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ABSTRACT The accurate detection of ID card Presentation Attacks (PA) is becoming increasingly
important due to the rising number of online/remote services that require the presentation of digital
photographs of ID cards for digital onboarding or authentication. Furthermore, cybercriminals are
continuously searching for innovative ways to fool authentication systems to gain unauthorized access to
these services. Although advances in neural network design and training have pushed image classification
to the state of the art, one of the main challenges faced by the development of fraud detection systems is
the curation of representative datasets for training and evaluation. The handcrafted creation of representative
presentation attack samples often requires expertise and is very time-consuming, thus an automatic process of
obtaining high-quality data is highly desirable. This work explores ID card Presentation Attack Instruments
(PAI) in order to improve the generation of samples with four Generative Adversarial Networks (GANs)
based image translation models and analyses the effectiveness of the generated data for training fraud
detection systems. Using open-source data, we show that synthetic attack presentations are an adequate
complement for additional real attack presentations, where we obtain an EER performance increase of 0.63
% points for print attacks and a loss of 0.29 % for screen capture attacks.

INDEX TERMS Biometrics, synthetic images, remote verification, presentation attack detection, ID card.

I. INTRODUCTION
In recent years, a growing trend to digitalise processes
that traditionally required physical attendance and the
presentation of official ID documents has been observed. This
tendency has been driven mostly by technological advances,
novel legal regulations, and also pandemics, where long-term
confinements force to look for alternatives to traditional
ways of accessing certain services to remote services.
Examples of affected processes are opening accounts in
financial institutions, logistics, transport, retail or asset
investment platforms, taking out insurance, and purchasing
real estate [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

The proliferation of remote services that require the
identification of natural persons through biometrics and
ID documents has motivated the continued search for
weaknesses in the said process by the attacker in order
to access the services without being identified. A common
strategy is the presentation of documents that have been
digitally manipulated and then printed on glossy or bond
papers and represented on a smartphone or tablet screen, also
known as spoofs or Presentation Attacks (PA).

The increasing sophistication and effectiveness of the
methodologies with which attackers create convincing fake
documents highlights the need to develop increasingly
effective ID document Presentation Attack Detection (PAD).
These systems have, as an essential component, an image
classifier to distinguish between bona fide documents and
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PA. The current trend for creating image classifiers is to
use neural network architectures, specifically Convolutional
Neural Networks (CNN) [2] or Vision-Transformers (VT)
[3], and to train them to minimize classification errors.

Moreover, it is well known that the stable training of
modern neural networks requires a large set of diverse data
to reach generalization capabilities. In the context of ID
documents, data acquisition is a significant challenge because
the data is subject to privacy concerns and legal regulations
such as the GDPR,1 which requires the consent of the
subject for the processing and use of their data. Furthermore,
the obtainment of PA would involve the laborious process
of printing and cutting out of documents or preparing
screen presentations with different display monitors [4]. The
difficulties associated with the procurement of data have
limited the quality and quantity of public research associated
with the development of PAD models since the studies must
often rely on in-house or private datasets, which makes it
impossible to replicate the reported results (See Table 1).
To alleviate these deficiencies and promote innovation, public
datasets of synthetic documents have appeared in recent
years, notably the Mobile Identity Document Video (MIDV)
datasets [5], [6], [7], the Document Liveness Challenge
(DLC-2021) dataset [8], and the Synthetic Chilean ID Card
dataset [9].
This work leverages open-source datasets of video clips

containing presentations of ID documents of fake subjects
with the aim of ascertaining whether augmenting the training
set with synthetic presentation attack samples instead of bona
fide samples yields comparable results in terms of PAD
predictive performance. To that end, two tasks are specified:
firstly, the ‘‘print’’ task, where the model must distinguish
between bona fide and print attack species, and lastly, the
‘‘screen’’ task, where bona fide and screen presentations are
discriminated by the system. The datasets constructed for
both tasks comprise of preprocessed frames of the original
clips, where each image is a presentation of a full, aligned
document with background information removed based on
object detection systems [10], [11]. Thus, the three species
considered in this work for classification are bona fide, print
and screen:

• Bona fide: Video clips of ID cards containing synthetic
data were captured in a variety of situations with
smartphone cameras.

• Print: Digital templates of ID cards were printed on
normal paper and cut out. Then, smartphones were used
to capture short clips of the printed cards in different
situations.

• Screen: Templates of ID cards were shown on computer
and tablet screens, after which a smartphone was used to
capture clips of the depicted images.

Supervised and unsupervised image-to-image translation
models based on Generative Adversarial Networks (GANs)
are explored to increase the number of presentation attack

1https://gdpr-info.eu/

samples in the training dataset. This work is heavily
inspired by a recent study [9] that employs GANs and
texture transfer-based algorithms to generate bona fide
and presentation attack samples. In the same vein as the
aforementioned work, the usefulness of the generated images
is assessed by training several MobileNetV2 [12] networks
for each task. This way, the predictive performance using
training sets comprised of synthetic and real samples can be
compared with that of systems obtained by training with only
real data.

