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a b s t r a c t

The particle swarm optimization algorithm is primarily inspired by the natural behaviour of swarms
and achieves important results in different applications. However, it is not exempt from stagnation in
local optima and has a tendency to prematurely converge to them. Novelty Search is a concept that
appeared recently in different fields of computational intelligence. It aims at exploring non-visited
areas of the search space through solutions that bring novelty to already discovered solutions. The
novelty of this work can be divided into two steps: on one side, this article proposes a variant of the
particle swarm optimization algorithm which uses Novelty Search concepts to improve the algorithm’s
performance. Our proposal is first checked and compared using the CEC 2005 benchmark suite and
then, we apply it to solve a real-world optimization problem: the design of a combustion system
targeting the reduction of pollutant emissions and fuel consumption. The combustion chamber design
phase usually is a complex and time-consuming process even with advanced supercomputers, since
it depends on several input variables which are highly non-linear and with crossed interaction. Then,
the second contribution of this work is to develop a methodology that couples a computational fluid
dynamics (CFD) simulation tool with the new optimization algorithm for minimizing the specific
fuel consumption of a compression-ignited engine, while constraining the NOx and soot emissions.
A 3D-CFD model of the combustion system was built to predict and analyse the performance of
the combustion system and hence, select the parameters with a higher impact on the system. The
method reduces the computational time and includes tools for the automatic preparation of the input
parameters and geometry of the system. The input parameters correspond to geometrical variables
that control the bowl shape, the number of holes in the injector, the injection pressure, the swirl
number and the exhaust gas recirculation rate. Results show how the simulation tool and the new
PSO with Novelty Search algorithm allow us to obtain a new combustion system that minimizes the
fuel consumption by 3%, simultaneously reducing NOx and soot emissions.

© 2023 Published by Elsevier B.V.
1. Introduction

Particle Swarm Optimization (PSO) [1] has become a powerful
earch and optimization tool. In the literature we can find many
pplications for both real world problems [2–4] and theoretical
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studies [5–7]. PSO does not work well for all types of problems
and sometimes presents the usual disadvantages of other bio-
inspired algorithms, such as premature convergence, dependence
on configuration parameters or obtaining local optimum solu-
tions. For this reason, a whole set of variants have been developed
to solve the aforementioned problems.

Following the classification of Gou et al. [8], recent studies
mainly focused on improving the performance of PSO can be
classified into three groups:
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1. the study and selection of algorithm parameters (number
of particles, evaluations, rates and probabilities, etc.),

2. the modification of the structure and topology of commu-
nication between particles, and,

3. the development of hybrid algorithms that combine PSO
with other heuristics, seeking to improve the exploration of
solution space and the exploitation of promising solutions.

In this paper we propose an improvement of PSO, by working
on both, the second and the third of the above groups. Specif-
ically, we are investigating the performance of a new hybrid
implementation of PSO, in which we propose the use of Novelty
Search concepts [9] to improve exploration and exploitation. We
call this variant Novelty Swarm (NS) optimization algorithm.
Although the definition of memetic computing suffered some
modifications since the first appearance of the term [10], three
main types of memetic computing algorithms are defined by the
Memetic Computing Journal. Following this taxonomy we classify
our proposal as a type 1 memetic computing algorithm, where
a general-purpose algorithm such as PSO is integrated with the
novelty search heuristic.

Novelty Search is a recent paradigm in evolutionary and bio-
inspired optimization algorithms developed by J. Lehman and K.
O. Stanley. It is based on the idea that fitness function-based algo-
rithms ‘‘may actively misdirect search towards dead ends’’ [11],
this is, getting stuck in local optima due to the gradient of the
objective function. In population based bio-inspired algorithms,
individuals are representation of the solutions in the domain. The
Novelty Search paradigm proposes that nature has no objective,
but just evolves, and any result of this evolution is because of
natural selection. It is simply the concatenation of multiple events
over time. Evolutionary and bio-inspired algorithms may miss the
real solution to the problem because they do not look for novelty
solutions, even if they are not always the best fitted [12].

Evolution cells illustrate what has been previously explained.
In fact, if we take a fitness function with a parameter that includes
reproduction, unicellular organisms are much more efficient in
reproduction than multicellular organisms, even if the latter are
more evolved and better adapted to the environment [13]. The
problem that might arise is that the evolutionary or bio-inspired
algorithm does not reach the ideal solutions because it gets stuck
in a local optimum (in this case, unicellular organisms). In a
mathematical analogy, there are some parts of the domain of
the function that are not attractive for the algorithm, even if the
global optimum is there [13], so the algorithm is stopped at a local
optimum of the problem. Thus, two main approaches emerge
from this reasoning trying to solve the aforementioned problem.
The first one is that fitness functions must be studied thoroughly
in order to avoid stopping in local optimum of the problem. This
is, in fact, changing the problem to be solved. However, in real
world problems, different modelling approaches can be proposed
in order to arrive at the same solution, and these approaches may
have different properties during the optimization process. The
second one is to make some changes in evolutionary and bio-
inspired algorithms in order to find the optimum of the fitness
function even if it is not in an attractive region. In this work,
we focus on the second approach to the problem. We are going
to modify a bio-inspired algorithm with the aim at exploring
the parts of the domain of the function that might be unattrac-
tive, but where the solution may be allocated. This strategy has
already been tried with so-called random mutation applied to
PSO (M-PSO) [14]. That is to say, with a certain probability, a
particle of the algorithm can mutate somewhere in the domain
of the function. However, doing this without any kind of control
is like flipping a coin; there is no methodology to follow and
everything is left to chance that the particle reaches a better opti-
mum. The Novelty Search paradigm just provides a performance
2

method. Those unexplored parts of the domain of the function are
explored with a methodical search.

The traditional PSO is the base of the proposed algorithm
and the concepts of Novelty Search are applied in the search of
unexplored areas of the solution’s space. This work evaluates the
Novelty Swarm Algorithm on the CEC 2005 benchmark suite [15]
researching efficiency on all three kinds of problems: unimodal,
multimodal and compositional functions, and then we compare
them with previous approaches. The CEC2005 has been chosen
because it has been proved by several papers that is a really
good test for algorithms in complex functions with a lot of lo-
cal optima [16–18]. After the performance evaluation with the
benchmark is done, the proposed NS algorithm is implemented
to optimize a compression-ignited (CI) engine to minimize the
pollutant emissions and fuel consumption.

The Internal Combustion Engines (ICE) remain as the most
used powertrain in transportation [19], as jet engines for air
transportation and as reciprocating ICE for marine and land
propulsion systems. The interest in these machines is their high
fuel efficiency, reasonable durability and moderate pollutant
emissions [20]. It is estimated that the transport sector is re-
sponsible for around 20% of the total production of the green
house gases emissions [21]. In order to attend the regulations
of emissions, numerous efforts have been done in the engine
industry, specifically in the improvement of combustion systems
and in the development of auxiliary devices for after treatment.
This process of pollutant emission reduction is a challenge since it
should also consider the fuel consumption minimization without
deteriorating the engine performance, which have an antago-
nist behaviour. The development of the combustion process has
been one of the keys for reaching the emission targets, specially
for Nitrous Oxides (NOx) and particulate matter (soot). Efforts
or the engine development have included experimental stud-
es testing multiple engine setting parameters for conventional
uel [22], bio-fuels [23] or more advanced HCCI concepts [24],
ost of them combined with optimization tools to find the
est performance of the engine [25] Besides, in the analysis of
he combustion performance in CI engines, computational fluid
ynamics (CFD) tools have been used in large scale to simulate
he in-cylinder combustion process. In this context, CFD codes
re tools commonly used to reproduce, visualize and study the
nfluence of different parameters like the bowl geometry, in-
ection configuration and air management on the combustion
ehaviour [26,27]. Moreover, these codes are used as support
or optimization studies due to their capability for reproduc-
ng combustion phenomena, thus generating reliable trends for
ecision making in design stages. Once the model is validated
gainst experimental data, it is possible to configure different
ngine settings, finding an optimal design without rebuilding the
xperimental hardware [28]. Current literature shows a variety
f different approaches used for engine optimization, from the
raditional design of experiments, to the most innovative as
euristics, meta-heuristics or neural networks [20,29–32]. The
ombustion chamber design phase usually is a complex and time-
onsuming process even with advanced supercomputers, since it
epends on several input variables which are highly non-linear
nd with crossed interaction [33].
Therefore, the motivation of this work is to obtain an op-

imized design of a combustion system capable of minimizing
he fuel consumption and pollutant emissions at the same time
sing the benefits of the proposed method Novelty Swarm (NS).
he first goal is an improvement of the PSO algorithm searching
nexplored areas of the search space and avoiding the prema-
ure convergence of the algorithm using Novelty Search concepts
hich characterizes the NS. The second objective is to implement
he proposed methodology for the obtention of a combustion
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hamber for a CI engine based on the reduction of fuel con-
umption and pollutant emissions (NOx and soot), which are a
ajor environmental issue as it was mentioned. A CFD model
f the combustion system was built to predict and analyse the
erformance of the combustion system and hence, select the
arameters with a higher impact on the system. The proposed
ethod is configured to reduce the computational time and it

ncludes tools for the automatic preparation of the input pa-
ameters and geometry of the system. The input parameters
orrespond to geometrical variables that control the bowl shape,
he number of holes in the injector, the injection pressure, the
wirl number and the exhaust gas recirculation rate.
The rest of this paper is structured as follows. Section 2

resents some modifications of PSO and a brief summary of other
orks that have studied optimization in engines. Section 4 de-
cribes the engine characteristics and the numerical methodology
ormulation, as well as the CFD model validation and the opti-
ization procedure. Section 3 introduces the Novelty Swarm and
xplains the experiments and results of the CEC2005 benchmark.
ection 5 is devoted to the integration of the CFD model and
he proposed NS algorithm. Also, fitting functions are defined. In
ection 6, we present the results of applying the proposed NS
lgorithm to CEC2005 benchmark compared with PSO, M-PSO,
APSO, LSHADE and jSO optimization algorithms. In Section 7 the
ngine optimization results are shown, followed by a discussion.
inally, Section 8 outlines the conclusions.

. Related work

There are a lot of works in the literature focusing on modifi-
ations of PSO and their combinations with other metaheuristics
r local search algorithms.

1. IDE-PSO [8]. Employs the idea of multigroup, separating the
swarm into several subgroups based on particles’ perfor-
mances (emotional status) during evolution.

