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c Departamento de Química-Física, Universitat de València, Valencia, Spain 
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A B S T R A C T   

Alzheimer's disease is the most common type of dementia in the elderly. It is a progressive degenerative disorder 
that may begin to develop up to 15 years before clinical symptoms appear. The identification of early biomarkers 
is crucial to enable a prompt diagnosis and to start effective interventions. In this work, we conducted a 
metabolomic study using proton Nuclear Magnetic Resonance (1H NMR) spectroscopy in serum samples from 
patients with neuropathologically confirmed Alzheimer's disease (AD, n = 51), mild cognitive impairment (MCI, 
n = 27), and cognitively healthy controls (HC, n = 50) to search for metabolites that could be used as biomarkers. 
Patients and controls underwent yearly clinical follow-ups for up to six years. MCI group included samples from 
three subgroups of subjects with different disease progression rates. The first subgroup included subjects that 
remained clinically stable at the MCI stage during the period of study (stable MCI, S-MCI, n = 9). The second 
subgroup accounted for subjects which were diagnosed with MCI at the moment of blood extraction, but pro-
gressed to clinical dementia in subsequent years (MCI-to-dementia, MCI-D, n = 14). The last subgroup was 
composed of subjects that had been diagnosed as dementia for the first time at the moment of sample collection 
(incipient dementia, Incp-D, n = 4). Partial Least Square Discriminant Analysis (PLS-DA) models were developed. 
Three models were obtained, one to discriminate between AD and HC samples with high sensitivity (93.75%) and 
specificity (94.75%), another model to discriminate between AD and MCI samples (100% sensitivity and 82.35% 
specificity), and a last model to discriminate HC and MCI with lower sensitivity and specificity (67% and 50%). 
Differences within the MCI group were further studied in an attempt to determine those MCI subjects that could 
develop AD-type dementia in the future. The relative concentration of metabolites, and metabolic pathways were 
studied. Alterations in the pathways of alanine, aspartate and glutamate metabolism, pantothenate and CoA 
biosynthesis, and beta-alanine metabolism, were found when HC and MCI- D patients were compared. In 
contrast, no pathway was found disturbed in the comparison of S-MCI with HC groups. These results highlight 
the potential of 1H NMR metabolomics to support the diagnosis of dementia in a less invasive way, and set a 
starting point for the study of potential biomarkers to identify MCI or HC subjects at risk of developing AD in the 
future.   
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1. Introduction 

Alzheimer's disease (AD) is the most common type of dementia in 
older adults (Olajide and Sarker, 2020). In 2020, over 55 million people 
worldwide were estimated to have dementia, a figure expected to rise to 
78 million by 2030 (Gauthier et al., 2021). AD is a progressive neuro-
degenerative disorder characterized by the accumulation of extracel-
lular plaques of ß-amyloid peptides and intracellular aggregation of tau 
protein, with the concomitant neuronal and synaptic loss (Lucey, 2020), 
resulting in the development of cognitive dysfunction and dementia. The 
pathophysiological alterations usually start between 10 and 15 years 
before clinical onset (Vignoli et al., 2020). The definitive diagnosis of 
Alzheimer's disease can only be made post-mortem (Wurtman, 2015). 
However, dementia of the Alzheimer's type is the clinical term to refer to 
dementia patients in which the Alzheimer's diagnosis is achieved based 
on the clinical symptoms pre-mortem. Age is the greatest risk factor for 
AD, and the incidence doubles every five years after the age of 65 
(Lucey, 2020). Mild cognitive impairment (MCI) is a pathological con-
dition characterized by the manifestation of a premature cognitive 
decline (Gauthier et al., 2006). Dementia-related MCI could be 
described as an intermediate state between normal aging and AD-type 
dementia. The prevalence of MCI in the population ranges between 
15% and 20% in adults older than 60 years. MCI population is of great 
interest since their annual rate of progression to dementia is in the range 
of 8% to 15% (Duara et al., 2013). In this context, there is an increasing 
interest in identifying the subjects with MCI that will progress to de-
mentia. Anticipating the progression of these MCI patients to dementia 
would be of interest to apply therapies in the early stages of the disease 
when these interventions may be more effective. 

Nowadays, there is no treatment to restore the cognitive decline of 
AD patients. Very recently, anti-amyloid immunotherapies have been 
approved by the FDA, showing a rather modest clinical benefit by 
slightly slowing down disease progression at early phases of the disease, 
albeit amid some safety concerns (Couzin-Frankel, 2023; Larkin, 2023; 
Reardon, 2023). AD patients are identified according to their cognitive 
state, neuroimaging studies and biomarkers profile. Current clinical 
biomarkers for AD are variations in the cerebrospinal fluid (CSF) levels 
of tau proteins (total tau protein and phosphorylated tau protein) and 
β-amyloid 1–42 peptide (Aß42). AD patients show an increase in tau 
protein and a decrease in Aß42 levels compared to healthy subjects 
(Mattsson et al., 2009). Unfortunately, CSF extraction requires invasive 
procedures and specialised staff, and it is not exempt from risks in aged 
patients who usually present concomitant pathologies. Considering 
these factors, the identification of new biomarkers is urgently needed to 
implement non-invasive diagnostic techniques for AD, to stratify pop-
ulations for clinical trials, and to find new therapeutic targets to prevent 
cognitive decline. AD has lately been related to a metabolic disease. In 
fact, it has been shown that a metabolic dysfunction of the brain could be 
a potential driver of AD (Zheng et al., 2019). These metabolic changes in 
the brain might be translated early on to other organs and biofluids. The 
observation of the global biochemical changes produced could provide 
information to reveal biomarkers related to AD and to further deepen 
our understanding of the molecular mechanism underlying cognitive 
decline and AD. 

