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Abstract: The spatial and semantic data of geographic addresses are extremely important for citi-

zens, governments, and companies. The addresses can georeference environmental, economic, se-

curity, health, and demographic parameters in urban areas. Additionally, address components can 

be used by users to locate any point of interest (POI) with location-based systems (LBSs). For this 

reason, errors in address data can affect the geographic location of events, map representations, and 

spatial analyses. Thus, this paper presents the development of an algorithm for evaluating the qual-

ity of semantic and geographic information in any geospatial address dataset. The reference datasets 

are accessible using open data platforms or spatial data infrastructure (SDI) and volunteered geo-

graphic information (VGI), and both have been compared with commercial datasets using ge-

ocoding web services. Address quality analysis was developed using several open-source data sci-

ence code libraries combined with spatial databases and geographic information systems. In addi-

tion, the quality of geographic addresses was evaluated by carrying out normalized tests in accord-

ance with International Geospatial Standards (ISO 19157). Finally, this methodology assesses the 

quality of authorized and VGI address datasets that can be used for geocoding any relevant infor-

mation in specific urban areas. 

Keywords: addresses; spatial data quality; geocoding; open data; volunteered geographic infor-

mation 

 

1. Introduction 

The geographic component is a strategic attribute in digital data with respect to pol-

icy and operational planning [1]. The geographic component of addresses is often linked 

to multiple data types, such as building, transport, population, marketing, delivery, 

safety, and health information data [2,3]. There is consensus in the European statistical 

community on the best methodology for linking statistics to a location using point-based 

geocoding infrastructure [4]. The address data components on the Internet network are 

present on most web pages and almost 20% of users’ queries are on web browsers [5]. In 

fact, network users can navigate to other well-known places or shared locations using 

sensors on mobile devices [6] with location-based system (LBS) applications [7]. For these 

reasons, addresses are a fundamental component of urban management, smart cities, and 

urban spatial analytics [8,9]. 

Addresses are a type of geographic feature that can be collected directly by users or 

professionals. This dataset can be stored in the spatial databases of urban cartography 

before use in any geographic information system (GIS). In fact, georeferencing dwellings 

using postal address references has historically been important for the scientific 
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community [10] due to the linkage between records of the geographic component and 

other types of information. For more than 20 years, numerous scientific papers on linking 

data with geocoded addresses to exploit the geographic component in other disciplines, 

such as epidemiology [11,12], environment, demography [13], business [14], crimes [15], 

emergencies [16], and security [17], have been published. In fact, there are numerous aca-

demic, industrial, or commercial studies on the positional accuracy [2,18–24] or semantic 

quality of the addresses obtained using geocoders [25,26]. 

Authoritative addresses can be downloaded from government web repositories, web 

services, and open data web platforms (OpenAdresses [27]). In addition, standard ad-

dresses are a key element for delivering policies at national and international levels [28] 

in support of the United Nations (UN) Sustainable Development Goals (SDGs). Currently, 

data re-usability has an increasingly important place on the agendas of many open data 

and open government data initiatives [29]. In fact, the European Union is implementing 

spatial data infrastructure (SDI) [30] to provide harmonized datasets through web service 

operations (WFS or Atom) and metadata according to the INSPIRE European Directive 

[31] and international standards from the Open Geospatial Consortium (OGC [32]) and 

ISO/TC 211 [33]. Nevertheless, many countries lack a government-maintained address da-

tabase (demonstrated in section 2.2 Authoritative Datasets from INSPIRE Addresses on Euro-

pean SDI). Furthermore, addresses can be made accessible as volunteer geographic infor-

mation (VGI) that is georeferenced by the users [34,35] of crowdsourcing map platforms, 

such as OpenStreetMap (OSM [36]). 

On the other hand, there are many companies that provide commercial address da-

tasets using geocoding web services (Google [37], Microsoft [38], Here [39], etc.). The ge-

ocoding process has two main ways of querying address data: 1. the direct method, which 

provides geographic coordinates (latitude and longitude) as a result when there is a match 

with the text of the requested address of the web service, and 2. the reverse geocoding 

method, which is the process of extracting a text address (street and number) by providing 

global position coordinates. 

Despite the large volume of address data produced by governments, it is sometimes 

necessary to improve and update the authoritative geographic information of the ad-

dresses using data produced by volunteers [40] or data from commercial geocoding ser-

vices [19]. However, there are some related studies about the quality of authoritative and 

crowdsourced geospatial information [41,42–44]. Overall, these studies analyzed residen-

tial address datasets compared with commercial addresses obtained from global ge-

ocoding web services [19,20,25,26]. 

Nevertheless, there is no research about automated algorithms that can be used to 

check the quality and reliability of large authoritative or volunteered address datasets [45] 

from several countries that are stored on different platforms (public repositories or SDI 

web services) against commercial addresses using both methods of geocoding. The meth-

odology developed focuses on residential addresses that are used as spatial and semantic 

references in LBSs to locate buildings, dwellings, businesses, or recreation and leisure ven-

ues. The results show statistics about the spatial and semantical quality components of 

addresses of authoritative, commercial, or crowdsourced datasets. Thus, this paper aims 

to develop an algorithm to determine the quality of address data from urban areas and 

several datasets using geocoding web services. 

The algorithm extracts well-known random samples of authoritative and VGI ad-

dresses as reference data in the main urban areas of Europe; these were automatically 

requested from commercial geocoding web services. The responses are stored on spatial 

databases in order to analyze the quality elements (positional and thematic accuracy, com-

pleteness, or logical consistency) according to ISO 19157:2013 [46] (“International Stand-

ard Geographic information—Data quality,” 2013). The spatial and semantic algorithms 

are developed with the Python language, using libraries for data mining [47,48], machine 

learning [8], and big data [49] management in cloud computing systems in order to eval-

uate different address-matching methods [50]. 
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Therefore, the algorithm contributes to checking the quality components of commer-

cial, crowdsourced, and authoritative addresses within the user-defined geographical ur-

ban area. The main goal is to automatically evaluate whether the quality of voluntary or 

commercial geographic information relative to postal addresses in any given area is good 

enough to improve authoritative address datasets. However, this tool can be also used to 

design any future geolocated urban data in a GIS using several geocoding address da-

tasets. Finally, the results allow for enhancing strategic address datasets for the benefit of 

public administration, companies, and citizens. 

2. Data 

Analyzing the components of an address is an essential preliminary step prior to de-

signing quality control. The developed methodology needs to be able to automatically 

compare several datasets with different data schema, texts, and positions with respect to 

whether they are commercial, voluntary, or authorized addresses, and they must neces-

sarily represent the same concepts and similar values. 

There are two different techniques for determining the positional component of ad-

dresses in geocoding web services: street (linear network analysis) or rooftop (points). 

Some publications analyze differences in the quality of georeferenced geocoding tech-

niques [19,51], but in this study, the positional origin of addresses is not evaluated because 

the algorithm does not discriminate between geocoding web service responses. Further-

more, the street method is mainly applied in the USA, and it is important to have a well-

defined transport network in order to correctly interpolate the input number. On the other 

hand, the point method is mainly applied to addresses that are authorized in European 

countries (the UK, France, Spain, etc.), although, depending on the type of land use, ad-

dresses can be georeferenced on a roof, the centroid of a parcel, the entrance to a house, 

or on a public road in front of a building. 

The semantic component of address data basically consists of text (usually the street 

name), building or door numbers, postal codes, and administrative units. In some cases, 

addresses provided by government agencies may add other identifiers that may be linked 

to cadastral parcels, statistical units, demographic censuses, and other types of urban sur-

veys [51]. 