• Merits: Outperformed 6 PSO variants in multimodal
functions.

2. M-PSO [14]: It is an implementation of PSO that includes
novelty search.

• Demerits: The novelty search is practically random
and not methodological.

• Merits: It is a PSO novelty search algorithm.

3. HPSOGA [34]: Hybrid PSO and genetic algorithm with pop-
ulation partitioning.

• Demerits: Stagnation with the increase of the evalua-
tions. Tested on a reduced set of problems.

• Merits: Good solutions at the beginning. Premature
convergence.

4. Hybrid approach of PSO and Differential Evolution [35]: A
framework is proposed based on each particle’s social and
cognitive experience (memory-swarm).

• Demerits: Exploitative mutation strategies may dete-
riorate its performance.

• Merits: It is a promising proposal. Incorporating this
framework in any PSO variant was straightforward
and significantly enhanced the performance of most
of the considered cases.

5. ALC-PSO [36]: It is characterized by assigning the leader
of the swarm with a growing age and a lifespan, which is
adaptively tuned according to its leading power.
3

• Merits: Designed to overcome the problem of prema-
ture convergence without significantly impairing the
fast-converging feature of PSO.

6. SL-PSO [37]: A surrogate-assisted PSO algorithm and a
surrogate-assisted social learning-based PSO (SL-PSO) algo-
rithm work together to find the global optimum. SL-PSO
explores, and both share promising solutions.

• Merits: Find high-quality solutions for high-dimen-
sional problems on a limited computational budget.

• Demerits: Tested with a reduced set of problems.

7. CAPSO [38]: Proposes a centripetal accelerated PSO (CAPSO)
based on PSO and Newtonian’s Motion Laws.

• Merits: Accelerates convergence of PSO. Compared to
well-known PSO algorithms in the literature, CAPSO
yields better results.

8. C-APSO [39]: Several chaotic maps are utilized to tune the
main parameter of the accelerated PSO.

• Merits: Very good performance in comparison with
other chaotic algorithms.

• Demerits: Reduced benchmark. Only compared with
chaotic algorithms.

9. L-SHADE [40,41]: It is a history-based adaptive Differential
Evolution algorithm with linear population size reduction.

• Merits: It outperforms most of the compared methods
for each benchmark set.

10. jSO [42]: With the same idea as L-SHADE with a new
weighted version of the mutation strategy.

• Merits: The jSO algorithm indicates better overall re-
sults when compared to the former L-SHADE algo-
rithm on almost all dimensions.

Other comparative differential evolution approaches are re-
iewed in [43].
After this revision, we are going to select some algorithms for

urther comparisons. We select M-PSO, because it uses novelty
earch in a random way, and it can be a good touchstone for com-
aring our proposal. Other options are the well-tested algorithms
APSO, L-SHADE and jSO.
Novelty Search has been used in the recent years in order

o improve some optimization algorithms, such as Differential
volution [44] or Genetic Programming applied to clustering [45]
r automatic generation of game levels [43]. The fact that this
aradigm has been used previously with relative success is a good
ign of its capabilities.
In summary, the approaches that have been presented so far

o improve PSO performance do not seem to be evaluated for all
ypes of functions. Also, the problem of premature convergence
s still an inconvenience in some of the results. In this work
e propose a modification of the PSO which solves some of
he problems discussed above. In order to provide this solution,
e include the concepts of Novelty Search in a new version of
he PSO algorithm, Novelty Swarm optimization algorithm. In
ddition, we apply it to an optimization problem in the field of
CE design.

The optimization of the ICE design is a complex problem
ince the combustion performance depends on high number of
arameters that most of the times are nonlinear, with strong
xponential behaviour of certain responses and with high cross-
ffects between variables. The consequence is that the response
unction would have multiple local optimum values making a
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hallenge to find the global optimum. Another characteristic of
he optimization in engines is that the evaluation of the fitness
unction is highly time consuming, specially when it is coupled
ith CFD, therefore only few iterations and evaluations can be
one. Previous studies proposed a combination of artificial neural
etworks and ant colony optimization algorithms for reducing
oot and NOx emissions in a diesel engine considering four inputs
ariables [29]. Although the work showed potential for applica-
ion in controlling systems of diesel engines, it is dependent on
he algorithm parameters that might cause rapid convergence
o local optimum values. Moreover, heuristics algorithms have
hown to be effective methods in the optimization of combustion
ystems. Broatch et al. in [30] combined a CFD modelling with
enetic algorithm (GA) technique to optimize the combustion
ystem of a diesel engine, minimizing the indicated specific fuel
onsumption and combustion noise, while restricting the soot
nd NOx. The simulations helped to understand the problem,

although at a very high computational cost. Another study that
implements GA techniques for engine optimization was con-
ducted by Zubel et al. [46], where they combined CFD models and
a microgenetic algorithm for the obtention of a piston bowl and
injector nozzle geometry design using a fuel with high oxygen
content as dimethyl ether. In their work, they tested two possible
bowl configurations and they found that the injector design has
an impact on the combustion performance. The combination of
the spray angle and the piston profiles leaded to a reduction of
HC and CO emissions and an improvement of engine efficiency.
Recently, Badra et al. [47] presented an optimization of a com-
bustion system using CFD and Machine Learning for reducing the
fuel consumption and the pollutant emissions in a compression
ignition engine fuelled with gasoline. In their procedure a design
of experiments (DoE) optimization was performed followed by a
Machine Learning — Grid Gradient Ascent approach. Their results
show an improvement in the CO and soot emissions. One of
the contributions of their exercise is the obtention of acceptable
results with relatively low computational cost, compared against
traditional CFD-DoE approaches. However, one of the aspects of
that study was the narrow range of the parameters tested. In [31],
Bertram et al. presented a hybrid method combining PSO and GA
for engine performance optimization indicating that the hybrid
method offered benefits of both algorithms while preventing the
drawbacks of either method alone, such as fast convergence in ba-
sic PSO. They concluded that the PSO would provide better results
with some modifications or combined with other approaches. In
this paper we use the NS algorithm in the optimization problem
of reduction of emissions and fuel consumption in combustion
systems based on the fast rate of convergence, simple implemen-
tation, possibility to use a wide range of inputs parameters and
the asynchronous nature of the algorithm what makes possible a
time reduction of the optimization process.

3. Implementation of novelty search to the particle swarm
optimization algorithm

Swarm intelligence is a computational paradigm that was
ntroduced at the end of the decade of the 1980s, and published in
he early 1990’s [48]. It is based on the assumption that artificial
ntelligence cannot depend solely on individual behaviour and
hould take into account the influence of the society. A swarm
s formed by an indeterminate amount of particles making ele-
ental actions. All particles interact among themselves and the
nvironment without a central control forcing the particles to
o any specific action. Particles are subjected to limited abilities
or problem resolution. Nevertheless, the interaction among the
ifferent particles which form the swarm allows individual be-
aviour to be improved, thus obtaining good solutions in many

ifferent scenarios [49]. i

4

PSO is a bio-inspired meta-heuristic algorithm developed by
James Kennedy and Russell Eberhart in 1995 [1]. It is based
on the social behaviour of bird flocks, which try to make their
movements in the most optimal possible way to find food. Since
its proposal, the PSO algorithm has been successfully applied to
solve a large amount of optimization problems.

Mathematically, given a function f

f : RD
→ R, (1)

the optimization problem consists of finding

xopt|f (xopt ) ≤ f (x), ∀x ∈ RD, (2)

in the minimization case, and

xopt|f (xopt ) ≥ f (x), ∀x ∈ RD, (3)

in the maximization case.
The D-dimensional domain of function f in RD is called the

search space. Every point characterized by the D-dimensional
vector represents a candidate solution to the problem. These
vectors are called particles [50].

Let X be a swarm, formed by N particles:

X = [x1, x2, . . . , xi, . . . , xN ], (4)

where each particle is a D-dimensional vector in the domain of f ,

xi = [xi1, xi2, . . . , xiD]. (5)

During the search for the optimum of the function f , a maxi-
mum number of iterations T is set. For each iteration t , particles
update their position according to the following formula:

xi(t + 1) = xi(t) + vi(t + 1), (6)

where the velocity vector vi(t + 1) is updated according to:

vi(t + 1) =w β · vi(t) + c1 τ · (pi − xi(t))
+c2 γ · (g − xi(t)).

(7)

w is the inertia weight, c1 is the individual weight and c2 is the
social weight. This three parameters are scalars and their values
are settled independently from each other. w values are usually in
the range [0.5, 1.5], c1 and c2 are usually in the range [1, 3], and
these values depend on the problem to be solved. Also, pi stands
for the current best position of xi (local best position) and g stands
for the position with the best value among all the particles which
have formed the swarm (the global best position).

β , τ and γ are random vectors. Every element of each random
vector is a different sample of a uniform distribution between 0
and 1. The component-wise product · between vectors is carried
out as:

a · b = (a1b1 . . . aDbD),

here a = (a1, . . . , aD) and b = (b1, . . . , bD).
A pseudo-code of the PSO algorithm is shown in Algorithm 1.

.1. Implementation of novelty search in PSO

As in many biological systems such as ant colonies or beehives,
warm particles may have different roles in the interaction of the
ommunity. Because of this, we deploy two different families of
articles, where each family has its own task and is ruled by a
ifferent velocity equation.
The first family is formed by ‘‘conqueror’’ particles, ruled

y Eq. (7) as in the classical PSO. The name is given because they
ave to ‘‘conquer’’ the optimum of the problem. The second fam-

ly is formed by ‘‘explorer’’ particles, where the Novelty Search
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Algorithm 1 Particle Swarm Optimization (PSO) — Minimization.
Require: w, c1, c2, C, p
Ensure: Min of f
1: for Every particle i = 1, ..., C do
2: Initialize the position xi(0)
3: Evaluate the best individual position pi = f (xi(0))
4: end for
5: Initialize the best global position g = pi such that f (pi) is the

minimum.
6: while The stop criterion is not satisfied do
7: for Every particle i = 1, ..., C do
8: Update velocity according equation (7)
9: Update position according to equation (6)
0: Evaluate the function f (xi(t + 1))
1: if f (xi(t + 1)) ≤ f (pi) then
2: pi = xi(t + 1)
3: end if
4: if f (xi(t + 1)) ≤ f (g) then
5: g = xi(t + 1)
6: end if
7: end for
8: end while

concept is applied. The name is given because they ‘‘explore’’ the
unexplored/less attractive region of the search space.

