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A B S T R A C T   

Background and Objective: In silico methods are gaining attention for predicting drug-induced Torsade de Pointes 
(TdP) in different stages of drug development. However, many computational models tended not to account for 
inter-individual response variability due to demographic covariates, such as sex, or physiologic covariates, such 
as renal function, which may be crucial when predicting TdP. This study aims to compare the effects of drugs in 
male and female populations with normal and impaired renal function using in silico methods. 
Methods: Pharmacokinetic models considering sex and renal function as covariates were implemented from data 
published in pharmacokinetic studies. Drug effects were simulated using an electrophysiologically calibrated 
population of cellular models of 300 males and 300 females. The population of models was built by modifying 
the endocardial action potential model published by O’Hara et al. (2011) according to the experimentally 
measured gene expression levels of 12 ion channels. 
Results: Fifteen pharmacokinetic models for CiPA drugs were implemented and validated in this study. Eight 
pharmacokinetic models included the effect of renal function and four the effect of sex. The mean difference in 
action potential duration (APD) between male and female populations was 24.9 ms (p<0.05). Our simulations 
indicated that women with impaired renal function were particularly susceptible to drug-induced arrhythmias, 
whereas healthy men were less prone to TdP. Differences between patient groups were more pronounced for high 
TdP-risk drugs. The proposed in silico tool also revealed that individuals with impaired renal function, electro-
physiologically simulated with hyperkalemia (extracellular potassium concentration [K+]o = 7 mM) exhibited 
less pronounced APD prolongation than individuals with normal potassium levels. The pharmacokinetic/elec-
trophysiological framework was used to determine the maximum safe dose of dofetilide in different patient 
groups. As a proof of concept, 3D simulations were also run for dofetilide obtaining QT prolongation in accor-
dance with previously reported clinical values. 
Conclusions: This study presents a novel methodology that combines pharmacokinetic and electrophysiological 
models to incorporate the effects of sex and renal function into in silico drug simulations and highlights their 
impact on TdP-risk assessment. Furthermore, it may also help inform maximum dose regimens that ensure TdP- 
related safety in a specific sub-population of patients.   

Abbreviations: AP, action potential; APDx, action potential duration at x% of the repolarization; BCL, basic length cycle; CiPA, Comprehensive In Vitro Proar-
rhythmia Assay; Cmax, maximum concentration of a drug; Cu, unbound plasma concentration; EAD, early after depolarization; ECG, electrocardiogram; EFTPC, 
effective free therapeutic plasma concentration; EMw, electromechanical window; EP, electrophysiological; GFR, glomerular filtration rate; IC50, half-maximal 
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1. Introduction 

Drug-arrhythmogenicity, and specifically Torsade de Pointes (TdP), 
is a significant concern in drug development and clinical practice [1,2]. 
TdP is a rare but dangerous and feared adverse drug reaction. It consists 
of a characteristic change in the amplitude and twisting of the QRS 
complex on the electrocardiogram and can cause death [3]. 
Drug-induced TdP has led to the withdrawal of multiple compounds 
from the market, including antiarrhythmics, antidepressants, pain-
killers, and antihistamines, among others [4]. In fact, TdP has been the 
most frequently reported post-approval cardiac adverse event [5]. 
Therefore, the assessment of drug-induced TdP is an essential aspect of 
drug development. 

In recent years, novel approaches have been suggested for evaluating 
the risk of drug-induced TdP with the objective of enhancing existing 
regulatory directives [6]. Thus, a new cardiac safety paradigm, the 
Comprehensive In Vitro Proarrhythmia Assay (CiPA), was proposed in 
2013 by a Think Tank supported by the Cardiac Safety Research Con-
sortium (CSRC), the Health and Environmental Sciences Institute 
(HESI), and the US Food and Drug Administration (FDA) [7]. One of the 
pillars of CiPA is the promotion of in silico simulations of drug effects to 
improve arrhythmogenicity prediction. 

In silico methods have been shown to improve and accelerate the 
prediction of drug-induced TdP risks, mainly in the early stages of drug 
development [8–12]. However, most mathematical and biophysical 
cardiac models based on in silico studies are generally developed to 
depict the average behavior of a group of cells characterized experi-
mentally, ignoring inter-individual variability and predisposing factors 
for TdP [13]. It seems essential to consider inter-individual variability to 
take into account the high variation of drug responses to achieve safer 
drug treatments. In a recent study, we demonstrated that taking into 
account electrophysiological (EP) variability improves the in silico 
assessment of drug-induced torsadogenic risk [14]. 

In addition to EP variability, the prolongation of QT interval and 
subsequent TdP arrhythmia is highly influenced by many predisposing 
factors, such as female sex, bradycardia, heart failure, hypokalemia, or 
advanced age [15]. Indeed, female sex is a recognized and classical risk 
factor for TdP [16,17]; nevertheless, it is often underrepresented in both 
basic research [18] and clinical studies [19] involved in the drug 
development process. As an example, in the two landmark dofetilide 
clinical trials, DIAMOND CHF [20] and DIAMOND MI [21] trials, only 
28 % of the enrolled patients were women, and in the SAFIRE-D trial 
[22], women accounted for only 16 % of the patients. 

Another common limitation of TdP-risk in silico assessment tools is 
that most predictions are based on a single free plasma concentration of 
drugs extracted from the literature [8,10,12,23–25,11]. However, many 
factors can influence drug exposure, such as age, sex, genetics, body 
weight, drug interactions, and comorbidities such as renal failure [26, 
27]. By using pharmacokinetics (PK) modeling, it is possible to take 
these factors into account and predict more personalized exposure levels 
leading to a better overall prediction of individual risk of TdP. For 
example, renal failure is crucial, as it can significantly influence drug 
elimination [26,27]. Renal impairment is characterized by a decrease in 
the glomerular filtration rate (GFR) and a subsequent increase in the 
half-life of drugs that are eliminated by the kidneys. This can result in 
drug accumulation, which may lead to toxic levels and an increased risk 
of TdP [28]. Sex differences may also lead to significant modifications in 
drug distribution, metabolism and excretion [29]. 

This study aims to analyze the effects of sex and renal function into in 
silico drug simulations and highlights the importance of combining PK 
and EP models for the early prediction of drug-induced arrhythmoge-
nicity. PK models considering sex and renal function as covariates were 
implemented for 15 CiPA drugs and their effects were simulated in a 
population of 300 male and 300 female EP models. As a proof of concept, 
3D simulations of dofetilide were run to analyze modifications on the 
electrocardiogram (ECG). The modeling framework presented here may 

help in the understanding and prediction of drug PK and drug safety and 
is a useful tool for the evaluation of the maximum dose regimens that 
ensure TdP-related safety in a specific sub-population of patients. 

2. Materials and methods 

2.1. Drug selection 

A list of 19 drugs was established based on the work of CiPA, which 
evaluated and categorized the potential to generate TdP of 28 molecules 
(cf. Supplementary Material, Table S1). The preliminary work of CiPA 
aims to provide molecules to train, test, and validate in silico models and 
cover a broad spectrum of mechanisms of action that can cause TdP [7]. 
This list encompasses different pharmacological classes with well--
defined cardiac electrophysiology and known TdP-risk. In this work, we 
focused on simulating the effects of six high TdP-risk CiPA drugs (azi-
milide, bepridil, dofetilide, ibutilide, vandetanib, quinidine, dis-
opyramide, and sotalol) and nine intermediate TdP-risk CiPA drugs 
(astemizole, chlorpromazine, cisapride, clarithromycin, clozapine, dro-
peridol, domperidone, ondansetron, pimozide, risperidone, and 
terfenadine). 

2.2. Pharmacokinetic models 

A literature review was performed in 2021 and 2022 to select articles 
to implement predictive models for the selected 19 drugs. These models 
can be of two types: population pharmacokinetics (popPK) models or 
models implemented with non-compartmental data. PopPK models are 
nonlinear mixed effect models whose kinetic parameters values, 
together with characteristics (also termed covariates) effects are esti-
mated from a dataset using dedicated pharmacometric algorithms and 
software. The dataset contains patient covariates to be studied, pos-
ologies and exposure time series provided at some specific sample times. 
Thanks to popPK models it is possible to have access to an explanation of 
the kinetic parameters interindividual variability in terms of selected 
covariates (e.g., demographic, genetic, environmental data, etc.). On the 
other hand, models implemented from non-compartmental analysis are 
based on the inference of kinetic parameter using exposure profile de-
scriptors (e.g., area under the curve, half-life of elimination, peak con-
centration, and time). 