Accordingly, the study of the metabolic profile seems relevant in this 
context. Metabolomics is the study of the footprint of all metabolic 
pathways and chemical processes occurring in a living system, that is, 
the study of those metabolites present in a biological sample (Peng et al., 
2015). Metabolomics is closer to the phenotype than any other -omics 
discipline, and informs about what has happened, and not about the 
possibility of something happening as in other -omics (D'Alessandro 
et al., 2012). The analysis of differential metabolites in a biological 
sample isolated from a healthy subject and a patient gives information 
about the biochemical processes occurring underneath the disease and 
gives an insight into new therapeutic approaches and the identification 
of biomarkers for the diagnosis of the disease. To perform metabolomic 

studies, nuclear magnetic resonance (NMR) spectroscopy together with 
mass spectrometry (MS) are the most predominant techniques. NMR 
spectroscopy allows the untargeted qualitative and quantitative analysis 
of a wide variety of biological samples (blood derivatives, urine, CSF, 
tissue, culture cells, and others) (Čuperlović-Culf et al., 2010; Duarte 
et al., 2014; Fuss and Cheng, 2016; Kast et al., 2014). It is a non- 
destructive technique, thus enabling the performance of complemen-
tary assays in the same sample. The requirements to perform NMR 
spectroscopy metabolomic studies include straightforward sample pro-
cessing procedures and small sample quantities. Moreover, there is a 
wide set of experiments for metabolite identification, and metabolite 
quantification is also possible with this technique. Remarkably, it is also 
a robust and very reproducible technique (Ward et al., 2010). 

Metabolomics, either using NMR spectroscopy or MS, has been 
extensively applied to the study of AD. Different biofluids have been 
studied to find AD biomarkers of disease or progression. CSF is in contact 
with nervous tissue, and it is supposed to be closer to the pathology, so it 
would be the best candidate to provide information on AD. Different 
metabolomic studies have been performed in CSF (Ibáñez et al., 2012; 
Jääskeläinen et al., 2020; Vignoli et al., 2020). Ibáñez et al., 2012 
applied capillary electrophoresis-mass spectrometry (CE-MS) for the 
generation of models of AD progression, reaching 83% of accuracy in the 
discrimination of patients undergoing AD compared to MCI-AD patients 
and non-AD subjects. Metabolites such as choline, dimethylarginine, 
arginine, valine, proline, serine, histidine, creatine, carnitine, and sub-
erylglycine were identified as potential AD progression biomarkers 
(Ibáñez et al., 2012). Jääskeläinen et al., compared the ability of classic 
CSF biomarkers (amyloid-ß 42, phosphorylated tau protein, and total 
tau) and metabolic profiles obtained by NMR spectroscopy for the 
classification of AD and healthy controls. The authors concluded that 
classic CSF biomarkers were better for classifying cognitive healthy 
controls (HC) vs. AD patients (AUC = 0.89), but metabolic subclasses by 
NMR spectroscopy were more effective for classifying MCI vs. AD sam-
ples (AUC = 0.68) (Jääskeläinen et al., 2020). Vignoli et al., 2020 used 
NMR spectroscopy to obtain the metabolomic profile of CSF samples, 
and generated discriminant models with 86.1% accuracy in discrimi-
nating between AD and HC and 70% accuracy for classifying AD vs. MCI. 
They found that acetate, valine, and 3-hydroxyisovalerate were altered 
in AD (Vignoli et al., 2020). Despite the interesting results obtained from 
CSF samples, this is an invasive technique that implies a lumbar punc-
ture. Therefore, different biofluids that require less invasive procedures 
for sample collection, such as urine or blood, have been explored to 
determine AD biomarkers. Recently, studies in urine using NMR spec-
troscopy and UHPLC-MS together with metabolic quantitative trait loci 
(mQTL) were used to calculate models able to classify correctly 82.96% 
of cases MCI converting to AD, and 77.78% of stable MCI vs. controls. 
However, urine is separated from the brain not only by the blood-brain 
barrier, but also by glomerular filtration (Kurbatova et al., 2020). Blood 
fractions (serum, plasma) seem a compromise between less invasiveness 
and relation to the pathology. Olazarán et al., 2015 used UPLC-MS to 
determine metabolomic biomarkers for the diagnosis of AD using plasma 
as a biological sample in a set of 251 AD, HC and MCI subjects (Olazarán 
et al., 2015). In this study a panel of seven metabolites (glutamic acid, 
alanine, aspartic acid, 22:6n-3 DHA, deoxycholic acid, PE(36:4), SM 
(39:1)) was determined for the discrimination of AD from HC samples 
(AUC = 0.918) and MCI from HC (AUC = 0.826). Figuera et al. 2019 
used NMR spectroscopy on serum to generate discriminative models 
able to classify AD and MCI samples from HC with AUC values of 0.61 
and 0.71, respectively. In the study, the authors determined that the 
threonine-linked metabolic pathways were important in the patholog-
ical process.(Figueira et al., 2019) Graham et al. combined NMR and LC- 
MS to identify biomarkers able to discriminate AD and MCI from HC, 
obtaining models with sensitivity and specificity values ranging from 
0.75 to 0.85 and 0.69–0.81, respectively. The authors concluded that the 
lipid metabolism was the most perturbed biochemical pathway in MCI 
and AD (Yilmaz et al., 2020). 
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Aimed with this background, herein, we present a metabolomic 
study by NMR spectroscopy of serum samples from HC, MCI and AD 
patients to determine biomarkers of disease and early biomarkers of 
progression. 