In summary, the main contributions of this paper are:
• This work proposes a comprehensive analysis of the
State-Of-The-Art related to PAD on ID cards and open-
access databases.

• The GAN-based methods are explored in order to
generate synthetic images to simulate and replicate the
print and screen PA. This reduces the time to produce
handcrafted attacks.

• Supervised and unsupervised presentation attack gen-
eration methods based on GANs are developed from
supervised and unsupervised data for generating PA of
full ID cards that retain the content of the original bona
fide images.

• The system is trained using only open-access databases
instead of private images used in the SOTA (Not
available). Then, we show the improvements, limitations
and tangible results we can reach with the open-access
databases.

• This work shows and highlights the competitive results
of developing an ID card PAD system based on open-
access databases.

The remainder of the paper is structured as follows:
Section II briefly discusses related works on GANs and ID
cards PAD systems. Section III describes the methods used
for generating new PA. The data and preprocessing used
in the experiments are described in Section IV, while the
metrics used to evaluate image quality and PAD predictive
performance are presented in Section V. In Section VI,
we detail the applied experimental framework and discuss
the results. Finally, we provide a summary of our results in
Section VII.

II. RELATED WORK
In the present section, we introduce the Neural style
transfer concept and GAN models used to create synthetic
presentation attack samples and briefly present fake ID
detection systems found in recent literature.

Neural style transfer2 is an optimization technique used
to take two images—a content image and a style reference
image (such as an artwork by a famous painter)—and blend
them together so the output image looks like the content
image, but ‘‘painted’’ in the style of the style reference
image. This is implemented by optimizing the output image
to match the content statistics of the content image and

2https://www.tensorflow.org/tutorials/generative/style_transfer
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the style statistics of the style reference image. These
statistics are extracted from the images using a convolutional
network [13].

A. GENERATIVE MODELS
The traditional GAN [14] is a pair of neural networks that
approaches the data generation task by implicitly modelling
the distribution of a given dataset. It is composed of a
generator G and a discriminator D network. The generator
tries to generate data that is indistinguishable from the real
data, whereas the discriminator tries to determine correctly
whether a given data sample is real or fake. Both networks
are trained simultaneously in a competitive manner, taking
the form of a zero-sum game between two players where the
objective is to find the Nash equilibrium.

With traditional GANs, there is scarce control on the
output of G since it solely depends on the input noise vector.
Conditional GANs were introduced in [15] that allow for
greater control of the output by conditioning G and D on
additional data x while training.

Both traditional and conditional GANs are the building
blocks of the generativemodels used in this work.We focused
on methods that approach the unimodal image-to-image
translation task of finding a mapping G between input
X and output Y image domains such that ŷ = G(x)
is indistinguishable from the images of Y . Four such
methods are presented below: pix2pix [13], pix2pixHD [16],
CycleGAN [17] and CUT [18]. The first two are supervised
methods requiring pixel-aligned data for training, while the
last two are unsupervised and trained on unpaired input
and output image sets. The difference between paired and
unpaired data is shown in Fig. 1.
pix2pix is based directly on the conditional GAN archi-

tecture. It uses as input to both networks the concatenation
the original input and conditioning images on the channel
dimension. In addition to the GAN loss, the authors use
a L1 loss to enforce correctness at the low frequencies.
A U-Net [19] architecture is used as the generator, while a
novel ‘‘PatchGAN’’ architecture is used as the discriminator
that classifies patches as real or fake and aggregates the
results.

pix2pixHD aims to improve upon pix2pix for high-
resolution image generation. The authors introduce a novel
coarse-to-fine generator and a multi-scale discriminator
architecture, as well as an improved adversarial loss based
on matching the discriminator features at different layers.
Furthermore, pix2pixHD allows conditioning with instance
boundary maps and semantic label maps to improve the
rendering of object boundaries.

Obtaining image pairs is relatively simple for certain
tasks, such as superresolution, colourization, and inpainting.
However, it can be prohibitive for a number of other tasks,
such as translating photos into landscape paintings. This
motivated the search for methods that could accomplish
domain translation between unpaired sets of images.

CycleGAN achieves unpaired image translation by using
two GANs and enforcing a cycle consistency loss between
the generators. That is, given the generator G from X to Y
and the generator F from Y toX , the authors add to the GAN
losses the following in Equation (1):

Lcyc(G,F) = Ex[||F(G(x)) − x||1]

+ Ey[||G(F(y)) − y||1] (1)

The cycle consistency condition, although an effective
strategy to approach the unpaired translation problem, tends
to force G into generating samples that contain all the
necessary information in order to translate back to the input
image, which leads to unsatisfactory results if significant
visual changes are expected.

CUT uses a patch-wise contrastive loss [20] to maintain
content correspondence between input and output images.
The loss enforces similarity between corresponding patches
of the input and generated images while enforcing dissim-
ilarity with negative patches from the input image. The
authors propose to use an encoder-decoder architecture for
the generator, where the contrastive losses are computed on
patches of features extracted from the encoder.