In order to implement Novelty Search in the algorithm, we
tore all the particles generated by the algorithm in a repository,
nd the new explorer particles will avoid the regions close to the
articles in the repository. If we call R(t) the repository in the
teration t , we define:

C(t) =

∑
x∈R(t) x

card(R(t))
, (8)

where card(R(t)) is the number of elements of R(t). MC(t) is the
oint in the search space that represents all the points in the
ystem in such a way that the behaviour of MC(t) summarizes
he behaviour of the system in the iteration t . By analogy on the
hysics idea of the centre of mass of an object, we are going to
all MC(t) centre of mass.
At the beginning of the algorithm, the repository of the parti-

les is small and the computational cost of calculating the centre
f mass of the system is small. However, when the repository
rows as the number of iterations of the algorithm increases, the
omputational cost becomes expensive. To avoid this problem,
he size of the repository that stores the positions of the particles
hat have formed the swarm must have a maximum value. This
alue must be big enough to represent the proper dispersion of
he particles in the domain of the function, but small enough to
void a high computational cost in the evaluation of the centre
f mass. In order to obtain a statistical significance sample of
he population, when R(t) reaches a prefixed maximum num-
er of particles, say p, we select q < p particles randomly as
epresentative of all the particles in the repository. q should be
a number that allows a fast calculation of the centre of mass.
Also, to prevent the excessive weight of local optimum where the
conqueror particles may get stuck, only the explorer particles and
the initial conqueror particles are added to the repository.

Thus, the equation that rules the explorer particles is a modi-
fication of Eq. (7), adding the interaction with the centre of mass
and removing the interaction with the global best position of the
swarm,

vi(t + 1) =w δ · vi(t) + c1 φ · (pi − xi(t))+

c3 ρ · exp
(

−α ·

⏐⏐⏐⏐xi(t) − MC(t)
⏐⏐⏐⏐) · (xi(t) − MC(t)),
xmax − xmin

5

Fig. 1. Evolution of centre of mass repulsion in Eq. (9), α = 5. Repulsion
decreases with the distance to the centre of mass. The repulsion force is
normalized to the boundaries of the domain of the function in the x axis and
normalized to the maximum value in the y axis, avoiding to move away from
the boundaries.

(9)

where xmax, xmin are vectors of dimension D that represent the
boundaries of the search space and δ, φ and ρ are random
vectors like in Eq. (7). The quotient xi(t)−MC(t)

xmax−xmin
should be carried

out componentwise.
Eq. (9) has three different elements corresponding to each of

the terms on the right-hand side:

• Inertia (first term): The particle follows its previous direc-
tion.

• Individual best (second term): The particle is attracted by its
best position.

• Centre of mass (third term): The particle is repulsed by the
position of the centre of mass. Fig. 1 shows the decrease
in repulsion as the particle moves away from the centre of
mass, modulated by α > 0.

The pseudo-code of Novelty Search implementation in PSO
algorithm is shown in Algorithm 2. This new algorithm is named
Novelty Swarm (NS)

Comparing Algorithms 1 (PSO) and 2 (NS), we can see:

• Algorithm NS includes the new explorer particles (lines
6–10) and its evolution is described in lines 25–36.

• The explorer particles evolve looking for unexplored parts
of the parameter space. This is done via expression (9),
where the evolution of the explorer particle consists of being
repelled by the centre of mass (line 26).

• The conqueror particles in NS evolve as the particles in PSO,
taking into account that if explorer particles obtain a better
result, it is considered by the conqueror particles in their
evolution.

• The conqueror and explorer particles share information in
lines 21–22 and 33–34, where the global best is updated,
taking into account the fitnesses of all the particles.

4. Combustion system design optimization

This section describes the method for the combustion system
evaluation using a 3D CFD model approach. The target of the

model is to predict the performance of the combustion process
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Algorithm 2 Novelty Swarm (NS) — Minimization.

Require: w, c1, c2, c3, C, E, p, q
Ensure: Min of f
1: for Every particle i = 1, ..., C (conquerors) do
2: Initialize the position xi(0)
3: Evaluate the best individual position pi = f (xi(0))
4: Add xi(0) to repository
5: end for
6: for Every particle i = 1, ..., E (explorers) do
7: Initialize the position xi(0)
8: Initialize the best individual position pi = f (xi(0))
9: Add xi(0) to repository
0: end for
1: Initialize the best global position (shared between both

families) g = pi such that f (pi) is the minimum.
2: while The stop criterion is not satisfied do
3: Update the centre of mass according to equation (8)
4: for Every particle i = 1, ..., C (conquerors) do
5: Update velocity according equation (7)
6: Update position according to equation (6)
7: Evaluate the function f (xi(t + 1))
8: if f (xi(t + 1)) ≤ f (pi) then
9: pi = xi(t + 1)
0: end if
1: if f (xi(t + 1)) ≤ f (g) then
2: g = xi(t + 1)
3: end if
4: end for
5: for Every particle i = 1, ..., E (explorers) do
6: Update velocity according to equation (9)
7: Update position according to equation (6)
8: Evaluate the function f (xi(t + 1))
9: Add xi to repository
0: if f (xi(t + 1)) ≤ f (pi) then
1: pi = xi(t + 1)
2: end if
3: if f (xi(t + 1)) ≤ f (g) then
4: g = xi(t + 1)
5: end if
6: end for
7: if len(repository) ≥ p then
8: Select randomly q particles of repository
9: Discard the unchosen particles from the repository
0: end if
1: end while

through different variables, such as cylinder pressure, energy re-
leased, fuel consumption, pollutant emissions, among others. The
combustion system considered in this study is described at the
beginning of the section and the details of the model formulation
and validation are provided subsequently. Finally, the integration
of the ICE model and the optimization algorithm NS is presented.

4.1. Combustion system description

Fig. 2 presents a schematic diagram of a compression ignition
ombustion system. The combustion process starts after the injec-
ion of the fuel at high pressures, promoting its atomization and
ixing with the air in the chamber. The high temperatures and
ressures in the chamber cause the self-ignition of the mixture in
very short time, triggering the combustion (first premixed, and

ater by diffusion). A wide set of parameters affect the combustion
erformance, being the most relevant the geometry of the piston
owl (p − p ), geometry of the fuel injector nozzle (N ), shape
1 5 o u

6

f the inlet ports (characterized by SN), operating conditions
(such as injection pressure – IP – and exhaust gas recirculation
rate — EGR), which are highly non-linear and could have crossed
interaction between them. All these parameters are referred as
input data in Fig. 2. The physics of the combustion process is
modelled by means of state-of-the-art 3D CFD models that are
able to reproduce the non-linear phenomena of the system. The
target is to predict the fuel consumption (ISFC) and pollutant
emissions, such as NOx and soot, in order to minimize them as
uch as possible (identified as output variables to minimize in

he right-hand side of Fig. 2). The processes indicated in Fig. 2
orrespond to the evaluation of the function of the optimization
rocess.

.2. Methods

The aim of this study is to conduct a 3D CFD-guided combus-
ion system hardware development using efficient optimization
ools to obtain an optimum combustion system through the eval-
ation of emissions and consumption parameters. The following
s an overview of the CFD-guided design process:

1. Model formulation and validation, where the setup of the
CFD model is done in order to reproduce the behaviour of
the engine. Additionally, the calibration of the spray and
emissions models is performed against experimental data
(Section 4.3).

2. Mesh simplification, where a mesh with fewer cells than
the original model is built and validated with experimental
results in order to reduce the computational execution
time of the model (Section 4.4).

3. Integration between the optimization algorithm and the
engine model (Section 5).

4. Execution of the optimization procedure (Section 7).

.3. CFD model formulation

A numerical model of the combustion chamber was developed
sing the open source OpenFOAM software [51]. Along with
penFOAM, LibICE, which is a group of libraries and solvers for
nternal combustion engines [52], has been used. The combus-
ion process is a combination of complex processes involving
hysical and chemical phenomena. Thus, in order to mimic those
rocesses, the CFD tool couples a variety of sub-models that
imulate the different mechanisms involved, for example, gas
otion, spray development, chemistry and heat transmission,
mong others. In this study, the simulations were carried out in
losed cycle, that means from the closing of the intake valves until
he opening of the exhaust valves. Also, since the combustion
hamber volume varies during the engine cycle, LibICE uses the
ynamic mesh layering technique [53,54] to reproduce the piston
ovement. In order to reduce the computational cost of the
odel, which is important in this type of studies where hundreds
f simulations are carried out, only an axisymmetric sector (1/10)
f the geometry is simulated. While n-heptane was used as the
iesel surrogate, a Lagrangian-typo was used to mimic the spray,
ssuming a ‘‘Blob’’ injection method [54,55]. Liquid droplets were
rouped into parcels to statistically represent the spray field
n the combustion chamber using a specific rate of injection
ROI) profile with a virtual injector model [56]. Parcels evolve
nto the CFD domain exchanging mass, momentum and energy
ith the continuous gas phase. Additional submodels are neces-
ary to reproduce the liquid atomization, break-up, heat transfer
nd evaporation. Both, the Kelvin–Helmholtz (KH) and Rayleigh–
aylor (RT) algorithms, were adopted for the secondary break-

p process [57,58]. To model the in-cylinder turbulence, the
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Fig. 2. Diagram of a combustion system. Parameters and variables considered in the modelling procedure.
Table 1
Models specifications.
Turbulence RNG k − ϵ RANS
Wall heat transfer Angelberger

Spray models

Injection: Blob Injector
Break-up: KH-RT
Collision: off
Evaporation: standard

Combustion model RIF-based tabulation
Chemical mechanism NC7Curran
Soot model Leung Lindstedt Jones

Reynolds-Averaged Navier Stokes (RANS) based on re-normalized
group (RNG k − ϵ) was used to perform all the simulations [59].
Pressure and velocity equations are coupled by the PIMPLE al-
gorithm. The Angelberger model was used to compute the wall
heat transfer coupled with the turbulence model [60]. For fuel
chemistry, a reduced chemical kinetic mechanism for primary
reference fuel consisting on 162 species and 1543 reactions was
used. Combustion simulations were run using the representative
interactive flamelets (RIF) model, that is based on the laminar
flamelet concept and assumes that the chemical scales are much
smaller than the turbulent time and length scales [55]. The char-
acteristic of this model is that reacting scalars depend on the
mixture fraction variable, which is proportional to the local fuel-
to-air ratio. For more detailed information about the combustion
model the reader is referred to [61]. Although there are more de-
tailed and accurate models available in the literature, the choice
of the sub-models in this study was a trade-off between accu-
racy and computational efficiency for such a large optimization
process. A list of the sub-models used is provided in Table 1.

