Zmin, Zmax-Z and Verticality). 
By analysing the geometry within a defined neighbourhood around each 
point of the cloud, different vegetation species can be distinguished, 
considering the geometric characteristics of each plant species. The 
covariance matrix of a point cloud neighbourhood provides information 
about the distribution and orientation of the points in the neighbour-
hood around a given point. The eigenvalues of the covariance matrix 
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correspond to the principal axes of the distribution, encoding the vari-
ability of the data on an orthogonal basis (Sum_λ, Omnivariance, Eige-
nentropy, Anisotropy, Planarity, Linearity, Surface Variation and 
Sphericity). 

Vegetation types and species have different structural characteristics 
that influence the distribution and orientation of the points in their point 
clouds. For example, a tall and dense forest canopy may have a more 
elongated and uniform distribution of points compared to a patch of 
low-lying shrubs, which may have a more irregular and clustered dis-
tribution of points. By summing the eigenvalues of the covariance matrix 
for each neighbourhood in a point cloud (feature Sum_λ), a global 
measure of the point distribution is captured (Rusu, 2009). The omni-
variance measures the variance of the point covariance matrix 

eigenvalues in the neighbourhood of a given point (West et al., 2004). It 
is useful for capturing the overall shape and orientation of the vegeta-
tion. The eigenentropy measures the entropy of the point covariance 
matrix eigenvalues in the neighbourhood of a given point (West et al., 
2004). It captures the level of disorder or randomness in the shape of the 
vegetation. The anisotropy measures the difference between the largest 
and smallest eigenvalues (West et al., 2004), and it captures the level of 
elongation or stretching in the vegetation. The planarity measures the 
extent to which the points in the neighbourhood of a given point lie in a 
planar surface (West et al., 2004). It can be used to distinguish between 
vegetation with a flat form and that with a curved form. The linearity 
measures the extent to which the points in the neighbourhood of a given 
point lie in a straight line (West et al., 2004). It can be used to distinguish 

Fig. 1. Point cloud classification workflow of Class3Dp.  
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between vegetation with straight branches and with curved branches. 
The surface variation measures the variability of the surface of the grid 
composed of the neighbourhood of points (Rusu, 2009). It captures the 
level of variation in the surface of the vegetation. The sphericity mea-
sures the degree of similarity of the neighbourhood of points with 
respect to a spherical surface (West et al., 2004). It can be used to 
distinguish between vegetation with spherical shapes and those with 
elongated shapes. Finally, the verticality describes the orientation of the 
neighbourhood of points with respect to the vertical reference axis 
(Demantké et al., 2012). These features can be obtained from both RGB 
and MS point clouds, as they are independent of the spectral 
information. 

The program also enables computing 27 vegetation indices (ARVI, 
BI, CIVE, DVI, EVI, GLI, GNDVI, GR, IPVI, MGVGRI, MSAVI, MSR, 
NBRDI, NVDI, NGBDI, NGRDI, NormG, OSAVI, RDVI, RGRI, RVI, SAVI, 
SARVI, SR, SRxNDVI, VARI and vNDVI; see table A1 for full names). 
Spectral indices enhance the information content of remote sensing 
data. They can provide additional information about the properties of 
vegetation or other land cover classes that are not easily discernible from 
raw data. Depending on whether the point cloud is RGB or MS, different 
spectral indices can be obtained. For instance, the NDVI, which uses the 
infrared band, is only available for MS point cloud classification. In 
contrast, other indices, such as NBRDI, which only uses the red and blue 
bands, are available for both RGB and MS classifications. Additionally, 
Class3Dp allows obtaining of four neighbourhood spectral features 
(NDVI_mean, NDVI_std, NGRDI_mean and NGRDI_std). Spectral indices 
such as NDVI are commonly used to measure vegetation health (Rouse 
et al., 1974); other indices such as EVI are used to detect changes in 
vegetation cover density and canopy structure (Huete et al., 1999). SAVI 
is similar to EVI, but it is adjusted to account for soil reflectance, making 
it more suitable for areas with varying soil properties (Huete, 1988). The 
MSAVI is similar to SAVI, but designed to minimize the effect of soil 
reflectance on vegetation index values, which is used to distinguish 
between vegetation and bare soil, and to estimate LAI in areas with 
varying soil reflectance (Qi et al., 1994). Other indices, such as the Green 
Leaf Index (GLI), Green-Red Vegetation Index (GRVI), and Red-Edge 
Chlorophyll Index (CIred-edge), are designed to specifically target 
certain vegetation properties, such as leaf area or chlorophyll content. 
These indices can be particularly useful for characterizing different plant 
species or detecting stress in vegetation. In general, RGB or MS bands, 
together with vegetation indices provide information to the classifier by 
enhancing the contribution of vegetation properties and allowing the 
distinction of spectral properties inherent to each species. 