In addition, the components of semantic addresses for administrative units and set-

tlements must particularly follow a complete common structure and order relative to a 

hierarchy (settlement or district, municipality, province, state, region, and country). Thus, 

geocoders can distinguish similar addresses from different areas in the same region or 

municipality. Some countries use a postal, census, or zip code, which relates to a specific 

geographical area. In fact, the geographical boundaries of administrative units or urban 

areas are important in this algorithm in order to extract reference address samples for 

quality analysis. The datasets used to test the algorithm in European countries are detailed 

in the following sections. 

2.1. Authoritative Dataset from the OpenAddresses Web Platform 

The authoritative address datasets must be free and open and obtained from the gov-

ernments’ web portals because they are the most reliable reference source for text address 

components [52]. 

The OpenAddresses web platform gathers this information and normalizes it in or-

der to distribute the information in text files with plain format, comma-separated values 

(CSVs) or geographic formats (GEOJSON and shapefiles) with the following structure: 

lon, lat, number, street, unit, city, district, region, postcode, id, and hash. Moreover, this 

open repository has one folder per country with several address files in CSV text format 

and metadata files in JavaScript Object Notation (JSON) text format. 

In this study, 144 datasets from OpenAddresses in the European area were used, with 

addresses from 21 countries: 14 country-wide, 16 regional, and 114 local datasets. The da-

tasets were inserted into a unique spatial database (PostgreSQL with PostGIS extension) 
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as point geometries for better quality control algorithm performance. Developed algo-

rithm (developed in section 3.1 Development of a Quality Control Algorithm for Spatial Address 

Data) shows the geographical extent of OpenAddresses datasets, which includes the con-

tinental area of Europe, with the exception of Greece, Bulgaria, and Hungary. 

Datasets need a complete revision of quality components with respect to complete-

ness, logical consistency, and the harmonization of different data schemas across coun-

tries. Thus, an initial analysis of addresses was carried out to ensure the initial quality 

with respect to these measures. Some spatial queries were designed to analyze almost 100 

million addresses in the initial 80 European datasets loaded into the database, with almost 

1% being duplicated in terms of attributes (lon, lat, street, and house number) and 0.14% 

being duplicated in terms of attributes (street, house number, and city). Only 19 datasets 

did not contain some of the initial errors. There are also a few datasets with completeness 

problems with respect to semantic attributes, with most being caused by data import prob-

lems. 

The OpenAddresses web portal offers information about products but could be more 

useful for obtaining metadata product links of authoritative address datasets. 

2.2. Authoritative Datasets from INSPIRE Addresses on European SDI 

The INSPIRE European Directive ensures the interoperability of European authori-

tative datasets using common well-known data schemas, metadata, and network service 

implementation that are accessible without restrictions from a unique geoportal [53]. 

The INSPIRE Addresses schema [54] is linked to other geographic feature schemas 

such as buildings, geographical names, administrative units, and transport networks. Ad-

dress data depend on the other themes in order to be completely useful. 

The European geoportal in SDI offers 60 downloadable address datasets, 217 

metadata records, and 107 viewable datasets in its catalog. The address download service 

was implemented in 21 out of 32 countries, but only 18 countries have data in the INSPIRE 

common schema. 

The results from downloadable web services (Table 1) with addresses are as follows: 

17 implemented the Web Feature Service and 15 implemented Atom Massive Download 

links (standard OpenSearch using feeds with the XML language). These data were col-

lected by different public institutions, such as national or regional maps, agencies, cadas-

ters, municipalities, land registries, and statistical offices (Table 1). 

Most of these addresses’ datasets are identical to those in the OpenAddresses data 

platform because they have the same government source. However, there are fewer au-

thoritative address datasets in the INSPIRE schema than those provided by Open-

Addresses because some countries do not distribute this formatted data in the European 

SDI. 

Table 1. Addresses web services per country and institution in charge of data management. 

Authorative Addresses from UE Published by Public Organisms INSPIRE Web Services 

Geographical Area 
Territorial 

Scope 
Organism Country WFS ATOM Restrictions Check 

Spain National Cadastre Spain 1 1 no yes 

Navarra Regional Regional Map Agency Spain 1 0 no yes 

Guipuzcoa Province Cadastre - Statistical Spain 1 1 no yes 

Catalunya Regional Regional Map Agency Spain 0 1 no yes 

Portugal National Statistical Portugal 0 1 no yes 

Azores Island Local Municipalities Portugal 1 0 no yes 

Bruxelles Regional Regional Map Agency Belgium 0 1 no yes 

Wallonie Regional Regional Map Agency Belgium 0 1 no yes 

Denmark National National Map Agency Denmark 0 1 no yes 
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Iceland National Land Registry Iceland 1 0 no no 

Norway National National Map Agency Norway 1 1 no yes 

Finland National National Map Agency Finland 1 0 no yes 

Estonia National National Map Agency Estonia 1 0 no yes 

Letonia National Land Registry Letonia 1 0 no yes 

Lituania National Land Registry Lituania 0 1 no yes 

Poland National National Map Agency Poland 1 0 no yes 

Berlin Regional Regional Statistics Germany 0 1 no yes 

Mecklemburgo-Pomerania Regional Cadaste Germany 1 0 no yes 

Thueringen Regional Regional Map Agency Germany 1 1 no no 

Hamburg Regional Regional Map Agency Germany 1 0 no yes 

Sachsen Regional Regional Map Agency Germany 0 1 no yes 

Nordrhein-Westfalen Regional Regional Map Agency Germany 1 0 no yes 

Czech Republic National Cadaste - NMA Chequia 1 0 no no 

Slovakia National National Map Agency Slovakia 1 0 no yes 

Austria National National Map Agency Austria 0 1 no yes 

Slovenia National National Map Agency Slovenia 1 1 no yes 

Romania National Cadaste Romania 0 1 no no 

2.3. Crowdsourcing Dataset from the OpenStreetMap Project 

This address reference dataset was collected by volunteers of the OpenStreetMap 

(OSM) crowdsourcing project. Basically, this VGI comes from a collaborative map of 

streets, points of interest, and other geographic information principally produced by us-

ers. 

These crowdsourced addresses can be collected by users on site and at the street level 

using a mobile device with a global navigation satellite system (GNSS) sensor or by car-

rying out digitalization using a map platform such as JOSM. OSM address data, such as 

house numbers, are collected by users and can be geometrically associated (“node”) with 

any geographic feature and establish relationships with another element [55]. The seman-

tic component of the address can then be linked to the geographic position in front of an 

entrance or at the top of a building, and some studies analyze the quality relation of 

crowdsourced information. This VGI on OSM frequently has poor information with re-

spect to metadata in datasets and geocoding responses, although it could make a relevant 

contribution to evaluating address quality. 

In this study, 35 million OSM addresses were downloaded using queries in the os-

mosis application. Principally, building nodes contain house numbers, but there are some 

point-of-interest tags with addresses (1.8% amenity; 1.4% shops; 0.1% tourism; 0.02% pub-

lic transport). In addition, a preliminary quality analysis of OSM addresses identified se-

rious problems with respect to completeness (17%—street without a name or code; 2%—

house number without text) and logical consistency (3%—duplicated addresses). Never-

theless, the algorithm using the reverse method will use the spatial component of OSM 

data to locate nearby addresses via commercial geocoding web services. 