2. Material and methods 

2.1. Patient selection 

Cognitively healthy, non-demented participants and subjects diag-
nosed with MCI (n = 77) were recruited from the Vallecas project, a 
single-center, multidisciplinary, observational, longitudinal study of a 
cohort of 1213 volunteers, aged 69–86 years and home-dwelling at 
baseline, recruited between 2011 and 2013 in Madrid, Spain, which is 
carried out in the Queen Sofia Foundation, funded by CIEN Foundation 
and Queen Sofia Foundation (Olazarán et al., 2015). Participants of the 
Vallecas project were cognitively healthy volunteers at baseline 
attending Queen Sofia Foundation Alzheimer Research Center. The AD 
group (n = 51) consisted of clinically diagnosed patients with moderate 
to severe AD that were institutionalized at the Queen Sofia Foundation 
Healthcare Center. Written informed consent was obtained from all 
participants or representatives according to the Declaration of Helsinki. 
Approval was obtained from the Research Ethics Committee of the 

Instituto de Salud Carlos III (CEI PEI 46_2011-v2015; CEI PI 78_2019). 
Healthy controls (n = 50) and subjects included in the MCI group (n 

= 27) were followed up for six years to determine their clinical evolution 
and observe their possible progression to dementia and AD (Fig. 1). 
According to their clinical progression, subjects in the MCI group were 
classified into 3 subsets: i) first dementia diagnosis (incipient D, 4 sub-
jects with a first diagnosis of dementia at the time of sample collection); 
ii) MCI diagnosis at sample collection were diagnosed with MCI but who, 
in the following one to three years, progressed to dementia (MCI-to- 
dementia, 14 patients), and MCI patients that in the follow-up, remained 
stable in MCI condition (stable MCI, 9 patients). Clinical and de-
mographic data are provided in Table 1. The Fig. 1 represents sche-
matically the study. 

2.2. Cognitive assessment 

Participants from the Vallecas project cohort were cognitively 
assessed by the well-known Mini Mental Scale Examination (MMSE) and 
the Clinical Dementia Rating (CDR) scales. To overcome the floor effect 
effect observed with the standard MMSE scale on moderate-to-severe AD 
population (Peavy et al., 1996), the AD group was cognitively assessed 
with the Severe MMSE (SMMSE) (Harrell et al., 2000). The fact that 
scoring in both scales give a range of values between 0 and 30 can be 

Fig. 1. Schematic representation of the analysed groups. Serum samples were collected from patients with different clinical diagnosis (HC, MCI, and AD). Within the 
MCI group, the clinical stage at sample collection and the progression in the follow up were diverse. Some MCI patients were in clinical condition close to dementia at 
sample collection, and were classified as Incp-D. In the follow-up time, some of the MCI patients progressed to a more evolved state of dementia (MCI-D) whereas for 
other MCI patients the clinical diagnosis remained the same (S-MCI). Taken this into consideration, statistical analyses were performed to these sets of NMR spectra to 
determine metabolomic differences between S-MCI and MCI-D, together with the other clinical groups: HC, Incp-D and AD. 
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confusing, but scores from both scales should not be directly compared 
(Mougias et al., 2018). Thus, the CDR scale has also been included, 
which can be used with all groups studied (CDR = 0, cognitively un-
impaired; CDR = 0,5, MCI; CDR = 1 mild dementia; CDR = 2, moderate 
dementia; CDR = 3, severe dementia). 

AD-type dementia diagnosis was established according to the Na-
tional Institute on Neurological Disorders and Stroke, and the Alz-
heimer's Disease and Related Disorders Association (NINCDS-ADRDA) 
guidelines (McKhann et al., 2012). Forty three out of fifty one AD sub-
jects had donated their brains and the AD diagnosis was neuro-
pathologically confirmed post mortem. Participants with MCI were 
defined using criteria described by Petersen et al., 1999 (Petersen et al., 
1999). 

2.3. Sample preparation 

Serum samples from healthy controls and MCI subjects from the 
Vallecas Project cohort as well as AD samples from the CIEN Foundation 
Brain Tissue Bank (BT-CIEN), were all collected in fasting conditions by 
venous punction. After clot removal, aliquots of 500 μL were preserved 
at − 80 ◦C until the analysis. 

Samples were prepared following the protocol described by Beck-
onert et al. (Beckonert et al., 2007). Briefly, before sample preparation, 
samples were thawed. Immediately, 400 μL of serum were introduced in 
5 mm NMR tubes, and 200 μL of phosphate buffer (pH 7.4) were added. 
Phosphate buffer contained deuterated water (20% v/v) and sodium 
2,2-dimethyl-2-silapentane-5-sulphonate (DSS) 1 mM as internal stan-
dard for chemical shift referencing. 

2.4. NMR spectra acquisition and processing 

Once the samples were prepared, NMR spectra were recorded in a 
Bruker Avance DRX 600 MHz spectrometer (Bruker GmbH, Rheinstet-
ten, Germany) at U26 NMR: Biomedical Applications II platform from 
Nanbiosis (Research Infrastructures & Services of CIBER-BBN). 1D 1H NMR 
spectra were acquired for each sample using Carr-Purcell-Meiboom-Gill 
(cpmg) pulse sequence with water signal suppression and a total spin 
echo of 32 ms for each sample (interpulse delay between 180◦ pulses 
was 0.001 s, and the number of loops was 16). This pulse sequence re-
duces the contribution of signals from high molecular weighted mole-
cules to the spectra, such as proteins or other macromolecules, owing to 
their short times of transverse relaxation (T2). The temperature of the 
probe was set at 300 K (27 C). Together with the acquisition of 1H cpmg 
spectra, 2D homonuclear (1H-1H TOCSY) and heteronuclear spectra 
were acquired (1H-13C HSQC) in a reduced set of samples to unequivo-
cally identify and assign the signals in the spectra. 