2.3. Classification algorithms 

After the input feature selection, the user should select the classifi-
cation method. Class3Dp enables the selection of the following machine 
learning methods: Decision Tree (Pedregosa et al., 2011), Extra Trees 

(Geurts et al., 2006), Gradient Boosting (Friedman, 2001), Random 
Forest (Breiman, 2001) and the MultiLayer Perceptron (Hinton, 1990). 
The software allows users to select a specific classification method or 
perform an automatic process that runs all the methods and selects the 
one that obtains the highest mean cross-validated score (mCVs) (Ojala 
and Garriga, 2010) with 10 folds to ensure the independence between 
training and test data. For the evaluation of these methods, a fine-tuning 
of the hyperparameters can be done to optimize the models. This 
fine-tuning is carried out by setting up a grid of hyperparameters 
(Table 1). If the user chooses not to perform this fine-tuning, the default 
hyperparameters for Decision Tree, Extra Trees and Gradient Boosting 
will be: Maximum depth of the tree is parameterized to None; Minimum 
number of samples required to split an internal node is parametrized to 
2; Minimum number of samples required to be at a leaf node is 
parametrized to 1. The maximum depth of a decision tree determines the 
maximum number of levels in the tree. This hyperparameter limits the 
complexity of the decision tree, preventing it from becoming too deep 
and overfitting the training data. The minimum number of samples 
required to split an internal node is a hyperparameter that determines 
the minimum number of data points required at a node before it can be 
split further. This hyperparameter prevents the tree from splitting on 
noisy or irrelevant features by ensuring that the node has enough data 
points to provide reliable statistics. Finally, Minimum number of sam-
ples required to be at a leaf node controls the tree’s ability to generalize 
to new data by limiting the number of samples at a leaf node. If this 
value is set too low, the tree may create leaves with very few samples, 
which can result in overfitting. On the other hand, if the value is set too 
high, the tree may be too general and not capture enough details in the 
data. 

The default hyperparameters for Random Forest are: Number of trees 
in the forest, 100; the Number of features to consider is set to sqrt; the 
Maximum depth of the tree is parametrized to None; the function to 
measure the quality of a split is set to Gini. The number of trees de-
termines the number of decision trees that will be trained during the 
model building process. Increasing the number of trees in the forest 
generally leads to better performance on the test data, but at the cost of 
increased computational resources required to train and evaluate the 
model. The number of features parameter is important for controlling 
the complexity of the decision tree. Including too many features may 
lead to overfitting, while including too few may lead to underfitting. The 
function used to measure the quality of a split is a hyperparameter that 
determines how the decision tree algorithm selects the best feature to 

Fig. 2. Sample selection window with the Class3Dp software. The yellow 
square represents the selection of a ground class sample. 

Table 1 
(1 column fitting) Hyperparameters used for fine-tuning the models.   