In order to configure the cases automatically, new tools were
developed for the preparation of the CFD models:

• Geometry generator: To generate a combustion chamber
with plausible design, a piston bowl profile generator was
implemented using Bézier polynomial curves with five pa-
rameters [62]. All five parameters are dimensionless and
have their own ranges and limits providing more freedom in
the bowl profile generation. In Fig. 3, it can be seen the five
parameters and two examples of bowl profiles generated by
the method. The crevice, which is a small region between
piston and cylinder liner, was kept constant in shape during
this study. This parametrization approach allowed a flexible
variation of the bowl over a wide range. Changing the indi-
vidual design parameters of the piston bowl obviously has
an impact on the compression ratio (CR), which is supposed
7

to stay fixed to a predefined value of 16 in this study. The
CR was compensated changing the squish height. Besides,
since the spray targeting affects the engine performance,
the spray angle was kept constant in this study. The main
challenge in the mesh orientation are the re-entrant ge-
ometries that can provide negative volumes when the mesh
is created. After the bowl profile is defined, every mesh
was generated using a python script that defines all the
blocks, cells and nodes automatically. The procedure for the
automatic mesh generation is described in [63]. The Bézier
bowl curve generated is an input and the control points
for block definition were updated according the bowl step
and re-entrant curvature to avoid negative volumes and
skewness issues. The control points and block definition can
be seen in Fig. 4. Additionally, the number of injector orifices
was an input for defining the sector mesh.

• Virtual Injector Model: The injection rate profile is a key
factor in the combustion of CI engines, since it is able to
affect the performance and emissions levels. Considering
this, an in-house code was developed to automatically gen-
erate the injection profile from the combination of three
parameters. They are the injection pressure, the number of
injector holes and the total mass fuel injected. The profile
of ROI has a trapezoidal form and the code assumes in-
compressible flow across the nozzle holes and apply the
equations of continuity and Bernoulli between inlet and
outlet of the orifices [56,64]. In this study the discharge coef-
ficient was considered equal to 0.88 for all cases (this value
was obtained from experimental measurements). Fig. 5 de-
picts the good agreement of the curve obtained with the
Virtual Injector Model against the experimental data.

4.4. Model validation and mesh simplification

A first CFD model was calibrated to reproduce the experimen-
tal data. A regular production diesel engine has been used as
the experimental platform to evaluate the CFD modelling per-
formance and the current combustion conditions. The engine is
a four-cylinder configuration equipped with a turbocharger. A
ten-nozzle injector with hole diameter of 112 µm with a spray
angle of 154◦ was used in all experimental tests. The engine has
a compression ratio (CR) of 16 and the main specifications of the
engine are in the Table 2

The engine was operated at 3700 rpm and full power. All the
boundary conditions used to simulate the engine were obtained
from experiments using the methodology explained in [65]. The
left-hand side image in Fig. 6 presents a cross-section view of



D. Martínez-Rodríguez, R. Novella, G. Bracho et al. Applied Soft Computing 143 (2023) 110401

(
t

Fig. 3. Parameters definition for Bézier curves (Left-hand side) and example of various generated bowl profiles (Right-hand side).
Fig. 4. Block definition and mesh control points location.

Fig. 5. Rate of injection comparison: experimental data versus in-house code.

Table 2
Engine specifications.
Engine type Direct-injection diesel engine
Number of cylinders [–] 4
Volume [l] 2.2
Bore – stroke [mm] 85–96
Connecting rod length [mm] 152
Compression ratio [–] 16:1
Injector number of holes 10

the mesh used at top dead center (TDC). It consists of 52000
cells at the TDC and 398000 cells at the intake valves closing
(IVC). The used mesh was generated automatically using the
method developed in [53]. The mesh motion is integrated in the
solver and is composed by multi-regions where each region of the
mesh motion is accommodated in different ways. Also, the tool
combines the use of different topological changes and polyhedral
vertex-based motion solver for mesh deformation based on Finite
Element Method.

In Fig. 7, the in-cylinder pressure and the heat release rate
HRR) of the simulation were compared with the experimen-
al data. The black line refers to the experimental data, and
8

Fig. 6. Fine mesh (left) versus coarse mesh (right).

Table 3
Comparison between fine and coarse mesh.

Fine mesh Coarse mesh

Cell count at TDC 52000 26900
Cell count at IVC 398000 203300

the blue line depicts the results using this mesh (fine mesh).
Based on Fig. 7, the predictions are in fairly good agreement
with the experimental data and they provide confidence that
the comprehensive design optimization is valid. Despite of the
good agreement between the simulations and experiments, CFD
simulations are highly time consuming. This compromises its
suitability in the use of the optimization technique, that requires
a large number of model evaluations. Then, the original model
was simplified, using a coarser mesh to reduce the number of
cells. In this sense, the calculation time was reduced while ensur-
ing enough accuracy-level. The characteristics of the coarse mesh
in relation to the fine mesh are presented in Table 3 and in the
right-hand side image in Fig. 6.

Using the coarse mesh, the predictions also show a good
agreement with the experimental data. The comparison between
experimental data, fine and coarse mesh is shown in Fig. 7. As
expected this configuration provides a simulation time of about
24 h (on 4 processors), while the fine mesh takes around 30 h
of run-time (on 4 processors). Based on the simulation execu-
tion time, the coarse mesh configuration will be employed in
the optimization process. Once the CFD simulation is performed,
the results are evaluated using a fitness function in order to
determine the quality of the solution.

5. CFD-NS algorithm integration

The process optimization is defined to find a combustion sys-
tem that minimizes the fuel consumption (ISFC) while main-
taining the pollutant emissions levels under the reference value
(NOx and soot). The optimization algorithm should handle the
high dimension of parameters, which are non-linear, a big search
space, and a function evaluation that has a high execution time.
Therefore, the NS algorithm has been selected (based on the
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Fig. 7. Comparison between experimental data (black curve) and simulation results for fine and coarse meshes (blue and red curves respectively). Left side: Evolution
of the in-cylinder pressure. Right side: Estimated Heat Release Rate.
Fig. 8. Global methodology: Integration of the optimization method and CFD model (evaluation of the function).
benchmark results presented in next Section 6). The complete
integration of the NS algorithm and the CFD model studied in
this research is described in Fig. 8. The procedure for the NS
algorithm and the function evaluation using CFD includes the
following steps:

1. Candidate solutions are initialized inside the domain of the
search space (conqueror and explorer particles).

2. Candidate solutions are evaluated to obtain the value of
the fitness function. This is performed configuring the CFD
model (using the input values generated by the NS) and
with the CFD simulation.

3. Determination of the Output variables: ISFC, NOx and soot.
Since these three outputs might have a different trend, then
the overall behaviour of the system is evaluated by means
of a unique Fitness Function (FF ) that considers the three
variables at the same time. The fitness function is detailed
at the end of this section.

4. Optimization algorithm variables are updated (Gbest , Pbest ,
velocity, position).

5. New candidate solutions are created.
6. Go to step 2 if stop criteria is not reached.
9

5.1. Optimization parameters and fitness function

Nine parameters related to combustion system design were
chosen as inputs for the optimization (given in Fig. 2). All the
parameters and their ranges (Table 4) were selected considering
technological limitations in the manufacture of the optimized
combustion system. There are five geometrical parameters for
defining diverse geometries with a certain degree of freedom (p1:
p5 identified in Fig. 3). The others are related to the injection
system as the number of holes (No) and injection pressure (IP),
another associated with the air motion (swirl number, SN), and
the last one is the exhaust gas recirculation rate (EGR). All the
parameters were chosen due to their influence on the combustion
process and also on the engine emissions.

The main output variable to minimize is the ISFC, while con-
straining the exhaust emissions of NOx and soot under the refer-
ence level and reducing them as much as possible. The objective
is to ensure that the obtained system produces lower emissions
than the reference case. Then, configurations that exceed the
emission constrains are accordingly penalized. The values of NOx
and soot selected as constraint values are the ones obtained in
the CFD simulations of the reference case used for the model
validation (Section 4.4).
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Table 4
Range of the input parameters considered in the optimization.
Parameter Range

p1: Geometrical parameter 1 [–] [−0.5, 1.0]
p2: Geometrical parameter 2 [–] [−1.0, 1.25]
p3: Geometrical parameter 3 [–] [−1.0, 1.0]
p4: Geometrical parameter 4 [–] [0.0, 1.0]
p5: Geometrical parameter 5 [–] [−1.4, 0.1]
No: Number of injector nozzles [–] [4, 12]
SN: Swirl number at IVC [–] [1.0, 3.0]
IP: Injection pressure [bar] [1500, 2000]
EGR [%] [0, 30]

The fitness function was formulated to consider the relative
mportance of ISFC, Soot and NOx in the minimization process and
aking into account the constraints values. These considerations
ere expressed in the fitness function as:

1(NOx) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NOx,CFD
NOx,lim

if NOx,CFD < NOx,lim

NOx,CFD
NOx,lim

+ 100

·(NOx,CFD − NOx,lim)2 if NOx,CFD ≥ NOx,lim

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(10)

2(soot) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−log(sootCFD)
log(sootlim) if sootCFD < sootlim

−log(sootCFD)
log(sootlim) + 1000000

·(log(sootCFD) − log(sootlim))2 if sootCFD ≥ sootlim

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(11)

3(ISFCx) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ISFCCFD
ISFClim

if ISFCCFD < ISFClim

ISFCCFD
ISFClim

+ 100

·(ISFCCFD − ISFClim)2 if ISFCCFD ≥ ISFClim

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

And the total fitness function is

F = f1(NOx) · coefNOx + f2(soot) · coefsoot + f3(ISFC) · coefISFC (13)

where NOx,CFD, sootCFD and ISFCCFD are the values obtained in the
CFD simulation, whereas NOx,lim, sootlim and ISFClim refers to the
emission levels achieved in the baseline configuration. Finally,
coefNOx , coefsoot and coefISFC are coefficients used to balance the
equation according to the order of magnitude of each term. The
value of the objective is the one that feeds back the NS algorithm
for the following iteration.