The choice to implement a popPK model or a model based on non- 
compartmental data depended on several criteria. Initially, a popPK 
model is always preferred: for each molecule, a literature review was 
conducted to identify one or more popPK models. These models were 
subsequently compared and evaluated to choose the most suitable 
model that aligned with our requirements, using the following criteria: 
the general population is well represented in the model training dataset, 
with an important number of patients, samples, and low relative stan-
dard error. Also, for the model evaluation, the goodness of fit plots, 
bootstrap, and/or visual predictive checks should not reveal any bias or 
misspecification. 

When a popPK model met the earlier criteria, it was implemented 
using parameters directly provided within the article and underwent 
validation process. If no popPK model was satisfying for a given drug, a 
new model was calibrated from non-compartmental data using standard 
non-compartmental analysis. Such approach makes it possible to 
manage the effect of covariates [30]. Molecules for which no model met 
the validation requirement were not included in the study. All models 
were assembled and calibrated using a dedicated modeling library 
developed by ExactCure company. 

2.2.1. Validation criteria of pharmacokinetic models 
The reference validation method for validating PK models involves 

the use of an external validation dataset, enabling the calculation of 
median prediction error (MDPE) and median absolute prediction error 
(MDAPE) validation criteria, used to quantify bias and inaccuracy, 
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respectively. To be acceptable, MDPE must be between − 20 % and 20 %, 
and MDAPE ≤ 30 %. This method is applicable to molecules subject to 
clinical therapeutic drug monitoring, and a dataset is not always avail-
able. In cases where this method is not applicable, due to lack of data or 
absence of therapeutic drug monitoring for a drug, we are implementing 
a simpler validation methodology, using therapeutic thresholds. 

This methodology was performed by assessing the correspondence of 
model simulation outputs with therapeutic thresholds from the phar-
macological literature, to assess the PK behavior regarding efficacy and 
overexposure thresholds. Thresholds implemented are efficacy 
threshold (the plasma concentration at which the drug is effective) and 
overexposure threshold (the threshold beyond which there is no further 
benefit in increasing the doses) and/or toxic threshold (the threshold at 
which manifestations of toxicity may appear). No toxicity is expected 
between overexposure threshold and toxicity threshold, except if hidden 
toxicity occurs at this level. It is relevant to note that the meaning of the 
toxicity threshold may not necessarily correspond to cardiac toxicity 
evaluated in this paper. It could involve other types of adverse events. 

This methodology allows comparing the concentration / time series 
obtained through model simulations to validated reference values used 
in clinical practice. Validating the model by using this method ensures 
that the concentration will fall within a therapeutic range at recom-
mended doses by regulatory agencies. We generated various simulations 
to cover all the dosing regimens recommended by regulatory authorities 
for the various patients concerned by the treatment, by modulating the 
implemented covariates and recommended dosages. Outputs must be 
within therapeutic – overexposure or toxicity threshold to be validated. 

Clozapine PK model underwent validation with an external dataset, 
as described by colleagues in Lereclus et al. [31]. All other models were 
validated using thresholds method. The thresholds used for validation 
are available for each drug in Supplementary Material S2 Concen-
tration_Time.xlsx. 

2.2.2. Covariates 
Selected models include different covariates associated with plasma 

concentration depending on the drug. These variables encompass sex, 
renal and hepatic status, weight, age, cytochrome phenotypes, tobacco 
and alcohol consumption, among others. The covariates included in 
each of the fifteen PK models are available in Supplementary Material 
S2 Concentration_Time.xlsx. 

As mentioned before, this study aimed to systematically investigate 
the effects of sex and renal function on TdP-risk; therefore, all other 
covariates were fixed to their respective mean population values. A 
weight of 70 kg was used in all simulations. In addition, to ensure 
consistency and homogeneity across all PK models, the continuous co-
variate GFR was turned into a categorical covariate called “renal func-
tion” associated to specific GFR values: normal renal function 
(associated to a GFR of 90 mL/min/1.73 m2), and impaired renal 
function (associated to a GFR equal to 30 mL/min/1.73 m2). In sum-
mary, two categorical covariates were considered in the PK models, 
resulting in four possible simulation scenarios: a) male with normal 
renal function; b) female with normal renal function; c) male with 
impaired renal function; and d) female with impaired renal function. 

It is worth noting that in cases where a drug had multiple routes of 
administration, this study focused on the route of administration that 
caused the highest plasma peak concentration, as it constitutes the 
scenario most likely to cause TdP. 

2.3. In silico populations of electrophysiological models 

The EP characteristics of human ventricular cells were simulated 
taking as reference a modified version of the widely used human 
endocardial ventricular action potential (AP) model by O’Hara et al. 
[32]. The modifications applied to the O’Hara et al. model are described 
in previous studies [10,33–35]. In short, model modifications include 
the modulation of six ionic currents (IKr multiplied by a factor of 1.119, 

IKs by 1.648, IK1 by 1.414, ICaL by 1.018, INaL by 2.274, and INa by 0.4) 
and a reformulation of the activation and inactivation gates of INa. These 
modifications were designed to better reproduce experimental data on 
drug effects and propagation of the electrical activity in cardiac tissue. 

To account for EP variability and sex differences, we built a popu-
lation of male and female EP models. To generate the male and female 
populations, we first obtained sex-specific normal distributions of mRNA 
channel expression based on the mean and standard deviations of 
experimentally measured gene expression levels for a set ion channels 
[36]. The ion channels considered were IKr, IKs, IK1, INCX, INa, ICaL, Ito, 
IpCa, INaKa, IKb, and Iup. We also modified the maximum calmodulin 
concentration. From these gene expression distributions, we generated 
50,000 sets of possible channel expression levels for males and 50,000 
sets of possible channel expression levels values for females. Each set of 
values comprised 12 channel mRNA values, one for each of the channels 
considered, which were randomly sampled from the generated mRNA 
distributions. As a result, the generated models exhibited variability 
consistent with experimental observations. Gene expression values were 
then translated into ionic currents scaling factors by expressing them 
relative to mean mRNA levels of endocardial cells, as described by Yang 
et al. [37]. Differences in EP properties due to hormonal levels were 
reproduced by modifying IKr, IKs, and ICaL according to Yang and col-
leagues [37,38]. Next, all models in the populations were simulated 
under control conditions (no drugs) for 500 beats. Male population was 
simulated with a dihydrotestosterone concentration of 35 nM, reflecting 
the normal high ranges in post-pubescent pre-senescent males [38]. This 
scenario was simulated by modifying IKr and IKs by a scale factor of 1.4 
and 0.82, respectively. Female population was simulated during the 
early follicular phase since susceptibility to arrhythmias increases dur-
ing this stage [38]. To simulate this condition, IKr and IKs were scaled by 
0.86 and 1.19, respectively. Simulations were run at 37 ◦C and at the 
following extracellular concentrations: [Na+]o = 140 nM, [Ca2+]o = 1.8 
nM and [K+]o = 5.4 nM to replicate the experimental conditions of the in 
vitro experiments. 

After running these simulations, models with EP properties, i.e., 
biomarkers that did not fulfill all the calibration requirements were 
discarded. Plausible EP properties were defined according to the 
acceptable ranges found in the literature for fifteen characteristics 
related to AP duration, amplitude of membrane potential, and calcium 

Table 1 
Action potential and Ca2+ biomarker ranges used to calibrate the control pop-
ulation of human ventricular AP in silico models. Adapted from [14] with the two 
conditions for midmyocardial and epicardial cells. APDx: action potential 
duration at x% of the repolarization; Tri90–40: triangulation 90–40; dV/dt de-
rivative of the voltage with respect to time; Vpeak: peak voltage; RMP: resting 
membrane potential; CTDx: calcium transient duration at x%; Ca2+ syst/diast: 
systolic/diastolic intracellular calcium concentration; Na+: sodium intracellular 
concentration; ΔAPD90 under x% Ix: variation in APD90 under x% inhibition of 
Ix current.  