B. FAKE ID DETECTION
The widespread use of smartphones has prompted the devel-
opment of novel remote authentication systems embedded in
applications that require the input of biometric data such as
fingerprints, faces, iris [21], and selfies [22]. Additionally,
many services require digital photographs of ID cards, which
are often captured with smartphones, as part of their digital
onboarding process [23], [24].Methods found in the literature
that tackle the problem of remotely detecting fake ID cards
from digital photographs are presented below.

Berenguel et al. [25] developed a novel application to
detect ID documents that have been forged by a scan-
printing operation. Their application allows the capture
of Spanish ID documents using a mobile device and the
assessment of their validity. The counterfeit detection module
performs texture descriptor extraction, principal component
analysis and feature pooling to classify regions of interest
with linear Support Vector Machines (SVM). The final
decision of labelling a document as genuine or counterfeit
is performed by a naïve Bayes classifier. Additionally,
Berenguel et al. [26] proposed a counterfeit document
detector that uses a recurrent comparator architecture with
attention models to spot the differences between a genuine
and a reference image. The authors applied the detector to
datasets of Spanish ID documents and banknotes. The system
searches for the lack of resolution due to a scanning-printing
operation by iteratively centring the attention on different
positions of the security background textures and computing
the differences.

Gonzalez et al. [1] presented a two-stage method for
detecting tampered ID cards, whichwas trained and evaluated
on a database of real Chilean national ID cards. The proposed
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FIGURE 1. Paired training data (left) consists of pairs of pixel-aligned images. Unpaired data (right) comprises of two sets of
images.

method uses a pre-trained MobileNet [27] to detect borders
in the photo ID zone caused by composite tampering, while
a second lightweight CNN, termed ‘‘BasicNet’’, was trained
from scratch to detect the physical source of the document.

The DLC-2021 dataset Polevoy et al. [8] presented and
defined three detection tasks: 1) screen recapture detection,
where centre crops of documents from the original frames
are classified as bona fide or screen recapture presentation,
2) unlaminated colour copy detection, where the network
classifies scaled down images grey images as print presen-
tation of bona fide, and 3) grey copy detection, where the
classification is performed on projective undistorted docu-
ment images. The authors train variations of the ResNet-50
[28] architecture on each task and report the results for future
reference.

Mudgalgundurao et al. [29] proposed a pixel-wise supervi-
sion methodology which is used, along with a binary classi-
fication objective, to train presentation attack detectors on an
in-house database of German ID cards and residence permits.
The proposed system uses a simplified DenseNet [30]
architecture, which the authors compare against baseline face
PAD approaches.

Chen et al. [31] employed a scheme based on Siamese
networks for document recapture detection. The network
is trained on triplets of patches extracted from bona fide,
recaptured, and reference documents. A custom ‘‘forensics
loss’’ is used to attract genuine and reference representations
while repelling recaptured and reference representations. The
authenticity of a questioned document is evaluated using the
distance metrics from three triplets. The authors created a
database of synthetic university student ID cards to test their
system.

Benalcazar et al. [9] explored the effectiveness of computer
vision algorithms and generative models for the purpose of
data augmentation while training fraud detection networks.
The authors propose populating templates with synthetic data
to create additional bona fide presentations, as well as training
a StyleGAN-ADA [32] network to generate synthetic bona
fide samples from scratch. For creating attack presentations,
they use, in addition to the latter network, a texture transfer
method based on adding artificial textures to bona fide

TABLE 1. ID card dataset availability in the SOTA.

presentations and a CycleGAN [17] model to translate
between bona fide and attack domains. VariousMobileNetV2
[12] models were trained on different combinations of real
and synthetic Chilean national ID card presentations to assess
the quality of the generated images. The authors report a
negligible performance loss when supplementing databases
with synthetic images.

Magee et al. [33] explored the potential application of the
Meijering filter [34] to the domain of recaptured identity
document detection. The authors create a new dataset of
recaptured images based on the publicly available BID [35]
dataset and use it to train an SVM classifier on the raw
histogram data obtained by using the filter. Although their
system does not compare well with approaches that utilize
neural networks, it remains an attractive alternative due to
being transparent and explainable.

Most of the aforementioned studies train and test their
proposed systems on private datasets using presentations of
bona fide ID cards obtained from Gubernamental entities,
company services, and banks in order to prevent fraud.
As such, it is difficult to scrutinize and improve upon these
systems since the data cannot be distributed publicly due
to privacy concerns. In light of these challenges, some
studies, though few in number, have created and published
datasets composed of synthetic ID cards generated from
templates, as seen in Table 1. However, they have limited
commercial applicability because of the reduced number of
subjects for each bona fide and attack image. These efforts
are crucial for the effective public benchmarking of novel
PAD systems.
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III. METHODS
This section details the implementation of the GAN-based
models used to generate additional presentation attack
samples and of the PAD system used for both the screen and
print tasks.

The proposed generative methods are designed to create
synthetic PA of full ID cards. The composition of the datasets
used to train each model is detailed in Section IV. The ID
cards under study have widths of 85-86 mm and heights of
53-55 mm, while the employed image generator requires the
input width and height to be amultiple of 8; thus an image size
of 448× 728 was chosen after preprocessing. The training of
the generative models is performed on crops of these images,
whereas the full images are used for inference.