As the main objective is to increase the efficiency of the engine
at the same time as it reduces the NOx and soot emissions, the
values of the coefficients used are: coefISFC = 50, coefNOx = 5 and
coefsoot = 5 · 10−5.

The best case of the optimization will be the one with the
lowest FF value

6. CEC2005 experimental results

In this section, first, we show the CEC2005 benchmark set,
a well known and referenced set of problems for evaluation of
computational intelligence problems. Then, we describe com-
parison among the proposed NS with PSO [50], M-PSO [14,50],
CAPSO [38], LSHADE [40,41] and jSO [42] applied to the CEC2005.
Later, in Section 7 we show the performance of NS algorithm on
the problem of reduction of emissions in combustion systems.
10
Table 5
CEC2005 functions execution data [15]. Init. column is the region of the search
space where the particles are initialized, Domain column is the search space
limit, F(x*) column is the minimum value of the function and Accuracy column
is the maximum error allowed to consider the problem solved.

Init. Domain F(x*) Accuracy

F1 [−100, 100]D [−100, 100]D −450 −450 + 1e−6
F2 [−100, 100]D [−100, 100]D −450 −450 + 1e−6
F3 [−100, 100]D [−100, 100]D −450 −450 + 1e−6
F4 [−100, 100]D [−100, 100]D −450 −450 + 1e−6
F5 [−100, 100]D [−100, 100]D −310 −310 + 1e−6
F6 [−100, 100]D [−100, 100]D 390 390 + 1e−2
F7 [0, 600]D [−600, 600]D −180 −180 + 1e−2
F8 [−32, 32]D [−32, 32]D −140 −140 + 1e−2
F9 [−5, 5]D [−5, 5]D −330 −330 + 1e−2
F10 [−5, 5]D [−5, 5]D −330 −330 + 1e−2
F11 [−0.5, 0.5]D [−0.5, 0.5]D 90 90 + 1e−2
F12 [−π, π]

D
[−π, π]

D
−460 −460 + 1e−2

F13 [−3, 1]D [−3, 1]D −130 −130 + 1e−2
F14 [−100, 100]D [−100, 100]D −300 −300 + 1e−2
F15 [−5, 5]D [−5, 5]D 120 120 + 1e−2
F16 [−5, 5]D [−5, 5]D 120 120 + 1e−2
F17 [−5, 5]D [−5, 5]D 120 120 + 1e−1
F18 [−5, 5]D [−5, 5]D 10 10 + 1e−1
F19 [−5, 5]D [−5, 5]D 10 10 + 1e−1
F20 [−5, 5]D [−5, 5]D 10 10 + 1e−1
F21 [−5, 5]D [−5, 5]D 360 360 + 1e−1
F22 [−5, 5]D [−5, 5]D 360 360 + 1e−1
F23 [−5, 5]D [−5, 5]D 360 360 + 1e−1
F24 [−5, 5]D [−5, 5]D 260 260 + 1e−1
F25 [−2, 5]D [−5, 5]D 260 260 + 1e−1

CEC2005 benchmark [15] is a set of functions with different
characteristics that has been widely used to compare the perfor-
mance of optimization algorithms. It is made up of 25 functions
that can be divided into:

• Unimodal functions (5). F1 to F5.
• Multimodal functions (20). F5 to F25.

– Basic functions (7). F6 to F12.
– Expanded functions (2). F13 to F14.
– Hybrid composition functions (11). Formed by uni-

modal, basic and expanded functions. F15 to F25.

The optimum is shifted from the origin in all the functions to
avoid finding it in the centre of the domain. Table 5 shows the
general characteristics for each function. For the execution of the
test, we implemented the benchmark in Python3 [66] program-
ming language, using Numpy [67] as dependency package. The
test was executed on a PC with an Intel Xenon E5-4620 2.20 GHz
and 512 GB RAM. Each of the benchmark functions was executed
25 times for each algorithm for 2, 10 and 30 dimensions. The
parameter settings for each algorithm are shown in Table 6.

According to different Refs. [1,50,68,69], the values c1 and c2
f the canonical PSO vary depending on the problem, but usually,
hey are set around values c1 = 2 and c2 = 2. Based on these
alues, a sensitivity analysis was performed with the CEC2005
enchmark to find the values of the parameters which have a
etter performance for NS (keeping c1, deleting c2, and adding
3), and the values obtained are shown in Table 6.
In order to select an appropriated parameter α, a sensitivity

nalysis was performed varying the value from 1 to 10. We
hoose α = 5. We also performed the sensitivity analysis in
rder to obtain the most appropriate number of particles of NS,
btaining 60 conqueror particles and 30 explorer particles.
To set the number of particles qwe should take randomly from

he repository, we assessed the computational cost of the centre
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Table 6
Algorithms parameters setting.

NS PSO M-PSO CAPSO LSHADE jSO

w 0.9 0.9 0.9 – – –
c1 2.0 2.0 2.0 – – –
c2 2.0 2.0 2.0 – – –
c3 2.0 – – – – –
Mutation 0.05 – 0.05 – – –
Particles 60 60 60 60 – –
Explorer particles 30 – – – – –
α 5.0 – – – – –
NP0 – – – – 18·D 18·D
NPmin – – – – 4 4
H – – – – 6 6
NAg – – – – 2.6 · NPg 2.6 · NPg
p – – – – 0.11 0.11
Reference – [50] [14,50] [38] [41] [41,42]

of mass with 3000 to 15000 particles. Looking for a compromise
between the costing time and including as much particles as
possible, we decided to set the maximum size of the repository
p = 12 000 and a minimum representative number of particles to
calculate the mass centre q = 10 000. The execution stops when
he optimum is reached (with a certain error established for each
unction) or when the maximum function evaluations have been
one (even if the optimum has not been reached). The maximum
terations are 10000 for 2 dimensional space and 100000 for
0 and 30 dimensional space. The ending criteria are set by the
EC2005 benchmark, see the 5th column of the Table 5.
Tables 7, 8, 9 show, for the 25 runs performed for each func-

ion, the average difference between the optimum reached by
he algorithms and the real optimum of the function given in
able 5 — column F(x*). They also show the standard deviation
f the error in the 25 runs of each CEC2005 function. If one of
hem shows a mean with value 0, it means that the problem has
een solved according to the accuracy of Table 5. Fig. 9 shows the
volution of the error of the results in Table 8 (dimension 10).
Friedman two-way analysis of variances by ranks was per-

ormed according to [70], and the results of the calculations are
hown in Tables 10 and 11.
According to Table 10, it can be observed that Novelty Swarm

as better performance than the other algorithms in 2 and 30
imensions. Moreover, if we focus our attention on the perfor-
ance of NS in composition functions, its performance is even
etter, according to Table 11. In 10 dimension, LSHADE and jSO
lgorithms have better performance in the long run.
In 10 dimensions, Fig. 9 shows that, regarding to the fitness

unction when the number of function evaluations is 1000, NS is
he best algorithm. NS has better results in 6 of the benchmark
unctions, followed by PSO, which results are the best in 3 of
he benchmark functions. This fact makes NS a good option to
ptimize functions when the total number of possible evaluations
s low.

However, in simpler functions the search space does not need
o be explored so thoroughly because the optimum is easier to
ind. The NS algorithm does not have such good performance in
hese cases compared with the other algorithms.

Algorithm complexity is calculated according to [15], where
0 is the time used to execute a function with basic calculations
log , exp and similar), T1 is the time used to execute Function
3 of CEC2005 for the specified dimension for 200000 function
evaluations and T2 is the mean time of 5 optimization processes
with the selected algorithm of the same Function 3 with 200000
function evaluations.

Complexity calculations of Table 12 prove that the compu-
tational cost of NS is greater than the other algorithms, and it
11
increases with the dimension of the search space, because of the
computational cost of the random sampling of particles in the
repository. This fact makes NS uncompetitive against PSO and
M-PSO for basic functions. Nevertheless, when the difficulty of
the problem to be optimized increases (for example, a problem
where the execution time of the evaluation of the function is
greater than the execution time of the optimization procedure or
a problem where the dimension of the search space is high), NS
must be considered as a really good option.

7. Engine optimization results

This section presents and discusses the results of the opti-
mization performed by NS applied to the CI engine. The main
barrier to the optimization process described before is its com-
putational cost. In order to evaluate a single engine configuration
(a candidate solution of the algorithm), 4 computational cores
are needed, and the time consumed by this process is near 24 h.
For this reason, the maximum number of function evaluations
performed in the optimization process was set to 1000. A wide
range of the search space must be explored, at the same time
that a better optimum than the current engine configuration
must be found. Also, the topology of the search space is not
known, but it is possible that several local optima exist. The initial
step is the evaluation of each constraint parameter separately to
verify if each particle satisfy the restrictions. Fig. 10 shows the
distribution of all particles regarding NOx, soot and ISFC sorted by
fitness function value (the worst fitness function is sorted on the
left side). The graphs in the left and middle represent respectively
the NOx and soot emissions with respect to their limit values.
Only those configurations which accomplish the limits of all three
CFD output limits have a low enough value of the fitness function.
This is the reason why, even if the NOx and the soot values are
below the imposed limit, if they have bad ISFC value (this is,
a higher ISFC than the baseline configuration), they are placed
on the left of the figure rather than other configurations with
individual worse values.

In order to locate the particle that provides the best solution
within the explored range, NOx, soot and ISFC were contrasted
in Fig. 11. In both figures the characteristic Pareto front of CI
engines can be seen, showing the trade-off between NOx and
soot, and NOx and ISFC. In those plots, there are several solutions
that satisfy the restrictions imposed, improving the optimizing
parameters. However, even if there are particles that present
better results of NOx, soot or ISFC, separately, the solution of the
fitness function could be high, since it depends on all parameters
together. For example, if one simulation provides a low value
of ISFC, probably the result of NOx is higher, because these pa-
rameters have antagonistic behaviour in engines and the fitness
function presents a higher value because the NOx value penalizes
the solution. For this reason, the optimum solution is focused on
optimizing the ISFC and soot, while maintaining the NOx within
the limits.

Based on the best solution of the fitness function and the
verification of the reference limits from the Pareto’s front, the
optimized configuration was compared with the baseline con-
figuration. In Fig. 12, the differences between the geometries
are shown, and Table 13 shows the values of the inputs for the
optimized case compared to the baseline.