Biomarker Min Value Max Value 

APD40 (ms) 85 320 
APD50 (ms) 110 350 
APD90 (ms) (endocardial cells) 180 440 
APD90 (ms) (mid-myocardial cells) [32] 350 440 
APD90 (ms) (epicardial cells) [32] 240 340 
Tri90-40 (ms) 50 150 
dV/dt (mV/ms) 150 1000 
Vpeak (mV) 10 55 
RMP (mV) − 95 − 80 
CTD50 (ms) 120 420 
CTD90 (ms) 220 785 
Ca2þ syst. (µM) 0.262 2.23 
Ca2þ diast. (µM) – 0.40 
Naþ (mM) – 39.27 
ΔAPD90 (%) under 90 % IKs − 54.4 62 
ΔAPD90 (%) under 70 % IKr 32.25 91.94 
ΔAPD90 (%) under 50 % IK1 − 5.26 14.86  

J. Llopis-Lorente et al.                                                                                                                                                                                                                         



Computer Methods and Programs in Biomedicine 242 (2023) 107860

4

dynamics [14]. The limits of acceptance for the fifteen biomarkers are 
listed in Table 1. 

The populations of models were generated using MATLAB version 
R2022a. The source code is available at https://riunet.upv.es/handle/ 
10251/193255. 

Once calibration was performed, 300 male and 300 female models 
were randomly selected from the pool of models that were not discarded 
to further simulate drug effects. Sampling was performed using the 
Matlab function randsample(). Histograms of the scaling factors for the 
different ionic currents of the selected males and females are shown in 
Fig. 1. Male population is represented in blue and female population is 
represented in red. The scaling factors for the male and female pop-
ulations are available in the Supplementary Material, Table S2. 

Endocardial action potentials of male and female populations are 
plotted in Fig. 2. Action potential duration at 90 % of the repolarization 
(APD90) of the male population is 281.3 ± 22.3 ms, and APD90 of the 
female population is 306.2 ± 18.6 ms. Therefore, the APD90 mean 
difference between populations was 24.9 ms (p-value<0.05), which is in 
accordance with values reported in the literature [37,39]. 

2.4. Drug data set and drug effect simulation 

Drug effects on AP were simulated via the simple pore block model. 
Thus, the block produced on each current was simulated by scaling the 
ionic current (Ii). The scaling factors were calculated using the standard 
Hill equation: 

Ii, drug =
1

1 +

(
EFTPC
IC50, i

)h⋅Ii (1)  

where Ii, drug is the ionic current of channel i in the presence of the drug, 
EFTPC is the effective free therapeutic plasma concentration (calcula-
tion is explained below in Eq. (2)), IC50,i is the half-maximal dose 
response for that drug and current through channel i, and h is the Hill 
coefficient, which indicates the number of drug molecules that are 
assumed to be sufficient to block one ion channel. 

The IC50 and Hill coefficients of the 15 drugs were obtained from Li 
et al. [12]. Regarding the simulated drug concentrations, the EFTPC was 
calculated for each drug and scenario from the predictions of PK models 
as follows: 

EFTPC(nM) =
106⋅(1 − bound fraction)⋅drug blood concentration (mg/l)

molecular weight (g/mol)
(2) 

The blood drug concentration considered in Eq. (2) was the 
maximum predicted drug plasma concentration (Cmax) in each scenario 
for the selected drugs, as it represents the highest risk situation for 
inducing TdP. The bound fraction, molecular weight, and predicted 
EFTPC used in the different scenarios are reported in Supplementary 
Material S2 Concentration_Time.xlsx. 

All simulations were carried out with a basic cycle length (BCL) of 
1000 ms and a stimulus of 1.5-fold the diastolic threshold amplitude and 
0.5 ms of duration. Action potential duration at 90 % repolarization 
(APD90) and systolic intracellular calcium concentration (Ca2+ syst.) 
were measured after 500 beats starting from control (no drug) initial 
condition. Net charge throughout the AP (qNet) [40], and a surrogate for 
the electromechanical window (EMw), defined as CTD90-APD90 [11], 
were calculated for the last beat. Furthermore, APs were analyzed to 
identify repolarization abnormalities (RAs). A RA was defined as either: 
i) an early after depolarization (EAD), i.e. any event with a positive 
voltage gradient (dV/dt > 0 mV/ms) 100 ms after the beginning of the 

Fig. 1. Histograms of the scaling factors for the different ionic currents of the selected individuals (300 males and 300 females). Male population is represented in 
blue and female population is represented in red. Dark red is due to the overlap between the two groups. 

Fig. 2. Endocardial action potential traces of the male and female populations. 
Male population is represented in blue and female population is represented in 
red. Female population shows APD90s, on average, 24.9 ms longer than male 
(p-value<0.05). 
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AP; ii) a repolarization failure, i.e. the membrane voltage at the end of 
the beat being higher than resting membrane voltage (Vm > − 40 mV); 
or iii) any event with a positive calcium transient gradient (dCa2+/dt >
0 nM/ms) 300 ms after the beginning of the AP. In cases where RAs 
occurred during the last 5 beats of the simulations, none of the bio-
markers were measured. 

2.5. Sensitivity analysis 

To evaluate the individual impact of the PK and EP models, as well as 
the influence of the covariates (sex and renal function) on the final drug 
effect, a univariate sensitivity analysis was conducted. Thus, for each 
drug, all four possible scenarios considered in the PK models were 
rigorously tested in the male and female populations (EP models). 

We also investigated the effect of experimental variability of IC50 
values on drug-induced EP changes. Specifically, we examined the in-
fluence of experimental uncertainty on measurements of IKr/hERG in-
hibition potency on the final drug effect. We focused on IKr inhibition 
because of its strong association with TdP generation [2]. Then, for each 
drug, we ran simulations varying the hERG IC50 value considered. We 
used the minimum, mean, and maximum values of hERG IC50 estimated 
for each drug by Li et al. [12]. A constant drug concentration was used 
for all the simulations of a given drug. In particular, we simulated the 
EFTPC predicted by the PK model for a male with normal renal function, 
in the population of male EP models and in the population of female EP 
models. 

2.6. ECG simulations 

As a proof of concept to demonstrate the feasibility of our approach, 
we conducted dofetilide simulations in a 3D biventricular model and 
propagated them to an anatomically detailed human torso to obtain 
realistic ECG signals under the four scenarios: male with normal renal 
function, male with impaired renal function, female with normal renal 
function, and female with impaired renal function. Dofetilide was 
selected because of its sex- and renal status-dependent pharmacokinetics 
and its wide clinical usage, providing reliable validation data. 

In this study, we used a 3D patient-specific biventricular in silico 
model obtained from delayed enhanced magnetic resonance images 
(DE-MRI) previously developed by our group [41,42]. The resulting 
hexahedra-based volume mesh contained 4 million nodes (vertices) and 
3.71 million elements, with an average edge length of 380 µm. Trans-
mural heterogeneity was included in the biventricular model by defining 
three different transmural layers for the endocardial, mid-myocardial, 
and epicardial cells. These layers comprised 17, 41, and 42 % of ven-
tricular wall thickness, respectively. Longitudinal and transversal con-
ductivities of the tissue were set to 0.24 S/m and 0.0456 S/m, 
respectively. Consequently, the conduction velocity measured 0.68 m/s 
along the fiber direction and 0.26 m/s in the transverse direction, which 
is consistent with experimental measurements taken in human ventri-
cles [43]. In addition, the anisotropy of the cardiac muscle due to fiber 
orientation was accounted for by using a Streeter’s rule-based method, 
as previously described [42]. The model also included a His-Purkinje 
System network composed of 1391 Purkinje-myocardial junctions 
generated through a stochastic growth method using linear elements, as 
detailed by our group [41,42,44]. 