A. IMAGE GENERATION FROM GANS
The GAN-based image-to-image translation methods used
in this work to generate new samples of presentation
attacks from bona fide presentations are pix2pix, pix2pixHD,
CycleGAN and CUT. The first two are trained on paired
data, while the remaining two simply require unpaired sets
of images, one set per domain.

For the print task, the methods learn to transfer the visual
characteristics of printed documents, such as the paper texture
and fine-grain elements left by printers and ink. On the
other hand, the pixel grid texture, spatial aliasing, and colour
distortions indicative of screen displays are expected to be
learned and faithfully transferred for the screening task.

An automatic procedure to generate pixel-aligned paired
training data for pix2pix and pix2pixHD was implemented.
Firstly, each bona fide image is paired randomly with a
presentation attack image of the same subject. Next, the ORB
algorithm [36] is used on each image to detect key points and
extract binary local invariant features. Then, the Hamming
distance between the features of one image and the features
of the other is computed, and the best matches are found
using an iterative algorithm. Finally, the homography matrix
is estimated from the comparisons and is applied to align the
presentation attack to the bona fide presentation.

For all the methods, we adopt the generator architecture
from [37] with 9 residual blocks. Additionally, the 70 × 70
PatchGAN [13] architecture with 4 convolutional layers was
used for the discriminator. We used three PatchGAN models
for the multi-scale discriminator of pix2pixHD.

Training for each method and task was performed for
200 epochs with a batch size of 1 on random crops of size
224 × 224 × 3. Adam [38] was used as the optimizer with
an initial learning rate of 2e − 4 and β1 = 0.5, β2 =

0.999. The learning rate for pix2pix was maintained fixed
throughout training, while for the other methods, it declined
linearly to zero after the 100th epoch. During inference, bona
fide presentations of size 448 × 728 × 3 are fed to the
generators to produce synthetic PA of the same size. The
execution of training and inference was performed on a server
with 32 CPU cores, 236 GB of RAM and a GPU of 40GB.

B. FRAUD-DETECTION NETWORKS
The same network architecture was used for both the screen
and print tasks. Following [9], we used as the backbone a
MobileNetV2 [12] pre-trained on ImageNet. The input to the
networks is the 448 × 448 × 3 center crop of each image
normalized with ImageNet mean and variance. The weights
of the backbone are frozen during training. The output of the
backbone is fed to a dropout layer [39] with p = 0.2, and the
result is in turn fed to a final linear layer.

We use a batch size of 128 and train for 100 epochs. The
weights are optimized using AdamW [40] with a constant
learning rate of 5e−4. Training and inferencewere performed
on the same server as the generative models, with 32 CPU
cores, 236 GB of RAM, and a GPU of 40GB.

IV. DATASETS
This section describes the datasets used in this work. Most of
them present an important variability in light, illumination,
background, orientation and others. It is essential to highlight
that estimating the capture quality of ID cards is still an open
problem [41].

Specifically, the source datasets are presented, and the print
and screen tasks are formally defined (See Table 2. We use
approximately 48,350 images derived from open-source
datasets for our study. Furthermore, around 21,700 images of
synthetic PA were generated to augment PAD model training
sets.

Two experiments are defined:

• Experiment 1: the ‘‘print’’ task, where the PAD systems
are meant to distinguish between bona fide and coloured
print attack presentations.

• Experiment 2: the ‘‘screen’’ task, where bona fide and
screen attack presentations are differentiated. The details
of how the dataset for each task is constructed are
provided below.

The list of images used to replicate and compare this
proposal will be available for research purposes (upon paper
acceptance).

A. DATASET ORGANIZATION
The MIDV-2020 and DLC-2021 datasets were used for this
work.3 Both are successors of MIDV-500 and consist of short
video clips of fake documents presented in different lighting
and background situations.

In MIDV-2020, the physical, bona fide documents were
captured vertically in a resolution of 2, 160 × 3, 840 ×

3 pixels with 60 frames per second using a Samsung S10
or an Apple iPhone XR. In DLC-2021, physical and printed
documents were captured, as well as screen presentations of
the templates, where two office desktops and two notebook
LCD monitors were used. The capturing was done with the

3MIDV-2020 is available to download from ftp://smartengines.com/midv-
2020/dataset/. DLC-2021 is available in three parts from
https://zenodo.org/records/7467028, https://zenodo.org/records/7467004
and https://zenodo.org/records/7467000
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TABLE 2. Types of documents used in the experiments.

same devices in two different frame resolutions (1, 080 ×

1, 920 × 3 and 2, 160 × 3, 840 × 3) and two different frame
rates (30, 60 frames per second). In both datasets, the frames
of the clips were extracted, and the authors annotated the
position of the document.

The splits defined for the print and screen tasks were
defined on the subject level. Each split contains at least
two subjects for each type of document. Furthermore, bona
fide representations from DLC-2021 of subjects with PA are
included in the corresponding split. Additional subjects are
then added from MIDV-2021 to ensure an approximately
equal number of presentations for each class. In what follows,
we specify which subjects from DLC-2021 and which from
MIDV-2021 are included in each split for each task.