On the other hand, OSM’s geocoding web service, Nominatim, can geocode ad-

dresses and place names using direct and inverse methods. Nominatim has been used to 

develop algorithms with direct methods in order to obtain 10 semantic address compo-

nents in the GeoJSON geographic format (house number, road, hamlet, town, village, city, 

state district, state, postcode, and country). The returned addresses are parsed and com-

pared with authoritative addresses. This can be useful for public administrations in order 

to improve upkeep. In fact, some parts of the OSM database were massively imported 

from authoritative sources such as the TIGER database of the U.S. Census Bureau [56]. 

2.4. Commercial Datasets from Geocoding Web Services 
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These datasets were obtained in response to requests made to geocoding web ser-

vices. Hence, they have no availability with respect to examining the complete features of 

address data in a specific urban area to discover their density, geographic coverage, or 

data quality. However, these geocoding services are quite reliable as they are consulted 

by two of the world’s leading web service, LBS, and software providers, i.e., Google and 

Microsoft (Bing), and by long-standing address data providers such as Here (Nokia, for-

merly Navteq). 

Commercial geocoding companies were also chosen following the criteria of inten-

sive use or demand from users. Moreover, we queried some of the literature that reviewed 

quality analysis using some geocoders [57,58] in order to choose free geocoders that have 

the most responses and matches and the highest accuracy. However, it might be interest-

ing to compare their data against other LBS address data with respect to accurate com-

mercial geocoding systems because they usually use multiple sources of reference datasets 

[59]. 

Basically, all chosen geocoders have REST architecture and are limited in use because 

they must be paid for and return data in XML and JSON formats. In addition, in all of 

them, the number of possible responses per request can be limited. Currently, the algo-

rithm only works when using a single option as a response from the geocoder in JSON 

format, which is similar to plain texts with JavaScript codes chosen for their simplicity in 

parsing the data contained in lists within the Python library. These data are not completely 

validated by a data schema, such as the XML INSPIRE schema, but this is not necessary 

as the algorithm is developed to automate structure and check data responses: 

• Google: The Geocoding API is requested by the algorithm. The response is a JSON 

list with seven semantic components (street number, route, locality, two administra-

tive areas, country, and postal code), locations (latitude and longitude), and ge-

ocoding type (rooftop). 

• Bing (Microsoft): The REST location service by address provides six semantic com-

ponents (address line, two administrative districts, country region, locality, and 

postal code), locations (latitude and longitude), and usage type (route). 

• Here: The Geocoding & Search API returns nine semantic components (street, house 

number, city, postal code, district, subdistrict, county, state, and country), positions 

(latitude and longitude), and house number type (PA or building, interpolated along 

street). 

3. Methods 

3.1. Development of a Quality Control Algorithm for Spatial Address Data 

The algorithm developed uses the extract, transform, and load (ETL) process, where 

the reference dataset was applied as the input and authoritative addresses for the direct 

geocoding method, and the VGI dataset was applied as the input for reverse geocoding 

(Figure 1).  
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Figure 1. Algorithm workflow with respect to the quality control of spatial addresess data from 

extraction to quality measures result. 

The algorithm is configurable in that the user chooses the number of sample portions 

and addresses to extract from each area. To obtain these parameters, the population of the 

dataset must first be calculated so that the distribution is optimal for producing statistics. 

Therefore, the address data reference for the quality assessment will be extracted using 

the input parameter settings and random samples. The algorithm uses OSM as a data ref-

erence for the inverse geocoding method and OpenAddresses or INSPIRE for the direct 

method (Figure 1). 

The first part of the algorithm (Figure 1) can import a file with a list of urban places 

or geographical names to verify the quality of address data within an urban area. In par-

ticular, upon the pilot application, a list with some cities in the European Union was 

drawn up in order to verify the specific quality of national, regional, and local addresses 

that are available on OpenAddresses. 
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Figure 1 shows a diagram of the algorithm that implements both geocoding methods 

before measuring quality parameters for address datasets. First, the quality of the com-

mercial and voluntary addresses is checked by contrasting them against official addresses 

using a geocoding method. Once they are verified to be reliable, the existence or not of 

discrepancies between the unofficial and the official ones are checked with the other ge-

ocoding method. Therefore, the fact that the algorithm has 2 branches means that the func-

tionality checks the quality and identifies and corrects errors (Figure 1). 

The developed algorithm can automatically request samples of the reference ad-

dresses from geocoding web services, which allows for identifying the accurate dimen-

sions of urban areas in order to extract authoritative addresses from geographical sample 

zones. The algorithm provisionally implements the OSM geocoding service Nominatim 

for these tasks because it returns the coordinates of a bounding box for the requested city. 

Sometimes, there are insufficient automatically extracted address samples with respect to 

any tile. In this case, the algorithm generates another tile in order to request addresses 

from web services or spatial databases, as shown in Figure 1. 

This sometimes provides overly large boundaries that correspond to large evolving 

metropolitan areas, which include nearby rural areas or dormitory towns. To solve this 

problem, several urban settlement datasets were examined to achieve a more suitable ge-

ometric area. The Global Human Settlement layer made by the European project Coper-

nicus was considered as a suitable dataset for these tasks. It provides delimitations of ur-

ban areas in images using remote sensing techniques. Nevertheless, the spatial resolution 

and the lack of a direct download web service have made searching for other options nec-

essary. The Corine Land Cover dataset [60] and European Urban Atlas [61] products were 

also considered, but their use could complicate the methodology because they require 

prior hard processing tasks to extract the geographical extent. Finally, the algorithm au-

tomatically obtains randomly sampled mosaic portions or tiles with a dimension of 70 Ha 

(1 km × 0.7 km) within the determined urban areas’ geographical extent for each city re-

turned by the Nominatim web service. Afterward, several addresses from reference da-

tasets inside this area were selected as samples for geocoding web service requests. Figure 

2 shows the address sample areas. 

 

Figure 2. The samples (purple dots) inside an area of extraction (tile, red) and the city boundaries 

(blue) are provided automatically by the Nominatim web service. 

The open public administration address datasets were downloaded from the Open-

Addresses repository on the “Github” platform to evaluate their spatial and semantic 

quality [62] on direct geocoding tests using this algorithm. Although the European SDI is 

still not completed by all country members, the algorithm can incorporate its reference 

datasets, extracting spatial databases from previous downloads using the Atom web 
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service or directly querying the web feature download service inside the bounding box 

(tile) and count (points numbers) parameters. 

The crowdsourced addresses were downloaded using the “osmosis” application, 

which extracts selected data from the OSM spatial database to reverse the geocoding test 

method in this algorithm. Therefore, a script loads addresses from OpenAddresses and 

OSM into the PostGIS spatial database for evaluation processes using the algorithm. The 

geographical distribution from the loaded reference datasets is shown in Figure 3. 

 

Figure 3. (Left): Geographical extent of loaded OSM addresses and extracted samples from Euro-

pean cities (yellow dots) that are compared against commercial geocoders. Green area represents 

countries analised (Right): Reference data source download from OpenAddresses showing samples 

extracted from cities (yellow dots), with blue representing the complete dataset relative to the coun-

tries and partial data (regional or local). Diagonal red lines: Countries with partial address data. 