Decision Tree, 
Extra Trees and 
Gradient 
Boosting 

Random Forest MultiLayer 
Perceptron 

Hyperparameter 
#1 (values) 

Maximum depth 
of the tree (5, 10, 
None) 

Number of trees 
in the forest 
(100–500) 

Number of neurons 
in the ith hidden 
layer (50,50,50), 
(50,100,50), (100) 

Hyperparameter 
#2 (values) 

Minimum 
number of 
samples required 
to split an 
internal node (2, 
3, 5) 

Number of 
features to 
consider 
(’auto’, ’sqrt’, 
’log2′) 

Activation (Tanh, 
’ReLU’) 

Hyperparameter 
#3 (values) 

Minimum 
number of 
samples required 
to be at a leaf 
node (1, 2, 5) 

Maximum 
depth of the 
tree (4, 5, 6, 7, 
8) 

Optimizer (SGD, 
Adam) 

Hyperparameter 
#4 (values) 

– Function to 
measure the 
quality of a split 
(‘Gini’, 
‘entropy’) 

Learning rate 
(0.0001, 0.05)  
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split on at each node. The choice of the function can impact the per-
formance of the model and the optimal function depends on the char-
acteristics of the dataset and the problem to be solved. 

For the MultiLayer perceptron algorithm, the default parameters are 
Number of neurons in the ith hidden layer, which is set to 100; Rectified 
Linear Activation (ReLU) (Nair and Hinton, 2010) is used as activation 
function; Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) 
is parameterized as Optimizer; the Learning rate default value is 0.0001. 
The number of neurons determines the number of nodes or neurons in 
the ith hidden layer of an artificial neural network. The number of 
neurons can affect the complexity and capacity of the model, which can 
impact the model’s ability to learn and generalize from the training data. 
For the optimal activation, the function set depends on the problem to be 
solved, the architecture of the network, and the dataset to be used. 
Different activation functions can impact the performance of the model 
in terms of accuracy, training time, and generalization. The Optimizer is 
a hyperparameter that determines the algorithm used to update the 
weights and biases of the model during the training. The choice of the 
Optimizer can impact the speed and stability of the training process, as 
well as the quality of the final model. Finally, the learning rate de-
termines the step size used to update the weights and biases of the model 
during training. A high learning rate can accelerate convergence but also 
reduce performance. A low learning rate can result in more stable 
training and better generalization but may require more iterations to 
converge on the optimal weights. 

The accuracy of each combination of hyperparameters is assessed by 
10-fold cross-validation to ensure the independence between training 
and test data. In the model fine-tuning option, the hyperparameters 
applied for each method are those with the highest mCVs. After model 
fitting, the mean and standard deviation values of the results obtained in 
the 10 cross-validation iterations are displayed. Then, the feature 
importance indicators (Breiman, 2001) are computed for each feature, 
allowing the user to re-evaluate the model using only the most relevant 
features for each specific problem. The software allows both, to save and 
to load the processed models, permitting the generated classification 
models to be applied to other point clouds. At the end of the process, the 
result of the classification is stored in the "Classification" field in the case 
of “.las” files, or in the last column of scalar fields in the case of “.txt” 
files. 

3. Case application of Class3Dp 

In order to show the application of the UAV-DAP point cloud clas-
sification process and methods of Class3Dp, this section describes a case 
study in two phases. First, it is used for the classification of bare-ground 
points for height normalization. Subsequently, Class3Dp is used for the 
classification of plant species at point level. 

The data for this case study is from an area located in the natural park 
of Sierra Calderona, specifically in the municipality of Gilet (Valencia, 
Spain). The Sierra Calderona natural park is one of the most valuable 
landscapes of the region since its natural and physical characteristics 
make it of great environmental, scenic, and cultural value. A circular 
area encompassing 1000 m2 was selected (Fig. 3). The shrub density is 
very high, forming an almost continuous horizontal layer of vegetation, 
where the different species are mixed without reaching a height of more 
than 150 cm. Individuals from Anthyllis cytisoides (Albaida), Chamaerops 
humilis (European fan palm), Cistus monspeliensis (Montpelier cistus), 
Pistacia lentiscus (Mastic) and Quercus coccifera (Kermes oak) are located 
in the area. 