1) PRINT TASK
From DLC-2021, subjects 04-07 were used for the training
data split, subjects 02 and 03 for validation data and subjects
00 and 01 for test data. From MIDV-2021, subjects 21-27
were used for the training data, subjects 32-38 for validation
except for Albanian subject 35, and subjects 39-43 for test
data.

2) SCREEN TASK
Subjects from DLC-2021 included in the training set are
Albanian subjects 04 and 05, Spanish subjects 04, 05 and 06,
Estonian subjects 04, 06 and 07, Finnish subjects 04, 05 and
07 and Slovakian subjects 04-07. The validation set contains
DLC-2021 subjects 02 and 03, while the test set contains
subjects 00 and 01. The training set contains no additional
subjects.

From MIDV-2021, the validation includes Albanian sub-
jects 17-22, Spanish, Estonian and Finnish subjects 18-23 and
Slovakian subjects 19-24, while the additional subjects of the
test set are Albanian subjects 09-15, Spanish, Estonian and
Finnish subjects 10-16 and Slovakian subjects 11-17.

In both tasks, bona fide presentations come from both
MIDV-2020 and DLC-2021, whereas attack presentations
originate exclusively from DLC-2021. Moreover, only the
data corresponding to ID cards, shown in Table 2, are
considered, and images where the documents lie partially
outside the frame are discarded.

The splits for each task are done on the subject level.
At least two subjects must be present in each split and class.
Furthermore, for the purpose of a fair comparison, we force
the number of samples per class to be the same for each split.

Table 3, contains the number of images per split and class
for the print and screen tasks. Approximately 13,500 images

TABLE 3. Number of images per partition and class for each task.

TABLE 4. Sets of bona fide and synthetic images used to create the
experiment training sets.

are assigned to the training set of the print task, followed by
6,500 images in the validation set and 6,700 in the test set. The
train set of the screen task has 7,960 images, the validation set
has 6,460 images, and the test set has 7,230 images.

Once the splits are created, the raw frames are preprocessed
offline in three steps: firstly, the documents are projected to
a 464 × 744 × 3 rectangle via a perspective transformation
using an estimated homography matrix; secondly, a portion
of the background is masked out, and lastly, a centre crop
of 448 × 728 × 3 is applied. This process is illustrated in
Fig. 2. Although the annotations were used to perform the
projection in the first step, automatic segmentation of the
document is possible with networks such as the one proposed
by Lara et al. [42].

B. TRAINING SETS OF REAL AND SYNTHETIC IMAGES
The training set of each task is split into two disjoint sets,
denoted by TA and TB, in order to adequately assess the impact
of using synthetic data. We denote by T b

B the set of bona
fide presentations of TB, which is used to generate the set
of synthetic PA T s

B for each method. Additionally, to reduce
bias, we apply a mask to remove background information
from generated images. The sizes of these datasets are shown
in Table 4. Section VI describes how these sets are combined
to create the training sets for the PAD systems so that the
effect of synthetic data can be quantified.

V. METRICS
This section describes the metrics used, on the one hand,
to evaluate the quality of generated images and, on the other,
to assess the predictive performance of PAD systems.

A. QUALITY OF GENERATED IMAGES
Effective research concerning generative models relies upon
metrics that can meaningfully assess the quality of generated
images. In recent years many quantitative methods for com-
puting the quality and diversity of synthetic data have been
developed hand in hand with novel generative architectures,
such as the Inception Distance [43], the Fréchet Inception
Distance (FID) [44] and the Kernel Inception Distance [45].
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FIGURE 2. Preprocessing steps applied to the raw frame data.

The FID was selected for use in order to compare the results
with the SOTA.

The FID is a similarity metric between two probability
distributions that in practice, is often used to assess the
similarity between two sets of images X and Y . To calculate
the FID, firstly, the 2,048 dimensional feature vector (embed-
ding) for each image is obtained by processing the image
with a pre-trained Inception-v3 [46] network and keeping the
features from the pool3 layer. Secondly, the per image set
mean vectors µX , µY and covariance matrices 6X , 6Y are
calculated, and finally, the distributions are compared using
the following Equation (2):

FID = ||µX − µY ||
2
2

+ Tr
(
6X + 6Y − 2(6X · 6Y )1/2

)
(2)

where || · ||
2
2 is the squared L

2 distance and Tr(·) is the trace
function.

B. DETECTION PERFORMANCE EVALUATION
The methodologies for evaluating the detection performance
of biometric PAD algorithms are standardized by the ISO/IEC
30107-34 standard. The metrics used by this study are Attack
Presentation Classification Error Rate (APCER), Bona fide
Presentation Classification Error Rate (BPCER), BPCERAP
and Equal Error Rate (EER). These metrics are aggregates of
comparisons between the ground truth label y ∈ {0, 1, . . . , J}
and the prediction ŷ(τ ) ∈ {0, 1, . . . , J} for a given operating
point τ ∈ [0, 1], where y = 0 indicates a bona fide
representation and y = j with j ≥ 1 is a presentation of the
jth attack type.