Thus, the developed algorithm is used to perform a quality analysis check of both 

reference datasets by comparing them with the responses obtained from crowdsourced 

and commercial geocoding web services. In this case, the use of different datasets as inputs 

for the algorithm has some advantages, as the results can show different quality aspects 

of both address data sources compared to the responses from the same geocoding web 

services. Then, the positional or semantical component is requested from three geocoding 

web services provided by multinational corporations in order to obtain commercial ad-

dress datasets. These geocoding web service requests were configured using the text com-

ponents of addresses in UTF-8 encoding. The language of the addresses can be the official 

national language or English depending on the geocoding web service and the reference 

dataset. All chosen geocoders have REST architecture and limitations of use since they 

must be paid for, with the exception of Nominatim, which is free. All web services return 

data in XML and JSON formats, and Nominatim also adds the GeoJSON geographic for-

mat. 

The designed algorithm obtains a geocoding response in JSON format that is similar 

to plain text with JavaScript codes, and this was chosen due to its simplicity in parsing the 

data contained in lists within the Python library. These data are not completely validated 

by a data schema such as XML, but this is not necessary as the algorithm needs to perform 

these checks for quality control. 

There are some code libraries in Python language for geocoding, such as Geocoder, 

but we chose to directly implement the process in Python, which allows control of the 
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answers, making it very easy to integrate this process with other processes. Once the re-

sponse is transformed into the designed schema, it is inserted directly in the PostGIS spa-

tial database as point geometries using the Python library psycopg2. Once the data are 

loaded, the final step is to carry out the quality control of the information and extract sta-

tistical results. 

3.2. The Address Quality Control, Method, and Measures 

3.2.1.  Approaches to Spatial Quality Control according to ISO 19157 

The quality of data can be assessed using a homogeneous method for any product, 

but quality can also be evaluated using a spatial or semantical criterion and information 

that describes the usage of products from a user’s point of view [63]. 

The quality evaluation of datasets was performed according to ISO 19157 [46], which 

cites the following: “a data quality evaluation can be applied to dataset series, a dataset or 

a subset of data within a dataset, sharing common characteristics so that its quality can be 

evaluated”. Thus, a set of authoritative address databases was used as a baseline, but it 

was also necessary to have good metadata (ISO 19115) on the products [64] that describe 

the main characteristics of the addresses including dataset data size, capture method, and 

resources, dates, interoperability, linkage, etc. The downside of this approach is that we 

have little knowledge—or none—of data origins, heterogeneous locations, theme charac-

teristic system management, and data updating [63]. 

Since the local administration oversees maintaining the names and numbers of the 

roads, the city is the minimum unit of quality analysis used by the algorithm. Therefore, 

the quality analysis was performed relative to the city; then, the results obtained relative 

to the country were aggregated in order to obtain spatial data quality product parameters. 

,mThe different implementations assess the reliability of the OSM address positions and 

text components [42] introduced by volunteers and check commercial address positions 

that introduce OpenAddresses semantic components. 

The spatial data quality elements [65] given by ISO 19157 evaluate positional accu-

racy, thematic accuracy, completeness, logical consistency, and usage relative to different 

datasets. The algorithm determines the spatial quality values of the responses of ge-

ocoding web services compared with authoritative (direct method) or (inverse method) 

crowdsourced address datasets. 

There are some sub-elements of quality that were not checked in this analysis because 

they were not representative of these datasets (i.e., topological consistency or classification 

correctness). The temporal element cannot be assessed yet, but it might not be suitable in 

random samples from different datasets. Additionally, some measures of quality are dif-

ficult to assess using the automated methodology because the analysis would require in-

terpretation by a technical specialist who could evaluate errors in a GIS or the implemen-

tation of a machine learning algorithm [66,67]. 

3.2.2.  Quality Measures for Completeness, Logical Consistency, and Usage 

The repeatability of address data values relative to text attributes causes logical con-

sistency problems and concrete commission errors, and these are controlled using the 

quality procedure. Development using Python checks address duplicates in the geocoding 

web services’ address responses (spatial and text). In addition, there are measures de-

signed to assess the completeness of separate spatial and semantic addresses, such as the 

street, house number, postal code, administrative units, etc. The lack of response from 

geocoding web services to a requested point generates an omission error. To prevent this, 

the algorithm does not allow more than one candidate answer to be received from each 

specific requested address point. In urban areas, there are rarely several position candi-

dates relative to one address, and evaluating the programming code to determine whether 

an address point is a candidate can sometimes be difficult. 
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On the other hand, the algorithm checks if semantic address components are com-

plete in geocoding responses when evaluating logically consistent quality parameters. 

Finally, the usage quality element can be checked with the user experience acquired 

in this study using all datasets. In all cases, commercial and crowdsourced geocoding web 

services exhibit good performance, and the algorithm collects the time responses of ge-

ocoding web services. 

3.2.3. Semantic Quality Measures for Thematic Accuracy 

Thematic accuracy was mainly assessed using measurements related to matching the 

same semantic attributes in different datasets. Furthermore, the theme attributes (street, 

number, and administrative units) in geographic information addresses must be unique. 

This approach required implementing a similarity measure control that takes two 

input values and returns a match rate. The result is a code value that represents the simi-

larity of an address’s text component [68]. The algorithm was developed using different 

Levenshtein implementations in Python packages, but there are many algorithms [69] that 

can be implemented and explored in future studies. 

There is a table in the spatial database that stores the results of the Levenshtein sim-

ilarity text algorithm for each address’s text component. Then, these Levenshtein results 

in the database are aggregated and analyzed using user-configurable thresholds to evalu-

ate the full-address matching procedure. Finally, the algorithm returns a zero value for 

similarity acceptance, and the mismatching error returns a value of 1. Table 2 illustrates 

this point with the following address example from OpenAddresses: “Route de saint-

priest 2 Lyon, France”. The method to classify the number of errors in every semantic 

address component can be observed in Table 3. 

Table 2. Example of the method’s application in assessing the number of text matching errors in 

address components between different requested geocoding web services. This example shows re-

sponse for coordinates request (lat = 45.68112049; lon = 4,9491959), and distance on meters. 

Pr.City_Test tile Num_Point Geocode_Comp Full_Address_api Distance 

Lyon, France 1 1 Google Places  2 Route de Saint-Priest, 69960 Corbas, France 4095.01 

Lyon, France 1 1 Bing Maps 2 Route de Saint-Priest, 69960 Mions, France 16.857 

Lyon, France 1 1 
Here Technolo-

gies 
2 Route de Lyon, 69800 Saint-Priest, France 2761.84 

Lyon, France 1 1 
Nominatim 

(OSM) 

2, Route de Saint-Priest, Mions, Lyom, Mét-

ropole de Lyon, 11epart. Rhône, Auvergne-

Rhône-Alpes, 69780, France 

0.067 

Table 3. Method to classify the number of errors in every semantic address component. The numeric 

values on addresses semantical attributes correspond to the match between geocoder responses: 1 = 

Nominatim-Here; 2 = Nominatim-Bing; 3 = Nominatim-Google; 4 = Nominatim-Here; 5 = Here-Bing; 

6 = Here-Google; 7 = Bing-Google. 

   Match Street 
Match Hou-

senumber 
Match Postcode Match City Match Address 

City_Test Tile 
n_Poin

t 
1 2 3 4 5 6 total 1 2 3 4 4 6 

To

tal 
1 2 3 4 5 6 

To-

tal 
1 2 3 4 5 6 

To

tal 
1 2 3 4 5 6 

To-

tal 

Lyon, France 1 1 1 0 0 1 1 0 3 0 0 0 0 0 0 0 1 0 1 1 1 1 5 1 0 1 1 1 1 5 1 1 1 1 1 1 6 

3.2.4. Quality Measures for Positional Accuracy 

The evaluation of positional accuracy of geocoded locations can be performed using 

absolute global geodetic coordinates, latitude, and longitude in contrast to the geometric 

position of the address dataset’s features. 
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Positional error is a two-dimensional vector with a north–south component and 

west–east component [70], and the algorithm uses the norm of this vector or the equivalent 

Euclidean distance, similar to geodetic distances within this spatial proximity range be-

tween the compared addresses [71]. Therefore, residual errors can be calculated using the 

geographic distance in meters and by carrying out SQL queries on PostGIS spatial data-

bases. 