Field data collection took place on July 23, 2020. The field campaign 
was divided into two phases: in the first, optical data was collected using 
UAV; in the second, individuals of the different species were located 
using a Global Navigation Satellite System (GNSS) receiver. UAV field-
work consisted of two flights: one flight carried an RGB sensor (DJI 
Zenmuse X5S) and the other an MS sensor (Micasense RedEdge). 
Following the flights, GNSS data was collected to locate the most 
representative shrub species in the area. In this task, the projection on 
the floor of the centre of 83 individuals was measured using a GNSS 
receiver. 

3.1. Class3Dp applied to bare-ground points classification 

From the UAV images, photogrammetric Structure from Motion 
(SfM) algorithms were applied to obtain the RGB and MS point clouds 
(Agisoft LLC., 2022), being this dataset distributed under open source 
license (Carbonell Rivera et al., 2023b). These point clouds were entered 
as input data into Class3Dp to classify bare-ground points in a first stage. 
To this end, the software was used to select training samples on the 
colour point cloud where the ground points can clearly be distinguished 
(Fig. 2). Once the training samples were taken, the clouds were classified 
in two phases: (i) ground and vegetation classification; and (ii) species 

Fig. 3. Study area location in the central Mediterranean area of Spain (A). Study area RGB orthomosaic generated from UAV imagery (B). Orthomosaic in false colour 
infrared (C). Map reference system is EPSG:25830, coordinates in meters. Detail ground photographs of Chamaerops humilis (D) and Pistacia lentiscus (E and F) in the 
study area. 
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classification. In the first phase, all the features calculated by the soft-
ware were used, except the features X, Y, Z, Z_mean, Dif_Z, Z_Zmin and 
Zmax_Z, as these variables are not related to the distinction between 
ground and vegetation points. Once the first classification was per-
formed, a new classification was performed, selecting only the features 
with the highest importance and performing a dimensional reduction. 
After the classification of bare-ground and vegetation points, an external 
software may be used (e.g., LAStools) to construct a ground Triangulated 
Irregular Network (TIN) using the points classified as bare ground 
(Isenburg, 2014). Then, the difference in height between vegetation 
points and the generated bare ground TIN was calculated, assigning this 
height to the Z coordinate of each vegetation point, obtaining the 
normalized point cloud. After height normalization, the points of the 
UAV-DAP cloud classified as bare ground and with a height below zero 
were omitted. 

3.2. Classification of vegetation species 

After the normalization process, classification of the species in the 
study area (Anthyllis cytisoides, Chamaerops humilis, Cistus monspeliensis, 
Pistacia lentiscus and Quercus coccifera) was applied. In this case, the 
samples were extracted from the GNSS points collected in the field, 
registering the location of the different species individuals. A 40-cm 
buffer was made at each point using the functions lasboundary and 
lasclip of LAStools. This value was selected considering the minimum 
radius of the smallest individuals identified. The point cloud was clipped 
using this radius to obtain the training samples. After this step, two 
classifications were performed with Class3Dp, using both RGB and MS 
information. In this last case, all the features allowed by the software 
were computed, except for the X and Y coordinates, since the 
geographical distribution of the species is not relevant at this scale. Both 
classifications were parameterized to select the best classification model 
automatically, calculating the best hyperparameters of each classifier. 

3.3. Evaluation 

Finally, an external validation of the vegetation species classification 
was performed by taking independent samples interpreting the point 
cloud. Validation samples were taken using Class3Dp (section Point 
cloud sampling) and were the same for RGB and MS clouds. The vali-
dation samples were compared with the predictions obtained by the 
Class3Dp software using a confusion matrix (Congalton et al., 1981). 
The precision (Pr) (Cleverdon and Keen, 1966), recall (Re) (Cleverdon 
and Keen, 1966), and F-measure (Fm) (Van Rijsbergen, 1979) values 
were also obtained using the following equations: 

A =

⎡

⎢
⎢
⎣

a1,1 a1,2 ... a1,j
a2,1 a2,2 ... a2,j
... ... ... ...

ai,1 ai,2 ... ai,j

⎤

⎥
⎥
⎦ (1)  

TPi = ai,i (2)  

FPi =
∑i

1
aj,i − TPi (3)  

FNI =
∑i

1
ai,j − TPi (4)  

OA=

∑i

1
TPi

∑i

1

∑j

1
ai,j

(5)  

Pri =
TPi

TPi + FPi
(6)  

Rei =
TPi

TPi + FNi
(7)  

F1 i= 2⋅
Pri⋅Rei

Pri + Rei
(8)  

where A represents the confusion matrix (1), TPi is True Positives (2), FPi 
is False Positives (3), FNi is False Negatives (4), OA is the overall ac-
curacy (5), Pri is the precision (6), Rei is the recall (7), and F1i is the F- 
measure (8). 