Once acquired, the 1D and 2D spectra were Fourier transformed and 
processed with TopSpin 4.0.0 (Bruker BioSpin Corporation). For pro-
cessing the 1D spectra an exponential line-broadening function of 0.5 Hz 
was applied followed by Fourier transformation. Phasing, baseline 
correction and chemical shift referencing to the trimethylsilyl signal of 

DSS at 0.0 ppm was also performed. For the processing of the 2D spectra 
the phase was corrected for rows and columns, and the chemical shift 
referenced to the trimethylsilyl signal of DSS at 0.0,0.0 ppm. The main 
signals in the spectra were assigned according to the data in the bibli-
ography (Govindaraju et al., 2000; Martínez-Bisbal et al., 2004) and the 
Human Metabolome Data Base (HMDB) (Wishart et al., 2007). 

After processing, meaningful signals in the cpmg spectra underwent 
deconvolution using AMIX 4.0.2 software (Bruker BioSpin Corporation). 
The residual signals after water suppression in the area between 4.5 and 
5.0 ppm, and those regions with chemical shifts lower than 0.5 ppm and 
higher than 8.5 ppm were excluded from the analysis. A total of 130 
signals were selected in the 1D spectra and included for deconvolution 
(fig. S1). Then, a mixed Gaussian/Lorentzian variable function was 
applied for deconvolution of these signals. After deconvolution, in-
tegrals were obtained for all cpmg spectra, and were normalized to the 
sum of all integrals in each sample, resulting finally in a data set of 130 
normalized integrals for each sample. 

2.5. Multivariate statistical analysis 

To determine differences between the serum metabolomic profiles 
of, HC, MCI and AD patients, multivariate statistical analyses were 
performed. For this purpose, the normalized data were fed into the 
software PLS_Toolbox Solo 8.9 (Eigenvector Research, Inc., Manson, WA, 
USA). 

Partial least squares-discriminant analyses (PLS-DA) were performed 
to generate predictive models able to classify the samples according to 
the clinical diagnosis, and using the information from the cpmg spectra 
deconvolution, i.e., based on its metabolic profile. Models were gener-
ated to discriminate HC vs. AD, and MCI vs. AD. 

Before PLS-DA analyses the data were split in discovery (66% of the 
data was included for training and calculating the models) and valida-
tion subsets (33% of the data was used to apply the calculated model and 
to see the performance of the model). The split in 70% and 30% has been 
empirically proven to provide accurate models and results (Gholamy 
et al., 2018). Cross validation was used to determine the appropriated 
number of principal components. 

The performance of multivariate statistic calculations is generally 
improved when the number of variables and samples is equilibrated 
(Adler and Yazhemsky, 2010). With this purpose, variable selection 
strategies are usually included previous to these analyses (Mehmood 
et al., 2012). Accordingly, in this study first, applying the knowledge on 
the signals in the spectra, only one representative peak from each 
metabolite was selected, thus reducing the number of variables from 130 
to 48. Afterwards, variable selection in the calibration sets was per-
formed selecting those variables with values of Variable Importance in 
Projection (VIP) higher than 0.8. 

After variable selection in the discovery sets, two PLS-DA models 
were obtained (to discriminate HC vs. AD, and MCI vs. AD, respectively). 
Cross validation (using venetian blinds) was used to determine the op-
timum number of latent variables for the model. After applying the 

Table 1 
Sociodemographic and clinical data of participants in this study.   

Healthy controls (HC) Mild Cognitive Impairment (MCI) Alzheimer's disease (AD) 

Stable MCI (S-MCI) MCI progressing to dementia (MCI-D) Incipient Dementia (Incp D) 

Age, Mean (range) 77.2 (72–87) 80.2 (74–91) 78.9 (71–85) 80.2 (76–86) 82.35 (58–93) 
Number (%) 50 (39.1) 14 (10.9) 9 (7) 4 (3.1) 51(39.8) 

Sex, male/female 17/33 4/10 5/4 10/17 9/42 
APOE4+ (%) 10 (20%) 2 (13%) 3 (37.5%) 2 (50%) 22 (43.1%) 

MMSE* / SMMSE** 28.2 (24–30)* 25.9 (22–28)* 24.8 (19–30)* 21 (14–25)* 10.84 (0− 30)** 
CDR*** 0 (0–0.5) (0.5) (0.5) (1) 2.75 (1–3)  

* MMSE = Mini Mental State Examination (0–30). 
** SMMSE = Severe MMSE (0–30) (validated for Spanish-speaking population)(Díaz-Orueta et al., 2010). 
*** CDR = Clinical Dementia Rating (0–3). 
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models to the validation sets, sensitivity, specificity and the area under 
the ROC curve (AUC) were calculated to determine the goodness of the 
models to discriminate between each set of samples. Once validated, to 
determine the robustness of the model and to test for over-fitting, per-
mutation tests (200 iterations) were performed and pairwise Wilcoxon 
signed rank text (Wilcoxon test), pairwise signed rank test (Rank test) 
and randomization t-test (Rand t-test) probabilities were obtained in the 
self-prediction and in the cross-validated residuals. 

2.6. Univariate statistical analysis 

Mean comparison of the identified metabolites in HC vs. AD and MCI 
vs. AD was performed. For comparison of pairs t-test and Mann Whitney 
U test were used, depending on the results obtained in the normality test 
(Kolmogorov-Smirnov (Dementia) or Shapiro Wilks (HC and MCI)). IBM 
SPSS Statistics 25 version was used for univariate statistics. MCI-to- 
dementia, stable MCI and incipient D as defined previously were 
considered in the study of MCI set. ANOVA test and the post hoc Scheffé 
test were used for comparison between the different MCI subsets, and 
AD and HC groups. Boxplots of the above-mentioned groups of metab-
olites showing sequential changes according to the progression in the 
disease were performed using R (RStudio 1.2.5001). 