Other authors [72] also applied measures that introduce a bearing parameter in de-

grees to improve the adjustment between geocoding web service coordinates and the ref-

erence address’s coordinates. This orientation parameter with angular values is not cur-

rently implemented in the algorithm, although it is prepared for applications that choose 

the best candidate among several geocoding responses. 

A set of lists in database tables with distances between positions (spatial errors) is 

introduced in a matrix object (a “dataframe” object in the “pandas” Python code library) 

to evaluate the positional accuracy. Finally, the algorithm extracts measures of positional 

accuracy between authoritative, crowdsourced, and commercial geocoders using direct 

and reverse methods and attempts to find a correlation pattern among all geocoding ser-

vices. 

This algorithm evaluates positional measures before checking the other quality 

measures in order to apply a previous filter that does not contain large outliers in the 

proposed addresses’ spatial positions (Figure 4). 

 

Figure 4. Graphics showing raw positional error data. Most errors are minimal; thus, they accumu-

late near the distance of zero, but there is a large queue of outliers depending on previous filtering. 

The non-normal distribution of positional errors in spatial data has implications be-

yond spatial data accuracy standards since most error propagation techniques for spatial 

data are also based on an assumption of normality [21]. 

The designed algorithm automatically removes outliers using the interquartile range 

(IQR) and transforms positional data using least squares to reduce values relative to the 

skewness and kurtosis of spatial data distributions. The objective is to fit a Gaussian model 

in order to estimate the RMSE (3σ interval) for every dataset or sample. However, it is 

only an estimation because transformed data cannot be obtained using a normality test or 

Gaussian model (Figure 5). 
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Figure 5. Graphics showing the positional error data sample with respect to the direct geocoding 

responses from Google Maps. The raw data shown in Figure 4 are transformed using least squares 

to approximate them in a Gaussian model, but the figure demonstrates the inability to accomplish 

a normal distribution model. 

The positional error analysis in ISO 19157 and positional accuracy standards (NMAS, 

EMAS, and NSSDA) conform to a parametric statistical distribution function that uses 

normal or Gaussian models for the majority of situations. 

However, some working documents in ISO 19157 [73] do not require fitting the posi-

tional error to an underlying parametric statistical distribution function in non-parametric 

models. In this case, the error distribution can be given by the observed data. Therefore, 

the statistics are based on the percentiles and proportions that are reported in the Results 

section. Moreover, the algorithm can extract descriptive statistics (median, proportions, 

and percentiles), removing outliers using spatial thresholds in order to compare results 

between the datasets. 

4. Results 

The application of the algorithm to the European region shows that the number of 

responses from geocoding web services was over 83% for the direct method and 74% for 

the reverse method. Spatial accuracy is one of the most important spatial quality elements, 

and the results confirm our initial expectations: Geocoders have similar spatial magni-

tudes within a range of 10 m. However, it is necessary to filter the responses of outliers 

using an estimated threshold: 45% in the direct method and 5% in the reverse method. 

The case study was designed to test the algorithm, where both geocoding methods 

extract random address samples inside random geographic areas (tiles) in some urban 

zones of European cities. Then, if the algorithm does not find any addresses inside their 
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bounds, it continues to search for addresses inside the tiles for up to 10 tiles. Thus, the 

number of tiles is a good indicator of the available geographic reference address datasets 

in both OpenAddresses and OSM. Above all, the number of address samples in every city 

can demonstrate the availability of address data within this area (Figure 6). 

 

Figure 6. (Left): Spatial distribution of address points (green)extracted using the direct method. 

(Right): Spatial distribution of address points (yellow) extracted using the reverse method. 

The first obtained result is the influence of semantic quality on the text components 

in address datasets. If some components are incomplete (street name, number, city, region, 

postcode, etc.), the match rate will be low with respect to any geocoding method. If the 

web service finds a matching address but its associated spatial coordinates are far from 

the real ones, then an outlier is introduced in the spatial data quality sample (Figure 7). 
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Figure 7. (Left): Extracted spatial samples from direct geocoding web services. (Right): Positions 

filtered by distances of less than 15 km relative to the referenced OpenAddresses dataset. 

The case study shows that the high number of positional accuracy outliers in the di-

rect method is due to the high coincidence response rate of commercial geocoders (82% 

Table 4) with respect to incomplete text addresses in OpenAddresses, which often lack 

correct information for settlements, residential districts, or municipalities in the requests 

to geocoders. However, this algorithm does not analyze the confidence or quality of ad-

dress data references. Sometimes, this information is a unique source for locating any fea-

ture in the world. In addition, a possible cause of the large positional error results could 

be that a random assessment area may contain addresses in rural areas adjacent to large 

cities, which are not assessed in this study (lower spatial resolution). Once filtered by ge-

ocoding error distances and the number of matches using geocoders, this problem could 

be identified and solved. Sometimes, placing an address on a roof or street can also change 

the degree of positional accuracy of the product. Moreover, sometimes, the cause of posi-

tional issues is building typology and the type of urban planning, as open areas with large 

plots and single-family construction units can generate a higher number of positional er-

rors. 

For this reason, the quality algorithm begins with an analysis of completeness or log-

ical consistency for every measure of quality in both geocoding methods. These measures 

must be indicated by the number of errors according to ISO 19157. Table 3 lists an average 

of errors, but it may not be a good method for explaining the lack of reliability in some 

elements for readers. 

Table 4. This table lists some quality components and their measures by the average of the number 

of errors. 

 Method 1: OpenAddresses Method 2: OpenStreetMap 

Subelements - Measures Direct Geocoding Assess Reverse Geocoding Assess 

num_cities 100 166 

num_tiles 999 1,480 

avg_tiles 99.90% 89.16% 

num_points 19,957 17,463 

num_responses 66,324 52,036 



ISPRS Int. J. Geo-Inf. 2023, 12, 407 16 of 27 
 

 

avg_responses 82.91% 74.40% 

Logical Consistency     

postcode_null 17.67% 2.26% 

street_null 2.89% 1.50% 

housenumber_null 27.13% 30.15% 

cityapi_null 0.68% 0.05% 

district_null 0.68% 0.05% 

province_null 10.69% 3.28% 

state_null 45.76% 34.74% 

country_null 0.00% 0.00% 

numbers_in_cities 0.47% 0.45% 

Completeness     

address_duplicate 2.06% 5.40% 

coordinate_duplicate 3.43% 10.07% 

fulladd_duplicate 2.05% 5.35% 

gmaps_omision 0.26% 5.88% 

bing_omision 0.00% 4.23% 

here_omision 1.25% 4.25% 

osm_omision 62.67%   

Thematic Accuracy     

match_fulladdress 39.77% 46.51% 

match_street 12.78% 11.03% 

match_housenumber 5.39% 7.14% 

match_postcode 13.35% 13.72% 

match_city 4.25% 0.25% 

match_addressapi 12.57% 10.22% 

In the original sample for the direct geocoding method, 19,957 address samples were 

randomly selected to analyze downloaded data from OpenAddresses in order to match 

their address text. We obtained 66,324 responses, which accounted for 82% of responses 

on geocoders. For the reverse geocoding method, 17,463 samples were extracted from the 

OSM “overpass” API, with 74% of responses from commercial geocoders. Using the re-

verse method, we found OSM addresses in 89% of tiles, and authoritative addresses were 

extracted from OpenAddresses, making up 71%. The mean response time of the geocoders 

was 0.54 s using the direct method and 0.65 s using the reverse geocoding method with a 

4G broadband connection. 