Table 14 shows the values of the results for the optimized case
in comparison with the baseline case, where a reduction in the
pollutant emissions and consumption is obtained. From the table,
it can be seen that the number of holes decreases, therefore there
is more space between sprays, promoting the air entrainment and
avoiding the jet-to-jet interaction that enhances the combustion
performance. At the same time, the injection pressure is slightly
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Table 7
CEC2005 2 dimensional optimization summary results. In bold, the best result for each function.

NS PSO M-PSO CAPSO LSHADE jSO

F1
Mean 0.0000E+4 0.0000E+4 0.0000E+4 2.5579E+0 0.0000E+4 0.0000E+4
Std. 0.0000E+4 0.0000E+4 0.0000E+4 6.9464E+0 0.0000E+4 0.0000E+4
Rank 3 3 3 6 3 3

F2
Mean 0.0000E+4 0.0000E+4 0.0000E+4 1.8407E+1 0.0000E+4 0.0000E+4
Std. 0.0000E+4 0.0000E+4 0.0000E+4 3.5627E+1 0.0000E+4 0.0000E+4
Rank 3 3 3 6 3 3

F3
Mean 0.0000E+4 1.9896E+2 0.0000E+4 6.0831E+3 6.5469E+0 2.9705E−7
Std. 0.0000E+4 3.3626E+2 0.0000E+4 6.8497E+3 3.0857E+1 1.4552E−6
Rank 1.5 5 1.5 6 4 3

F4
Mean 0.0000E+4 0.0000E+4 0.0000E+4 1.5679E+1 0.0000E+4 0.0000E+4
Std. 0.0000E+4 0.0000E+4 0.0000E+4 2.1033E+1 0.0000E+4 0.0000E+4
Rank 3 3 3 6 3 3

F5
Mean 0.0000E+4 0.0000E+4 0.0000E+4 0.0000E+4 3.9825E−1 4.0892E−1
Std. 0.0000E+4 0.0000E+4 0.0000E+4 0.0000E+4 1.4415E+0 9.0767E−1
Rank 2.5 2.5 2.5 2.5 5 6

F6
Mean 1.5353E−1 1.9670E+0 1.5905E−3 2.5597E+2 6.0756E−1 6.3876E−2
Std. 3.7914E−1 6.5648E+0 7.7917E−3 1.0380E+3 1.7654E+0 1.1562E−1
Rank 3 5 1 6 4 2

F7
Mean 1.1201E−2 0.0000E+4 5.8820E−3 7.2155E−1 1.0299E−2 2.1723E−3
Std. 1.2543E−2 0.0000E+4 1.1008E−2 1.0722E+0 3.7010E−2 6.9524E−3
Rank 5 1 3 6 4 2

F8
Mean 0.0000E+4 1.6800E+1 1.5201E+1 1.3641E+1 9.5117E+0 8.5634E+0
Std. 0.0000E+4 7.3322E+0 8.5420E+0 9.0261E+0 8.3903E+0 8.4227E+0
Rank 1 6 5 4 3 2

F9
Mean 0.0000E+4 0.0000E+4 0.0000E+4 1.0269E+0 0.0000E+4 1.1673E−3
Std. 0.0000E+4 0.0000E+4 0.0000E+4 1.7118E+0 0.0000E+4 5.7186E−3
Rank 2.5 2.5 2.5 6 2.5 5

F10
Mean 0.0000E+4 0.0000E+4 0.0000E+4 8.4527E−1 1.2980E−2 8.8985E−3
Std. 0.0000E+4 0.0000E+4 0.0000E+4 1.1075E+0 3.9250E−2 2.3352E−2
Rank 2 2 2 6 5 4

F11
Mean 1.0246E−2 0.0000E+4 1.7311E−3 3.4177E−1 4.2881E−2 4.9214E−2
Std. 9.1898E−3 0.0000E+4 4.7977E−3 3.4729E−1 6.4931E−2 6.5874E−2
Rank 3 1 2 6 4 5

F12
Mean 0.0000E+4 0.0000E+4 0.0000E+4 3.3646E+1 4.1021E−3 5.4803E−2
Std. 0.0000E+4 0.0000E+4 0.0000E+4 1.2149E+2 1.9954E−2 1.3780E−1
Rank 2 2 2 6 4 5

F13
Mean 0.0000E+4 4.7350E−3 2.3676E−3 1.5768E−2 9.6409E−4 0.0000E+4
Std. 0.0000E+4 8.4261E−3 6.4116E−3 2.3694E−2 4.7225E−3 0.0000E+4
Rank 1.5 5 4 6 3 1.5

F14
Mean 1.6945E−2 1.2436E−2 1.6907E−2 1.3414E−1 1.5054E−2 1.7313E−2
Std. 6.3100E−3 9.3273E−3 6.2886E−3 2.3249E−1 6.6922E−3 1.8965E−2
Rank 4 1 3 6 2 5

F15
Mean 0.0000E+4 0.0000E+4 4.0000E+0 8.6370E+1 1.1218E−4 7.0381E−1
Std. 0.0000E+4 0.0000E+4 1.9596E+1 9.0751E+1 5.4809E−4 2.6568E+0
Rank 1.5 1.5 5 6 3 4

F16
Mean 0.0000E+4 1.2000E+1 1.6000E+1 1.4856E+2 1.6090E+1 5.8573E+0
Std. 0.0000E+4 3.2496E+1 3.6661E+1 1.1851E+2 3.6622E+1 2.1000E+1
Rank 1 3 4 6 5 2

F17
Mean 1.6326E+0 5.6130E+0 3.6200E+1 1.9686E+2 7.6461E−1 6.5283E+0
Std. 7.9981E+0 2.0824E+1 4.8267E+1 1.5600E+2 2.0970E+0 2.1277E+1
Rank 2 3 5 6 1 4

F18
Mean 2.8153E+1 2.6000E+2 6.4647E+1 3.5923E+2 1.7270E+2 2.5724E+2
Std. 7.2186E+1 1.6248E+2 9.3566E+1 1.6928E+2 1.1974E+2 1.0756E+2
Rank 1 5 2 6 3 4

F19
Mean 2.1116E+2 2.8000E+2 2.3438E+2 3.6917E+2 2.3727E+2 2.6422E+2
Std. 4.1428E+1 1.2000E+2 7.2576E+1 1.1153E+2 7.8307E+1 7.4131E+1
Rank 1 5 2 6 3 4

F20
Mean 0.0000E+4 2.4800E+2 2.2405E+2 4.1788E+2 2.4197E+2 2.2175E+2
Std. 0.0000E+4 1.1356E+2 7.0804E+1 1.7039E+2 8.9505E+1 1.0374E+2
Rank 1 5 3 6 4 2

F21
Mean 5.7223E+1 2.7355E+2 2.2420E+2 3.9920E+2 2.3957E+2 2.1519E+2
Std. 8.9159E+1 1.6514E+2 1.4079E+2 1.5854E+2 1.6811E+2 1.5009E+2
Rank 1 5 3 6 4 2

F22
Mean 1.7321E+2 3.1288E+2 2.2414E+2 3.5004E+2 2.3841E+2 2.1022E+2
Std. 7.1371E+1 1.2680E+2 8.1017E+1 1.1849E+2 8.5961E+1 3.7995E+1
Rank 1 5 3 6 4 2

(continued on next page)
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Table 7 (continued).
NS PSO M-PSO CAPSO LSHADE jSO

F23
Mean 1.7269E+2 2.6094E+2 1.4534E+2 3.9930E+2 2.6942E+2 3.5543E+2
Std. 1.1838E+2 2.2004E+2 2.2679E+2 2.1432E+2 2.0487E+2 1.7943E+2
Rank 2 3 1 6 5 4

F24
Mean 1.9631E+2 2.0000E+2 2.0000E+2 2.7823E+2 1.9822E+2 2.0000E+2
Std. 1.0595E+1 0.0000E+4 1.1441E−6 1.4708E+2 8.7166E+0 9.5344E−4
Rank 1 4 4 6 2 4

F25
Mean 1.9391E+2 1.9825E+2 1.6610E+2 3.2487E+2 3.4097E+2 3.9252E+2
Std. 1.8537E+1 1.6979E+2 3.5262E+1 2.3101E+2 1.6175E+2 1.5745E+2
Rank 2 3 1 4 5 6
Fig. 9. Convergence of the different algorithms for composition 10 dimensional benchmark functions. The median error run is shown for each algorithm. Figures
epresent Error on the Y axis vs. number of function evaluations, FE, on the X axis. Results are in agreement with figures collected in Table 8.
ncreased, which is related to a higher spray momentum and
etter atomization and evaporation. Moreover, the optimized
ase uses an EGR ratio of 14.57%, which is a well known and
13
effective practice for reducing NOx emissions. All these trends
corroborate that the methodology is providing reasonable results,
delivering a solution that is in agreement with the performance



D. Martínez-Rodríguez, R. Novella, G. Bracho et al. Applied Soft Computing 143 (2023) 110401
Table 8
CEC2005 10 dimensional optimization summary results. In bold, the best result for each function.