To compute the APCER, firstly, the percentage of attack
presentations incorrectly classified as bona fide is calculated
for each presentation attack instrument as is shown in
Equation (3):

APCERj(τ ) =
100∑N

i=1[yi = j]

N∑
i=1

[yi = j][ŷi(τ ) = 0] (3)

where [·] is the Iverson bracket and N is the total number
of presentations. Lastly, the maximum of these values, the
worst-case scenario, is considered:

APCER(τ ) = max
j

APCERj(τ ) (4)

4https://www.iso.org/standard/79520.html

On the other hand, the BPCER is the percentage of bona
fide presentations that have not been classified as is shown
in Equation (5):

BPCER(τ ) =
100∑N

i=1[yi = 0]

N∑
i=1

[yi = 0][ŷi(τ ) ̸= 0] (5)

The remaining two metrics analyze the system performance
on specific operating points. The BPCERAP is the BPCER
value when the APCER is fixed at 100/AP. In this
work we evaluate BPCER10, BPCER20 and BPCER100,
which correspond to APCER values of 10%, 5% and 1%
respectively. The EER is the operating point whereAPCER =

BPCER; however, the classification rate is often reported
instead. In practice, there may not exist an operating point
that satisfies the previous condition, thus, a reasonable
interpolated value is often used.

The aforementioned metrics can be represented using
Detection Error Tradeoff (DET) curves [47], which are also
used by this study. They represent the APCER on the X axis
and the BPCER on the Y axis and use a normal deviate scale
for both axes, which spreads out the plot and facilitates the
visual comparison of different systems.

VI. EXPERIMENTS AND RESULTS
This section describes the experiments performed on the data
described in Section IV and reports the results using the
metrics shown in Section V. First, we show how generative
methods perform in terms of the visual similarity of generated
samples with real data. Then, for each task, we analyze the
effect on PAD predictive performance of adding synthetic
samples to the training dataset instead of bona fide samples,
which, in practice, are harder to obtain.

A. SYNTHETIC IMAGE QUALITY EVALUATION
The aim of this experiment is to assess the quality of
synthesized PA by comparing them to sets of real PA. The
comparison between the two sets of images is done with the
FID metric. Each generative system was trained on TA and
applied on T b

B to obtain the set of synthesized presentations
T s
B . Then, the FID of T s

B with the test presentation attack
images is computed. This allows for the comparison of
generative methods in terms of the visual quality of the
generated samples. Additionally, the obtained FID values
are compared to our baseline FID values obtained from the
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TABLE 5. FID scores computed between synthetic fake images with
proposed generation methods and test data.

validation set in order to compare the difference between
synthetic images and PA (screen, print).

Table 5, shows the results in terms of the FID scores.
The second column, which reports the best results, shows
the baseline FID scores. With a FID score of 43.24 for the
print task and of 58.22 for the screen task, these values
represent the ideal performance for a generative model. The
best performing FID computed on synthetic data is shown in
bold for each task, where CycleGAN obtains the best results
for both tasks with FID scores of 55.73 and 68.77 for the print
and screen task respectively.

In regards to synthesized print attacks, CycleGAN is
closely followed by CUT, while pix2pix and pix2pixHD are
the worst-performing methods with FID scores above 60.
On the other hand, in terms of synthesized screen attacks, the
next best method is pix2pixHD, closely followed by CUT and
lastly pix2pix.

For both types of attack, we observe that unsupervised
methods (CycleGAN & CUT) perform on par or better than
supervised methods. We hypothesize that this is due in part
to deficiencies in the automatic image alignment process
to produce paired training data, which results in noisier
images. Additionally, we suspect that the unnaturalness of
the reconstructions of external elements in the source image,
such as fingers or reflected light, could contribute to a higher
FID score. These effects can be observed in Fig. 4, in which
bona fide presentations of each document type, as well as the
corresponding synthetic PA generated with each method, are
presented.

The examples generated with CycleGAN shown in Fig. 4
preserve better the content of the bona fide presentation
compared with samples of the same attack type generated
with other methods. This is likely a result of the increased
capacity of the cycle consistency loss for conserving
information between translations. Moreover, in addition,
the aforementioned problems with the supervised data, the
increased complexity of the discriminator, and the low
resolution and diversity of the training data are likely causes
of the increased noise and artefacts observed in the samples
obtained with pix2pixHD.

Additionally, from Fig. 3, it can be seen that there are
noticeable differences in colour and brightness between the
synthetic print presentations of each bona fide document.
This may be due to a number of factors, such as the variability
of lighting conditions, the presence of different document
types in the dataset or the differences between the methods
of preserving input colour information. However, the colour
saturation of the generated samples appears to be lower than
that of the corresponding bona fide presentation, which is
expected when printing on matte or uncoated papers. The

differences in colour and brightness between synthesized
screen presentations seem to be less pronounced for certain
documents, which can be attributed to the reduced variability
of these aspects in screen displays. Moreover, some synthetic
samples present a grid-like texture, which shows that the
generative models have successfully learned to transfer this
feature of screen displays. On the other hand, there is an
absence of sophisticated moiré patterns in the generated
samples, which is likely due to the small number of training
samples with such patterns, as well as the distortion of
the original patterns due to the projection of the document
segments in the preprocessing stage.