The biventricular in silico model was fitted into an anatomically 
detailed human torso mesh to accurately solve the forward problem in 
electrophysiology and thus obtain realistic simulated ECGs. The torso 
mesh consisted of 1.26 million nodes and 7.35 million tetrahedral ele-
ments with an average edge length of 0.55 mm [41,42,44,45]. The 3D 
torso model included bones, lungs, liver, whole heart (ventricles and 
atria), and the blood pools of all cardiac chambers. For the different 
organs and tissues, we used the same conductivity values as Ferrer et al. 
(2015) [44], which were taken from the literature. To simulate the ECG 
signals, virtual electrodes were placed on the surface of the torso model 

to correspond to the standard 12 electrocardiographic leads. 
At the cellular level, we selected the ID6 male model (see Supple-

mentary Material, Table S2) as a representative of the male population 
and the ID35 female model (see Supplementary Material, Table S2) as 
a representative of the female population. Transmural heterogeneity of 
the myocardium was considered, as mentioned above. For Purkinje cells, 
we used the model published by Stewart and colleagues [46]. 

The electrical propagation through the ventricles was calculated by 
solving the monodomain equation (Eq. (3)) with ELVIRA software [47], 
which is based on a pseudo-adaptive finite element method in space and 
time to solve reaction-diffusion equations with highly nonlinear reactive 
terms. 

∇⋅(D∇Vm) = Cm
∂Vm

∂t
+ Iion + Istim (3)  

where D represents the diffusion conductivity tensor, the trans-
membrane potential field is denoted by Vm, the cell membrane capaci-
tance is expressed as Cm, the transmembrane ionic current is indicated 
by Iion, and the transmembrane stimulation current is represented by 
Istim. 

ECG was simulated by solving the extracellular potential (φe) using 
Eq. (4): 

∇⋅([Di +De]∇φe) = − ∇⋅(Di∇Vm) (4)  

where Di and De refer to the volume-averaged conductivity tensors of the 
intra and extracellular domains, respectively. As in [42], the 
reaction-diffusion simulation was run on the biventricular mesh. The 
right-hand side of Eq. (4) was evaluated on this fine mesh and then 
interpolated on the coarse torso mesh. Further details on ECG compu-
tations are available in [42,45]. 

Drug simulations were run for 5 beats with a basic cycle length of 
1000 ms. Stimuli with an intensity of 900 µA/µF and a duration of 2 ms 
were applied to the first node of the His bundle. 

When determining drug effects at the whole-heart level, we 
measured the QT interval, as it is a prognostic biomarker for the 
development of TdP [3]. As described by Pokorney et al. [16], the QT 
interval was measured from the onset of the QRS complex to the inter-
section of the line of the maximal slope of the T-wave and the T-P iso-
electric baseline. The QTc interval measurements were determined in 
the last beat in the limb lead I. 

3. Results 

3.1. Pharmacokinetic models for predicting plasma concentration of 15 
CiPA drugs 

Of the 19 molecules selected, 15 PK models were developed: six for 
high TdP-risk drugs (azimilide, dofetilide, vandetanib, quinidine, dis-
opyramide, and sotalol); and nine for intermediate TdP-risk drugs 
(chlorpromazine, cisapride, clarithromycin, clozapine, droperidol, 
domperidone, pimozide, risperidone, and ondansetron). Astemizole and 
terfenadine could not have been implemented due to a lack of published 
PK data, while bepridil and ibutilide models did not meet PK model 
validation criteria and were not implemented. 

The implemented models were one-compartment and two- 
compartment based on literature popPK studies, or one-compartment 
models implemented from non-compartmental data. The models struc-
tures, parameters and sources are summarized in Table 2. 

The two types of model structures are represented in Figs. 3 and 4. 
These figures illustrate how the parameters for Table 2 are used to 
calibrate the model. For one-compartment models implemented from 
non-compartment data, calibration was performed by ExactCure tools 
using basic formulas of Pharmacokinetics [30]. 
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Table 2 
Structures, parameters, and sources of implemented PK models. This table summarizes the parameters implemented to calibrate PK models. 3 types of models were 
implemented: 1- and 2-compartment models implemented from popPK studies, and 1-compartment models implemented from non-compartmental data. F: 
bioavailability (no unit); ka: absorption rate (hours− 1); CL: clearance (liters/hour); Vd: distribution volume (liters); V1: volume of the central compartment (liters); V2: 
volume of the peripheral compartment (liters); Q: intercompartmental clearance (liters/hour); T1/2: half-life of elimination (hours); Tmax: time to reach the maximum 
concentration (hours); Cmax: maximum concentration (mg/liter); Tlag: lag time (hours). Covariates implemented as Boolean (“if true” = 1) were: sex_m (sex male), 
smoker, heart failure, alcoholic, height < 175 cm, GFR (glomerular filtration rate) <50, cyp2d6 status (cytochrome 2D6 is a major hepatic enzyme involved in drug 
metabolism). Covariates implemented as continuous were: weight, GFR, age.  

One-compartment model implemented from popPK studies 

Drug F ka (h− 1) Cl (L/h) Vd (L) Source 

Azimilide 1 0.497 3.92 x (weight − 43)0.208
× (1 + 0.171 × sex m) × (1 + 0.155 × smoker) 717 + 9.88 × (weight 

− 43) 
[48] 

Cisapride 1 2.58 If weight > 6.5 kg: 0.16635 × weight (Calculated with T1/2 = 10 h and Vd) 
If weight ≤ 6.5 kg: 0.538 × weight 

If weight > 6.5 kg: 2.4 
× weight 
If weight ≤ 6.5 kg: 21.9 

[49–51] 

Clozapine 1 1.24+ (0.13 × sex m) 39.9+ (8 × sex m) 564+ (155 × sex m) [52] 
Quinidine 1 0.894 (18 − 0.101 × Age)x(1 + 0.156 × height < 175 cm) × (1 − 0.115 × heartfailure)x(1 + 0.230 ×

alcoholic) × (1 − 0.178 × GFR < 50) 
230 [53]  

Two-compartment model implemented from popPK studies 

Drug F Ka (h− 1) V1 (L) Cl (L/h) V2 (L) Q (L/h) Source 

Droperidol 1 10 73.6 41.9 79.8 71.5 [54] 
Pimozide 1 

Tlag: 1.14 h 
0.68 1240 54.9 × (1 + (cyp2d6_poor x (− 0.3624))) × (1 + (cyp2d6_intermediate ×

(− 0.7322))) 
1040 69.2 [55] 

Risperidone 1 
Tlag: 0.235 h 

2.39 137 ×
weight

70  (4.66 ×
weight

70

0.75 
+ 0.00831 × glomerular_filtration_rate) ×

weight
70

− 0.172  
86.8 ×

weight
70  

1.35 [56]  

One-compartment model implemented with non-compartmental data 

Drug F T1/2 (h) Tmax (hours) Vd (L) Cmax (mg/L) Source 

Clarithromycin 0.55 3.8 1.7 3 × weight – [57] 
Chlorpromazine 0.32 30 2.5 1470×

weight
70 

– [58] 

D, L Sotalol 0.8 7.18 3.1 84.7 – [58] 
Disopyramide 0.95 6.3 Immediate Release: 1.5 Extended Release: 4.5 0.75 × weight – [59,60] 
Dofetilide 0.9 10 2.5 3 × weight – [61] 
Domperidone 0.831 8 Tablet: 1.2 Oral solution: 0.9 – Tablet : 0.0396 

Oral solution : 0.043 
[62] 

Ondansetron 0.55 3 1.9 140 – [63] 
Vandetanib 1 195.4 6 3876 ×

weight
80.7   

[64]  

Fig. 3. 1-compartment model general structure. x1: quantity in central compartment (mg); xa: quantity in the theoretical absorption compartment (mg); ka: ab-
sorption rate (hours− 1); Vd: distribution volume (L); ke: elimination rate (hours− 1). Covariates effects could impact absorption, distribution, elimination. 
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3.1.1. Pharmacokinetic models validation 
The validation process for the 15 implemented PK models was per-

formed successfully. Clozapine PK model was validated using an 
external database in Lereclus et al. [31]. Dataset contained 151 samples 
from 53 patients, MDPE was − 19 % and MDAPE was 29.4 %, showing 
absence of bias and inaccuracy. 

The other 14 PK models were evaluated using the therapeutic 
thresholds method. Models’ outputs were evaluated regarding selected 
therapeutic thresholds from the literature. The tests assessed whether 
simulations with the parameters of the dosages recommended by the 
health authorities, as well as the patients concerned by these dosages 
(whose profiles were created by modulating the values of the covariates) 
were within the therapeutic threshold. Concentration over time series 
and the thresholds used to perform the validation are available for each 
drug in Supplementary Material S2 Concentration_Time.xlsx. 