2.7. Analysis of altered metabolic pathways in AD and MCI 

To determine the potential metabolic pathways involved in the 
pathological processes, Metaboanalyst (Chong et al., 2018) was used. A 
concentration table made with the relative concentration of each 
metabolite as columns and samples as rows as used. The HMDB ID of 
each metabolite was used to include them in the pathway analysis, so 
those metabolites whose HMDB ID was not available were not included, 
such as fatty acids or unknown metabolites. The global test enrichment 
analysis selected for the topological analysis was Relative-betweenness 
centrality and the Homo sapiens library provided by metaboanalyst 
was used as reference metabolome. The enrichment method selected 
was global test. Once the analysis was obtained, the pathways with p 
value < 0.05 and impact factor > 0 were chosen as representative 
pathways. 

3. Results and discussion 

3.1. Metabolic profile of serum samples 

The main signals in the spectra were assigned to enable the identi-
fication of potential biomarkers of AD-type dementia and progression in 
the discriminant models. Fig. 2 shows the serum spectrum of one of the 
samples with the assignment of the main peaks. For a better observation 
of the signals in the figure, spectrum has been split in two parts, aliphatic 
(Fig. 2.a) and aromatic part (Fig. 2.b). Reference spectra of MCI (Fig. 2. 
c) and HC (Fig. 2.d) are also shown for comparison. 

The trimethylsilyl peak of DSS can be observed at 0.00 ppm as a 
singlet. All the assigned resonances are shown in Table S1 with the detail 
in the compound and in the functional group, and for each of them, the 
chemical shift, the multiplicity and J coupling. With this information, 27 
compounds were assigned. Within the assigned compounds, there were 
11 amino acids identified, 5 organic acids and 2 sugars, among other 
molecules, such as fatty acids or alcohols. 

3.2. Multivariate analysis of the serum metabolomic profiles 

A PLS-DA analysis was performed to generate a predictive model 
able to classify and differentiate between HC and AD serum samples. 
Three principal components were selected. From the first model 
generated with the calibration subset, variables with VIP > 0.8 were 
selected, resulting in a total of 21 variables. The R2 value was 0.7 and 
the Q2 was 0.59. This model was then applied to the validation set and 

93.75% of sensitivity and 94.18% of specificity were obtained, with an 
AUC value of 0.9816 (Fig. 3.a). All the permutation tests performed 
proved the robustness of the model (p < 0.05). 

The variables participating in this model (and potential biomarkers 
of the disease) are shown in the Table 2, having a greater impact in the 
model n-acetylglucosamine, CH3- mixed lipoproteins, and n-acetylated 
compounds, pyruvate, lysine, threonine and glycine. 

Following the same procedure, a PLS-DA was performed to generate 
a predictive model to discriminate between dementia of the AD type 
against MCI. The discrimination of these two sets of patients is of the 
most importance in this clinical context for early diagnosis. The model 
was generated as described before. In this case the model had a total of 
18 variables and was made with 2 principal components with an R2 
value of 0.7 and a Q2 value of 0.61 and was able to determine with a 
100% of sensitivity and 82.35% of specificity (for the validation set) 
between AD and MCI with an AUC value of 0.9281 (Fig. 3.b). All the 
permutation tests performed proved the robustness of the model (p <
0.05). The variables participating in this model are shown in Table 2. 
The metabolites with a greater impact in the model are CH3- mixed li-
poproteins, n-acetylglucosamine, n-acetylated compound, lysine, pyru-
vate and CH2- mixed lipoproteins. Finally, a third model for the 
discrimination of HC and MCI was performed. The model was made with 
2 principal components. The classification and prediction results ob-
tained by PLS-DA did not offered a good performance, yielding a spec-
ificity of the 50% and 67% of sensitivity (Fig. 3.c.). The AUC value was 
0.556. The Q2 value was -0.1 and the R2 0.17. As reflected by the AUC 
and Q2 and R2 values, this model does not have capability for 
prediction. 

The metabolites participating in this model are shown in Table 2. 
Given the clinical relevance of finding differences between this two 
groups, further analysis will be performed seeking for potential meta-
bolic biomarkers of the differences between HC and MCI. 

Previous NMR metabolomic studies in serum have been performed to 
obtain discriminative models for the identification of potential bio-
markers of AD and MCI. Figuera et al. 2019, generated models able to 
classify MCI and HC samples with an AUC value of 0.6, similar to the 
results we obtained. They found that threonine, 2-hydroxybutyrate, 
glutamine, L-tyrosine, trimethylamine, isobutyrate and propylene gly-
col were important in the discriminative model. They as well generated 
models able to classify HC and AD samples with an AUC of 0.71. The 
metabolites that they found important for the discrimination of samples 
were threonine, aspartate, creatine, N,N-Dimethylglycine, L-alanine, 
acetic acid and acetoacetic acid (Figueira et al., 2019). Yilmaz et al., 
2020, generated discriminative models for the identification of potential 
biomarkers of MCI and AD by NMR and LC-MS in plasma samples. They 
found that acetic acid and lyso-phosphatidilcholine (C16:1), ceramide 
(C18:2), sphingomiosine (C24:1) and sphingomiosine (C24:0) were the 
most important metabolites for the discrimination between HC and MCI 
(Yilmaz et al., 2020). Among the set of metabolites found in the work 
here presented, glutamine was also found important in the discrimina-
tion between MCI and HC, and threonine and creatine were found 
important in the discrimination between AD and HC, as had been pre-
viously reported in the bibliography. Regarding to the discrimination 
between MCI and AD, the metabolites reported were obtained by LC-MS 
in the model found in Yilmaz et al., 2020. It seems controversial the 
scarce coincidence of biomarkers found in the diverse studies. Never-
theless, even though NMR is a highly reproducible technique, there are 
several issues to address when comparing the results obtained from 
different metabolomic studies, including the way the samples have been 
collected and prepared, the patient inclusion and classification criteria, 
or the different ways for data processing as the integration, scaling and 
normalizing methods for NMR data. 