B. EXPERIMENT 1: PAD PERFORMANCE ON PRINT TASK
For the print task experiments, theMobileNetV2 networks are
binary image classifiers that detect whether the input presen-
tation is bona fide or a print attack. In total, 6 networks were
trained. The first network was trained using only TA (6,751
images) in order to gauge the effect of adding more data.
The second network was trained on TA ∪ TB (13,502 images)
and represents the model trained with the complete set of real
data. The remaining networks were trained on TA ∪ T b

B ∪ T s
B

(13,533 images), where T s
B is different for each method, and

represent the cases where synthetic data is used. The valida-
tion set of Table 3 was used to determine the best checkpoint,
and the PAD metrics were calculated on the test set.

The DET curves obtained from predictions of the print task
test set of all networks are displayed in Fig. 5, where the
EER values for each curve are also reported. Interestingly,
the best performance is obtained with synthetic PA generated
with pix2pixHD, with an EER of 3.16%. With pix2pix data,
we observe a slight drop in performance with an EER of
3.33%, but still better than using real PA were the value of
3.79% was observed. With CycleGAN data, we obtain an
EER of 3.82%, which is comparable to using real data. CUT
produced the worst performing data with an EER of 4.31%,
which is slightly above the 4.28% obtained by only using TA.

Table 6 contains the BPCER10, BPCER20 and BPCER100
operational points of each experiment. We observe a similar
trend as reported with the EER values, except for BPCER10
where pix2pixHD performs on par with real data with a value
of 0.72% and all cases perform better than training only with
TA where a value of 1.90% was observed.
Given the previous observations, it can be said that data

synthesized using supervised generative models produced
better-performing PAD models than data generated with
unsupervised methods. However, we observed in Sec-
tion VI-A that supervised methods produced the data most
dissimilar to real data. Hence, when synthetic print attacks
are involved, the FID score correlates positively with PAD
predictive performance.

C. EXPERIMENT 2: PAD PERFORMANCE ON-SCREEN
TASK
The screen task models are trained to distinguish between
bona fide and screen presentations of ID cards.We configured
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FIGURE 3. Examples of ID cards. (a) to (c) showcase examples of bona fide, generated print presentations and handcrafted print presentations of Spanish
ID cards. (d) to (f) showcase examples of bona fide, generated screen presentations and handcrafted screen presentations of Estonian ID cards. (b) and
(e) were generated with CycleGAN.

TABLE 6. Results for PAD models trained on the print task. Values
expressed in %.

the experiments in a similar manner to those of the print task,
where 6 networks are trained using different combinations
of the screen task datasets described in Table 4. The first
evaluation uses TA (3,978 images) as a training set, while the
second uses the complete training set TA∪TB (7,957 images)
comprised only of real data. The remaining experiments
combine the first half of the training set with the bona fide
images of the second half and the synthetic images generated
from said bona fide images, that is TA ∪ T b

B ∪ T s
B (8,044

images). After training, the best-scoring network checkpoint
on the validation set is retained and evaluated on the test set
of Table 3.
The DET curve of each screen task experiment is shown

in Fig. 6 along with the corresponding EER score. The full
training set of real data produces the best model with an EER
of 5.80%. The next best model was trained with CycleGAN
data with a score of 6.09%, followed by the one trained with
CUT data with a score of 6.28%. The aforementioned models
have better predictive performance in terms of EER score
than the model trained only with TA, where a value of 6.53%
was observed. The worst-performing models were trained on
data generated with pix2pixHD and pix2pix, with EER scores
of 7.07% and 7.39%, respectively.

A different trend can be observed from the BPCERAP
values, reported in Table 7. The model trained on TA ∪ TB
obtained the best BPCER10 and BPCER20 scores, with values

TABLE 7. Results for PAD models trained on the screen task. Values
expressed in %.

of 1.62% and 7.10% respectively, while the model trained
with CycleGAN data obtained the best BPCER100 score
with a value of 29.64%. Furthermore, all models trained
with synthetic data obtained worse BPCER10 scores than
the model trained solely on TA where a value of 1.90%
was observed. BPCER20 scores show a similar trend as the
EER scores. With respect to the BPCER100 scores, the worst
performingmodel was trained on TA where a value of 43.24%
was observed, and pix2pixHD provided the worse performing
synthetic training data with an observed value of 42.42%.

The results presented above show that the best-performing
synthetic data was provided by unsupervised generative
models, with CycleGAN performing better in general than
CUT. Moreover, pix2pixHD performed better than pix2pix
in three out of four metrics. This follows the same trend
as seen with the FID scores seen in Table 5. We postulate
that the noise introduced by the automatic pixel-alignment
process hinders the performance of PAD models because
they rely on high-level texture details to detect screen
presentations adequately. A closer look at the presentations
of the last four rows of Fig. 4 shows how the unsupervised
models produce samples with greater detail and finer
texture than supervised models. Besides, in some samples
generated by the latter models, the alphanumeric information
appears distorted, which might further degrade predictive
performance.
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FIGURE 4. Examples of bona fide and synthetic images generated with the proposed methods. The first row contains bona fide samples of each type of
ID card, and the following rows contain the output produced by each method. The method names with orange backgrounds were trained on the print
task, while the ones with blue backgrounds were trained on the screen task.