3.1.2. Covariates 
As previously noted, this study specifically examined the influence of 

sex and renal function. Eight models included the effect of renal func-
tion, and four models the effect of sex (see Supplementary Material S2 
Concentration_Time.xlsx). Moreover, PK models allow the simulation 
of temporal changes in blood concentrations with different dosing 
regimens. 

Different scenarios were simulated for each drug, depending on the 
implemented covariates in the PK models and recommended dosing 
regimens according to the summary of product characteristics. All 
simulated drug plasma concentrations are available in the Supple-
mentary Material S2 Concentration_Time.xlsx. 

Fig. 5 shows as an example the time course of free plasma concen-
tration for 2 high TdP-risk drugs (dofetilide and quinidine) and 2 in-
termediate TdP-risk drugs (clarithromycin and clozapine) as a function 

of sex and renal function. The simulated dosing regimens for each drug 
were established according to the recommended dose for a standard 
healthy individual and are indicated in the respective summary of 
product characteristics: 0.5 mg/12 h (oral) for dofetilide, 600 mg/8 h 
(oral) for quinidine, 450 mg/12 h (oral) for clozapine, 500 mg/12 h 
(intravenous) for clarithromycin. Plasma levels of dofetilide are highly 
influenced by renal function, as evidenced by a significant increase in 
blood concentration in a male with impaired renal function compared to 
a male with normal renal function. Specifically, the blood concentration 
of dofetilide in a male with impaired renal function was approximately 
threefold higher than in a male with normal renal function. Moreover, 
sex-related differences in dofetilide concentrations were also observed, 
particularly in individuals with renal impairment. In contrast, quinidine 
and clarithromycin only exhibit differences in blood concentration 
based on renal function and not sex. Furthermore, renal impairment has 
a greater impact on the pharmacokinetics of clarithromycin compared to 
quinidine, since the differences between normal and impaired renal 
function are significantly higher in clarithromycin. On the other hand, 
for clozapine, the differences in blood concentration are solely due to 
sex, with no significant impact of impaired renal function on drug levels. 
Regarding the remaining eleven drugs, it can be observed that for dis-
opyramide, sotalol, and vandetanib (high TdP-risk drugs), renal status 
significantly influences drug levels. In contrast, azimilide (high TdP-risk 
drug) only exhibits slight differences between males and females, and 
drug levels are independent of renal status. As for the other seven in-
termediate TdP-risk drugs, renal function only appears as a covariate in 
two drugs (chlorpromazine and domperidone), and in general, sex 
produces minimal differences (observations that can be extracted from 
the Supplementary Material S2 Concentration_Time.xlsx). 

Fig. 4. 2-compartment model general structure. x1: quantity in central compartment (mg); x2: quantity in the peripheral compartment; xa: quantity in the theo-
retical absorption compartment (mg); ka: absorption rate (hours− 1); V1: volume of the central compartment (L); V2: volume of the peripheral compartment (L); ke: 
elimination rate (hours− 1); k12 and k21: intercompartmental transfer constant (hours− 1). Covariates effects could impact absorption, distribution, elimination. 
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3.2. Drug effects at the cellular level 

After obtaining the predicted blood concentrations of the fifteen 
drugs in the four studied scenarios, the simple pore block model was 
used to determine the effect of each drug on the different ion currents. 
Fig. 6 shows the effects of the concentrations predicted by the PK models 
of dofetilide, quinidine, clarithromycin, and clozapine on IKr using the 
EFTPC obtained from PK models. IKr block has traditionally been 
recognized as the primary cause associated with the onset of TdP [2], 
thus increased inhibition of IKr is correlated with a higher likelihood of 
TdP occurrence (assuming all other currents remain unchanged). 
Notably, the high TdP-risk drugs examined in this study exhibited a 
pronounced blockade of IKr. As shown in Fig. 6, both high TdP-risk drugs 
produced a substantial reduction in IKr, with drug scale factors below 0.5 
for the four scenarios considered. In contrast, for intermediate TdP-risk 
drugs, the drug scale factors for IKr are practically 100 %. Furthermore, it 
is noteworthy that the intermediate TdP-risk drugs show minimal or 

negligible differences in IKr drug scale factors between the different 
scenarios studied. The most significant difference is observed for dofe-
tilide, as renal function appears to have the largest impact. 

It is remarkable that for certain drugs, important differences at the 
PK level between individuals may not translate into significantly 
different effects in the EP model. For instance, clarithromycin exhibits a 
nearly two-fold increase in plasma concentration due to renal function 
(Fig. 5); however, such changes do not propagate to a significant extent 
in the EP model. 

This inhibition of the different ion channels translates into EP 
changes. Fig. 7 shows the effects of dofetilide at the cellular level for the 
four scenarios studied. It can be observed that among the four different 
scenarios studied, women with impaired renal function are the most 
susceptible patient group in terms of prolongation of APD and presence 
of RAs induced by dofetilide. 

One of the most common problems experienced by patients with 
renal insufficiency is electrolyte imbalance. Specifically, hyperkalemia 
is a frequent alteration in these patients, with a prevalence of approxi-
mately 20 % [65]. Hyperkalemia manifestations usually occur when the 
serum potassium concentration is ≥ 7.0 mM with chronic hyperkalemia 
[66]. In order to study the combined effects of hyperkalemia and 
pharmacological effects, simulations were conducted with [K+]o = 7.0 
mM. Fig. 8 shows the results of these simulations, combining the effects 
of dofetilide, renal impairment, and hyperkalemia in both the male and 
female populations. It can be observed that hyperkalemia partially 
compensates for the torsadogenic effects of dofetilide, resulting in less 
prolongation of APD90 and lower incidence of RAs. Under hyperkalemia 
conditions, the male population with renal impairment had APD90s that 
were, on average, 49.2 ms shorter than under normokalemic conditions. 
In the female population with renal impairment, hyperkalemia led to 
APD90s that were, on average, 54.5 ms shorter. The incidence of RAs in 
the male population with renal impairment decreased from 1 (normo-
kalemia) to 0 (hyperkalemia), while in the female population with renal 
impairment decreased from 10 (normokalemia) to 1 (hyperkalemia). 
These results evidence the mitigating effect of hyperkalemia on the 
torsadogenicity of drugs in patients with impaired renal function. 

Fig. 6. Effects on IKr for the 4 different simulated scenarios of 2 high TdP-risk 
drugs (dofetilide and quinidine) and 2 intermediate TdP-risk drugs (clari-
thromycin and clozapine). NRF: normal renal function; IRF: impaired 
renal function. 

Fig. 5. Time-evolution of unbound plasma concentrations (CU) of 2 high TdP-risk drugs – dofetilide and quinidine – (A&B) and 2 intermediate TdP-risk drugs – 
clarithromycin and clozapine – (C&D) depending on different characteristics of the patients (sex and renal function). NRF: normal renal function. IRF: impaired 
renal function. 

J. Llopis-Lorente et al.                                                                                                                                                                                                                         



Computer Methods and Programs in Biomedicine 242 (2023) 107860

9

After running simulations of the fifteen CiPA drugs in the four sce-
narios investigated, four biomarkers associated with the risk of TdP in-
duction were measured: APD90, qNet, EMw, and Ca2+ syst. APD90 and 
qNet distributions in the four scenarios for the fifteen drugs studied are 
shown in Figs. 9 and 10, respectively. EMw and Ca2+ syst. distributions 
are shown in the Supplemental Material, Figure S1 and Figure S2. 
Our simulations confirmed that women with impaired renal function 
presented larger APD90s and lower values of EMw, qNet and Ca2+ syst. 
Thus, women with impaired renal function were found to be particularly 
susceptible to drug-induced TdP, while men with normal renal function 
were the sub-population who demonstrated a lower propensity to TdP. 
Differences between patient groups were more prominent for high TdP- 
risk drugs. 