NS PSO M-PSO CAPSO LSHADE jSO

F1
Mean 0.0000E+4 4.1303E+0 0.0000E+4 3.1124E+3 9.6519E−5 0.0000E+4
Std. 0.0000E+4 2.0234E+1 0.0000E+4 2.1163E+3 5.7582E−5 0.0000E+4
Rank 2 5 2 6 4 2

F2
Mean 0.0000E+4 4.4640E+0 0.0000E+4 6.3584E+3 3.0075E+1 1.1866E−1
Std. 0.0000E+4 1.5138E+1 0.0000E+4 6.1666E+3 1.6061E+1 3.4815E−1
Rank 1.5 4 1.5 6 5 3

F3
Mean 0.0000E+4 1.5614E+5 0.0000E+4 3.2726E+7 6.0690E+5 3.2170E+5
Std. 0.0000E+4 1.4563E+5 0.0000E+4 4.9593E+7 3.0767E+5 1.9484E+5
Rank 1.5 3 1.5 6 5 4

F4
Mean 0.0000E+4 1.2605E+1 0.0000E+4 7.9207E+3 5.9575E+1 1.7982E+0
Std. 0.0000E+4 4.1740E+1 0.0000E+4 7.8746E+3 2.9210E+1 2.4437E+0
Rank 1.5 4 1.5 6 5 3

F5
Mean 2.7818E−5 1.7587E+2 8.8682E−6 2.6710E+3 1.1128E+1 1.1213E−4
Std. 2.9581E−5 8.6157E+2 1.3840E−5 3.1453E+3 4.3352E+0 1.8152E−4
Rank 2 5 1 6 4 3

F6
Mean 6.9881E+1 3.1741E+4 3.6373E+1 7.9056E+8 4.0620E+1 2.0497E+1
Std. 1.9782E+2 1.5538E+5 6.5570E+1 1.3360E+9 2.4400E+1 2.3982E+1
Rank 4 5 2 6 3 1

F7
Mean 6.9383E−1 1.2022E+0 6.2975E−1 2.9133E+2 7.8953E−1 1.8334E−1
Std. 3.7641E−1 2.3816E+0 4.1380E−1 2.2710E+2 1.0782E−1 1.3599E−1
Rank 3 5 2 6 4 1

F8
Mean 2.0343E+1 2.0321E+1 2.0366E+1 2.0366E+1 2.0373E+1 2.0307E+1
Std. 6.9352E−2 7.2808E−2 7.5030E−2 6.2763E−2 6.4728E−2 8.8295E−2
Rank 3 2 4.5 4.5 6 1

F9
Mean 1.2474E+0 3.0645E+0 4.8101E−1 7.8447E+1 3.2076E−2 4.6175E−1
Std. 1.0964E+0 1.3473E+0 5.7998E−1 2.0866E+1 1.2507E−2 8.3331E−1
Rank 4 5 3 6 1 2

F10
Mean 2.0656E+1 1.8708E+1 2.0584E+1 8.8957E+1 1.2226E+1 1.0819E+1
Std. 1.0733E+1 6.9397E+0 1.1610E+1 2.9111E+1 2.8072E+0 4.7675E+0
Rank 5 3 4 6 2 1

F11
Mean 4.9123E+0 4.1064E+0 4.2574E+0 8.9119E+0 5.2369E+0 4.6904E+0
Std. 1.7328E+0 1.4138E+0 1.5997E+0 1.8131E+0 7.8148E−1 7.5276E−1
Rank 4 1 2 6 5 3

F12
Mean 1.7229E+3 1.7145E+3 1.4790E+3 4.3008E+4 2.3047E+2 2.4477E+2
Std. 3.0218E+3 3.6642E+3 4.0989E+3 2.6943E+4 1.0950E+2 3.2379E+2
Rank 5 4 3 6 1 2

F13
Mean 7.4303E−1 6.1004E−1 7.1509E−1 1.2388E+1 4.4500E−1 3.8843E−1
Std. 2.1967E−1 2.4371E−1 2.7171E−1 6.2551E+0 1.0604E−1 1.7632E−1
Rank 5 3 4 6 2 1

F14
Mean 3.2538E+0 2.9641E+0 3.0484E+0 4.0012E+0 3.2106E+0 3.0844E+0
Std. 3.5841E−1 4.9332E−1 5.0773E−1 3.7659E−1 2.1339E−1 3.3986E−1
Rank 5 1 3 6 4 2

F15
Mean 2.2687E+2 2.4113E+2 3.3183E+2 7.2965E+2 7.2330E+1 4.4917E+1
Std. 2.0275E+2 1.6404E+2 2.1352E+2 9.6639E+1 2.2714E+1 3.1836E+1
Rank 3 4 5 6 2 1

F16
Mean 1.4210E+2 1.5240E+2 1.4930E+2 3.0563E+2 1.3508E+2 1.1215E+2
Std. 2.0791E+1 5.6650E+1 2.2017E+1 9.7846E+1 1.6558E+1 8.5614E+0
Rank 3 5 4 6 2 1

F17
Mean 1.4974E+2 1.5656E+2 1.5669E+2 4.9375E+2 1.8725E+2 1.5320E+2
Std. 2.6083E+1 2.9624E+1 3.3452E+1 2.2330E+2 1.2608E+1 2.1354E+1
Rank 1 3 4 6 5 2

F18
Mean 8.2300E+2 9.3370E+2 8.3822E+2 1.0813E+3 7.8654E+2 7.5264E+2
Std. 1.6717E+2 9.8799E+1 1.9811E+2 8.8321E+1 7.0689E+1 1.2301E+2
Rank 3 5 4 6 2 1

F19
Mean 8.6158E+2 9.3526E+2 8.3661E+2 1.1318E+3 7.9574E+2 7.6995E+2
Std. 1.5852E+2 9.8302E+1 1.7975E+2 7.6381E+1 4.5852E+1 7.7475E+1
Rank 4 5 3 6 2 1

F20
Mean 8.3881E+2 9.1932E+2 8.6334E+2 1.1035E+3 8.0170E+2 7.7841E+2
Std. 1.5090E+2 1.2376E+2 1.7808E+2 9.7235E+1 4.9105E+1 7.2545E+1
Rank 3 5 4 6 2 1

F21
Mean 9.1765E+2 8.4462E+2 8.2229E+2 1.3034E+3 4.9655E+2 4.8418E+2
Std. 3.3248E+2 3.7132E+2 3.6434E+2 1.8055E+2 5.3891E+1 1.1363E+2
Rank 5 4 3 6 2 1

F22
Mean 7.8531E+2 8.0734E+2 7.9384E+2 9.5630E+2 7.8631E+2 7.6993E+2
Std. 4.0272E+1 4.9921E+1 4.5640E+1 6.4496E+1 5.9842E+0 9.7150E+0
Rank 2 5 4 6 3 1

(continued on next page)
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Table 8 (continued).
NS PSO M-PSO CAPSO LSHADE jSO

F23
Mean 8.9422E+2 1.0661E+3 9.2747E+2 1.3079E+3 5.7309E+2 5.4337E+2
Std. 2.0851E+2 1.8120E+2 2.4164E+2 5.6407E+1 5.3806E+1 4.3649E+1
Rank 3 5 4 6 2 1

F24
Mean 3.2800E+2 6.9416E+2 4.0800E+2 1.1351E+3 2.0003E+2 2.0000E+2
Std. 2.1075E+2 2.9875E+2 2.1151E+2 1.3570E+2 3.5264E−2 0.0000E+4
Rank 3 5 4 6 2 1

F25
Mean 2.9200E+2 8.7564E+2 3.4800E+2 1.1496E+3 2.0000E+2 2.0000E+2
Std. 2.0380E+2 2.3412E+2 1.8787E+2 1.5780E+2 2.2190E−3 0.0000E+4
Rank 3 4 5 6 1.5 1.5
Fig. 10. Fitness results and limits of all particles. Upper row, conqueror particles. Lower row, explorer particles.
Fig. 11. Pareto’s front of ISFC vs. NOx emissions (left) and soot vs. NOx emissions (right).
of combustion systems reported in the literature with the added
value of finding the solution in less time than other methods
[30].

In Fig. 13, comparison of in-cylinder pressure and rate of
heat release traces between the baseline and optimized design is
presented. It can be seen that the in-cylinder pressure is similar
to the baseline case. However, differences in the HRR are more
evident. While the premixed peak is reduced (helping to re-
duce combustion noise), the burning rate is increased during the
non-premixed combustion phase. This could promote a higher
temperature of the flame but in the limit to not generate more
NOx and providing some thermodynamic advantages.
15
To better understand these trends, Fig. 14 shows the temporal
evolution of the cylinder mass over three relevant equivalence
ratios for the baseline and the optimum case. Specifically, equiv-
alence ratio is into three different bands bounded by 0.55, 1.05
and 1.75. It can be seen that the optimized case configuration
increases the mixing rate during the non-premixed combustion,
subsequently rising the burning velocity (note that near stoichio-
metric mixtures completely disappear after 80 CAD aTDC). In
contrast, the baseline case is not able to burn all the fuel during
the combustion process, keeping some stoichiometric mixture in
the cylinder at the exhaust valves opening. This mixing improve-
ment leads to an enhanced combustion, that reduces soot and
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Table 9
CEC2005 30 dimensional optimization summary results. In bold, the best result for each function.

NS PSO M-PSO CAPSO LSHADE jSO

F1
Mean 0.0000E+4 5.4503E+2 0.0000E+4 5.9236E+4 9.2824E+2 5.4566E+2
Std. 0.0000E+4 5.1217E+2 0.0000E+4 2.9664E+4 1.5182E+2 8.4523E+1
Rank 1.5 3 1.5 6 5 4

F2
Mean 0.0000E+4 7.5932E+2 0.0000E+4 1.0966E+5 2.6828E+4 2.0175E+4
Std. 0.0000E+4 1.7978E+3 0.0000E+4 4.9057E+4 3.9046E+3 3.0837E+3
Rank 1.5 3 1.5 6 5 4

F3
Mean 0.0000E+4 6.8772E+6 0.0000E+4 4.6978E+8 6.1113E+7 4.6188E+7
Std. 0.0000E+4 3.7105E+6 0.0000E+4 4.1861E+8 1.4515E+7 9.8415E+6
Rank 1.5 3 1.5 6 5 4

F4
Mean 0.0000E+4 1.8306E+3 0.0000E+4 1.0738E+5 3.5344E+4 3.1080E+4
Std. 0.0000E+4 1.5752E+3 0.0000E+4 4.4615E+4 4.0673E+3 3.6550E+3
Rank 1.5 3 1.5 6 5 4

F5
Mean 4.7358E+3 5.7386E+3 5.0103E+3 2.7579E+4 8.5086E+3 7.0942E+3
Std. 1.4503E+3 1.6274E+3 1.9614E+3 5.3745E+3 5.1043E+2 6.0918E+2
Rank 1 3 2 6 5 4

F6
Mean 7.8726E+4 2.8159E+7 6.8883E+4 3.3743E+10 1.0424E+7 4.1943E+6
Std. 2.5561E+5 4.1138E+7 2.5510E+5 3.2102E+10 3.2010E+6 8.9572E+5
Rank 2 5 1 6 4 3

F7
Mean 1.2276E+1 6.3930E+2 9.7714E+0 1.7625E+3 1.0267E+2 6.2657E+1
Std. 3.8350E+0 5.1943E+2 4.5088E+0 7.1474E+2 1.7903E+1 8.4695E+0
Rank 2 5 1 6 4 3

F8
Mean 2.0996E+1 2.0962E+1 2.0965E+1 2.1008E+1 2.0975E+1 2.0986E+1
Std. 5.8077E−2 7.0010E−2 5.9456E−2 4.3315E−2 7.2476E−2 5.5453E−2
Rank 5 1 2 6 3 4