D. DISCUSSION
The main focus of this article is to analyze the potential of
GAN-based methods for generating effective PA of front-
faced, full ID cards on open-access datasets. For this purpose,

we first compared the generated data with real data using the
FID metric, and then we evaluated their contribution to PAD
predictive performance when replacing real data. However,
the reported results are not directly comparable to those
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FIGURE 5. Detection Error Trade-off curves of networks trained on print
task data. The EER is shown in parentheses for each scenario. Red dot
lines represent three operational points BPCER10 and BPCER20 and
BPCER100, respectively.

FIGURE 6. Detection Error Trade-off curves of networks trained on-screen
task data. The EER is shown in parentheses for each scenario. Red dot
lines represent three operational points BPCER10 and BPCER20 and
BPCER100, respectively.

of SOTA. Firstly, most of the papers in the SOTA using a
private dataset are not available. Second, most studies used
different types of ID cards (countries) than those used here
and with different subject numbers. Third, all cited studies
train their respective PAD models using non-projected data.
Fourth, some studies use datasets comprised of more than
one type of attack for training, as is the case in Benalcazar
et al. [9]. Lastly, some studies, notably Polevoy et al. [8],
fail to report predictive performance using ISO/IEC 30107-3
standardizedmetrics. In summary, about the limitations of the
proposed methods, it is well known that the training of GANs
is complex and often unstable Salimans et al. [43]. Moreover,
training can lead to mode collapse, which is made evident by
the presence of noticeable artefacts or the lack of variety in the
output images, thereby negatively impacting the style transfer
process. Additionally, pix2pix and pix2pixHD require a large
set of aligned pairs of images to train, which is a challenge
to obtain for PAD because of privacy concerns. On the other
hand, CycleGAN and CUT do not require aligned pairs but

lack the capability to remove external elements. Lastly, the
proposed systems look for a trade-off capacity to transfer
complex stylistic elements, such as Moiré patterns, between
ID cards.

VII. CONCLUSION
In this work, we addressed the problem of open-access PA
data scarcity by proposing methods that use GAN-based
generative models to create synthetic samples. Additionally,
we studied whether the generated data are an effective
substitute for real data for training PAD models. For this
purpose, we leveraged two open-source datasets containing
ID card presentations of fake subjects.

We defined two experiments based on these datasets: the
‘‘print’’ task to distinguish between bona fide and print
presentations and the ‘‘screen’’ task to differentiate between
bona fide and screen presentations. We trained a total of
12 MobileNetV2 networks, 6 for each task, using different
combinations of datasets comprised of real and generated
data in order to adequately assess the impact of adding more
training data and replacing real PA with synthesized ones.

The results vary greatly from one task to the other.
Regarding the print task, data generated with the supervised
generative models proved as effective or even more so than
using additional real data, obtaining a 0.63% increase in
performance with pix2pixHD data. On the other hand, the
best-performing unsupervised model data proved as effective
as additional real data, while the worst performance was
achieved with CUT data, which is on par with not adding any
data to the training set. With reference to the screening task,
we observed that data synthesizedwith unsupervisedmethods
proved slightly less effective than supplementary real data
while still having a 0.44% advantage over not using additional
data. On the contrary, data generated with pix2pixHD and
pix2pix was detrimental to model performance, with a
performance degradation of at least 0.54% compared to using
no additional data.

In all cases, we observed that CycleGAN data performs
better than CUT data. As such, the cycle consistency
mechanism for preserving content and transferring style is
shown to be better suited for presentation attack generation
than the patch-wise contrastive loss used by CUT.

On the other hand, we also observe that pix2pixHD
data is more effective than pix2pix data for PAD predic-
tive performance despite producing less visually appealing
presentations. This may be due to the distortions’ positive
regularising effect, given the low variability in the training
data, although further research is needed to validate these
claims.

We also analyzed the quality of the generated images using
the FID metric. The results reveal that CycleGAN produces
the most faithful images, followed by CUT, pix2pixHD
and finally pix2pix. This stands in contrast to the results
observed in the print task experiments, where unsupervised
models produced less effective data than supervised models.
However, increased image quality is observed to be aligned

VOLUME 12, 2024 68583



R. P. Markham et al.: Open-Set: ID Card Presentation Attack Detection Using Neural Style Transfer

with the screen task results. We attribute these differences
in part to shortcomings in the image alignment process
used for creating paired samples for supervised generative
model training, which results in noisy generated samples.
We hypothesize that this noise correlates well with the
noise inherent to the paper texture while proving harmful
for generating screen samples since the alignment process
can interfere with the fine grain texture and moiré patterns
expected in screen displays.

This article focused primarily on GAN-based unimodal,
two-domain image-to-image translation models. Future work
includes exploring the effectiveness of multi-modal models,
as well as models that generate images in more than one
domain. Additionally, we plan to complement our work by
analyzing the quality of ID cards generated with recently
proposed diffusion models.
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