The drug with the highest torsadogenicity was quinidine, which 
caused 218 (72.7 %) RA events in the female population with renal 
impairment, 202 (67.3 %) RA events in the female population with 
normal renal function, 113 (37.7 %) RA events in the male population 
with renal impairment, and 94 (31.3 %) RA events in the male popu-
lation with normal renal function. The other drug that caused RA events 
was dofetilide, with 10 (3.3 %) events in the female population with 
renal impairment, 1 (0.3 %) RA in the female population with normal 
renal function, and 1 (0.3 %) RA in the male population with impaired 
renal function. Intermediate TdP-risk drugs showed minimal alterations 
in biomarkers compared with control conditions. 

3.3. Sensitivity analysis on pharmacokinetics and electrophysiological 
models 

To assess the specific influence of the PK and EP models on the 
overall drug effect, univariate sensitivity analysis was performed. In this 
analysis, we focused on the APD90 biomarker. The results of the sensi-
tivity analysis are shown in Fig. 11. For clarity, only the mean APD90 

Fig. 7. Effects of dofetilide (high TdP-risk drug) at the cellular level for the four studied scenarios. NRF: normal renal function; IRF: impaired renal function; 
Dof.: dofetilide. 

Fig. 8. Effects of dofetilide (high TdP-risk drug) at the cellular level in the male 
(top panel) and female (bottom panel) populations with impaired renal function 
and hyperkalemia ([K+]=7.0 mM). HyperK: hyperkalemia; Dof.: dofelitide. 
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values of the population of 300 male and 300 female models are rep-
resented in the figure. For each drug, the red or blue line indicate the 
same population of EP models (red for females and blue for males); 
therefore, along the same line, only the simulated drug concentration 
changes (corresponding to the one predicted by the PK model). The four 
simulated scenarios with PK models are represented by points of 
different colors (light blue for males with normal renal function, pink for 
females with normal renal function, blue for males with impaired renal 
function, and red for females with impaired renal function). It can be 
observed that EP characteristics have a higher impact compared to the 
effects of PK features. Indeed, vertical distances between blue and red 

lines are more marked than vertical distances between circles in the 
same line. Quinidine is the drug in which the female population of EP 
models produced higher differences compared to the male population of 
EP models. Regarding PK models, renal function is the covariate that has 
the highest influence, particularly in the high TdP-risk drugs (Fig. 11, 
top panel) dofetilide, vandetanib, and disopyramide (differences be-
tween light and dark circles within the same lines). Among the inter-
mediate TdP-risk drugs (Fig. 11, bottom panel), domperidone is the only 
drug for which renal status has a significant effect; for the other inter-
mediate TdP-risk drugs, the covariates in the PK models have limited 
impact. 

Fig. 9. Distribution of APD90 in the four scenarios under the effect of high TdP-risk drugs (top) and under the effect of intermediate TdP-risk drugs (bottom). # 
indicates the number of drug-induced RAs (cases in which RAs appear are not represented in the distribution). NRF: normal renal function; IRF: impaired 
renal function. 

Fig. 10. Distribution of qNet in the 4 scenarios under the effect of high TdP-risk drugs (top) and under the effect of intermediate TdP-risk drugs (bottom). # indicates 
the number of drug-induced RAs (cases in which RAs appear are not represented in the distribution). NRF: normal renal function; IRF: impaired renal function. 
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3.4. Sensitivity analysis on hERG IC50 

A sensitivity analysis of the influence of experimental variability in 
hERG IC50 on the APD90 was also performed. This set of simulations was 
run using only the plasma concentration predicted for a man with 
normal renal function for each drug. The minimum, mean, and 
maximum hERG IC50 for values estimated by Li et al. [12] for each drug 
were used in this analysis. Fig. 12 shows the results of the sensitivity 
analysis. As shown in Fig. 11, for each drug, each line represents the 
same population of EP models. When RAs appeared, the APD90 value 
was set to 1000 ms. 

Quinidine exhibits the highest sensitivity to variations in the value of 
hERG IC50. Specifically, in the male EP model population, using the 
minimum IC50 value leads to RAs. However, in general, other drugs do 
not show significant differences in APD90 due to variations in hERG 
IC50. The drugs with the most significant differences in APD90 due to 
changes in hERG IC50 are dofetilide, vandetanib, droperidol, and ris-
peridone (note the different scale in both panels). The differences in 
APD90 between simulations with the minimum and maximum IC50 
values for these drugs are 32.5 ms, 30.1 ms, 29 ms, and 26.6 ms, 
respectively. Conversely, for the remaining drugs, the differences in 
APD90 are below 20 ms. 

3.5. Modification of dose regimen for sub-population with higher TdP-risk 

One of the advantages of the developed PK/EP framework is its 
ability to efficiently test a wide range of dosing regimens in a rapid and 
straightforward manner and thus identify the maximum safe dose for 
specific sub-populations. As an example, the use case of dofetilide is 
presented herein. As shown in Fig. 13, the standard dosage (0.5 mg/12 
h) given to the female population with impaired renal function resulted 

in significant prolongation of APD90 and the occurrence of RAs in 10 out 
of 300 models. According to the dofetilide summary of product char-
acteristics [61], the dosage for sub-populations with a GFR between 20 – 
40 ml/min/1.73 m2 should be reduced to 0.125 mg/12 h. When simu-
lating dofelitide effects at the readjusted posology, the incidence of RAs 
significantly decreased from 10/300 to 0/300. Furthermore, APD90 was 
also reduced from 545.95 ± 33.11 ms to 431.03 ± 22.67 ms in the 
simulations with the re-adjusted dosage. 

3.6. ECG changes due to drug effects 

As a proof of concept, we conducted 3D simulations of dofetilide in 
the four studied scenarios to analyze changes in the ECG. The simula-
tions were performed using the ID6 male model and the ID35 female 
model. Fig. 14 shows the simulated ECG traces recorded at standard lead 
I. 

Under control conditions, QT interval for the simulated male model 
was 406 ms, whereas for the simulated female model QT interval was 
422 ms. When dofetilide effects were simulated in the male with normal 
renal function, QT interval was prolonged to 466 ms. Interestingly, in 
the case of the male with impaired renal function, QT interval further 
increased to 507 ms, suggesting a higher risk of drug-induced TdP in 
individuals with renal impairment. 

Similarly, in the female model with normal renal function, dofetilide 
prolonged the QT interval to 510 ms, which could potentially predispose 
the heart to arrhythmic events. Notably, in the female model with 
impaired renal function, the administration of dofetilide resulted in the 
appearance of an arrhythmia. These findings highlight the importance of 

Fig. 11. Sensitivity analysis of the individual impact of the PK and EP models 
on the high TdP-risk drugs (top panel) and on the intermediate TdP-risk drugs 
(bottom panel). NRF: normal renal function; IRF: impaired renal function. 

Fig. 12. Sensitivity analysis of hERG IC50 variability impact on the high TdP- 
risk drugs (top panel) and on the intermediate TdP-risk drugs (bottom panel). 
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considering renal function and sex as crucial factors for determining 
drug safety. 

A video showing the propagation patterns through the heart and the 
ECG signals can be found in Supplementary Material S3. Propaga-
tion-ECG.mp4 

4. Discussion 

4.1. Main findings 

In this study, we demonstrated the benefits of combining PK and EP 
models for the prediction of drug-induced TdP-risk in different sub- 
populations. The major findings of this study are as follows:  

(i) We implemented 15 PK models for CiPA drugs, identifying some 
covariates associated with drug plasma concentration levels and 
simulated a broad range of dose regimens and patient scenarios, 
which are available in Supplementary Material S2 Concen-
tration_Time.xlsx. Eight PK models included the effect of renal 
status, and four models included the effect of sex as covariates.  

(ii) There is a significant difference in drug effects between sub- 
populations. Women with impaired renal function are particu-
larly susceptible to drug-induced arrhythmias. This emphasizes 
the need to consider sex and renal function as important factors 
when evaluating drug safety and optimizing dose regimens.  

(iii) PK differences in drug concentrations do not always translate into 
significant modifications of the EP properties, as exemplified with 
clarithromycin. This suggests that the relationship between PK 
and EP effects may be complex, emphasizing the importance of 
integrating PK and EP models to comprehensively evaluate drug- 
induced TdP-risk.  

(iv) The developed PK/EP framework enables efficient testing of a 
wide range of dosing regimens in different clinical scenarios, 
guiding the identification of the maximum safe dose and the dose 
adjustments needed for specific sub-populations. This was 
demonstrated using the example of dofetilide, where re- 
adjustment of the dose regimen in the female population with 
impaired renal function significantly reduced the incidence of 
RAs. 