4. Results 

Two independent classifications were conducted, using two files 
including 3D points as entry data. They were obtained after a photo-
grammetric process, and were composed of 14,094,898 points in the 
case of the RGB cloud (.las file), and 1,374,606 points from the MS cloud 
(.txt file). Their positional error was estimated through the root-mean- 
square error (RMSE) between the position of the computed 3D point 
and the corresponding GCPs, being 2.79 cm for the RGB cloud and 1.67 
cm for the MS cloud. 

4.1. Bare-ground points classification 

After the selection of the training samples, the software was run for 
the supervised classification of ground and vegetation classes. In this 
run, all the classification models were analysed (Fig. 4). 

Fig. 4 summarizes the statistical data displayed by Class3Dp during 
the search for the best model. This figure shows the cross-validation 
values of each model. All methods generated accurate results with a 
range score between 0.86 (MultiLayer Perceptron outlier) and 1 for the 
RGB classification and 0.99 and 1 for the MS classification. In the case of 
RGB classification, the highest mCVs were obtained by Random Forest 
(0.999), while in MS classification, mCVs equal to 1 were obtained for 
the Decision Tree and Gradient Boosting models. 

Once the results of the models were obtained, it was decided not to 
perform a fine-tuning of the hyperparameters, due to those high accu-
rate values obtained. Therefore, the RGB point cloud was classified using 
Random Forest, while the MS point cloud was classified with Gradient 
Boosting (Fig. 5). When running these models, the features with the 
highest permutation importance were evaluated, finding that in the RGB 
classification, there were three features with non-zero permutation 
importance: NGRDI_mean, SAVI and verticality, which obtained values 
of 0.03, 0.11 and 0.50, respectively. In contrast, in the MS classification 
only one variable obtained a value greater than zero, NDVI_mean with a 
value of 0.47. 

Once the point clouds were classified, they were compared with the 
validation data, obtaining the confusion matrix shown in Table 2. 

Analysing in detail the classification of the RGB point cloud, the 

Fig. 4. Box and whiskers plot of cross-validation scores for the five classifiers 
analysed for ground and vegetation classification in RGB (green) and MS (red) 
point clouds. Outliers are plotted with circle symbols. An outlier detected in the 
RGB MultiLayer Perceptron is not represented (0.86). 
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results from the confusion matrix showed that a total of 85,852 ground 
points and 98,145 vegetation points were correctly classified from a 
total of 196,642 points. These numbers give a high OA (0.936), but other 
statistics need to be analysed in detail due to the imbalance of the 
classes. On the one hand, focusing on the vegetation class, a score of 
0.995 for Pr implies a very high accuracy in the prediction of vegetation 
points. Another value that is also close to one is obtained for Re (0.997), 
where the correctly classified values are compared to incorrect values. 
Similarly, the Fm obtains a value close to one (0.996), representing the 
harmonic mean of precision and recall. An adequate Fm is associated 
with low values of FP and FN, as in this case. These values indicate high 
correctness in the prediction of vegetation points. On the other hand, in 
the ground class, we observe equally high statistical values, highlighting 
a Pr of 0.873 and a Fm of 0.841. Although the values obtained were less 
remarkable, they still indicate a sound classification, predicting 

practically all the vegetation points correctly. Regarding the multi-
spectral classification, the addition of the two spectral bands, RedEdge 
and NIR, has a positive impact on all statistics, slightly improving the OA 
from 0.936 of the RGB classification to 0.948. These values are more 
remarkable in the ground class, obtaining values close to one in Pr 
(0.928), Re (0.972) and Fm (0.950). With the MS point cloud, the 
vegetation class scores were very similar to those obtained using the 
RGB point cloud. 