Overall, a lack of consistency in geocoding address data was detected in the attributes 

related to administrative units. In particular, a different representation of their scope was 

detected at the population, neighborhood, district, and municipality levels. Reaching such 

a level is essential because there are streets with the same name within the same municipal 

administrative area, and it is necessary to know the actual name of a settlement in order 

to be able to geocode it correctly. 

Sometimes, errors are a result of uncertainties in abbreviated street names and the 

lack of residential district or settlement names in the addresses’ data reference (Open-

Addresses). Incomplete text components with respect to addresses can produce signifi-

cant errors during geocoding because geocoding web services try to provide some re-

sponse to the candidate, while the Nominatim matching algorithm (OSM geocoder) does 

not force responses to any candidate when requests are incomplete. 

This methodology was carried out to extract the average semantic match for each 

address request made to the geocoding web service using both methods. Aggregating 
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these results, the algorithm allows for obtaining quality measures with thematic accuracy 

Table 5 for address datasets from different countries, cities, or areas. 

The statistical distribution of geocoding positional accuracies (error distance) in the 

raw data was positively skewed to the right (around cero), as shown in descriptive statis-

tics and in studies published by other authors [18,19]. Despite the evidence of non-normal 

behavior [21] with respect to geocoding positional errors, most existing results follow a 

log-normal distribution [24,26]. 

The algorithm assumes a non-normal distribution of spatial errors but carries out 

statistical evaluations with an adjustment using the least squares method to fit distance 

values and extract the statistical parameters of positional errors. In the future, these spatial 

accuracy values can be used to filter the spatial matching of the address responses of geo-

coders, datasets, or subdatasets (regions, cities, etc.). In the case study, we reduced previ-

ously filtered commercial geocoder data responses by 30%, applying a transformation 

with least squares, and we estimated outliers from 6 m, as shown in Figure 6. The results 

for commercial geocoder positional accuracy values had a median of 1–2 m without am-

biguity and an RMSE of 4–5 m, with 99.8% positional feasibility (2.5 sigma) upon matches. 

However, with respect to the crowdsourced geocoder, the median value was similar, but 

a better RMSE of 2.44 m was observed, as shown in Figure 8. 

 

Figure 8. Left and center: Least squares transformation of the positional errors in meters from the 

crowdsourced (OSM) addresses and the fit to normal distributions. Right: Test showing a better fit 

of the positional errors relative to some statistical distributions. Some similarities are shown, but 

non-normal behavior is observed. 

OSM positional errors exhibited a better fit relative to the normal distribution, and 

there were fewer spatial position coincidences. Moreover, this test demonstrated that the 

OSM spatial data source is unique and does not share address data with geocoders. How-

ever, sometimes, OSM can be completed using authoritative address data from some gov-

ernmental organizations. 

However, some studies with respect to geocoding quality characterized this non-nor-

mal distribution using statistics such as the mean, median, standard deviation, or percen-

tiles. Therefore, the following case study, which tests the algorithm using some geocoders, 

datasets, and different spatial domains, shows positional errors, comparing raw data, 

threshold filtering, and interquartile values. 

The address geocoding response data from the experiment using the algorithm are 

listed in Table 4. The results show raw positional accuracy values such as distance and the 

length or distance between the real position and that provided by the geocoding web ser-

vice. 
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Table 5. Comparison of positional errors considering different maximum errors in order to drop 

outliers. There are two datasets for both methods: raw data and data filtered by geographic distance 

in meters. 

 OpenAddresses (Direct Method) OSM (Reverse Method) 

Raw dist_geo < 50 m dist_geo_api dist_geo < 50 m 

count 66324 36,972 52,036 49,033 

mean 47,538.65 7.06 25.16 13.34 

std 499,310.83 10.37 280.06 10.63 

min 0.00 0.00 0.00 0.00 

25% 1.52 0.52 5.35 5.01 

50% 21.76 2.14 11.81 10.96 

75% 6126.63 9.16 20.86 18.66 

90% 18,089.53 22.19 36.53 28.62 

95% 56,533.29 31.64 54.60 35.62 

99% 554,412.14 45.34 115.56 45.80 

max 11,059,140.09 49.98 18,187.29 49.98 

Figure 5 and Table 5 show how the raw positional data had outliers (atypical values) 

that introduced distortions in our descriptive statistics and probabilistic results. These 

atypical values can be observed in the box plots, scatter graphics, and histograms shown 

in Figures 4 and 5. 

The spatial accuracy obtained using all datasets falls within the expected range of 

values for this geographical data type, which is obtained from urban areas. Following this 

study and previous studies [2,23,74], we estimate that the acceptable positional error of 

geocoding responses must not be around 50 m in urban areas because, in most cases, the 

distance values between geocoded global positions are around 5–20 m. 

An interesting result of this study can be observed in Table 3, which demonstrates 

that the median can be used as a more robust centrality measure in this type of positional 

analysis. In fact, there is a positional coincidence rate of 33% in 19,957 geocoded text ad-

dresses using the direct method. Analyzing the results in depth (Table 5), Google Places 

has incorrect locations relative to 1837 addresses (9.2%), while the other geocoding ser-

vices have better results. The positional errors found in geocoders comprised: Bing 

Maps—123 incorrect addresses (0.6%); Here—776 incorrect addresses (3.8%); and Nomi-

natim (3.2%). VGI yields fewer requests, with no uncertainties in 23% of cases (4632 ad-

dresses), but commercial geocoders have errors that amount to more than 50 m compared 

with OpenAddresses. On the other hand, the reverse geocoding method has a positional 

matching rate of 90%, without uncertainties relative to the 17,463 addresses requested 

from the coordinates. In this case, nearly 2% of the geocoding errors originate from Google 

Places and Here, while the rest obtain correct positions. Bing Maps yields 0.3% of the er-

rors, while the other geocoders provide correct global positions (Table 6). 

Table 6. Comparison of positional errors in meters between all geocoders requested using the direct 

and reverse methods. 