3.3. Mean comparison of metabolites 

The relative concentration of metabolites in HC, AD and MCI was 
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Fig. 2. Serum 1H NMR spectrum of an AD patient a) Aliphatic region of the spectrum (δH 0–4.4 ppm). b) Aromatic region of the spectrum (δH 5.3–8.2 ppm). Due to a 
lower signal intensity in the aromatic region, the intensity was amplified 10 times in regard to the aliphatic region. The spectrum area corresponding the water 
suppression signal is not shown. c) Serum 1H NMR spectrum of an MCI patient d) Serum 1H NMR spectrum of a HC. 
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Fig. 3. PLS-DA scores and ROC curve for the classification of (a) HC vs. AD, (b) AD vs. MCI and (c) HC vs MCI. In the left side of the panel the prediction plot is 
shown, divided in the scores obtained in the calibration and validation subsets. In the right side of the panel, ROC curve is shown for each model, with an AUC value 
of (a) 0.9816, (b) 0.9281 and (c) 0.5694 for discrimination of HC vs. AD, AD vs. MCI and HC vs MCI. 
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compared. The 48 signals, used for the multivariate statistics were here 
analysed, including identified metabolites, unknown peaks, and 
different peaks from fatty acids and lipoproteins. Significant differences 
were identified in most of the metabolites analysed in both comparison 
HC vs. AD and AD vs. MCI, highlighting the wide impact that the disease 
has in the cellular metabolism (Table 3). 

Creatine, ethanol, threonine, glycine, methanol, lysine, n-acetylglu-
cosamine, alanine, CH2 mixed lipoproteins, valine, CH3 mixed lipopro-
teins, phenylalanine, acetylcholine, choline, pyruvate, acetone, glycerol, 
isoleucine, N-acetyled compounds and two unassigned signals (7.01 
ppm and 3.86 ppm) showed statistical differences in its relative mean 
concentrations between AD and HC. In the comparison of AD vs. MCI, 
statistical differences (p < 0.05) were found in lactate, creatine, ethanol, 
glycine, lysine, n-acetylglucosamine, CH3 mixed lipoproteins, CH2 

mixed lipoproteins, phenylalanine, pyruvate and choline. At this point, 
it deserves to be noted that most of the variables in the PLS-DA models 
showed significant differences in their means for both comparisons, HC 
vs. AD and MCI vs. AD (with exception of valine in both comparisons, as 
well as the unknown compound at 7.01 ppm in MCI vs. HC). 

For the comparison between HC and MCI we found significant dif-
ferences in the relative concentration of lactate and threonine. The 
levels of lactate in cerebrospinal fluid have been associated to disease 
severity in other neurological diseases (Albanese et al., 2016). However, 
other studies, also performed in CSF observed the same behaviour as 
here is presented in serum, showing an increase in the concentration of 
lactate between HC and AD that is not significant, whereas a higher and 
statistically significant increase is observed in the serum samples of MCI 
patients when compared to HC and AD (Zebhauser et al., 2022). It is 

Table 2 
Variables participating in the models sorted by VIP value.  

AD vs HC AD vs MCI HC vs MCI 

Variable VIP S. Variable VIP S. Variable VIP S. 

N-acetylglucosamine 1.54 CH2 m.l. *(1.20 ppm) 1.67 Leucine 1.57 
CH2 m.l. (1.20 ppm) 1.52 N-acetylglucosamine 1.56 Choline 1.39 
N-acetyled comp. 1.34 N-acetyled comp. 1.31 Valine 1.27 
Pyruvate 1.30 Lysine 1.27 Pyruvate 1.25 
Lysine 1.10 Pyruvate 1.15 Creatinine 1.22 
Threonine 1.09 CH3 m.l. (0.83 ppm) 1.13 N-acetyled comp. 1.02 
Glycine 1.08 Phenylalanine 0.99 Lysine 1.02 
Ethanol 0.93 Ethanol 0.99 Arginine 1.01 
CH3 m.l. (0.85 ppm) 0.91 Tyrosine 0.87 Glutamine 1.00 
Choline 0.90 Unk (3.86) 0.87 Glycerol 0.94 
CH3 m.l. (0.83 ppm) 0.90 Citrate 0.82 Alanine 0.84 
Valine 0.90 Choline 0.79 Acetyl Choline 0.83 
CH3 m.l. (0.87 ppm) 0.89 Glycine 0.68 Isoleucine 0.83 
Creatine 0.87 Lactate 0.66 Threonine 0.77 
Phenylalanine 0.84 Creatine 0.65 CH3 m.l. (0.81 ppm) 0.71 
Glycerol 0.81 Unk (7.01 ppm) 0.63 CH3 m.l. (0.83 ppm) 0.70 
Unk (7.01 ppm) 0.73 Acetone 0.44 Ethanol 0.66 
Acetylcholine 0.68 Glycerol 0.41 Lactate 0.66 
Methanol 0.67     
CH3 m.l. * (0.88 ppm) 0.61     
Acetone 0.55      

* m.l. means mixed lipoproteins. 

Table 3 
Mean comparison of relative concentration of metabolites with significant differences between HC and AD and/or MCI and AD.  