4.2. Species classification results 

The classification of plant species began with a fine-tuning of the 
hyperparameters to optimize the accuracy of the models. Class3Dp 
creates a file with a statistical summary at the end of the hyperparameter 
fine-tuning. This file stores the cross-validation scores obtained in each 
of the 10 iterations carried out with each combination of hyper-
parameters. Table 3 is based on these values. This table shows the 
summary of the results obtained during the search for hyperparameters 
in the classification of plant species. 

After executing the hyperparameter search, Class3Dp automatically 
selects the hyperparameters that have obtained the best mCVS and uses 
them to generate the model that predicts the classified point cloud. After 
this process, the software generates a.CSV file with the summary of the 
results obtained from the calculated hyperparameter combinations. 
Table 3 has been generated from this.CSV file for the case study. From 
this table, we can observe that regardless of the model chosen, the MS 
classification obtains better results than the RGB classification. 
Regarding the RGB classification, we can observe that the model with 
the highest mCVs is Extra Trees, parameterized with Maximum depth of 
the tree equal to None, Minimum number of samples to split an internal 

Fig. 5. (A) Zenithal view of the points classified as ground in the RGB point cloud with black background. (B) Points classified as vegetation in the RGB point cloud 
with white background. (C) False-colour infrared points classified as ground in the MS point cloud with black background. (D) False-colour infrared points classified 
as vegetation in the MS point cloud with white background. 

Table 2 
(1 column fitting) Ground and vegetation classification confusion matrix with 
precision (Pr), recall (Re), and F-measure (Fm) and overall accuracy (OA) for the 
different classes. Values indicate the number of points collected for evaluation.   

RGB MS 

Classified as 

Ground Vegetation Ground Vegetation 

Truth Ground 85,852 105 19,169 0 
Vegetation 12,540 98,145 1481 7976 
Pr 0.873 0.995 0.928 0.998 
Re 0.811 0.997 0.972 0.996 
Fm 0.841 0.996 0.950 0.997 
OA 0.936 0.948  
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node with a value of 2 and Min. number of samples required to be at a 
leaf node equal to 1, obtaining a mCVs of 0.779. Similar results are 
achieved using the Gradient Boosting model, parameterizing the 
Maximum depth of the tree to 10, obtaining mCVs values around 0.76. 
Regarding the MS classification, the model with the highest mCVs 
(0.846) is Gradient Boosting using the hyperparameters Maximum 
depth of the tree equal to 10, Minimum number of samples to split an 
internal node with a value of 5 and Minimum number of samples 
required to be at a leaf node equal to 5. Regardless of the hyper-
parameters used, the best overall results were reached with the Gradient 
Boosting model, with a minimum value of 0.787 (Table 3). An aspect 
that should be highlighted in both classifications, whether the point 
cloud was RGB or MS, is that not introducing a tree depth limit is 
counterproductive, since if the depth of the tree is not limited, the mCVs 

decreases. In this sense, this hyperparameter is the one that most affects 
the results. In contrast, in the MultiLayer Perceptron method, the 
hyperparameter that most affects the results is the Optimizer, detecting 
how the Adam optimizer obtains better results than the SGD optimizer 
(Table 3). 

After creating the model, Class3Dp displays the permutation 
importance obtained for each feature (Fig. 6). We can observe that, as in 
the previous classification between ground and vegetation, the classifi-
cation of the RGB point cloud has a greater number of features with 
permutation importance greater than zero, using in this case, 24 fea-
tures, while in the MS classification only 10 features obtained a per-
mutation importance greater than zero. 