Direct Geoco-

ding (Ope-

nAddresses) 

Raw Count Mean 
Me-

dian 
std 25% 75% 90% 95% 99% 

Bing Maps - Mi-

crosoft 
19,957 35,716 18.58 380,921 1.00 6834 23,095 95,105 484,421 

Google Places 19,787 10,126 50.04 822,536 5.79 6028 15,211 32,506 7,033,801 

Here Technolo-

gies 
19,131 20,770 43.62 90,225 1.25 8624 22,499 72,012 431,851 
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Nominatim 

(OSM) 
7449 52,471 2.84 37,051 0.06 15 7704 16,814 108,241 

dist_geo < 50 m                   

Bing Maps - Micro-

soft 
11,265 6.23 1.28 9.93 0.50 7.70 20.77 29.49 44.53 

Google Places 9893 10.30 5.79 11.62 1.99 14.24 28.66 37.60 47.17 

Here Technologies 9693 6.35 1.28 10.19 0.51 7.69 21.17 30.95 45.02 

Nominatim (OSM) 6121 4.48 1.10 7.77 0.05 5.26 12.95 21.11 39.85 

Reverse 

Geocoding 

(OSM) 

raw count mean 
me-

dian 
std 25% 75% 90% 95% 99% 

Bing Maps - Micro-

soft 
17,457 37.83 12.08 481.05 5.25 20.24 33.83 48.58 98.49 

Google Places 17,135 16.10 7.04 32.72 3.03 17.10 36.02 55.70 138.67 

Here Technologies 17,444 21.39 14.93 33.13 9.38 23.73 39.50 57.87 114.02 

dist_geo < 50 m                   

Bing Maps - Micro-

soft 
16,636 13.33 11.40 10.50 4.96 18.64 28.13 34.96 45.54 

Google Places 16,110 10.40 6.42 10.62 2.86 14.24 26.66 34.48 45.71 

Here Technologies 16,287 16.26 14.19 9.93 8.94 21.21 30.57 37.10 46.15 

However, Bing has similar accuracies and responses compared to Here using the di-

rect method, but when using the reverse method, the results have more spatial differences 

(Table 6). The reason for this similar magnitude of errors is because Here is a provider of 

geographic data and LBS data to Microsoft. OSM has better accuracy than Bing Maps be-

cause OSM has fewer filtered address responses and because the Nominatim geocoder 

does not always try to find responses to the requested addresses. 

In addition, the direct method algorithm (identifying text addresses from Open-

Addresses) obtains a higher average of outliers in terms of absolute positional accuracy 

compared with the reverse method (matching location with OpenStreetMap) (Table 7). 

These results show geocoder problems when matching the semantic components of ad-

dresses. Furthermore, this observation explains the relationship between the high number 

of geocoding responses (95%) and the substantial number of matching errors (providing 

addresses far from the requested urban area). 
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Table 7. Some examples of positional errors by city using the direct method and reverse method 

algorithm. 

 Direct Reverse 

City Count 
Outlier

s 
Mean 

Me-

dian 
std 95% 99% Count 

Outlier

s 
Mean 

Me-

dian 
std 95% 99% 

Amsterdam 595 23.91% 2.97 0.39 7.52 19.29 44.08 359 10.25% 16.28 14.38 11.61 36.82 45.61 

Bologna 669 14.78% 5.41 1.94 8.81 27.68 43.92 366 9.63% 14.51 11.03 11.50 37.36 48.00 

Bratislava 563 22.34% 4.41 2.82 5.30 10.64 31.02 389 1.77% 14.33 13.67 8.50 30.36 40.15 

Copenhague 441 36.64% 2.39 0.95 4.68 11.93 20.19 483 1.63% 12.97 11.76 9.77 29.62 33.87 

Dortmund 330 50.75% 4.60 1.62 6.88 20.92 35.17 240 4.76% 12.88 10.23 10.07 34.35 41.28 

Düsseldorf 194 68.35% 7.94 2.70 11.49 36.55 47.08 231 6.10% 12.08 8.65 10.44 33.61 44.44 

Eindhoven 422 40.14% 1.99 0.53 4.40 8.46 21.07 516 4.44% 17.48 16.40 11.08 36.68 47.78 

Helsinki 425 43.63% 16.24 11.89 14.18 46.43 48.17 349 8.40% 17.27 16.62 9.34 35.14 46.63 

Lisbon 180 69.95% 10.51 6.30 9.76 22.54 42.05 128 1.54% 11.53 11.02 7.10 23.16 34.51 

Paris 401 38.96% 7.74 2.81 11.02 36.68 46.41 240 0.00% 10.73 9.22 8.59 27.31 38.48 

Prague 509 28.81% 2.28 0.66 4.90 10.74 24.94 554 2.29% 13.34 11.29 10.75 38.14 44.93 

Sevilla 344 42.57% 11.63 9.30 10.43 36.12 46.16 380 1.04% 11.08 8.76 9.09 27.98 42.51 

Stockholm 607 7.61% 3.56 0.70 6.39 15.18 30.92 376 6.23% 16.47 13.38 12.34 41.56 48.01 

Tallin 544 21.16% 9.68 6.20 10.83 32.86 45.74 291 10.19% 20.37 21.84 12.79 40.58 46.90 

Vienna 607 16.04% 14.51 11.16 10.43 37.63 46.01 163 1.21% 11.08 10.29 7.06 24.19 33.38 

Moreover, the developed algorithm allows for controlling the relative errors in the 

positional accuracy between geocoders. The results allow for an analysis of geographical 

relationships or correlations in the spatial positions of address data responses between 

one geocoder and another geocoder. Table 8 shows that Bing Maps often uses Here ad-

dress data to reference their address in the geocoding web service. 

Table 8. This table shows filter samples relative to the spatial threshold of relative positional errors 

between commercial geocoding web services. 

 Absolute Measures Relative Measures 

Country osm_gmaps osm_bing osm_here gmaps_bing gmaps_here bing_here 

Netherlands 34.88 32.56 32.56 18.99 18.99 0.00 

Belgium 9.38 28.76 28.76 42.20 42.20 0.00 

Italy 3.29 5.45 9.67 3.20 8.79 5.63 

Norway 0.11 8.39 8.39 17.09 17.09 0.00 

Deutsch-

land 
1.04 1.96 6.25 4.70 9.62 13.20 

Poland 16.06 4.83 4.83 19.29 19.29 0.00 

Spain 3.71 9.81 17.16 9.05 18.57 14.48 

Although no data on temporal quality were measured directly, we considered how 

often dataset updating can affect the matching rate of semantic address data. These results 

show a lack of harmonization with respect to the addresses’ data attributes, which com-

prise the type of values and order and the form of representation in different geocoders; 

moreover, the language or codification of text characters can also generate errors during 

geocode matching in some cases. 

5. Discussion 

The quality of an address dataset affects the hit rate in geocoding web services [17,75] 

and the geospatial subproducts made using geocoded data. The developed algorithm 
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allows for analyzing quality following the standard rules denoted in ISO 19157, evaluating 

specific aspects with respect to geographic information products such as addresses. There-

fore, the developed algorithm allows for assessing the quality of any address dataset be-

fore its use in georeferencing any spatial information. 

Concretely, this paper examines the quality of authoritative and crowdsourced ad-

dress datasets in urban areas across Europe, including datasets with different languages 

and schemas. There are similar studies using crowdsourced data from OSM, but they have 

other themes, such as land use [76], road networks [77], and similar specially made exper-

iments [78] with respect to buildings. These were published years before this algorithm 

was used to extract results. Furthermore, the algorithm is implemented to automatically 

compare geographic information with commercial datasets from geocoding web services, 

which is carried out in other studies [19,25,49]. However, the implemented algorithm al-

lows for automatically choosing random sampling areas inside urban zones, as requested 

by a city relative to crowdsourced datasets (OSM). However, in order to improve analyses, 

the number of samples for extraction can be chosen by users, and the geographical data 

reference can be chosen to define specific urban sample areas or city bounds. 

The responses of geocoding web services from principal companies using geospatial 

data (Google, Microsoft, and Here) were stored in a spatial database in order to check 

spatial quality. In general, there is a considerable number of web service responses (98% 

matching) that agree with other authors [19], but these have a high number of mistakes. 