4.2. Predictions of drug plasma concentration with pharmacokinetic 
models 

PK models can be a valuable tool during the assessment of drug- 
induced TdP-risk, as they allow the generation of a priori simulations. 
This means that PK models can be used to predict drug concentrations at 
different time points, under different dosing regimens, and in different 
patient populations. Thereby, pharmaceutical companies and regulatory 
agencies, such as the US Food and Drug Administration, are increasingly 
relying on them [67]. 

In this study, we implemented fifteen PK models. We simulated 
distinct scenarios, considering different patient characteristics, routes of 
administration, posologies, etc. The simulated scenarios are available in 
Supplementary Material S2 Concentration_Time.xlsx. 

Among the two covariates studied here, renal function was found to 
have the greatest influence on drug concentrations (although fewer PK 
models included it as a covariate). This is consistent with previous 
research showing that renal function can significantly affect drugs levels 
[68]. 

The benefits of using PK models in combination with EP models for 
the evaluation of TdP-risk have also been previously demonstrated. 
Polak [69] combined PK and EP models demonstrating reliable QT 
predictions of quinidine and its metabolite 3-OH-quinidine effects using 

Fig. 13. Effects of dofetilide (high TdP-risk drug) in the female population with impaired renal function before (left) and after (right) dose adjustment. (A) AP traces 
under dofetilide effect at a standard dosage (0.5 mg/12 h). (B) AP traces under dofetilide effect after adjusting the dosage for sub-populations with TdP risk factors 
(0.125 mg/12 h). (C) Histogram of APD90 in the female population with impaired renal function under dofetilide effect at a standard dosage (0.5 mg/12 h). Models 
with RAs were not represented (10 models). (D) Histogram of APD90 in the female population with impaired renal function under dofetilide effect after dose 
adjustment (0.125 mg/12 h). 
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exclusively in vitro data. Varshneya et al. used simulations of PKs and EP 
models to predict the arrhythmic risk of four drugs proposed for the 
treatment of COVID-19 (lopinavir, ritonavir, chloroquine, and azi-
thromycin), demonstrating that the combination of PK and EP modeling 
predicts more precisely the cardiac risk of therapies [70]. Wisnowska 
et al. [71] used PK models to simulate the concentration-time profiles of 
fenspiride and analyzed its effect on EP models through pseudoECG 
signal modifications and the qNet metric. Zhou and colleagues [72] also 
showed that using PK models to predict myocyte drug concentration 
facilitated better TdP-risk predictions. The PK models implemented here 
enable the stratification of predicted exposure based on patient features, 
including demographic and clinical biological characteristics. As 
exemplified with dofetilide, this information can help guide drug 
development decisions, such as dose selection, dosing interval, and pa-
tient selection, with the goal of optimizing drug safety and efficacy. 
Further advancements in personalization could involve Bayesian 
parameter estimation, depending on the availability of data. 

4.3. Electrophysiological drug effects and TdP risk factors 

Here, we propose a methodology to create a population of male and 
female EP models based on genome-scale sex differences in car-
diomyocytes [36,73] and considering hormonal effects [37,38]. Our 
resulting parameterizations accurately recapitulated the differences in 
the AP properties reported in basic research [37,39]. Furthermore, the 
3D simulations ran with the representative male and female EP models 
as a proof of concept also reproduced the clinically described ECG 
properties [74–76]. For instance, the male and female simulated QT 
intervals (406 ms and 422 ms, respectively) fall within the range of 394 
±16 ms for males and 408±15 ms for females described by Vicente et al. 
[74], and the range of 405.7 ± 15.8 ms for males and 411.9 ± 14.6 ms 
females described by Surawicz et al. [75]. Moreover, the simulations 
also replicate other reported male ECG characteristics in comparison 
with female ECG, such as a shorter period between the J-point and the 
onset of the T wave, steeper slope of the ST segment, steeper ascent of 

Fig. 14. ECG effects of dofetilide at a standard dosage in the four studied scenarios: male with normal renal function (top panel – light blue line); male with impaired 
renal function (second panel – blue line); female with normal renal function (third panel – pink line); female with impaired renal function (bottom panel – red line). 
Black and gray lines represent the male and female models, respectively, in control conditions. NRF: normal renal function. IRF: impaired renal function. 
Dof.: dofetilide. 
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the T wave, higher T wave amplitude, and shorter and less horizontal ST 
segment [75]. 

The simulations of drug effects in our study are in line with experi-
mental studies and previous in silico works [8–10,14,23,77–82]. For 
instance, Chen et al. [81] reported that 10 nM of sotalol produced an 
average APD90 prolongation of 300 ms. In our simulations, 12 μM of 
sotalol in the male population resulted in an average APD90 prolonga-
tion of 296.5 ms. In another study, the effect of 3 µM of clarithromycin 
was an APD90 prolongation of 18 ms [80]. Similarly, in our simulations, 
1.2 µM of clarithromycin resulted in an APD90 prolongation of 8.8 ms in 
the female population. Another work showed that a concentration of 10 
nM of dofetilide produced a change in APD90 of 276±56 ms [77], and in 
our simulations, 4.9 nM of dofetilide resulted in an APD90 prolongation 
of 175.7 ± 17.9 ms. 

In general, it can be affirmed that high TdP-risk drugs induced more 
remarkable changes in the biomarkers, prolonging APD90, reducing 
qNet and EMw, and increasing Ca2+ syst., indicating a higher propensity 
for arrhythmias [14]. Notably, our simulations of different patient 
groups revealed that, compared with diseased men or healthy in-
dividuals of either sex, women with impaired renal function are 
particularly vulnerable to drug-induced arrhythmias. Furthermore, in 
the sensitivity analysis, the female sex in the EP models was found to be 
the covariate posing the highest risk for drug-induced TdP, even sur-
passing renal function. Varshenya et al. [70] also found that in their in 
silico study the number of drug-induced RAs in their healthy female 
population was higher than in their male population with heart failure. 

Over the past two decades, it has been increasingly recognized that 
the female sex is a significant risk factor for TdP. Thus, some authors 
state that women are twice as susceptible to drug-induced arrhythmias 
as men [16,17,83,84]. However, the impact of sex differences on 
drug-induced arrhythmogenicity, particularly in the field of in silico 
studies, remains largely understudied. Very few researchers have started 
to introduce the effect of sex in their simulations [37,38,85–87], and the 
general conclusion is consistent across these studies: including sex as an 
independent factor in preclinical assessment of drug-induced proar-
rhythmic risk is crucial to prevent potentially life-threatening conse-
quences for the female population. 

Nonetheless, as demonstrated in this study, the increased TdP-risk is 
not solely explained by sex, but rather by a combination of other factors, 
such as renal impairment. This is in line with the multi-hit theory, which 
suggests that TdP occurs due to a combination of multiple factors, 
including genetic predisposition, drug-induced ion channel block, elec-
trolyte imbalances, cardiac diseases, among others [88]. In accordance 
with our findings, renal impairment has been associated with an 
increased risk of TdP [89]. One of the advantages of the described PK/EP 
framework is the possibility of simulating the combined effects of 
several factors simultaneously. In this sense, by simulating the effects of 
possible hyperkalemia, our results suggest that hyperkalemia could have 
a potential protective role against the development of TdP. These results 
are consistent with the findings described by Genovesi et al. [90], who 
reported that patients undergoing hemodialysis had less cardiac elec-
trical stability than those undergoing peritoneal dialysis, due to signif-
icant decreases in potassium levels. In fact, hypokalemia has been 
clinically associated with the occurrence of TdP [15,89]. 