Both in RGB and multispectral classification, the standard deviation 
of the neighbourhood spectral variable (NGRDI in the case of the RGB 

Table 3 
Mean cross-validation score obtained in the hyperparameters fine-tuning for the models: Decision Tree, Extra Trees, Gradient Boosting, 
Random Forest and MultiLayer Perceptron for the RGB (green colour gradient) and MS (red colour gradient) point clouds. The colour 
gradient is intensified according to the improvement of the result. 
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cloud and NDVI in the case of the MS cloud) is one of the features with 
the highest importance, together with verticality. Regarding the 10 
features with the highest permutation importance, we find that in the 
case of the RGB classification there are seven geometric and three 
spectral features, while in the MS classification, we find seven spectral 
and three geometric features. 

Finally, the point clouds were classified using the models with the 
highest mCVs: Extra Trees in the case of RGB classification and Gradient 
Boosting in the case of MS classification (Fig. 7). Once the classified 
point clouds were obtained, the predicted results were compared with 
the validation data (Table 4). 

Analysing the overall accuracy, we can see how it resembles the 
mCVs obtained during model fitting. In the case of the RGB point cloud, 
the results have improved (from 0.779 mCVs obtained in the Extra Trees 
model to 0.858 OA). In the case of the MS point cloud, the results follow 
the same trend (from 0.847 mCVs obtained in the Gradient Boosting 
model to 0.875 OA). In both classifications, the results were similar, 
with Anthyllis cytisoides and Cistus monspeliensis being the best classified 
species. Observing the statistics individually, we can see that most of 
them are above 0.9, with no notable confusion between the species 
studied. Based on the recall obtained for Quercus coccifera and Pistacia 
lentiscus in both classifications (RGB and MS), we can observe that these 
classes obtained the most confusion among the species studied. 

5. Discussion 

The possibility of having a point cloud classified according to plant 
species allows the availability of ecosystem information that can be 
essential for describing, understanding, predicting or managing 

biodiversity (De Cáceres et al., 2015; Guo et al., 2017; Hernandez--
Stefanoni et al., 2006). This information can allow technicians to know 
the representativeness of each species, its location or its dimensions, 
being useful for specific cases as quantity forest structure and compo-
sition (Alonzo et al., 2018; Molina-Valero et al., 2022), ecological 
monitoring (Arroyo-Mora et al., 2019), understanding and protecting 
ecosystems (Mangewa et al., 2019), or making informed decisions 
regarding conservation (Baena et al., 2018). 

During the processing of point clouds for forestry applications, one of 
the most generalized steps is the normalization of the point cloud 
heights. This normalization reduces the height to zero-level to perform 
height measurements of the elements contained in the point cloud 

Fig. 6. Permutation feature importance obtained for all features with a value 
greater than zero for the RGB (green) and MS (red) point cloud classification. 

Fig. 7. (A) Zenithal view of the RGB point cloud classified according to classes 
Anthyllis cytisoides, Chamaerops humilis, Cistus monspeliensis, Pistacia lentiscus and 
Quercus coccifera. (B) MS point cloud classified according to the same classes as 
described previously. Lower right corner of both images, oblique point 
cloud detail. 
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without being affected by the different heights of the terrain (Malambo 
et al., 2018; Nevalainen et al., 2017; Wang et al., 2008). To perform this 
height normalization, it is necessary to classify the bare-ground points 
and subsequently interpolate them to generate a surface representing 
the terrain. As mentioned previously, software such as LAStools (Isen-
burg, 2014) or Fusion/LDV (McGaughey, 2016) allow us for the classi-
fication of bare-ground points using the geometric characteristics of 
photogrammetric point clouds. Previous studies tested the possibility of 
using these software tools in the classification of ground points in 
Mediterranean forests, obtaining an OA of 0.725 in the case of Fusion 
and 0.733 in the case of LAStools (Zeybek and Şanlıoğlu, 2019). 
Class3Dp, combining geometric, spectral and neighbourhood features, 
enables the collection of training samples and the classification of RGB 
and MS point clouds (Fig. 4). In the models analysed, values of mCVs 
close to one have been obtained. The software has allowed an optimal 
discrimination between bare ground and vegetation, considering the 
difficulty of differentiating bare ground from small shrubs and grasses 
that form a continuous horizontal surface. In the case study, the same 
areas have been used as training samples for both the RGB and MS point 
clouds. In each training sample, the RGB point cloud had higher density, 
while the MS cloud had higher spectral resolution. In the classification of 
vegetation species, better results were obtained by having higher spec-
tral resolution than point density. 