Metabolites [Metab]rel x 103 p value 

HC MCI AD HC vs AD MCI vs AD HC vs MCI 

Unk (7.01) 1.030 0.959 0.763 0.007 0.069 0.578 
Lactate 1.181 1.460 1.249 0.740 0.038 0.025 
Creatine 3.221 3.350 4.256 0.000 0.008 0.669 
Unk (3.86) 11.850 13.511 7.235 0.002 0.000 0.370 
Threonine 1.838 2.031 2.108 0.002 0.797 0.023 
Glycine 3.524 3.625 4.221 0.001 0.025 0.685 
Methanol 1.483 1.505 2.003 0.011 0.079 0.468 
Lysine 4.856 4.499 6.101 0.000 0.000 0.211 
N-acetylglucosamine 35.144 34.781 45.484 0.000 0.000 0.741 
Alanine 4.860 5.169 5.767 0.012 0.224 0.179 
CH2 m.l.* (0.852) 44.679 41.141 52.991 0.000 0.000 0.795 
Phenylalanine 0.487 0.476 0.744 0.000 0.001 0.866 
Acetylcholine 26.860 22.151 21.353 0.006 0.805 0.660 
Choline 33.989 32.328 28.069 0.000 0.000 0.146 
Pyruvate 2.429 2.521 3.360 0.000 0.000 0.551 
Acetone 7.827 7.803 8.973 0.038 0.098 0.940 
Isoleucine 4.577 4.560 4.261 0.048 0.655 0.781 
Ethanol 3.527 3.680 3.429 0.000 0.000 0.423 
Glycerol 4.631 4.883 2.594 0.000 0.000 0.417 
N-acetyled compound 12.271 12.608 15.963 0.000 0.000 0.527 
CH3 m.l.* (1.204) 45.991 46.874 25.969 0.000 0.000 0.814 
CH2 m.l.* (0.865) 16.242 14.679 23.375 0.004 0.000 0.240 
CH2 m.l.* (0.832) 60.757 53.507 65.815 0.248 0.031 0.130 
CH2 m.l.* (0.813) 37.802 33.615 35.517 0.034 0.152 0.823  

* m.l. means mixed lipoproteins. 
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interesting to observe that this association between higher lactate levels 
and earlier stages of dementia is also found in serum, which can be 
obtained following minimally invasive procedures compared to those 
needed to obtain CSF. Zebhauser et al. suggested that the increase of 
lactate levels in CSF in MCI could be produced by the activation of 
microglia (Zebhauser et al., 2022). 

3.4. Metabolic changes between MCI patients with different progression 
rates 

Attention should be drawn to MCI that is a diverse group, and a 
clinically relevant issue would be to be able to discriminate, previous to 
the manifestation of overt clinical symptoms, whether a patient with 
MCI in the near future will progress to dementia or, on the contrary, if 
this patient will remain in MCI condition. For that purpose, the MCI 
patient's progression along the follow up period (between 1 and 3 years) 

was considered. According to their clinical progression, the MCI patients 
were classified in MCI-to-dementia (MCI-D), stable MCI (S-MCI) and 
incipient dementia (Incp-D). 

When the MCI patients were projected onto the HC vs AD model, 
they were not classified according to the progression of cognitive 
impairment (Fig. S2), that is why a different strategy was followed 
seeking for differences that could be found within the MCI group, and 
could be related to the progression of the disease. 

With that purpose of identifying metabolic changes between the 
different clinical evolution in MCI subgroups in comparison to HC and 
AD patients, boxplots of the different metabolites were represented, 
ordered according to the clinical severity of each subset of patients, HC, 
S-MCI, MCI-D, Incp-D and AD-type dementia (Fig. 1). 

A progressive increase in the concentration of phenylalanine, lysine, 
pyruvate, and CH2 mixed lipoproteins, and a progressive decrease in the 
concentration of choline, was observed (Fig. 4). 

Fig. 4. Relative concentration of metabolites with a progressive trend between the groups of study. The median (horizontal bar) of lysine, phenylalanine, pyruvate, 
CH2 mixed lipoproteins and choline relative concentration for the different groups (HC, S-MCI, MCI-D, Incp-D and AD) is depicted. The p value of groups with means 
significantly different is shown. 
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Statistical value of these differences was assessed by ANOVA test, 
and afterwards by Scheffé test to determine the difference between each 
group. The Scheffé test is appropriated to be used when the size of the 
groups is small or the samples size between groups is unbalanced as it is 
in our case. Differences between S-MCI and AD patients were found (p <
0.05), but these differences were not significant between MCI-D and AD 
patients. These results show that at the time of sample collection the 
concentration of these metabolites in MCI patients that later evolved to 

dementia (MCI-D) had already values closer to AD than those from MCI 
patients who did not evolve (S-MCI). In that way, these metabolites 
could be postulated as potential predictive biomarkers. An interval value 
of these metabolites could be determined to discriminate whether MCI 
samples would evolve to AD or other advanced states of dementia before 
the clinical symptoms were developed. 

In a parallel analysis, the metabolic pathways that could be altered in 
the development of dementia were explored. The different groups of 

Fig. 5. Metabolic pathways altered in AD and MCI subsets. Only the significant metabolic pathways are labelled (p-value <0.05, impact >0). Colour and size of the 
circles indicate the p-value and impact index, respectively: -log10(p) is represented from higher values (red) to lower values (yellow) and the pathway impact is 
reflected in the size of the circles from smaller circles (lower impact) to bigger circles (higher impact). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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patients, including the MCI subgroups, were compared to find metabolic 
pathways affected in the different conditions of the disease in the MCI 
and dementia context. 