This is due to the incorrect behavior of the geocoder as it tries to provide possible answers 

for unknown addresses. Sometimes, the problem is caused by a position error in the ref-

erence dataset or an incomplete text component in the reference dataset. However, the 

results show that common errors are mainly present in the names of administrative units, 

small residential districts, and settlements, and sometimes, these errors are a result of the 

multilingualism present in their texts. Most addresses from geocoders need to normalize 

the parsed components, which agrees with [79]. Other related studies [54,80–82] use ap-

plications that implement the requested geocoders (ArcGIS, MMQGIS, and Batch; 

Easergeocoder), but they do not examine the raw data from providers compared to the 

developed algorithm. 

In fact, the broad geographic scope used in this study is not used in other relevant 

and similar studies [13,18,24,45,83–86], as these studies focus on specific urban areas in-

side one country or region. Furthermore, our approach analyzes the implemented algo-

rithm by forcing the automatic extraction of about 40,000 sample addresses for geocoding. 

In contrast, similar research studies developed their work using fewer sampling data and 

the same reference dataset source [19,57,72]. 

Furthermore, the implementation of the developed algorithm assists in evaluating 

the availability and completeness of the VGI dataset within the European Territory. If this 

is consistent with other studies in the European Union with respect to crowdsourced data 

quality compared with authoritative datasets [76,43-44, 87], then the OpenAddresses da-

taset can be concretely [62] used. An analysis of semantic similarity in address text com-

ponents could improve the testing of new word-matching techniques. The algorithm im-

plements a variant of the Levenhstein distance, similar to other authors [25], but it im-

proves the analysis because it discriminates the order of words. Some studies introduced 

other specific algorithms that were derived from the Levenshtein algorithm [88]. Other 

studies [89] implemented other similar text algorithms and deep learning algorithms for 

words (Word2Vec), which demonstrated that the improvements did not benefit develop-

ments or increase implementation costs. 

On the other hand, the positional accuracy results obtained using the OSM geocoder, 

i.e., Nominatim, are similar to the results of [89]. However, the results have poor semantic 

quality, as demonstrated by [44], and there are a high number of omissions, as [90] and 

[18] reported. Other studies [91] reveal the impacts of demographic biases, voluntary re-

sponse, and community contribution. Nevertheless, the Nominatim geocoding OSM ser-

vice has better positional accuracy with respect to geocoding responses upon this 
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algorithm’s implementation compared with a similar test [80]. Furthermore, most related 

papers that analyze geocoding responses in the USA have good performance due to the 

normalization of the data reference TIGER/Line from the U.S. Census Bureau [13,24,51,  

57,81,92,93]. In fact, other papers that examine geocoding address quality in European 

countries have worse positional accuracy results [80,86,87,94] than those obtained using 

our algorithm. However, experiments on positional accuracy in specific datasets must 

consider estimating the sampling size for a given population [64] and check the results 

relative to the product’s specifications. 

Moreover, the positional accuracy obtained in geocoding responses does not conform 

to the normal distribution as required to extract common statistical values. The designed 

algorithm transforms accuracy values to fit the Gaussian function and extracts the proba-

bility of spatial errors for an empirical evaluation of address matching. However, the re-

sults with respect to transformed positional error probabilities are estimated for algorithm 

users because they did not pass the normality test (Kolmogorov–Smirnov, D’Agostino’s 

K-squared, and Anderson–Darling) and thus rejected the null hypothesis. Therefore, the 

positional accuracy measures of the quality extracted with the algorithm comprise de-

scriptive statistics, such as the median and percentiles (figures), which are filtered by the 

spatial threshold, similar to other related studies. Thus, the algorithm can be used to com-

pare statistics with a non-parametric test based on ranks such as Wilcoxon or Friedman 

[19]. Other studies apply a spatial Monte Carlo simulation [95,96] to find spatial patterns 

for points in area-based tests. In the future, the algorithm could be implemented to extract 

non-parametric statistics, or improved technologies could be used in machine learning 

processes. However, the relative cost of the algorithm’s computation must be considered 

before quality control datasets. 

The results of our algorithm’s implementation could show the EU’s effort toward 

authoritative data standardization and distribution using the common INSPIRE SDI plat-

form. Currently, there are many geocoding applications from the European Public Ad-

ministration, and only QGIS 3.28 LTR software has geocoding complements from different 

countries, such as France, Finland, Norway, Germany, and the Netherlands, and cities, 

such as Barcelona. In the future, this methodology can be implemented as a QGIS com-

plement to benefit community users. 

Finally, the statistical results show sufficient positional accuracy (about 10–40 m) 

when there is a match between address datasets. This positional accuracy value is similar 

to other related studies [18,69,72,81,83] that confirm accuracy values. The reverse method 

produced better positional results with respect to its raw address responses without a po-

sitional threshold, but the results were slightly worse within 50 m. The accuracy of ad-

dresses obtained with geocoding is essential because errors can be propagated to geospa-

tial subproducts [97]. 

6. Conclusions 

An algorithm that evaluates the quality of geolocated addresses in urban areas was 

developed and tested, and we obtained good results. The developed address quality al-

gorithm was tested using VGI and authoritative datasets from repositories in some Euro-

pean countries as inputs in order to compare the results with crowdsourced (OSM—Nom-

inatim) and commercial (Google, Microsoft, and Here) geocoding web services. In fact, 

the developed algorithm allows for choosing either geocoding method, whether direct or 

reverse, to check the spatial quality of a reference address dataset. 

In addition, the spatial quality of address datasets and the geocoders’ usability were 

examined. User-configurable input parameters were included so that the address quality 

analysis could be performed according to data size, the number of areas to be checked 

(tiles), the number of points per sample, a priori errors, and control points. The implemen-

tation with open technologies, such as the Python language and PostGIS spatial database, 

allows for including third-party developments or packages, easy sharing or updating 
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procedures by the developer’s community, optimal processing times, and integration in 

main GIS applications. 

The quality output measures are useful for checking the reliability of the semantic 

and spatial components in authoritative address datasets for any selected urban area. In 

addition, the algorithm can provide estimated probability parameters relative to semantic 

and positional accuracy, and it can be used for future address-matching processes. 

The normalization of the quality analysis based on ISO 19157 was ensured in the al-

gorithm’s development. The normalization allows for the reproduction of different anal-

yses to establish similar comparisons between several datasets and territories. In this re-

spect, the methodology proposed by INSPIRE via SDI can greatly improve the quality of 

postal addresses. INSPIRE’s geographic data rules propose a complete address data 

schema linked to other spatial data themes using a common system to structure, distrib-

ute, share, and maintain information. The algorithm also includes the possibility of ob-

taining authoritative data from standard web services (WFSs) implemented following the 

OGC and INSPIRE European directive, but this methodology is not appropriate for testing 

the algorithm’s performance in this research study. However, SDI and OGC technologies 

are starting to use modern technologies and simpler formats in order to collect geograph-

ical information from web services using cloud computing systems. 

Finally, the quality results of the implementation confirm that crowdsourced ad-

dresses could be integrated to improve and update authoritative datasets. On the other 

hand, the results confirm that the address datasets of geospatial companies have sufficient 

accuracy for the quality control of authoritative data, but filtering some responses is nec-

essary. Therefore, this algorithm, which uses geocoding web services in order to check 

authoritative addresses, could optimize spatial data quality control in public administra-

tion. In fact, the automatic evaluation of address correspondence using this algorithm 

could increase and link thematic data (health, energy, demographics, housing, etc.) to 

public spatial databases. Thus, the developed algorithm can test the reliability of an ad-

dress dataset in an urban area, city, or region using commercial or collaborative data, and 

the results can be used to detect semantic or positional errors and complete or update any 

address dataset. 
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