Finally, the effects of dofetilide observed in our 3D simulations are 
consistent with the effects on the QT interval described for this drug in 
clinical trials, further validating the utility of our PK/EP framework for 
studying drug-induced arrhythmias. Johannesen et al. [91] conducted a 
prospective clinical trial involving 22 healthy individuals in which they 
reported that a 0.5 mg dose of dofetilide resulted in a prolongation of the 
QT interval by 79.3 ms (95 % confidence interval: 72.2 - 86.3 ms). 
Similarly, Coz’s and colleagues [92], in their study of healthy volun-
teers, showed an average increase in the QT interval of 61 ms after 
taking a dose of 0.5 mg of dofetilide. In addition, our simulation of the 
female model with normal renal function reached a QT interval over 
500 ms after taking dofetilide, which, according to the Medication 

Guide, indicates a need to reduce the dosage [61]. This finding is 
consistent with the study by Pokorney et al. [16], which reported that 
55 % of the female participants who took dofetilide 0.5 mg twice daily 
required discontinuation or dose reduction. Moreover, our study pro-
vides further support for the recommendation of dosage reduction in 
cases of renal impairment [61]. In the simulated renal impairment 
scenarios, under the standard dofetilide dose regimen, the male model 
experienced excessive QT prolongation, while the female model devel-
oped TdP. These findings emphasize the importance of adjusting dos-
ages in patients with predisposing factors to mitigate the risk of 
drug-induced TdP. 

4.4. Limitations of the study 

Despite the strengths and findings of this study, there are several 
limitations that should be considered when interpreting the results. One 
limitation is related to the IC50 values obtained from the literature. The 
reliability and accuracy of these values vary with various factors, such as 
different experimental conditions or methodologies, which may intro-
duce inherent limitations and uncertainties in the study [93–95]. We 
attempted to mitigate this issue by performing a sensitivity analysis and 
by using the pharmacological data provided by Li et al. [12], aiming to 
reduce inter-experiment variability. Furthermore, these IC50 values 
were generated in accordance with CiPA recommendations for experi-
mental settings. 

One of the inherent constraints associated with this approach is the 
need for pharmacokinetic data to implement a PK model. This limitation 
necessitates the exclusion of certain models due to a lack of data. 
Regarding the introduction of new molecules to the market, it would be 
conceivable to establish a collaborative arrangement that includes PK 
modeling steps, thereby enabling the utilization of this approach. 

Another limitation of our approach is the coupling of PK models with 
EP models through the Hill equation. PK models predict as output blood 
time concentration for the drug of interest, while the Hill equation takes 
this concentration as an input and compares it directly against in vitro 
IC50s. This comparison of variables from different sources, each with 
their own uncertainties, can introduce potential conflicts. However, to 
address this concern, we performed a sensitivity analysis of IC50s values 
for hERG and found that drug effect simulations were not significantly 
affected, providing some assurance regarding the robustness of our 
findings despite this limitation. 

Regarding the concentrations used in this study, drug effects were 
simulated with EFTPC (effective free therapeutic plasma concentra-
tions). Free drug concentration, rather than the total concentration, is 
often considered more relevant for therapeutic drug monitoring as only 
the unbound fraction can reach the site of action [96–98]. Furthermore, 
prior research has demonstrated that predictions derived from plasma 
concentration tend to yield superior electrophysiological changes pre-
dictions compared to total concentration [69]. However, it is important 
to recognize that free plasma concentration serves as a surrogate for 
tissue concentration. It is generally assumed that the unbound drug 
concentration within tissues is in equilibrium with the free drug con-
centration in the circulatory system. Nevertheless, this assumption may 
not be true for drugs that tend to accumulate at the tissue level (e.g., 
chloroquine - not simulated here - can exhibit a peak tissue/plasma 
concentration ratio greater than 300 [99]). In such cases, knowledge of 
intracellular concentration or subcellular drug distribution could further 
enhance the accuracy of predicting drug efficacy and toxicity. Polak 
et al. [100] reviewed some example of PK models including the heart 
compartment (and PK models for other tissue compartments). Due to the 
modular design of the proposed simulation framework, future works 
could consider the incorporation of tissue-level concentrations to refine 
predictions of drug effects. 

An additional limitation of this work might be related to the use of 
mRNA channel expression levels for building the population of models. 
It is known that mRNA channel expression levels may not fully capture 
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the complexity and activity of ion channels [101]. mRNA expression is 
one of the many factors that determine the expression of ion channels in 
the cell membrane, although other factors, such as translation rate, 
binding with channel subunits, methylation, membrane localization, 
trafficking, and phosphorylation, also play important roles in regulating 
the activity of ion channels. Nevertheless, mRNA expression data still 
provides valuable information on variability in the heart [102]. There-
fore, we believe that using distributions based on mRNA channel 
expression levels to generate the populations of EP models is advanta-
geous compared with using synthetic distributions. In addition, it is 
worth noting that the presented approach for building the population of 
EP models assumes independence in ionic current variability. While this 
assumption is based on available experimental data regarding ionic 
current covariance, it introduces a level of uncertainty into our simu-
lations. Additional information regarding ionic current correlations 
could be easily implemented into the proposed simulation framework 
and potentially enhance the accuracy of predictions. 

Furthermore, another aspect to be considered is that there might be 
parameters describing sex and renal function effects which have not 
been considered in this work (for example heart rate differences, weight 
differences, cardiomyocytes volume and capacitance differences, 
plasma protein levels). The inclusion of additional parameters related to 
sex and renal function could represent an enhancement in future in-
vestigations by allowing more accurate predictions of drug effects. 

On the other hand, it is important to note that this study did not 
analyze the effect of certain covariates that could potentially influence 
drug-induced TdP-risk, such as weight, smoking habits, height, age, or 
CYP2D6 mutations [103]. Weight was kept constant at 70 kg across the 
four simulated PK scenarios. This simplification may not fully replicate 
real-world variations, but this decision aimed at isolating the primary 
effects of sex. Moreover, the study primarily focused on TdP as a specific 
adverse drug reaction, but there may be other arrhythmogenic risks or 
unwanted drug effects that have not been fully assessed. Furthermore, 
the interactions between two or more drugs or the effect of active me-
tabolites were not considered in the simulations. Effects of active me-
tabolites and real-world interactions between multiple drugs in a clinical 
setting may be complex and could potentially affect the risk assessment 
and safety profile of the drugs. The absence of such interactions within 
the modeling framework may limit the real-world applicability of the 
findings. In addition, the study lacked electromechanical simulations 
that could provide mechanistic information regarding the detrimental 
hemodynamic changes associated with drug-induced effects on cardiac 
electrophysiology. While the focus of the study was not on electrome-
chanical simulations, the absence of this aspect may limit the mecha-
nistic understanding of the hemodynamic effects of drugs and their 
potential impacts on patient outcomes. However, the modeling frame-
work proposed here could be combined with other tools to generate an 
integrative model for multi-organ drug-induced toxicity prediction. 
Future studies could explore additional factors and incorporate more 
comprehensive and mechanistic simulations to further enhance our 
understanding of drug-induced cardiac EP effects and their potential 
clinical implications. 

It is important to acknowledge the limitations of this study and 
recognize the need for further research and validation to establish the 
robustness and applicability of the approach in diverse populations and 
clinical scenarios. Despite these limitations, this study yielded promising 
results and proposes a valuable methodology for in silico drug-induced 
TdP assessment. 

5. Conclusions 

This study demonstrates the potential of a combined PK/EP frame-
work for improving drug TdP-risk assessment. By using PK models 
together with virtual sex-specific populations of EP models based on 
mRNA channel expression levels, this approach constitutes a more 
refined and quantitative approach to assess drug safety in sub- 

populations with higher TdP-risk. The simulations conducted provided 
valuable insights into the complex interactions between drug effects, 
sex, and renal function, identifying female sex and impaired renal 
function as risk factors for drug-induced TdP. 

Furthermore, the proposed methodology may be useful for opti-
mizing dose and drug regimens, potentially minimizing the cost of phase 
I/II clinical trials. While this study focused specifically on sex and renal 
function, other factors such as comorbidities (e.g., heart failure, 
myocardial infarction, or hepatic dysfunction), genetic polymorphisms, 
active metabolites effects, or drug-drug interactions could be incorpo-
rated into the proposed modeling framework to expand its utility. In 
silico medicine, as demonstrated by this study, offers the possibility of 
testing a wide range of factors in a systematic and efficient manner, 
providing quantitative and population-specific risk assessments, opti-
mizing drug therapies, and improving patient safety in the context of 
drug-induced TdP. Further research in this area may contribute to the 
development of personalized medicine approaches, ultimately leading 
to safer drug therapies for patients. 
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