F9
Mean 4.8861E+1 3.6908E+1 3.2785E+1 4.4602E+2 7.5165E+1 7.1191E+1
Std. 1.1648E+1 1.2157E+1 6.0981E+0 6.5390E+1 5.1428E+0 4.3361E+0
Rank 3 2 1 6 5 4

F10
Mean 1.2722E+2 9.5479E+1 1.2355E+2 5.8149E+2 2.5411E+2 2.4166E+2
Std. 3.6738E+1 3.8076E+1 3.8082E+1 1.2665E+2 1.6147E+1 1.5474E+1
Rank 3 1 2 6 5 4

F11
Mean 2.5565E+1 2.2611E+1 2.2823E+1 3.8885E+1 3.3810E+1 3.2043E+1
Std. 3.5215E+0 4.0814E+0 3.5573E+0 3.8102E+0 1.5772E+0 1.3321E+0
Rank 3 1 2 6 5 4

F12
Mean 2.7810E+4 3.1153E+4 2.8776E+4 1.1503E+6 1.8528E+5 1.4218E+5
Std. 1.7805E+4 2.3850E+4 2.2844E+4 4.8001E+5 2.1565E+4 1.8034E+4
Rank 1 3 2 6 5 4

F13
Mean 4.4971E+0 3.2139E+0 4.5506E+0 4.7560E+2 1.3153E+1 1.1606E+1
Std. 1.0547E+0 8.2833E−1 1.2557E+0 3.8171E+2 1.2417E+0 1.0598E+0
Rank 2 1 3 6 5 4

F14
Mean 1.2944E+1 1.2734E+1 1.2762E+1 1.3525E+1 1.3350E+1 1.3289E+1
Std. 2.7132E−1 3.7862E−1 2.9523E−1 2.8549E−1 1.4075E−1 1.7304E−1
Rank 3 1 2 6 5 4

F15
Mean 4.2850E+2 3.9838E+2 4.7232E+2 9.7835E+2 4.0329E+2 3.5594E+2
Std. 6.3585E+1 1.4673E+2 1.8866E+2 1.6593E+2 4.2216E+1 4.2931E+1
Rank 4 2 5 6 3 1

F16
Mean 2.7335E+2 3.7899E+2 3.1227E+2 7.9408E+2 2.9074E+2 2.8187E+2
Std. 1.4808E+2 1.8283E+2 1.4777E+2 1.7735E+2 1.7166E+1 1.2618E+1
Rank 1 5 4 6 3 2

F17
Mean 4.1152E+2 3.3937E+2 4.2809E+2 8.6913E+2 5.1843E+2 4.5848E+2
Std. 1.1336E+2 1.3302E+2 1.9242E+2 1.8716E+2 3.3316E+1 3.2996E+1
Rank 2 1 3 6 5 4

F18
Mean 9.1202E+2 9.3195E+2 9.1219E+2 1.0997E+3 9.2694E+2 9.1744E+2
Std. 2.3092E+0 1.9003E+1 3.3989E+0 1.0617E+2 1.8609E+0 1.0614E+0
Rank 1 5 2 6 4 3

F19
Mean 9.1346E+2 9.4374E+2 9.1639E+2 1.1074E+3 9.2699E+2 9.1739E+2
Std. 4.4780E+0 3.5241E+1 1.9272E+1 1.0914E+2 2.2353E+0 1.1603E+0
Rank 1 5 2 6 4 3

F20
Mean 9.1137E+2 9.3208E+2 9.1231E+2 1.0822E+3 9.2738E+2 9.1708E+2
Std. 1.6146E+0 2.7379E+1 2.0168E+0 7.7248E+1 2.1893E+0 1.2174E+0
Rank 1 5 2 6 4 3

F21
Mean 7.1840E+2 8.1505E+2 7.2512E+2 1.2791E+3 8.5482E+2 7.6159E+2
Std. 2.4831E+2 1.9117E+2 2.7918E+2 1.2916E+2 3.5860E+1 2.8277E+1
Rank 1 4 2 6 5 3

F22
Mean 9.2496E+2 9.4015E+2 9.3961E+2 1.3126E+3 1.0474E+3 1.0161E+3
Std. 3.8327E+1 4.8177E+1 4.0714E+1 2.1302E+2 1.6327E+1 1.4372E+1
Rank 1 3 2 6 5 4

(continued on next page)
16
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Table 9 (continued).
NS PSO M-PSO CAPSO LSHADE jSO

F23
Mean 6.2683E+2 9.1955E+2 7.1282E+2 1.2446E+3 8.5767E+2 7.7977E+2
Std. 1.7109E+2 2.1540E+2 2.5594E+2 1.0589E+2 4.2605E+1 2.8693E+1
Rank 1 5 2 6 4 3

F24
Mean 8.9105E+2 9.6696E+2 9.2988E+2 1.3029E+3 8.2673E+2 7.7922E+2
Std. 2.4807E+2 7.4147E+1 2.2214E+2 2.2457E+2 4.1957E+1 4.8687E+1
Rank 3 5 4 6 2 1

F25
Mean 9.1076E+2 1.0755E+3 8.8001E+2 1.2403E+3 9.0035E+2 8.6318E+2
Std. 2.3670E+2 9.8230E+1 2.3884E+2 1.5410E+2 5.3466E+1 5.3058E+1
Rank 4 5 2 6 3 1
Table 10
Friedman mean rank for CEC2005 comparison from F1 to F25.

NS PSO M-PSO CAPSO LSHADE jSO

2 dimensions 2.1 3.4 2.8 5.8 3.5 3.5
10 dimensions 3.2 4.0 3.2 6.0 3.1 1.7
30 dimensions 2.0 3.2 2.2 6.0 4.3 3.3

Table 11
Friedman mean rank for CEC2005 comparison for composition functions (F15 to
F25).

NS PSO M-PSO CAPSO LSHADE jSO

2 dimensions 1.3 3.9 3.0 6.0 3.5 3.5
10 dimensions 3.0 4.6 4.0 6.0 2.3 1.1
30 dimensions 1.8 4.1 2.7 6.0 3.8 2.5

Table 12
Algorithm complexity according to CEC2005 calculations [15].

T0 T1 T̂2 T̂2−T1
T0

8.5603

2 dimensions 2.6736

NS 61.2966 6.8482
PSO 16.5853 1.6251
M-PSO 36.5573 3.9582
CAPSO 39.3964 4.2899
LSHADE 46.6621 5.1386
jSO 42.6005 5.0085

10 dimensions 5.1178

NS 81.1183 8.8782
PSO 37.6609 3.8016
M-PSO 40.5768 4.1422
CAPSO 42.1109 4.3215
LSHADE 115.6112 12.9076
jSO 118.6915 13.2674

30 dimensions 11.1488

NS 141.9046 15.2746
PSO 43.9213 3.8284
M-PSO 51.0528 4.6615
CAPSO 48.5369 4.3676
LSHADE 245.6049 27.3887
jSO 251.5818 28.0869

Table 13
Inputs comparison between baseline and optimized case.

Number of
holes [–]

Swirl
number [–]

Injection
pressure (bar)

EGR
(%)

Baseline 10 2 1800 0
Optimized 6 1.60 1898 14.57

noise emissions while keeping the NOx emission under control.
he improved mixing conditions guaranteed by the optimized
owl correlates well with the shorter combustion duration and
he improved performance, as shown previously.

The left-hand side of Fig. 14 shows the temperature contours
f both cases. TDC snapshots show that in the optimized case
he jet penetrates faster since the injection pressure is slightly
igher and also because it has a bigger nozzle hole diameter. That
romotes an improved jet-wall interaction with the piston sur-
ace distributing the flame in the combustion chamber. Moreover,
17
Fig. 12. Difference between baseline and optimized geometries.

Table 14
Output comparison between baseline and optimized case.

NOx [ppm] Soot [ppm Mass] ISFC [g/kWh]

Baseline 1459.97 2.1e−01 191.07
Optimized 1443.35 1.9e−04 185.63

the optimized case presents a more homogeneous temperature
distribution, thereby lowering the NOx production.

Finally, further studies are required to investigate the im-
plementation to other operating conditions as maximum torque
or partial loads in order to analyse if this optimized bowl pro-
file would provide good results in terms of emissions and fuel
consumption for those operating conditions. Also, subsequent op-
timization work is necessary to understand the influence of other
input parameters as spray included angle, nozzle tip protrusion,
start of injection, among others.

8. Conclusions

In this work, NS is proposed as an implementation of Novelty
Search for the PSO algorithm. The CEC2005 benchmark is used to
compare the behaviour of NS with PSO, M-PSO, CAPSO, LSHADE
and jSO. The experiments have shown that NS has very good
results in the optimum search at the expense of increasing the
computational cost of the calculations even if few evaluations
are required. Furthermore, NS stands out in composition func-
tions, the more complex ones. Based on benchmark results, this
algorithm is implemented in the optimization of a combustion
system which has high dimensionality and demands few function
evaluations. A methodology for coupling the Novelty Swarm and
a computational fluid dynamic model of the combustion system
is presented.

Several parameters that have a high impact on the combustion
system were chosen for the optimization process. These parame-
ters are geometrical variables that controls bowl shape, number
of holes, swirl number, injection pressure and EGR rate. Compu-
tational tools were linked to obtain an automatic configuration
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Fig. 13. Comparison between baseline results and optimized case. Left side: In-cylinder pressure evolution versus crank angle. Right side: Estimated Heat Release
Rate versus crank angle.
Fig. 14. Comparison between the baseline case and the optimum case. Left side: spatial distribution of temperature in the combustion chamber at three crank angles
(Top Dead Centre, 45 and 60). Right side: evolution of the normalized mass with equivalence ratio over 0.55 (lean mixture), 1.05 (near to stoichiometric) and 1.75
(rich mixture). The vertical dashed lines correspond to the three instants depicted in the left side.
generator allowing to perform a thousand model evaluations
automatically. The output targets of this work were pollutant
emissions of NOx and soot and specific fuel consumption. These
outputs were used to calculate the fitness function that guides the
NS algorithm. The obtained results show that coupling CFD with
NS can be employed as optimization method to the CI engines
providing a new combustion system that reduces NOx and soot
missions and makes an improvement of 3% of fuel consumption.
Finally, this optimization method can be applied to different

ngine configurations and combustion concepts requiring just a
ew changes as the increment of the number of bowl geometrical
arameters, the included spray angle or the use of a e-fuel for a
ull matching, which will be explored in future works.
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