There were 14 metabolic pathways altered between dementia and 
HC (not shown), 8 of them were as well altered between AD and MCI-D / 
Incp-D, whereas 9 pathways were altered between AD and S-MCI 
(Fig. 5). Following a logic similar to the one presented before, a higher 
number of metabolic pathways were altered in the comparison between 
AD and S-MCI than when AD samples were compared with those sam-
ples that were closer, or later evolve, to dementia (MCI-D / Incp-D) 
(Fig. 5). Remarkably, four pathways did not show significant differ-
ences between AD and MCI-D / Incp-D, but showed significant differ-
ences between AD and S-MCI: phenylalanine, tyrosine and tryptophan 
biosynthesis, phenylalanine metabolism, tyrosine metabolism, and TCA 
cycle. These results suggest that these four pathways and the involved 
metabolites should be further studied in an attempt to determine which 
MCI patients are at higher risk of developing AD. Phenylalanine, tyro-
sine, acetoacetate, citrate and pyruvate are metabolites involved in the 
routes above mentioned. Phenylalanine and pyruvate, as described 
before, have shown a progressive increase in its concentration from HC 
to AD passing though the different MCI subgroups (Fig. 4), and both 
metabolites have been demonstrated to be important in the discrimi-
nation between dementia and HC and between dementia and MCI ac-
cording to the PLS-DA models (Table 2). The disturbance of some of 
these pathways and metabolites, and its related biological processes has 
been previously reported. 

Current knowledge about Alzheimer's disease points out the alter-
ations in the metabolism glucose (Yan et al., 2020), highlighting the 
dysfunction of glycolysis (Hipkiss, 2019), as well as successive processes 
involved in the energetic metabolism, such as the decreased functioning 
of the pyruvate dehydrogenase complex (Sorbi et al., 1983). In this 
work, an increment in the concentration of pyruvate already in MCI 
patients has been observed, being higher the increment in MCI-D pa-
tients than in S-MCI. In this context, it is also remarkable the differences 
found in the TCA cycle between dementia patients and HC and dementia 
patients and stable MCI, but not between AD and MCI-D / Incp-D. The 
TCA cycle is the main pathway of glucose oxidation in the brain, and a 
diminution in isocitrate dehydrogenase and α-ketoglutarate dehydro-
genase complex has been previously described (Bubber et al., 2005). 
Phenylalanine metabolism has also been previously reported to be 
modified in dementia serum samples(Sun et al., 2020), and brain tissue 
(Liu et al., 2021). 

On the other hand, the comparison of HC and stable MCI pathways 
did not show any relevant difference, whereas the alanine, aspartate and 
glutamate metabolism, was altered in the comparison of HC group and 
MCI-to-dementia/incipient dementia (Fig. 5). Glutamine, citrate, pyru-
vate, and alanine are the metabolites involved in this pathway. The 
implications of pyruvate and associated pathways has already been 
addressed in this work. However, other studies have involved some of 
these metabolites with dementia. For example, alterations in the levels 
of circulating glutamine (Adams, 2020) and impairments in the gluta-
mate/glutamine cycle (Robinson, 2000) has been previously related to 
the development of dementia. This impairment of the glutamate/ 
glutamine cycle are related with changes in mood, behaviour and 
memory loss among others, all of them are alterations observed in AD 
patients (Robinson, 2000). All together these results show that there are 
changes in the MCI group that could be further analysed in order to have 
an earlier predictive diagnosis of those patients that would evolve to 
more advanced stages of dementia. To confer clinical applicability po-
tential to the analysis performed by NMR spectroscopy, threshold values 
and metabolic signatures should be defined and stablished for a mo-
lecular diagnosis and prognosis of AD. To do that, a study with a big 
enough cohort should be developed ensuring that the clinical criteria 
and analysis process are standardized. 

4. Conclusions 

In this study the differences between serum samples from HC, AD 
patients and MCI patients with different levels and progressions have 
been analysed by 1H NMR spectroscopy. Two predictive models have 
been generated to discriminate between AD and HC samples and AD and 
MCI samples, with high levels of sensitivity and specificity (93.75% and 
94.75% for discrimination of AD and HC, and 100 and 82.35% for AD 
and MCI), according to the metabolic information in the NMR spectra. 
These models could be of use as a non-invasive tool to support dementia 
diagnosis. Furthermore, significant differences between AD and HC have 
been found in the relative concentration of most of the analysed me-
tabolites, highlighting the impact that the cellular metabolism has in 
dementia. Moreover, significant differences were also found in 12 me-
tabolites when comparing MCI and dementia serum samples. Further-
more, differences within the MCI group in agreement with the clinical 
evolution have been found, which would allow to find biomarkers that 
could help to determine which MCI patients would progress to dementia. 
An increase in phenylalanine, lysine and pyruvate and a progressive 
decrease in the concentration of choline, can be observed in the pro-
gression to dementia. On the other hand, alanine, aspartate and gluta-
mate metabolism; pantothenate and CoA biosynthesis; and beta-alanine 
metabolism have been found altered when comparing HC and MCI-D 
whereas no pathway was altered between HC and S-MCI, which has 
allowed us to determine some differences in the metabolism of the 
different kind of patients inside the MCI group. What is described here 
could be a starting point to explore how the development of MCI to 
dementia could be effectively predicted by the study of serum using 
NMR spectroscopy. Future projects include the follow-up of the patients 
here studied, and the increment of the number of patients to confirm the 
results. 
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Ibáñez, C., Simó, C., Martín-Álvarez, P.J., Kivipelto, M., Winblad, B., Cedazo- 
Mínguez, A., Cifuentes, A., 2012. Toward a predictive model of Alzheimer’s disease 
progression using capillary electrophoresis-mass spectrometry metabolomics. Anal. 
Chem. 84, 8532–8540. https://doi.org/10.1021/ac301243k. 
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