In the classification of species, hyperparameter tuning was per-
formed, in which the software automatically searches for the hyper-
parameters that obtain the best mCVs in the tuning. This tuning helped 
to optimize machine learning models, increasing classification accuracy, 
reducing the time required for training, and avoiding overfitting of the 
data (Probst and Bischl, 2019). A model search and fine-tuning of each 
model improved the models by more than 50%, comparing the best and 
worst values of mCVs obtained in the classification results (Table 3). 

The good results obtained in both classifications are noteworthy, 
bearing in mind the difficulty involved in classifying plant species. This 
type of classification deals with problems such as the intraspecific dif-
ferences of each species at different growth stages (i.e., the changes in 
shape and loss of green colour of the leaves of Quercus coccifera, or the 
change in the intensity of the green colour of the leaf of Pistacia lentiscus 
as each individual matures) or the interrelation between individuals of 
different species competing in the same soil space at different heights. 

Currently, to the best of the authors’ knowledge, there is no free 
software available to classify point clouds based on their geometric and 

spectral information. Prior to the release of Class3Dp, there have been 
previous studies in which point clouds were classified using geometric 
and spectral features. Nevalainen et al. classified four boreal forest tree 
species using hyperspectral information (Nevalainen et al., 2017). In this 
study, 347 spectral and geometrical features were used to train different 
machine learning models (k-nearest neighbours, Random Forest, and 
MultiLayer Perceptron). The last two classifiers obtained 95% of overall 
accuracy. Tuominen et al. (2018) conducted a more arduous study with 
a similar methodology. They employed 692 spectral and geometrical 
features obtained from UAV-DAP point clouds and hyperspectral image 
mosaics and applied k-nearest neighbours and Random Forest classifiers 
to classify 26 different tree species in southeastern Finland. The 
k-nearest neighbours classifier achieved the highest global accuracy, 
with an accuracy rate of 82%. Sothe et al. (2019) used 68 spectral and 
geometrical features and a support vector machine classifier to classify 
12 major tree species in a subtropical forest by integrating UAV-DAP 
point cloud and hyperspectral data. In this study, an overall accuracy 
rate of 72% was achieved. These studies, where no specific software 
tools were presented, highlight the potential of a software for point 
cloud supervised classification. 

6. Conclusions and future works 

We have proposed a software for supervised classification of vege-
tation species from coloured point clouds. Unlike existing software that 
allows the classification of point clouds, this software introduces two 
improvements: the possibility to classify point clouds based on training 
samples and the addition of spectral features to the classification of 
UAV-DAP point clouds. In this respect, the automation of the pipeline 
and the graphical interface of Class3Dp allows users to perform super-
vised classifications quickly and intuitively. In our tests, we have 
demonstrated the effectiveness and robustness of the proposed software 
in different classifications. Class3Dp allows for the classification of both 
ground and vegetation points, as well as the plant species studied. 
Hence, Class3Dp can produce a more accurate and precise classification, 
not only in the classification of plant species but also in any classification 
of a coloured point cloud. Although focused on plant species classifi-
cation, this software can be used in a wide range of fields (archaeology, 
architecture, biodiversity, construction, cultural heritage, forestry, 
mining, topography …). Future works will focus on the inclusion of 
indices obtained from hyperspectral images, since point clouds from 
images taken with hyperspectral snapshot cameras can be obtained. 
Class3Dp is a free software that allows all interested users to use it for all 
kinds of studies where point clouds can be relevant to extract useful 
information. 
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Table 4 
Species’ confusion matrix obtained from independent 
validation samples with precision (Pr), recall (Re), F- 
measure (Fm) and overall accuracy (OA) for the 
different classes. Values indicate the number of points 
collected involved in the validation. Column headers 
are class labels, rows refer to class indices. The green 
gradient is associated with RGB values, while the red 
gradient represents MS values. 
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